
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CIRCUIT REPRESENTATION LEARNING WITH MASKED
GATE MODELING AND VERILOG-AIG ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the structure and function of circuits is crucial for electronic design
automation (EDA). Circuits can be formulated as And-Inverter graphs (AIGs), en-
abling efficient implementation of representation learning through graph neural
networks (GNNs). Masked modeling paradigms have been proven effective in
graph representation learning. However, masking augmentation to original cir-
cuits will destroy their logical equivalence, which is unsuitable for circuit rep-
resentation learning. Moreover, existing masked modeling paradigms often pri-
oritize structural information at the expense of abstract information such as cir-
cuit function. To address these limitations, we introduce MGVGA, a novel con-
strained masked modeling paradigm incorporating masked gate modeling (MGM)
and Verilog-AIG alignment (VGA). Specifically, MGM preserves logical equiva-
lence by masking gates in the latent space rather than in the original circuits, sub-
sequently reconstructing the attributes of these masked gates. Meanwhile, large
language models (LLMs) have demonstrated an excellent understanding of the
Verilog code functionality. Building upon this capability, VGA performs masking
operations on original circuits and reconstructs masked gates under the constraints
of equivalent Verilog codes, enabling GNNs to learn circuit functions from LLMs.
We evaluate MGVGA on various logic synthesis tasks for EDA and show the su-
perior performance of MGVGA compared to previous state-of-the-art methods.

1 INTRODUCTION

In recent years, there has been a surge of interest in deep learning for electronic design automation
(EDA), which holds great potential for achieving faster design closure and minimizing the need for
extensive human supervision (Wen et al., 2022; Chen et al., 2022; Liang et al., 2023; Chen et al.,
2023; Wu et al., 2024). Logic synthesis (Hachtel & Somenzi, 2005), a vital step in EDA, is a process
by which an abstract specification of desired circuit behavior is turned into a design implementation
for logic gates. In the field of logic synthesis, circuits can be formulated as graphs (e.g., And-Inverter
graph (AIG) (Mishchenko et al., 2006)), which are well-suited for modeling element connections
and topology. Consequently, GNNs (Zhang et al., 2020; Zheng et al., 2024; Chowdhury et al., 2022)
have been widely used to learn the characteristics of circuits for various downstream tasks.

The effectiveness of GNNs in logic synthesis has predominantly been demonstrated in supervised
settings, where task-specific labels provide the supervisory information. However, obtaining labeled
data for supervised learning is costly while unlabeled circuit data is available and abundant. This dis-
crepancy makes self-supervised learning suitable for circuit representation learning. Recent works
(Wang et al., 2022; Shi et al., 2023) explored leveraging the functional aspects of circuits, such as
truth tables and functional equivalence, to derive meaningful representations via the self-supervised
learning paradigm. These methods excel at capturing the functional behaviors of circuits efficiently,
which are crucial for many applications.

The structure of a circuit, including its layout, connectivity, gate numbers, and circuit level, plays a
critical role in determining its power, performance, and area (PPA), all of which are key optimiza-
tion targets of EDA. Models trained with functional targets often fall short in extracting structural
details. Masked modeling paradigms, which have been successfully applied in computer vision (He
et al., 2022; Bao et al., 2021), natural language processing (Kenton & Toutanova, 2019), and graph
learning (Hou et al., 2023; Li et al., 2023a), offer a promising solution to learn detailed structural

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Original AIG Masked AIG

Possible Reconstruct AIGs

Mask
Operation

Figure 1: Possible reconstruct AIGs for masked
AIG. If circuit gates are masked, there are various
logic-correct solutions for reconstruction.

module design (
 input I, output O
);
…
endmodule

AIG

VerilogCircuit Design

Logic Equivalent

Logic Synthesis
Tool

Figure 2: Logic equivalence between Verilog
code and AIG. For a circuit design, AIG can
be translated from Verilog code.

information. Specifically, these paradigms have proven effective in capturing the structural details
of images, the syntactic and semantic structures of texts, and intricate connections in graphs. Con-
sequently, we apply the masked modeling paradigm for circuit representation learning to extract a
more fine-grained representation of the structure of circuits.

Challengingly, traditional masked graph modeling paradigm (Hou et al., 2023; Li et al., 2023a) can
not be applied directly to circuit representation learning which follows strict logical equivalence.
In conventional applications, such as social or molecular graphs, masking nodes typically yields a
unique solution for reconstruction. However, when gates are masked in a circuit, their reconstruction
will admit various solutions as illustrated in Figure 1. This is because no matter how we replace gates
in the original circuits, logical correctness can still be maintained without necessarily preserving
logical equivalence. Consequently, applying traditional masked modeling to circuit representation
learning can not guarantee the extraction of circuit-specific features. To address this limitation,
we propose a constrained masked modeling paradigm that ensures logical equivalence between the
original and reconstructed circuits, thereby enabling effective circuit representation learning.

