
Distantly-Supervised Named Entity Recognition with Uncertainty-Aware
Teacher Learning and Student-Student Collaborative Learning

Anonymous ACL submission

Abstract

Distantly-Supervised Named Entity Recogni-001
tion (DS-NER) effectively alleviates the burden002
of annotation, but meanwhile suffers from the003
label noise. Recent works attempt to adopt the004
teacher-student framework to gradually refine005
the training labels and improve the overall ro-006
bustness. However, we argue that these teacher-007
student methods achieve limited performance008
because the poor calibration of the teacher net-009
work produces incorrectly pseudo-labeled sam-010
ples, leading to error propagation. Therefore,011
we attempt to mitigate this issue by propos-012
ing: (1) Uncertainty-Aware Teacher Learning013
that leverages the prediction uncertainty to re-014
duce the number of incorrect pseudo labels in015
the self-training stage; (2) Student-Student Col-016
laborative Learning that allows the transfer of017
reliable labels between two student networks in-018
stead of indiscriminately relying on all pseudo019
labels from its teacher, and further enables a020
full exploration of mislabeled samples rather021
than simply filtering unreliable pseudo-labeled022
samples. We evaluate our proposed method023
on five DS-NER datasets, demonstrating that024
our method is superior to the state-of-the-art025
DS-NER denoising methods.026

1 Introduction027

Named Entity Recognition (NER) aims to detect028

entity spans in text and then classify them into029

predefined categories, which plays an important030

role in many applications such as dialogue systems031

(Li and Zhao, 2023; Liu et al., 2023). However,032

deep learning-based NER methods usually require033

a substantial quantity of high-quality annotation034

for training models, which is not only exceedingly035

costly but also time-consuming.036

To alleviate the burden of annotation, Distantly-037

Supervised Named Entity Recognition (DS-NER)038

1Our code will be open-sourced after peer review.
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Figure 1: A sample generated by DS-NER. “Amazon”
and “Washington” are inaccurate annotations. “Arafat"
and “rainforest" are the incomplete annotations.

is widely used in real-world scenarios. It can au- 039

tomatically generate massive labeled training data 040

by matching entities in existing knowledge bases 041

with snippets in text. However, DS-NER suffers 042

from two inherent issues: (1) Inaccurate Annota- 043

tion: due to the context-free matching, the entity 044

with multiple types in the knowledge bases may be 045

labeled as an inaccurate type, and (2) Incomplete 046

Annotation: due to the limited coverage of knowl- 047

edge bases, many entity mentions in text cannot be 048

matched and are wrongly labeled as non-entity. As 049

shown in Figure 1, the entity types of "Washing- 050

ton" and "Amazon" are wrongly labeled owing to 051

context-free matching, and "Arafat" is not recog- 052

nized due to the limited coverage of resources. 053

Therefore, many works attempt to address these 054

issues (Peng et al., 2019; Zhou et al., 2022; Li et al., 055

2021; Si et al., 2022, 2023). Recently, the self- 056

training teacher-student framework in DS-NER has 057

attracted increasing attention (Liang et al., 2020; 058

Zhang et al., 2021a; Qu et al., 2023), as it can 059

handle inaccurate and incomplete labels simulta- 060

neously, and use generated pseudo labels to make 061

full use of the mislabeled samples from DS-NER 062

dataset. This self-training framework firstly uses 063

generated reliable pseudo labels from the teacher 064

network to train the student network, and then up- 065

dates a new teacher by shifting the weights of the 066

trained student. Through this self-training loop, the 067
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training labels are gradually refined and model gen-068