As we mentioned, abstract circuit functions are useful for EDA tasks. However, they are not explic-
itly represented in the structural layouts. Such functional attributes are often derived from textual
descriptions in hardware description languages (HDLs), which can be processed by language models
effectively. Recently, large language models (LLMs) have demonstrated remarkable performance in
HDL code generation following given human instructions for circuit design (Liu et al., 2023; Pei
et al., 2024; Tsai et al., 2024; Fang et al., 2024). Consequently, LLMs can serve as excellent teach-
ers to guide GNNs in understanding circuit functions. Specifically, the AIG is logically equivalent
to the corresponding behavior Verilog code for the same circuit design as illustrated in Figure 2.
This equivalence allows for the alignment between Verilog codes and AIGs, facilitating GNNs’
understanding of circuit functions.

In this study, we introduce MGVGA, a constrained masked modeling paradigm incorporating
Masked Gate Modeling (MGM) and Verilog-AIG Alignment (VGA) for circuit representation learn-
ing. Firstly, we introduce MGM to mask gates in the latent space instead of masking in the original
circuits. This approach allows the representations of unmasked gates to serve as constraints for
preserving logical equivalence when reconstructing the attributes of masked gates, as the latent rep-
resentations of unmasked gates have already aggregated some features from masked gates. However,
GNNs trained with MGM alone focus primarily on structural relationships within circuits, poten-
tially overlooking function features. Considering the proficiency of LLMs in understanding Verilog
code functionality, we leverage LLMs as teachers to transfer circuit function knowledge to GNNs
by aligning AIGs with their logic equivalent Verilog codes. We design VGA to perform a masking
operation on the original circuits and reconstruct masked gates under the constraint of corresponding
Verilog codes. Although this operation will destroy the logical equivalence of the original circuits
when cooperating with the traditional masked modeling strategy, we can still utilize equivalent Ver-
ilog codes as constraints to ensure the logic equivalence during the reconstruction process.

In summary, our main contributions are as follows:

• Propose masked gate modeling (MGM) for circuit representation learning, enabling GNNs
to extract circuit representations with fine-grained structural information.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Develop the Verilog-AIG alignment (VGA), which employs LLMs as teachers to guide
GNNs to extract circuit representations with abstract circuit functions through equivalent
AIGs and Verilog codes alignment.

• Conduct extensive evaluations and show superior performance on various logic synthesis
tasks including quality of result (QoR) and logic equivalence identification compared to
previous state-of-the-art (SOTA) methods.

2 RELATED WORK

AIG-Formatted Circuit Representations for Logic Synthesis. An AIG is a directed acyclic graph
utilized for representing circuits (Brummayer & Biere, 2006), which is composed of AND gate, NOT
gate, and terminal nodes that serve as primary inputs (PIs) and primary outputs (POs). Considering
its simplicity, AIG-formatted circuits are widely used to perform circuit representation learning via
GNNs. For example, Zhang et al. (2020) employs a GNN model to predict a circuit’s power con-
sumption, and Zheng et al. (2024) proposes a customized GNN to predict the delay of circuits accu-
rately. Besides utilizing corresponding performance metrics (power, timing, etc.) serving as labels
for supervised learning, Wang et al. (2022) and Shi et al. (2023) also perform self-supervised learn-
ing for extracting general AIG-formatted circuit representation. In this study, we convert circuits to
AIGs to perform general circuit representation learning via a self-supervised learning paradigm.

Masked Graph Autoencoder. Masked autoencoders (He et al., 2022; Bao et al., 2021) are based on
the masked modeling learning paradigm, which involves masking a portion of the input signals and
predicting the obscured content. Graph autoencoders (Hou et al., 2023; Li et al., 2023a) utilize an
autoencoder architecture to encode nodes into latent representations and reconstruct the graph from
these embeddings. To integrate the strengths of masked autoencoders and graph autoencoders, the
masked graph autoencoder is proposed to enhance representation learning for graphs. Masked graph
autoencoders randomly mask a portion of the graph nodes and then reconstruct these masked nodes
using the information from the unmasked nodes and their connections. Masked graph autoencoder
forces the encoder to decipher the underlying relationships within the graph, yielding robust and in-
formative node representations. In this paper, we apply the constrained masked modeling paradigm
for general circuit representation learning through the masked graph autoencoder.

LLM-based Embedding Models. LLMs, structured as decoder-only architectures, inherently face
challenges in effectively encoding bidirectional context, which can impede their capacity to gen-
erate comprehensive and discriminative embeddings. Consequently, researchers apply contrastive
learning for representation learning of LLMs to leverage the natural language comprehension ca-
pabilities of LLMs for embedding-related tasks (Muennighoff et al., 2024; BehnamGhader et al.,
2024; Li et al., 2023b; Lee et al., 2024). This kind of strategy can help LLMs extract better rep-
resentation through bidirectional attention mechanisms without hurting their own abilities. In this
study, we utilize LLMs to extract Verilog codes embedding with a comprehensive understanding of
circuit function, serving as constraints of the reconstruction process of VGA.

3 METHODOLOGY

Due to logical equivalence issues, traditional mask graph modeling techniques are inadequate for
circuit representation learning. Additionally, GNNs have inherent limitations in extracting abstract
circuit functions. To address these challenges, we propose MGVGA, a novel constrained masked
modeling strategy incorporating masked gate modeling (MGM) and Verilog-AIG alignment (VGA)
for enhanced circuit representation learning. AIGs have gained widespread adoption in circuit rep-
resentation learning. Consequently, we convert circuits to AIGs to implement our MGVGA. In the
following subsections, we will elucidate the details of MGM (Section 3.2) and VGA (Section 3.3)
utilizing the AIG autoencoder. Notably, we also provide a detailed illustration of how we preserve
the logic equivalence when performing MGVGA in Appendix A.1.1.

3.1 AIG AUTOENCODER

Let G = (V,A) represent an AIG, where V denotes the set of N nodes, vi ∈ V , categorized into four
types: PI, PO, AND, and NOT gates, each labeled by ci ∈ C, i ∈ {1, 2, 3, 4}. The adjacency matrix

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

 GNN
 Encoder

MGM
Decoder

+

MaskingAIG

module design (
 input I, output O
);
…
endmodule

Verilog

 GNN
 Encoder

VGA
Decoder

Masked AIG

Constrain
 Block

AND Gate

PI PO [MASK]

NOT Gate

Masked Gate Modeling

Verilog AIG Alignment

Share Weights

AIG Reconstruction

Masked Gates
From MGM/VGA

Gate Type
Prediction

Gate-Level
Degree Prediction

Masked AIG AIG

02121 11
12100 11

Indegree & Outdegree

Figure 3: Overview of the MGVGA for circuit representation including masked gate modeling and
Verilog-AIG alignment. For both MGM and VGA, the AIG reconstruction is implemented by gate
type prediction and gate-level degree prediction from reconstructed representation.

A ∈ {0, 1}N×N shows the connectivity between nodes, where Ai,j = 1 represents an existing edge
from vi to vj . A delineates the structure and the types of connections within G.

module design (
 input I,
 output O
);
…
endmodule

Adaptive
 Pooling

V

K

Q

 C
ross-Attention

 Block

Verilog Code

Bidirectional LLM Constraint AIG
Representation

Masked AIG
Representation

Figure 4: The constraint block for VGA.

For an AIG autoencoder, a GNN encoder, de-
noted by gE , encodes G into a latent space rep-
resentation X ∈ RN×d, where d represents the
dimension of this representation. The encoding
process of an AIG can be formulated as:

X = gE(V,A). (1)
Concurrently, a GNN decoder, gD, endeavors
to reconstruct the AIG G from X according to:

(X̃,A) = G̃ = gD(X,A), (2)

where G̃ denotes the reconstructed graph, po-
tentially encompassing both node features and structure. The primary objective of the AIG autoen-
coder is to optimize the encoder gE to produce an effective representation X that facilitates the accu-
rate reconstruction of the original G. Notably, following previous masked modeling paradigms (Hou
et al., 2022; 2023), we do not mask the adjacent matrices A during the entire process and the detailed
reasons will be explained in Appendix A.1.2.

3.2 MASKED GATE MODELING

The idea of the masked autoencoder has been applied successfully to graph self-supervised learn-
ing. As an extension of denoising autoencoders, masked graph autoencoder (Hou et al., 2023; Li
et al., 2023a) selectively obscure portions of the graph, such as node features or edges, through a
masking operation, and learn to predict the obscured content. It has been shown that focusing solely
on reconstructing masked node features as a pretext task can yield promising outcomes in graph
representation learning. In traditional masked graph autoencoders, nodes are typically masked di-
rectly in the input graph before being processed through the autoencoder framework. However, this
approach presents significant challenges when applied to structurally constrained graphs like AIGs,
which follow strict logical rules. Utilizing a straightforward random masking technique will lead to
reconstructed logic expressions that diverge from their original forms, which can not be tolerated.