eralization can be improved. Specifically, BOND069

(Liang et al., 2020) designs a teacher-student net-070

work and selects high-confidence pseudo labels as071

reliable labels to get a more robust model. SCDL072

(Zhang et al., 2021b) further improves the perfor-073

mance by jointly training two teacher-student net-074

works, then selects consistent and high-confidence075

pseudo labels between two teachers as reliable la-076

bels. ATSEN (Qu et al., 2023) designs two teacher-077

student networks by considering both consistent078

and inconsistent high-confidence pseudo labels be-079

tween two teachers and also proposes fine-grained080

teacher updating to achieve advanced performance.081

The above teacher-student methods highly rely082

on using the high-confidence pseudo labels (e.g.,083

pseudo labels with confidence values greater than084

0.7) as reliable labels, as they assume that the085

teacher model’s predictions with high confidence086

tend to be correct. However, this assumption may087

be far from reality. Neural networks are usually088

poorly calibrated (Guo et al., 2017; Rizve et al.,089

2021), i.e., the probability associated with the pre-090

dicted label usually reflects the bias of the teacher091

network and does not reflect the likelihood of its092

ground truth correctness. Therefore, a poorly cal-093

ibrated teacher network can easily generate incor-094

rect pseudo labels with high confidence. We argue095

that previous teacher-student methods achieve lim-096

ited performance because poor network calibration097

produces incorrect pseudo-labeled samples, lead-098

ing to error propagation.099

We aim to reduce the effect of incorrect pseudo100

labels within the teacher-student framework by101

unCertainty-aware tEacher aNd Student-Student102

cOllaborative leaRning (CENSOR). Specifically,103

we apply two teacher-student networks to provide104

multi-view predictions on training samples. We105

propose Uncertainty-aware Teacher Learning that106

leverages the prediction uncertainty to guide the107

selection procedure of pseudo labels. Then, we use108

both uncertainty and confidence as indicators to se-109

lect pseudo labels, reducing the number of incorrect110

pseudo labels selected by confidence scores from111

poorly calibrated teacher networks. We only select112

the pseudo labels with high confidence and low113

uncertainty as reliable labels, since these selected114

labels are more likely to contain less noise. Subse-115

quently, to further reduce the risk of learning incor-116

rect pseudo labels and make a full exploration of117

mislabeled samples, we introduce Student-Student118

Collaborative Learning that allows the transfer of119

reliable labels between two student networks. In 120

each batch of data, each student network views its 121

small-loss pseudo labels (e.g., pseudo labels of 10% 122

samples with the smallest loss) as reliable labels 123

and then teaches such reliable labels to the other stu- 124

dent network for updating the parameters. In this 125

way, a student network does not completely rely 126

on all the pseudo labels from its poorly calibrated 127

teacher network. Meanwhile, different from just fil- 128

tering unreliable pseudo-labeled samples, this com- 129

ponent provides the opportunity for the incorrect 130

pseudo-labeled samples to be correctly labeled by 131

the other teacher-student network, allowing the full 132

exploration of training data. Experiments demon- 133

strate that our method significantly outperforms 134

previous methods, e.g., improving the F1 score by 135

an average of 1.87% on five DS-NER datasets. 136

2 Related Work 137

To alleviate the burden of annotation, previous stud- 138

ies attempted to annotate NER datasets via distant 139

supervision, which suffers from noisy annotation. 140

DS-NER Methods To address these issues, vari- 141

ous methods have been proposed. Several studies 142

(Shang et al., 2018; Yang et al., 2018; Jie et al., 143

2019) modify CRF to get better performance under 144

the noise. Peng et al. (2019); Zhou et al. (2022) 145

try to employ PU learning to obtain the unbiased 146

estimation of loss value. Li et al. (2021, 2022) intro- 147

duce negative sampling to mitigate the misguidance 148

from unlabeled entities. Liang et al. (2020); Zhang 149

et al. (2021b); Qu et al. (2023) adopt the teacher- 150

student framework to handle both inaccurate and 151

incomplete labels simultaneously. In this paper, 152

we attempt to reduce the effect of incorrect pseudo 153

labels and error propagation in the teacher-student 154

framework to achieve better performance. 155

Teacher-Student Framework Teacher-student 156

framework is a popular architecture in many semi- 157

supervised tasks (Huo et al., 2021). Recently, the 158

teacher-student framework has attracted increasing 159

attention in DS-NER task. BOND (Liang et al., 160

2020) firstly attempts to apply self-training with a 161

teacher-student network in DS-NER. SCDL (Zhang 162

et al., 2021b) further improves the performance by 163

jointly training two teacher-student networks. AT- 164

SEN (Qu et al., 2023) considers both consistent and 165

inconsistent predictions between two teachers and 166

proposes fine-grained teacher updating to achieve 167

more robustness. We improve the teacher-student 168
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Figure 2: General architecture of CENSOR, which consists of two teacher-student networks. [①] means the teacher
network first generates pseudo labels. [②] means estimating the confidence and uncertainty of generated pseudo
labels. [③] means selecting reliable pseudo labels according to confidence and uncertainty, where masked pseudo
labels will not be used to update the student network. [④] means using Student-Student Collaborative Learning to
transfer the reliable pseudo labels. [⑤] means using selected reliable pseudo labels to update the corresponding
student network. [⑥] means updating a new teacher by shifting the weights of the trained student.

framework by Uncertainty-Aware Teacher Learn-169

ing and Student-Student Collaborative Learning,170

jointly reducing the effect of incorrect pseudo la-171

bels. In this way, our method can avoid error prop-172

agation and achieve better overall performance.173

3 Task Definition174

Given the training corpus Dds where each sample175

(xi, yi), xi represents i-th token, and yi is the label.176

Each entity is a span of the text, associated with an177

entity type. We use the BIO scheme for sequence la-178

beling. The beginning token of an entity is labeled179

as B-type, and others are I-type. The non-entity180

tokens are labeled as O. Traditional NER is a su-181

pervised learning task based on a clean dataset. We182

focus on the practical scenario where the training183

labels are noisy due to distant supervision, i.e., the184

revealed tag yi may not correspond to the underly-185

ing correct one. Thus, the challenge of DS-NER is186

to reduce the negative effect of noisy annotations.187

4 Methodology188

As shown in Figure 2, CENSOR consists of two189

teacher-student networks to handle the noisy label.190

To avoid overfitting the incorrect pseudo labels gen-191

erated by poorly calibrated teacher networks, we in-192

troduce Uncertainty-Aware Teacher Learning that193

leverages the prediction uncertainty to guide the194

label selection. We also propose Student-Student195

Collaborative Learning that allows reliable label196

transfer between two student networks, further re- 197

ducing the risk of learning incorrect pseudo labels 198

and making a full use of mislabeled samples. 199

4.1 Teacher-student Framework 200

Neural networks excel at memorization (Arpit et al., 201

2017). However, when noisy labels become promi- 202

nent, deep-learning-based NER models inevitably 203

overfit noisy labeled data, resulting in poor perfor- 204

mance. The purpose of the teacher-student methods 205

is to select reliable labels (i.e., pseudo labels that 206

are more likely to be labeled correctly), to reduce 207

the negative effect of label noise. Self-training 208

involves the teacher-student network, where the 209

teacher network first generates pseudo labels to 210

participate in label selection. Then the student is 211

optimized via back-propagation based on selected 212

reliable labels, and the teacher is updated by grad- 213

ually shifting the weights of the student with an 214

exponential moving average (EMA). Following Qu 215

et al. (2023), we train two sets of teacher-student 216

networks using two different NER models to pro- 217

vide multi-view predictions on training samples. 218

4.2 Uncertainty-Aware Teacher Learning 219

In the DS-NER task, one of the main challenges 220

of the teacher-student framework is to evaluate the 221

correctness of the generated pseudo labels of the 222

teacher model. Previous methods (Liang et al., 223

2020; Zhang et al., 2021a; Qu et al., 2023) gener- 224

ally assume that high-confidence predictions tend 225
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to be correct. Therefore, they select the samples226