To address this, we propose masked gate modeling, where the AIG is initially processed unmasked
through the encoder to capture its latent representation. Rather than masking nodes at the original
AIG, the masking operation is applied to the encoded representation in the latent space. During the
masked modeling process, the encoder can retain the complete logical structure of the AIG before
masking. This approach allows the representations of unmasked gates to serve as constraints for
reconstructing the attributes of masked gates, as the latent representations of unmasked gates have
already aggregated some features from masked gates.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Formally, as depicted in Figure 3, we uniformly sample a subset of gates Vmgm ⊂ V without replace-
ment and replace the remaining nodes with the mask token [MASK], which can be represented by a
learnable vector m ∈ Rd. Consequently, the masked node representation x̄i ∈ X̄mgm for each node
vi is given by:

x̄i =

{
xi, if vi ∈ Vmgm;

m, if vi /∈ Vmgm.
(3)

The X̄mgm is then fed into the decoder gD to reconstruct the G following Equation (2). As illustrated
in Figure 3, the decoder maintains the connectivity of each node and generates the reconstructed
node representation X̃mgm ∈ RN×d for G reconstruction (Section 3.4).

3.3 VERILOG-AIG ALIGNMENT

Although GNNs enhanced with MGM excel at extracting structural information from circuits, they
often struggle to capture abstract circuit functions that are not explicitly represented in structural
layouts. Meanwhile, Verilog codes contain substantial semantic information, including high-level
abstract concepts and functional logic in circuit designs. Recent studies (Lu et al., 2024; Pei et al.,
2024) have begun leveraging LLMs to analyze Verilog codes, highlighting the potential for distilling
circuit function knowledge from LLMs to GNNs. LLMs can serve as excellent teachers, guiding
GNNs in understanding circuit functions through the alignment process of equivalent Verilog codes
and AIGs. Meanwhile, as illustrated in Figure 2, AIGs are translated from Verilog codes via logic
synthesis tools. Consequently, there exist equivalent behavior-level Verilog codes for AIGs. Based
on equivalent Verilog-AIG pairs, we can perform Verilog-AIG alignment, which conducts masking
operations on original AIGs. Subsequently, the masked gates are reconstructed under the constraints
of equivalent Verilog codes. This equivalence allows for the reconstruction of masked AIGs under
the supervision of Verilog code, facilitating GNNs’ understanding of circuit functions.

Similar to MGM, we uniformly sample a subset of gates Vvga ⊂ V without replacement and replace
the node types of remaining nodes with cm, which represents these nodes are masked in the original
AIG. Consequently, for vi ∈ V̄ of the masked AIG, the node type ci can be defined as:

ci =

{
ci, if vi ∈ Vvga;

cm, if vi /∈ Vvga.
(4)

The masked AIG Ḡ = (V̄,A) is fed into the encoder gE to generate the encoded masked AIG
representation X̄vga following Equation (1).

As mentioned earlier, the reconstruction of G from X̄vga must be constrained by equivalent Verilog
code to ensure strict logical equivalence. Consequently, we design a constraint block inspired by
Jaegle et al. (2021) and Lee et al. (2024) as illustrated in Figure 4. Specifically, we perform adaptive
pooling on token embeddings of Verilog code generated by LLMs to extract XV ∈ RM×dv , the
representation of the equivalent Verilog code. We then feed the masked AIG representation X̄vga
and Verilog code representation XV into a cross-attention block C to perform alignment between
the masked AIG and Verilog code, with X̄vga being projected to query Q ∈ RN×d and XV being
projected to key K ∈ RM×d and value V ∈ RM×d. Specifically, we selected M = 16 after carefully
balancing computational cost and performance. The output of the cross attention block (Vaswani,
2017) is the constrained AIG representation X̄′

vga ∈ RN×d, which can be calculated as follows:

X̄′
vga = C(X̄vga,XV) = Softmax

(
QKT

√
d

)
V. (5)

After aligning the logically equivalent Verilog code and masked AIG, X̄′
vga incorporates information

from the abstract circuit function extracted by LLMs. Then, as illustrated in Figure 3, we obtain the
reconstructed circuit representation X̃vga from X̄′

vga via gD following Equation (2) while preserving
logical equivalence. Subsequently, X̃vga will be utilized for G reconstruction, detailed in Section 3.4.

3.4 AIG RECONSTRUCTION

As illustrated in Figure 3, given the reconstructed node representations from MGM or VGA, we can
predict the attributes of masked nodes. First, we predict the types of each masked node, categorizing

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

them as AND gate, NOT gate, PI, or POs. Next, we focus on the specific attributes of the nodes
themselves. Specifically, AND gates have two inputs (which may be identical), while NOT gates
have only one input. Moreover, PIs have no inputs, and POs have no outputs. Consequently, we pre-
dict the degree of each masked node to help GNNs learn the attributes of each gate more effectively.
Moreover, gate-level degree prediction aids GNNs in capturing the connectivity between gates and
the overall structures of AIGs, as illustrated in Figure 3. For clarity, we unify the reconstructed node
representations from MGM (X̃mgm ∈ RN×d) and VGA (X̃vga ∈ RN×d) into a single notation X̃.