with high-confidence pseudo labels (e.g., pseudo227

labels with confidence values greater than 0.7) as228

training data. However, the teacher network is229

prone to generating high-confidence yet incorrect230

pseudo labels due to the poor calibration (Guo et al.,231

2017). This overconfidence is indicative of model232

bias rather than the true likelihood of correctness.233

Therefore, relying solely on the teacher network’s234

confidence as the indicator may not efficiently eval-235

uate the correctness of the pseudo labels.236

Meanwhile, we observe that when the NER237

model performs supervised learning on a misla-238

beled token, it receives two types of supervision239

from the incorrect label of the mislabeled token240

and the labels of semantically similar but correctly241

labeled tokens. For example, “Washington” in Fig-242

ure 1 is mislabeled as “LOC” (location), and the243

model trained with it tends to predict “Washing-244

ton” as “LOC” instead of “PER” (person). The245

model is also exposed to semantically similar but246

correctly labeled tokens, such as the token “James”247

labeled as “PER” in the training sentence “U.S.248

President will meet James at the White House”,249

thus the model may also learn to generalize "Wash-250

ington" as a “PER”. The knowledge in both types251

of supervision is eventually learned and saved to252

the network neurons. However, as the training con-253

tinues, the deep-learning-based model inevitably254

overfits the noisy labels due to its memorization255

capability (Arpit et al., 2017), rather than utilizing256

the correct knowledge learned from the labels of257

semantically similar but correctly labeled tokens.258

Uncertainty Estimation Based on our observa-259

tion, we find that randomly deactivating neurons260

introduces variability in predicted confidence of the261

incorrect pseudo label, which can be attributed to262

varying subsets of active neurons influencing each263

prediction. Specifically, the randomness of deacti-264

vation of the network neurons makes the remaining265

network neurons sometimes retain more knowl-266

edge learned from the incorrect label of the misla-267

beled token, and sometimes retain more knowledge268

learned from the labels of semantically similar but269

correctly labeled tokens. Consequently, such dis-270

crepancies can lead to inconsistencies in multiple271

predictions. For the correctly labeled tokens, since272

their labels are the same as those of semantically273

similar tokens, the two types of knowledge stored274

in the network neurons are more consistent, so the275

predictions from the different subsets of active neu-276

rons tend to be more consistent. Thus, we define the 277

inconsistency of predictions from sampled teacher 278

network neurons as uncertainty and evaluate the 279

correctness of the generated pseudo labels. 280

Specifically, given the new input token x∗ and 281

the pseudo label ŷ∗ generated by the teacher net- 282

work W , we perform K forward passes with 283

Dropouts (Krizhevsky et al., 2012) through our 284

teacher networks at inference time. In each pass, 285

pre-defined parts of network neurons are randomly 286

deactivated. Then, we could yield K subsets of 287

active neurons {Ŵ1, Ŵ2, ..., ŴK}. To estimate the 288

uncertainty for each token in the sequence labeling 289

task, we leverage the variance of the model outputs 290

for each token from multiple forward passes: 291

sun(y
∗ = ŷ∗|W,x∗) = V ar[p(y∗ = ŷ∗|Ŵk, x

∗)]Kk=1, (1) 292

where V ar[.] is the variance of distribution over 293

the K passes through the teacher network. The 294

lower uncertainty indicates the predictions from 295

sampled teacher network neurons and the learned 296

knowledge are more consistent, thus the pseudo 297

label is more likely to be correct. 298

Uncertainty-Aware Label Selection Different 299

from previous teacher-student methods only using 300

confidence as the indicator to select reliable pseudo 301

labels, we jointly consider the confidence and un- 302

certainty in label selection. For the confidence of 303

the pseudo label ŷ∗, as follows: 304

ŷ∗ = argmax(p(y∗|W,x∗))

sco(y
∗ = ŷ∗|W,x∗) = p(y∗ = ŷ∗|W,x∗)

(2) 305

A higher confidence value sco means the model 306

is more confident for the pseudo label ŷ∗. How- 307

ever, many of these selected pseudo labels with 308

high confidence are also incorrect due to the poorly 309

calibrated teacher network (Guo et al., 2017), lead- 310

ing to error propagation in the self-training. To 311

reduce the effect of incorrect pseudo labels, we 312

additionally use uncertainty score sun as the indi- 313

cator. Specifically, we select a subset of pseudo 314

labels which are both high-confidence and low- 315

uncertainty as reliable labels, since jointly consid- 316

ering confidence and uncertainty can further filter 317

the incorrect pseudo labels with high confidence. 318

Thus, we define a masked matrix, i.e., 319

Mx∗ =

 1 sun < σua and sco > σco;

0 Otherwise;
(3) 320

When M = 0, it means the pseudo-label may be 321

incorrect and the sample should be masked in the 322

self-training. σco and σua are hyperparameters. 323
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4.3 Student-Student Collaborative Learning324

Based on Uncertainty-Aware Teacher Learning, the325

teacher network can utilize the correctly pseudo-326

labeled samples to alleviate the negative effect of327

label noise. However, simply masking unreliable328

pseudo-labeled samples can lead to underutiliza-329

tion of the training set, as there is no chance for the330

incorrect pseudo-labeled samples to be corrected331

and further learned. Intuitively, if we can correct332

the incorrect pseudo label with the correct one,333

it will become a useful training sample. There-334

fore, to address these shortcomings and incorpo-335

rate Uncertainty-Aware Teacher Learning to make336

the teacher-student network more effective, we pro-337

pose Student-Student Collaborative Learning.338

The idea of Student-Student Collaborative Learn-339

ing is to utilize two different student networks and340

let them learn from each other. We regard small-341

loss samples as clean samples for training, in each342

batch of data, each student network views its small-343

loss pseudo labels (e.g., pseudo labels of 10% sam-344

ples with the smallest loss) as the reliable labels,345

and transfers such reliable labels to another stu-346

dent network for updating the parameters. These347

small-loss samples are far from the decision bound-348

aries of the two models and thus are more likely349

to be true positives and true negatives (Feng et al.,350

2019). In this way, a student network is able to351

not completely rely on all pseudo labels from the352

teacher network, further reducing the risk of learn-353

ing incorrect pseudo labels generated by the poorly354

calibrated teacher network. Moreover, the two dif-355

ferent student networks may have different deci-356

sion boundaries and thus are good at recognizing357

different patterns in data. Different from simply358

masking unreliable pseudo-labeled samples, this359

component also provides the opportunity for the360

incorrect pseudo-labeled samples to be correctly la-361

beled by the other teacher-student network to make362

full use of the training data.363

Specifically, for two student networks s1, s2 and364

their parameters Ws1 ,Ws2 , we first let s1 (resp.365

s2) select a small ratio of samples in this batch366

of data D̂ that have small training loss. For these367

selected samples D̂s1 (resp. D̂s2) from s1 (resp.368

s2), we use the corresponding generated pseudo369

labels Ŷs1 (resp. Ŷs2) as reliable labels and transfer370

such reliable labels to the other student network371

s2 (resp. s1) for updating the parameters W2 (resp.372

W1). The ratio of transferred labels is controlled373

by hyperparameter δ. In this way, two student374

networks can learn from each other’s reliable labels, 375

reducing the risk of learning from incorrect pseudo 376

labels and making full use of the training data. 377

4.4 Training and Inference 378

Algorithm 1 in Appendix A.3 gives the pseudocode. 379

The process can be divided into three stages: the 380

pre-training, the self-training, and the inference. 381

Pre-Training Stage We warm up two different 382

NER models WA and WB on the noisy DS-NER 383

dataset to obtain a better initialization, and then 384

duplicate the parameters W for both the teacher Wt 385

and the student Ws (i.e., Wt1= Ws1= WA, Wt2= 386

Ws2= WB). The training objective function is the 387

cross entropy loss with the following form: 388

L = − 1

N

∑
Dds

yilog(p(yi|Ws, xi)) (4) 389

where yi means the i-th token label of the i-th token 390

xi in the DS-NER corpus Dds and p(yi|Ws, xi) 391

denotes its probability produced by student network 392

Ws. N is the size of the training corpus. 393

Self-Training Stage In this stage, we select reli- 394

able pseudo-labeled tokens to train the two teacher- 395

student networks respectively. Specifically, we se- 396

lect reliable labels generated by teachers Wt and 397

supervise the students Ws with cross-entropy loss. 398

During the label selection, we use the proposed 399

Uncertainty-Aware Label Selection to jointly con- 400

sider the confidence and uncertainty as shown in 401

Eq. 3 to reduce the effect of incorrect pseudo- 402

labeled samples. Meanwhile, we use Student- 403

Student Collaborative Learning to allow student 404

networks can learn from each other’s reliable la- 405

bels by selecting the pseudo labels from small-loss 406

samples. Therefore, the training objective function 407

of student networks Ws in this stage is the cross 408

entropy loss with the following form: 409

L = − 1

N

∑
Dds

Miŷilog(p(ŷi|Ws, xi)) (5) 410

where ŷi means the i-th pseudo-label generated 411

by Student-Student Collaborative Learning and its 412

teacher Wt. p(ŷi|Ws, xi) denotes its probability 413

produced by student network Ws on generated 414

pseudo-label. Mi is indicator where the i-th token 415

xi should be masked according to Eq. 3. Mean- 416

while, if ŷi is the transferred pseudo-label from 417

the other student, Mi will be automatically set to 418

1 (unmasked). That is, we are more inclined to 419
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Method
CoNLL03 OntoNotes5.0 Webpage Wikigold Twitter

P R F1 P R F1 P R F1 P R F1 P R F1

KB-Matching 81.13 63.75 71.40 63.86 55.71 59.51 62.59 45.14 52.45 47.90 47.63 47.76 40.34 32.22 35.83

BiLSTM-CRF 75.50 49.10 59.50 68.44 64.50 66.41 58.05 34.59 43.34 47.55 39.11 42.92 46.91 14.18 21.77
DistilRoBERTa 77.87 69.91 73.68 66.83 68.81 67.80 56.05 59.46 57.70 48.85 52.05 50.40 45.72 43.85 44.77
RoBERTa 82.29 70.47 75.93 66.99 69.51 68.23 59.24 62.84 60.98 47.67 58.59 52.57 50.97 42.66 46.45

AutoNER 75.21 60.40 67.00 64.63 69.95 67.18 48.82 54.23 51.39 43.54 52.35 47.54 43.26 18.69 26.10
LRNT 79.91 61.87 69.74 67.36 68.02 67.69 46.70 48.83 47.74 45.60 46.84 46.21 46.94 15.98 23.84
Co-teaching+ 86.04 68.74 76.42 66.63 69.32 67.95 61.65 55.41 58.36 55.23 49.26 52.08 51.67 42.66 46.73
JoCoR 83.65 69.69 76.04 66.74 68.74 67.73 62.14 58.78 60.42 51.48 51.23 51.35 49.40 45.59 47.42
NegSampling 80.17 77.72 78.93 64.59 72.39 68.26 70.16 58.78 63.97 49.49 55.35 52.26 50.25 44.95 47.45

BOND 82.05 80.92 81.48 67.14 69.61 68.35 67.37 64.19 65.74 53.44 68.58 60.07 53.16 43.76 48.01
SCDL 87.96 79.82 83.69 67.49 69.77 68.61 68.71 68.24 68.47 62.25 66.12 64.13 59.87 44.57 51.09
ATSEN 85.75 83.86 84.79 65.69 70.71 68.11 71.08 70.03 70.55 57.67 54.71 56.15 59.31 45.83 51.71

CENSOR 87.33 85.90 86.61 67.11 71.01 69.01 75.89 72.30 74.05 66.01 68.10 67.05 58.63 47.38 52.41

Table 1: Main results on five DS-NER datasets. We report the baseline results from Liang et al. (2020); Zhang et al.
(2021a) and our experimental results with their official implementation in our devices.

trust judgments from the student model because420

the student network is updated earlier and more421

frequently than the teacher network, and therefore422

better able to capture the changes of pseudo labels.423

N is the size of the training corpus.424

Different from the optimization of the student425

network, we apply EMA as Zhang et al. (2021a) to426

gradually update the parameters of the teacher:427

Wt ←− αWt + (1− α)Ws (6)428

where α denotes the smoothing coefficient. With429

the conservative and ensemble properties, the us-430

age of EMA has largely mitigated the bias. As a431

result, the teacher tends to generate more reliable432

pseudo labels, which can be used as new supervi-433

sion signals in the denoising self-training stage.434

Inference Stage In the inference stage, only the435

best model Wbest ∈ {Wt1 ,Ws1 ,Wt2 ,Ws2} on the436

dev set is adopted for predicting the test data.437

5 Experiment438

5.1 Dataset439

We conduct experiments on five DS-NER datasets,440

including CoNLL03 (Tjong Kim Sang and441

De Meulder, 2003), Webpage (Ratinov and Roth,442

2009), Wikigold (Balasuriya et al., 2009), Twitter443

(Godin et al., 2015) and OntoNotes5.0 (Weischedel444

et al., 2013). For the fair comparison, we follow445

the same knowledge bases and settings as Liang446

et al. (2020), re-annotate the training set by distant447

supervision, and use the original dev and test set.448

Statistics of datasets are shown in Appendix A.1.449

5.2 Evaluation Metrics and Baselines 450

We use Precision (P), Recall (R), and F1 score 451

as our evaluation metrics. We compare CENSOR 452

with various baseline methods, including super- 453

vised methods and DS-NER methods. We also 454

present the results of KB-Matching, which directly 455

uses knowledge bases to annotate the test sets. 456

Supervised Methods We select BiLSTM-CRF 457

(Ma and Hovy, 2016), RoBERTa (Liu et al., 2019) 458

and DistilRoBERTa (Sanh et al., 2019) as original 459

supervised methods. As trained on noisy DS-NER 460

datasets, these methods achieve poor performance. 461

DS-NER Methods We compare several DS-NER 462

baselines. AutoNER (Shang et al., 2018) modifies 463

the standard CRF to get better performance under 464

the noise. LRNT (Cao et al., 2019) leaves training 465

data unexplored fully to reduce the negative effect 466

of noisy labels. Co-teaching+ (Yu et al., 2019) 467

and JoCoR (Wei et al., 2020) are two classical col- 468

laborative learning methods to handle noisy labels 469

in computer vision area. NegSampling (Li et al., 470

2021) uses down-sampling in non-entities to relief 471

the misleading from incomplete annotation. 472

Teacher-Student Methods for DS-NER Specifi- 473

cally, BOND (Liang et al., 2020) designs a teacher- 474

student network and selects high-confidence predic- 475

tions as pseudo labels to get a robust model. SCDL 476

(Zhang et al., 2021b) improves the performance 477

by training two teacher-student networks and se- 478

lecting consistent high-confidence predictions be- 479

tween two teachers as pseudo labels. ATSEN (Qu 480
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Method P R F1