Gate Type Prediction. For gate type prediction, X̃ is transformed by a mapping function ftype :

Rd → RC into a categorical probability distribution over C classes. This leads to the formation
of the overall probability distribution matrix Z̃ ∈ RN×C , where each element Z̃i,j represents the
softmax-estimated probability that node vi belongs to class cj . Importantly, the gate type recon-
struction loss is calculated only for the Nm masked nodes:

Ltype = − 1

Nm

N∑
i=1

vi /∈Vu

C∑
j=1

Yi,j log Z̃i,j , (6)

where Y ⊂ {0, 1}N×C and Yij is a binary indicator that equals 1 if the node vi belongs to class cj
and 0 otherwise.

Gate-Level Degree Prediction. The gate-level degree prediction involves forecasting the in-degree
and out-degree of each masked gate within the AIG. Formally, given the reconstructed node repre-
sentations X̃, in-degree labels D− ∈ RN , and out-degree labels D+ ∈ RN , we utilize mean squared
error as the loss function for degree regression tasks. The degree reconstruction loss, calculated only
for the Nm masked nodes, is defined as:

Ldegree =
1

Nm

N∑
i=1

vi /∈Vu

(
(D−

i − fin(X̃i))
2 + (D+

i − fout(X̃i))
2
)
, (7)

where fin : Rd → R and fout : Rd → R serve as mapping functions for predicting gate-level
degrees. This task allows GNNs to infer the connectivity between nodes, providing insights into the
interaction patterns for understanding the attributes of each gate and the organization of the circuits.
As illustrated in Figure 3, the AIG reconstruction is implemented by gate type prediction and gate-
level degree prediction from reconstructed representation for both MGM and VGA. Consequently,
the AIG reconstruction loss for MGM and VGA can be defined as:

Lmgm/vga = Ltype + Ldegree. (8)

3.5 CONSTRAINED MASKED MODELING: MGVGA

Building upon the methodologies of MGM and VGA based on the AIG autoencoder, we propose
a novel constrained masked modeling paradigm, MGVGA, to perform general circuit representa-
tion learning. This paradigm synthesizes these strategies to develop GNNs that effectively capture
diverse and intricate features of circuits. Formally, the loss function for MGVGA can be defined as:

Lmgvga = Lmgm + Lvga. (9)
This integration enables the GNNs to learn concurrently from fine-grained structural information and
abstract circuit function features, optimizing a unified representation that facilitates a wide range of
logic synthesis tasks such as classification, regression, and complex reasoning on circuits.

4 EXPERIMENTS

4.1 DATA PREPARATION

AIGs Collection For MGM. We obtain 27 circuit designs from five circuit benchmarks as our train-
ing dataset: MIT LL Labs CEP (Chetwynd et al., 2019), ITC’99 (Davidson, 1999), IWLS’05 (Al-
brecht, 2005), EPFL (Amarú et al., 2015), and OpenCore (Takeda, 2008). Yosys (Wolf et al., 2013)
is utilized to conduct logic synthesis, which converts source codes of circuit designs into the stan-
dardized AIG format. Moreover, we prepare 1500 optimization sequences, each containing 20

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

synthesis transformations including rewrite, resub, refactor, rewrite -z, resub -z,
refactor -z, and balance transformations, consistent with prior works (Chowdhury et al.,
2022; Zheng et al., 2024). Then sequential synthesis transformations are carried out by the logic
synthesis tool ABC (Brayton & Mishchenko, 2010) and their corresponding labels are generated.
Meanwhile, we also store the AIG after each synthesis transformation for AIG self-supervised learn-
ing. The resulting AIG dataset, post-technology mapping with the NanGate 45nm technology library
and the “5K heavy 1k” wireload model, comprises 810000 AIGs and 40500 synthesis labels across
various optimization sequences and circuit designs.

Verilog-AIG Pairs Collection For VGA. In this phase, source Verilog codes (Thakur et al., 2023;
Liu et al., 2023) are selected and subjected to logic synthesis using Yosys (Wolf et al., 2013), and
then they are converted into AIG format. This process yields 64826 Verilog-AIG pairs, which are
utilized for VGA illustrated in Section 3.3.