CENSOR 87.33 85.90 86.61

-w/o UTL 86.56 (-0.77) 84.37 (-1.53) 85.45 (-1.16)
-w/o SCL 86.44 (-0.89) 83.98 (-1.92) 85.19 (-1.42)

Table 2: Ablation study on CoNLL03. UTL means
Uncertainty-Aware Teacher Learning and SCL means
Student-Student Collaborative Learning.

et al., 2023) considers both consistent and inconsis-481

tent predictions with high confidence between two482

teachers and further proposes a fine-grained teacher483

updating method. We report the results of ATSEN484

with official implementation in our devices.485

5.3 Experimental Settings486

Following Qu et al. (2023), we adopt RoBERTa-487

base and DistilRoBERTa-base as two NER models488

for two teacher-student networks. We use Adam489

(Kingma and Ba, 2015) as our optimizer. We list490

detailed hyperparameters in the Appendix A.2.491

5.4 Main Results492

Table 1 presents the performance of different meth-493

ods measured by precision, recall, and F1 score.494

Specifically, (1) CENSOR achieves new SOTA495

performance, showing superiority in the DS-NER496

task; (2) Compared to original supervised meth-497

ods, including BiLSTM-CRF, RoBERTa, and Dis-498

tilRoBERTa, CENSOR improves the F1 score with499

an average increase of 23.04%, 10.96%, and 8.99%,500

respectively, which demonstrates the necessity of501

DS-NER models and the effectiveness; (3) Com-502

pared to classical de-noising methods in the com-503

puter vision area (e.g., Co-teaching+), simply using504

these methods can not achieve strong performance,505

since these methods were not initially designed506

for sequence labeling tasks and ignore the charac-507

teristics of the DS-NER task. (4) Compared with508

teacher-student methods such as BOND, SCDL,509

and ATSEN, CENSOR achieves advanced perfor-510

mance, confirming that these teacher-student meth-511

ods achieve limited performance because of the512

incorrect pseudo-labeled samples.513

5.5 Analysis514

Ablation Study Shown in Table 2, it is clear that515

Uncertainty-Aware Teacher Learning and Student-516

Student Collaborative Learning are both important517

to the model performance. Removing each compo-518

nent can lead to a simultaneous decrease in preci-519
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Figure 3: F1 on CoNLL03 with different noise ratios.

Method P R F1

BOND 80.87 (-13.49) 78.04 (- 7.09) 79.43 (-10.08)
SCDL 94.18 (- 0.18) 77.11 (- 8.02) 84.80 (- 4.71)
ATSEN 93.01 (- 1.35) 82.96 (- 2.17) 87.70 (- 1.87)

CENSOR 94.36 85.13 89.51

Table 3: Comparison of the effectiveness of reducing
label noise on CoNLL03.

sion and recall at the same time, showing that pro- 520

posed components indeed improve performance. 521

Robustness to Different Noise Ratios To inves- 522

tigate the robustness of the CENSOR in different 523

noise ratios, we randomly replace k% entity la- 524

bels in the clean version (instead of the distantly- 525

supervised version) of CoNLL03 training set with 526

other entity types or non-entity. In this way, we can 527

construct different noise ratios of label noise and 528

we further report the test F1 score on CoNLL03. 529

As shown in Figure 3, CENSOR achieves consis- 530

tent advanced performance in different noise ra- 531

tios, showing its satisfactory de-noising ability and 532

strong robustness. Meanwhile, when the noise ratio 533

is above 50%, CENSOR achieves more significant 534

robustness, since CENSOR can select and generate 535

more reliable labels due to the Uncertainty-Aware 536

Teacher Learning and Student-Student Collabora- 537

tive Learning from highly noisy data. More de- 538

tailed data can be found in Table 7 in the Appendix. 539

Effectiveness of Reducing Learned Noise To 540

confirm previous teacher-student methods achieve 541

limited performance because of incorrectly pseudo- 542

labeled samples, we try to explore the effective- 543

ness of reducing label noise from different teacher- 544

student methods, including CENSOR, BOND, 545

SCDL, ATSEN. Specifically, we report the average 546

F1 score of all selected (unmasked) pseudo labels 547

for training during the self-training stage, using the 548

labels from the clean version of the CoNLL03 train- 549
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Method P R F1

BOND 80.42 (-9.44) 76.46 (-8.69) 78.39 (-9.05)
SCDL 87.42 (-2.44) 75.85 (-9.30) 81.22 (-6.22)
ATSEN 87.84 (-2.02) 82.83 (-2.32) 85.26 (-2.18)

CENSOR 89.86 85.15 87.44

Table 4: Comparison of teacher pseudo-labeling ability
of different teacher-student methods on CoNLL03.
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Figure 4: F1 on CoNLL03 with different threshold σua

in Uncertainty-Aware Label Selection.