AIG Preprocessing. As mentioned previously, we convert circuits to AIGs to implement our
MGVGA. The node type of AIG can be categorized into four types: PI, PO, AND, and NOT gates.
Given that the number of PIs and POs is typically minimal, the primary emphasis in masked mod-
eling lies in the accurate reconstruction of AND and NOT gates. It is worth noting that the NOT
gate is the only single-input logic gate. Our concern is that the model could potentially leverage
the disparity in in-degrees of gates as a shortcut, thereby simplifying the reconstruction task without
learning the useful circuit representations. Consequently, we introduce single-input AND gates dur-
ing the training phase as illustrated in Figures 1 to 3, which have two identical inputs. The input and
output of the single-input AND gate are identical, making this augmentation simply adaptable to
circuits featuring various logic gates (NAND, XOR, OR, etc.). Our experiments indicate that GNNs
struggle to capture degree information during the reconstruction process precisely. Consequently,
we employ this augmentation method as a trick in our training process, treating it as an equivalent
augmentation for AIGs to avoid overfitting and possible leakage. Notably, this augmentation is not
utilized during the evaluation phase as shown in Figure 5.

Evaluation Dataset Collection. As for the evaluation dataset, we select 10 circuit designs external
to the training dataset from opensource benchmark (Chowdhury et al., 2021; Amarú et al., 2015;
OpenRISC, 2009; YosysHQ, 2020; Asanovic, 2016), the details of which are illustrated in Table 1.
Additionally, we will provide more details on benchmark selection in Appendix A.2.3.

4.2 IMPLEMENTATION DETAILS

Training Process of MGVGA. For the circuit representation learning utilizing our MGVGA
paradigm, we utilize DeepGCN (Li et al., 2019; 2020) as the GNN encoder and decoder. As for
the LLM, we utilize gte-Qwen2-7B-instruct (Li et al., 2023b), trained with bidirectional attention
mechanisms based on Qwen2-7B (Yang et al., 2024), which has a comprehensive understanding of
abstract circuit function described in Verilog codes (Liu et al., 2023; Pei et al., 2024; Tsai et al.,
2024; Fang et al., 2024). The training process employs a linear learning rate schedule with the
Adam optimizer set at a learning rate of 1× 10−3, a weight decay of 0.01, and a batch size of 512.
The model is fine-tuned for 3 epochs on 8×A100 GPUs with 80G memory each. Additionally, we
provide more details about the model settings in Appendix A.2.2.

Baseline Selection. As for the baseline selection, we select DeepGate2 (Shi et al., 2023) as a
baseline due to its similar scope and SOTA performance in general circuit representation learning.
Additionally, we provide more details of baseline selection in Appendix A.2.1.

Evaluation. To validate the efficacy of our MGVGA, we conduct evaluations across two distinct
logic synthesis tasks including the Quality of Results (QoR) Prediction and Logic Equivalence Iden-
tification tasks. During the evaluation process, we utilize the GNN encoder trained with MGVGA to
extract the AIG representation without extracting Verilog code representations. Moreover, we ex-
tract the AIG representation directly without fine-tuning DeepGate2 and MGVGA for downstream
tasks. Notably, QoR prediction aims to assess the ability to extract structural information, whereas
logic equivalence identification is designed to evaluate the capability of extracting abstract function
information. Moreover, besides identifying logic equivalence directly, we conduct experiments on
the boolean satisfiability solving (SAT) task in Appendix A.3.2. SAT solving requires rough logic
equivalence checking to be strictly validated later. Additionally, we provide more details about the
model settings in Appendix A.2.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

MGVGA

Circuit
Embedding

Optimization
Sequence

Sequence
Embedding

Regression

QoR Prediction

Synthesis
Embedding Layer

AIG

Circuit
Embedding

Circuit
Embedding

Circuit
Embedding

Logic Equivalence Identification

MGVGA

Cosine Similarity

AIG AIG AIG

Figure 5: Application of MGVGA in QoR prediction and logic equivalence identification.

Table 1: Performance of DeepGate2 and MGVGA on QoR prediction.

Design # PI # PO # Gates

DeepGate2 MGVGA (Ours)

NDCG@k ↑ Top-k% Commonality ↑ NDCG@k ↑ Top-k% Commonality ↑
k=3 k=5 k=3 k=5 k=10 k=3 k=5 k=3 k=5 k=10

bc0 21 11 2784 0.331 0.395 0.244 0.227 0.280 0.444 0.560 0.222 0.213 0.320
apex1 45 45 2661 0.645 0.643 0.222 0.333 0.413 0.706 0.716 0.311 0.400 0.513
div 128 128 101698 -0.063 0.029 0.000 0.027 0.133 -0.060 -0.060 0.000 0.013 0.093
k2 45 45 4075 -0.060 0.040 0.022 0.040 0.080 0.902 0.873 0.267 0.320 0.400
i10 257 224 3618 -0.133 -0.080 0.000 0.000 0.027 0.620 0.607 0.289 0.307 0.353
mainpla 26 49 9441 0.674 0.629 0.267 0.293 0.360 0.594 0.598 0.200 0.187 0.233
or1200 cpu 2343 2072 56570 0.498 0.485 0.178 0.267 0.407 0.617 0.613 0.222 0.253 0.367
picorv32 1631 1601 25143 0.563 0.406 0.111 0.173 0.186 0.440 0.457 0.066 0.160 0.180
Rocket 4413 4187 96507 0.578 0.543 0.111 0.186 0.300 0.557 0.607 0.355 0.413 0.467
sqrt 128 64 40920 0.304 0.153 0.000 0.027 0.080 0.577 0.401 0.000 0.040 0.080