ing set as ground truth labels. As shown in Table 3,550

CENSOR achieves a consistent advanced F1 score,551

which indicates CENSOR can select more correct552

labels based on Uncertainty-Aware Label Selection553

and Student-Student Collaborative Learning. Thus,554

CENSOR can use more correct pseudo labels to555

update the parameters of student networks and fur-556

ther avoid error propagation, leading to outstanding557

overall performance on the test set.558

Effectiveness of Teacher Pseudo-labeling Af-559

ter confirming the effectiveness of reducing label560

noise, we attempt to further explore whether the561

teacher network could use more reliable labels to562

avoid error propagation, thus generating more cor-563

rect pseudo labels. As shown in Table 4, we report564

the best F1 score of teacher networks from differ-565

ent teacher-student methods on the clean version566

of CoNLL03 training set. In detail, the teacher567

network from CENSOR correctly labels 87.44%568

samples, achieving the most advanced precision,569

recall, and F1 score. Compared to other teacher-570

student methods, including BOND, SCDL, and571

ATSEN, CENSOR improves the F1 score with an572

average increase of 9.05%, 6.22%, and 2.18%, re-573

spectively, which demonstrates using more correct574

labels can avoid error propagation and make the575

teacher network generate more reliable labels. In576

this way, the teacher network can make full use577

of the noisy samples in the DS-NER training set578

and help the teacher-student framework achieve579

10.0 20.0 30.0 40.0 50.0 80.0 100
ratio  of selected labels (%)

84.5

85.0
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Figure 5: F1 on CoNLL03 with different ratio δ of se-
lected labels in Student-student Collaborative Learning.

outstanding performance on the test set. 580

Parameter Study As shown in Figure 4 and Fig- 581

ure 5, we conduct experiments to explore the im- 582

pact of important hyperparameters to further un- 583

derstand Uncertainty-Aware Label Selection and 584

Student-Student Collaborative Learning. Overall, 585

although the choice of different hyperparameters 586

will have some impact on the model performance, 587

as long as the hyperparameters are chosen wisely 588

rather than at extreme values (e.g., wrongly setting 589

the threshold σua in Uncertainty-Aware Label Se- 590

lection to 0), the performance of the model will 591

always be improved over what it would have been 592

without using the components. More detailed anal- 593

ysis are shown in the Appendix A.5. 594

Case Study We also conduct a case study to show 595

the advantages of the proposed CENSOR, which 596

can be found in Appendix A.6. We show the pre- 597

diction of several teacher-student methods for DS- 598

NER, including BOND, SCDL, and ATSEN. 599

6 Conclusion 600

We introduce CENSOR, a novel teacher-student 601

framework designed for DS-NER task. CENSOR 602

incorporates Uncertainty-Aware Teacher Learning, 603

utilizing prediction uncertainty to guide the pseudo- 604

label selection. It mitigates the usage of incor- 605

rect pseudo labels by avoiding reliance on confi- 606

dence scores from poorly calibrated teacher net- 607

works. We also introduce Student-Student Col- 608

laborative Learning to enable a student network 609

not to completely rely on pseudo labels from its 610

teacher network, minimizing the risk of learning 611

incorrect ones. Meanwhile, this component allows 612

the training set can be fully explored. Our exper- 613

imental results demonstrate CENSOR’s superior 614

performance compared to previous methods. 615
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Limitations616

Our proposed CENSOR has two tiny limitations,617

specifically: (1) CENSOR focuses on addressing618

the label noise in the DS-NER task, and all our619

analyses are specific to this task. As a result, our620

model may not be robust enough compared to other621

models if it is not specific to the DS-NER task.622

(2) Due to introducing the proposed Uncertainty-623

Aware Teacher Learning, our model will perform624

multiple forward passes in the uncertainty estima-625

tion phase, increasing the self-training time. Com-626

pared to ATSEN, the self-training of our model627

takes about 4 times as long as that of ATSEN.628
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A Appendix874

A.1 DS-NER Datasets875

Statistics of five datasets are shown in Table 5.876

Dataset Train Dev Test Types

CoNLL03 Sentence 14041 3250 3453
4

Token 203621 51362 46435

OntoNotes5.0 Sentence 115812 15680 12217
18

Token 2200865 304701 230118

Webpage Sentence 385 99 135
4

Token 5293 1121 1131

Wikigold Sentence 1142 280 274
4

Token 25819 6650 6538

Twitter Sentence 2393 999 3844
10

Token 44076 15262 58064

Table 5: The statistics of five DS-NER datasets.

A.2 Hyperparameters877

Detailed hyperparameters are shown in Table 6.878

Experiments are run on a single NVIDIA A40.879

Algorithm 1 Training Procedure of CENSOR.
Input: DS-NER dataset Dds = {(Xi, Yi)}Ni=1

Parameter: Two teacher-student network parameters, including Wt1
, Ws1

,
Wt2

, and Ws2

Output: The best model

1: Pre-training two models WA, WB with Dds. ▷Pre-Training.
2: Initialize two teacher-student networks: Wt1

← WA, Ws1
← WA,

Wt2
← WB , Ws2

← WB .
3: Initialize training step: step← 0.
4: Initialize noisy labels: YI ← Y, YII ← Y .
5: while not reach max training epochs do
6: Get a batch D̂ = (X(b), Y

(b)
I , Y

(b)
II ) from Dds,

step← step + 1. ▷Self-Training.
7: Get pseudo labels via the teacher Wt1 , Wt2 :

Ỹ
(b)
I ← f(X(b);Wt1

),

Ỹ
(b)
II ← f(X(b);Wt2

).
8: Select reliable labels via Uncertainty-Aware Teacher Learning:

Estimate Confidence and Uncertainty by Eq.3 and Eq.4, separately
T (b)
I ← Uncertainty-Aware Label Selection(Y (b)

I , Ỹ
(b)
I ),

T (b)
II ← Uncertainty-Aware Label Selection(Y (b)

II , Ỹ
(b)
II ).

9: Select reliable labels via Student-Student Collaborative Learning:
D̂∗

s1
= argminD̂:|D̂|≥δ%|D̂| Loss(s1, D̂),

//sample δ% small-loss instances
D̂∗

s2
= argminD̂:|D̂|≥δ%|D̂| Loss(s2, D̂).

//sample δ% small-loss instances
Transfer the pseudo labels between D̂∗

s1
and D̂∗

s2
.

10: Update the student Ws1
and Ws2

by Eq. 7.
11: Update the teacher Wt1 and Wt2 by Eq. 8.
12: end while
13: Evaluate models Wt1

, Ws1
, Wt2

, Ws2
on Dev set.