Average 0.334 0.324 0.116 0.157 0.226 0.540 0.537 0.193 0.231 0.301

4.3 QOR PREDICTION

For QoR prediction tasks, we estimate the number of optimized gates for the circuit designs fol-
lowing logic synthesis optimization via ABC (Brayton & Mishchenko, 2010). As illustrated in
Figure 5(a), we utilize a GNN encoder to extract circuit embeddings exclusively from AIGs. These
embeddings are extracted to train the QoR prediction model with the datasets described in Sec-
tion 4.1. We evaluate the performance across ten circuit designs as illustrated in Table 1, with
each circuit undergoing synthesis through 1500 optimization sequences, each containing 20 steps.
Notably, we detail the evaluation process and evaluation metrics of QoR prediction task in Ap-
pendix A.2.4. Specifically, we utilize two evaluation metrics including NDCG@k for k = 3, 5 and
Top-k% Commonality for k = 3, 5, 10 in our experiments.

Table 1 illustrates a detailed comparison between MGVGA and DeepGate2 in QoR prediction, using
the post-synthesis number of gates. MGVGA excels in NDCG@k for k = 3, 5 and achieves higher
percentages in Top-k% Commonality for k = 3, 5, 10 across various designs. When considering the
average performance, MGVGA notably surpasses DeepGate2 with an NDCG@3 of 0.540 compared
to 0.334, and a Top-10% Commonality score of 0.301 against 0.226. This demonstrates MGVGA’s
superior capability in extracting structure information of circuits, which facilitates recommending
optimal optimization sequences. Collectively, these results quantitatively validate the significant ad-
vancement of MGVGA over DeepGate2 in logic circuit optimization tasks, particularly in accurately
and efficiently predicting superior gate configurations to enhance overall design quality.

4.4 LOGIC EQUIVALENCE IDENTIFICATION

Each design in Table 2 undergoes optimization to generate various graph expressions while ensuring
functionality equivalence. The Cone, specifying the PIs and PO constructs, also denotes function-
ality equivalence. To evaluate the GNNs’ ability to identify circuit function, we derive logically
equivalent gates by isolating the Cone among the designs in Table 2 within AIGs using the cone
command within logic synthesis tool ABC (Brayton & Mishchenko, 2010). Our dataset consists of
10000 pairs of logic gates to test the identification of logic equivalence. As illustrated in Figure 5(b),
GNNs deem pairs of logic gates as equivalent if the cosine similarity between their embeddings ex-
ceeds a predefined threshold during the evaluation process. The predefined threshold is optimized
based on the receiver operating characteristic (ROC) curve. In our experiments, we assess the GNNs’
performance using precision, recall, F1-score, and the area under the ROC curve (AUC).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance of DeepGate2 and MGVGA on logic equivalence identification.

Design
DeepGate2 MGVGA (Ours)

Precision Recall F1-Score AUC Precision Recall F1-Score AUC

bc0 0.199 0.930 0.327 0.813 0.274 0.715 0.396 0.817
apex1 0.133 0.680 0.223 0.601 0.273 0.710 0.394 0.826
div 0.203 0.980 0.337 0.814 0.197 0.670 0.305 0.725
k2 0.171 0.720 0.276 0.695 0.336 0.920 0.492 0.919
i10 0.414 0.940 0.575 0.918 0.699 0.950 0.805 0.985
mainpla 0.178 0.790 0.290 0.732 0.167 0.900 0.281 0.746
or1200 cpu 0.451 0.790 0.575 0.823 0.356 0.950 0.518 0.929
picorv32 0.448 0.870 0.592 0.918 0.440 0.960 0.604 0.941
Rocket 0.346 0.930 0.504 0.892 0.388 1.000 0.559 0.952
sqrt 0.189 0.740 0.302 0.721 0.199 0.720 0.312 0.770

Average 0.295 0.841 0.424 0.804 0.336 0.848 0.470 0.862

Table 3: Performance of MGVGA on QoR prediction and logic equivalence identification with
different masking ratios of MGM and VGA.