14: return The best model W ∈ {Wt1 ,Ws1 ,Wt2 ,Ws2}

A.3 Pseudocode 880

Algorithm 1 gives the pseudocode of our method. 881

A.4 Robustness to Different Noise Ratios 882

Detailed data in Figure 3 can be found in Table 7. 883

A.5 Parameter Study 884

In Figure 4 and Table 8, we analyze the impact of 885

σua in Eq.3 within Uncertainty-Aware Label Selec- 886

tion. Notably, for minimal values of σua, such as 0 887

and 0.001, the Uncertainty-Aware Label Selection 888

phase filters and masks all samples. Consequently, 889

the student network becomes incapable of param- 890

eter updates, rendering the entire teacher-student 891

framework non-trainable. When the parameter σua 892

is in a reasonable interval, the effectiveness of the 893

model is always improved due to the inclusion of 894

filtered reliable labels in the self-training stage. Ul- 895

timately, when σua reaches an excessive magnitude, 896

the filtering capacity of the Uncertainty-Aware La- 897

bel Selection stage is nullified, rendering the out- 898

come akin to Uncertainty-Aware Teacher Learning 899

omission. Therefore, while using different values 900

of σua tends to improve the performance, choosing 901

σua wisely and rationally is crucial for optimizing 902

Uncertainty-Aware Teacher Learning. In Figure 903

5 and Table 9, we also explore the impact of the 904

ratio δ of selected labels in Student-Student Col- 905
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Name CoNLL03 Ont5.0 Webpage Wikigold Twitter

Learning Rate 1e-5 2e-5 1e-5 1e-5 2e-5

Batch Size 8 16 16 16 8

EMA α 0.995 0.995 0.99 0.99 0.995

Sche. Warmup 200 500 100 200 200

Total Epoch 50 50 50 50 50

Pre-training Epoch 1 2 12 5 6

σco in Eq.5 of UTL 0.9 0.9 0.9 0.9 0.9

σua in Eq.5 of UTL 0.01 0.05 0.1 0.2 0.2

K in Eq.2 of UTL 8 8 8 8 8

Dropout Rate 0.5 0.5 0.5 0.5 0.5

ratio δ of SCL 0.3 0.4 0.3 0.1 0.1

Update Cycle
(iterations) 6000 7240 300 2000 3200

Table 6: Hyperparameters on five DS-NER datasets.
UTL means Uncertainty-Aware Teacher Learning and
SCL means Student-Student Collaborative Learning.

Ratio ATSEN SCDL BOND Ours

10% 90.19 90.15 87.63 90.38
20% 90.03 89.85 88.03 90.22
30% 89.79 89.48 86.80 89.88
40% 88.97 88.49 84.42 89.11
50% 84.77 83.66 82.56 86.27
60% 82.55 82.64 80.94 84.96
70% 75.75 76.88 77.38 80.66
80% 56.61 55.26 50.49 59.80
90% 19.59 17.09 14.85 22.26

Table 7: F1 on CoNLL03 with different noise ratios.

laborative Learning. A small δ enables the student906

network to partially leverage reliable labels from907

its counterpart, resulting in improved outcomes908

compared to scenarios without such collaborative909

learning. As δ increases, the transfer of these re-910

liable labels diminishes the likelihood of learning911

incorrect labels from teacher-generated pseudo la-912

bels, thereby enhancing overall performance. Con-913

versely, an excessively large δ adversely affects914

performance. This is attributed to the pseudo labels915

of selected samples, which, with a high transfer916

proportion (e.g., δ = 0.8), cease to qualify as small-917

loss samples and are more prone to containing918

noise. Hence, proportion selection of δ proves crit-919

ical for optimizing the efficacy of Student-Student920

Collaborative Learning.921

A.6 Case Study922

Finally, we perform case study to understand the923

advantage CENSOR with two examples in Ta-924

ble 10 and Table 11. We show the prediction of925

BOND, SCDL, ATSEN and CENSOR on a train-926

θua P R F1

-w/o UTL 86.56 84.37 85.45
0.000 00.00 00.00 00.00
0.001 00.00 00.00 00.00
0.005 85.65 82.68 84.14
0.010 87.33 85.90 86.61
0.500 87.22 84.71 85.95
0.800 87.60 85.06 86.32
1.000 87.27 85.56 86.41
10.00 87.27 85.56 86.41
100.0 86.56 84.37 85.45
1,000 86.56 84.37 85.45

Table 8: F1 on CoNLL03 with different threshold σua

in Uncertainty-Aware Label Selection. UTL means
Uncertainty-Aware Teacher Learning.

K P R F1

-w/o SCL 86.44 83.98 85.19
0.1 86.81 84.92 85.85
0.2 87.35 84.33 85.82
0.3 87.33 85.90 86.61
0.4 86.95 84.58 85.75
0.5 86.28 84.41 85.33
0.8 86.27 84.01 85.13
1.0 85.70 83.68 84.68

Table 9: F1 on CoNLL03 with different ratio δ of se-
lected labels in Student-Student Collaborative Learning.
SCL means Student-Student Collaborative Learning.

ing sequence with label noise and a test sequence 927

with ground truth. As shown in Table 10, BOND 928

and SCDL can slightly generalize to unseen men- 929

tions and relieve partial incomplete annotation, e.g., 930

they can successfully recognize the “John McNa- 931

mara" and “New York”. However, these methods 932

still suffer from label noise. For comparison, for 933

hard labels “California Angels", CENSOR and AT- 934

SEN are able to detect them with advanced teacher- 935

student design (e.g., Adaptive Teacher Learning in 936

ATSEN and Student-Student Collaborative Learn- 937

ing in CENSOR) instead of relying purely on dis- 938

tant labels. However, as shown in Table 11, AT- 939

SEN still struggles to distinguish between easily 940

confused samples and achieves inadequate general- 941

ization. In contrast, as CENSOR can use fewer in- 942

correct pseudo-labeled samples due to Uncertainty- 943

Aware Teacher Learning and Student-Student Col- 944

laborative Learning, a higher degree of robustness 945

and generalization can be achieved. 946

A.7 Difference between Previous Methods 947

We will carefully compare previous methods to 948

explain our motivation and the differences between 949

previous methods and our proposed components. 950
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Distant Match: [Johnson]PER is the second manager to be hospitalized after California [Angels]PER

skipper [John]PER McNamara was admitted to New [York]PER ’s [Columbia]PER Presby Hospital .
Ground Truth: [Johnson]PER is the second manager to be hospitalized after [California Angels]ORG

skipper [John McNamara]PER was admitted to [New York]LOC ’s [Columbia Presby Hospital]ORG .
BOND: [Johnson]PER is the second manager to be hospitalized after [California]LOC [Angels]PER

skipper [John McNamara]PER was admitted to [New York]LOC ’s [Columbia]PER Presby Hospital.
SCDL: [Johnson]PER is the second manager to be hospitalized after [California]LOC [Angels]PER

skipper [John McNamara]PER was admitted to [New York]LOC ’s [Columbia Presby Hospital]ORG .
ATSEN: [Johnson]PER is the second manager to be hospitalized after [California Angels]ORG

skipper [John McNamara]PER was admitted to [New York]LOC ’s [Columbia Presby Hospital]ORG .

CENSOR: [Johnson]PER is the second manager to be hospitalized after [California Angels]ORG

skipper [John McNamara]PER was admitted to [New York]LOC ’s [Columbia Presby Hospital]ORG .

Table 10: Case study with CENSOR and previous teacher-student methods for DS-NER. The sentence is from
CoNLL03 training set.

Ground Truth: All-conquering [Juventus]ORG field their most recent signing, [Portuguese]MISC defender [Dimas]PER,
while [Alessandro Del Piero]PER and [Croat]MISC [Alen Boksic]PER lead the attack.
SCDL: All-conquering [Juventus]ORG field their most recent signing, [Portuguese]MISC defender [Dimas]PER,
while [Alessandro Del Piero]PER and [Croat Alen Boksic]PER lead the attack.
SCDL: All-conquering [Juventus]ORG field their most recent signing, [Portuguese]MISC defender [Dimas]PER,
while [Alessandro Del Piero]PER and [Croat Alen Boksic]PER lead the attack.
ATSEN: All-conquering [Juventus]ORG field their most recent signing, [Portuguese]MISC defender [Dimas]PER,
while [Alessandro Del Piero]PER and [Croat]ORG [Alen Boksic]PER lead the attack.

CENSOR: All-conquering [Juventus]ORG field their most recent signing, [Portuguese]MISC defender [Dimas]PER,
while [Alessandro Del Piero]PER and [Croat]MISC [Alen Boksic]PER lead the attack.

Table 11: Case study with CENSOR and previous teacher-student methods for DS-NER. Then sentence is from
CoNLL03 test set.

Uncertainty-Aware Teacher Learning Most re-951

search on uncertainty estimation focuses on com-952

puter vision because it provides visual validation953

on uncertainty quality. For example, Rizve et al.954

(2021) first introduces uncertainty to filter the low-955

quality labels in the semi-supervised image classi-956

fication task. However, very little research about957

uncertainty has been presented in the natural lan-958

guage process domain. As far as we know, we959

are the first to introduce the uncertainty in the DS-960

NER task. Meanwhile, different from the instance-961

level image classification task, the DS-NER task is962

based on token-level classification, which requires963

the model to capture the inherent token-wise label964

dependency. So different from estimating uncer-965

tainty at the instance level, we analyze the unique966

characteristics of the DS-NER task in the paper967

and design Uncertainty-Aware Teacher Learning968

to measure uncertainty at the token level. On the969

other hand, we are the first to find that previous970

teacher-student methods achieved limited perfor-971

mance because poor network calibration produces972

incorrect pseudo-labeled samples in the DS-NER973

task. Thus, we attempt to use uncertainty as the974

indicator to reduce the effect of incorrect pseudo975

labels within the teacher-student framework. 976

Student-Student Collaborative Learning Col- 977

laborative Learning (Han et al., 2018; Yu et al., 978

2019; Wei et al., 2020) is a popular method to 979

handle label noise, which attempts to use two dif- 980

ferent networks to provide multi-view knowledge 981

and let them learn from each other. Co-teaching 982

(Han et al., 2018) first attempts to completely ex- 983

change reliable samples of two different networks 984

and then update the networks by the exchanged 985

multi-view information. Co-teaching+ (Yu et al., 986

2019) further proposes to use disagreement strategy 987

to update two networks, i.e., only using prediction 988

disagreement data from two networks to update 989

two networks. JoCoR (Wei et al., 2020) aims to 990

use a designed joint loss to reduce the diversity of 991

two networks during training and further improve 992

the robustness of two networks. However, these 993

methods are designed for tasks in the computer 994

vision area (especially image classification), and 995

as shown in Table 1, these methods often achieve 996

limited performance in the DS-NER task. SCDL 997

designs the teacher-student framework and adopts 998

collaborative learning in the DS-NER task. Similar 999

to Co-teaching, all of the pseudo labels predicted by 1000
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the teacher are applied to update the noisy labels1001

of the peer teacher-student network periodically1002

since two teacher-student networks have different1003

learning abilities based on different network struc-1004

tures. Different from SCDL, we aim to utilize two1005

different student networks and let them learn from1006

each other to reduce the negative effect of incorrect1007

pseudo labels. Specifically, instead of completely1008

exchanging pseudo labels between two teachers,1009

we allow students to transfer reliable pseudo labels1010

and at the same time allow students to learn on1011

their own pseudo labels generated by their teacher1012

network. In this way, we not only ensure that the1013

transferred pseudo labels contain multi-view in-1014

formation but also ensure that the pseudo labels1015

we transfer are high-quality by selective transfer.1016

Meanwhile, as the student network is updated ear-1017

lier and more frequently than the teacher network,1018

the student network is better able to capture the1019

changes of pseudo labels than the teacher network.1020

Relation between Two Components Designs on1021

Uncertainty-Aware Teacher Learning and Student-1022

Student Collaborative Learning are not indepen-1023

dent. The two components can collaborate and1024

achieve better results. Specifically, (1) Uncertainty-1025

Aware Teacher Learning can help the teacher net-1026

work to generate more reliable pseudo labels and1027

further reduce the risk of the student network up-1028

dating parameters on the incorrect pseudo label. At1029

the same time, a more efficient student network1030

can be achieved by learning to pseudo-label with1031

fewer errors, which will further improve the effi-1032

ciency of the Student-Student Collaborative Learn-1033

ing component; (2) Based on Uncertainty-Aware1034

Teacher Learning, the teacher network can utilize1035

the correctly pseudo-labeled samples to alleviate1036

the negative effect of label noise. However, sim-1037

ply masking unreliable pseudo-labeled samples can1038

lead to underutilization of the training set, as there1039

is no chance for the incorrect pseudo-labeled sam-1040

ples to be corrected and further learned. Student-1041

Student Collaborative Learning can allow the stu-1042

dent network to learn from transferred reliable la-1043

bels from the other student network. Therefore,1044

this component further enables a full exploration1045

of mislabeled samples rather than simply filtering1046

unreliable pseudo-labeled samples. Through the1047

collaboration of the two components, as shown in1048

Table 1, CENSOR achieves the best performance1049

among 12 baselines.1050
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