Masking Ratio QoR Prediction Logic Equivalence Identification

MGM VGA NDCG@k ↑ Top-k% Commonality ↑ Precision Recall F1-Score AUC
k=3 k=5 k=3 k=5 k=10

0.3 0.3 0.517 0.505 0.158 0.199 0.272 0.300 0.844 0.430 0.846
0.3 0.5 0.540 0.537 0.193 0.231 0.301 0.336 0.848 0.470 0.862
0.3 0.7 0.498 0.514 0.178 0.223 0.299 0.316 0.823 0.441 0.820

0.5 0.3 0.439 0.445 0.149 0.187 0.271 0.274 0.821 0.402 0.821
0.5 0.5 0.438 0.470 0.169 0.204 0.288 0.331 0.829 0.450 0.836
0.5 0.7 0.385 0.415 0.140 0.168 0.247 0.304 0.833 0.433 0.817

0.7 0.3 0.347 0.367 0.127 0.160 0.242 0.292 0.871 0.421 0.828
0.7 0.5 0.400 0.366 0.111 0.175 0.228 0.313 0.823 0.433 0.832
0.7 0.7 0.366 0.359 0.138 0.169 0.226 0.305 0.794 0.425 0.822

As illustrated in Table 2, our proposed MGVGA has shown significant superiority over the es-
tablished DeepGate2. The comprehensive analysis reveals that MGVGA outperforms DeepGate2,
achieving an F1-score of 0.470 compared to 0.424, and an AUC of 0.862 versus 0.804. Moreover, we
also provide more experiment results for the comparison between DeepGate3 and MGVGA using
small designs in Appendix A.3.1. These results underscore the consistency of MGVGA and its su-
perior ability to accurately determine functionally equivalent circuits, highlighting its effectiveness
in extracting abstract circuit function features.

4.5 ANALYSIS OF MASKING RATIO

This section analyzes the impact of masking ratios for both MGM and VGA. Table 3 indicates that
the optimal masking ratio for MGM is 0.3, while the optimal masking ratio for VGA is 0.5. At an
MGM masking ratio of 0.3, the MGVGA method demonstrates notable performance. Meanwhile,
there is a consistent improvement in both QoR prediction and logic equivalence identification tasks
when the VGA masking ratio increases from 0.3 to 0.5.

The study reveals that higher MGM masking ratios negatively affect QoR performance, suggesting
that excessive masking impedes the GNNs’ ability to learn information effectively. Specifically,
excessively high masking ratios (0.5 and 0.7) significantly reduce the performance of MGVGA in
the QoR prediction task, which reflects the capability in structural circuit information extraction. As
for VGA, a relatively higher masking ratio (0.5) generally yields better performance for the logic
equivalence identification task. An excessively high masking ratio (0.7) degrades the performance
of extracting circuit structural and functional features. These findings align with our intuitive ex-
pectations. MGM directly enables GNNs to recover complete structural information from masked
latent space. GNNs can not learn effective information from unmasked gates if the masking ratio is
too high. In the VGA task, introducing Verilog codes as constraints for circuit restoration allows for
a relatively high masking ratio, as Verilog codes contain rich circuit information.

4.6 EFFECTIVENESS OF CONSTRAINT MASKED MODELING

To assess the effectiveness of our MGM and VGA approaches, we conduct an ablation study on
QoR prediction and logic equivalence identification tasks. We use the original masked modeling

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation study on constraint masked modeling paradigm, including MGM and VGA.

Mask Strategy QoR Prediction Logic Equivalence Identification

MGM VGA NDCG@k ↑ Top-k% Commonality ↑ Precision Recall F1-Score AUC
k=3 k=5 k=3 k=5 k=10

✘ ✘ 0.153 0.207 0.107 0.159 0.255 0.264 0.793 0.382 0.790
✔ ✘ 0.338 0.368 0.135 0.197 0.289 0.305 0.850 0.433 0.833
✔ ✔ 0.540 0.537 0.193 0.231 0.301 0.336 0.848 0.470 0.862

Table 5: Generalization on various GNNs, including GraphSAGE and graph transformer.

QoR Prediction Logic Equivalence Identification

GNNs NDCG@k ↑ Top-k% Commonality ↑ Precision Recall F1-Score AUC
k=3 k=5 k=3 k=5 k=10

DeepGate2 0.334 0.324 0.116 0.157 0.226 0.295 0.841 0.424 0.804

GraphSAGE 0.469 0.479 0.153 0.224 0.314 0.329 0.811 0.455 0.841
Graph Transformer 0.452 0.470 0.154 0.212 0.311 0.324 0.789 0.450 0.831
DeepGCN (Ours) 0.540 0.537 0.193 0.231 0.301 0.336 0.848 0.470 0.862

strategy (Hou et al., 2023) as a baseline, employing a masking ratio of 0.3 for both the original and
MGM methods, based on the optimal performance observed in Table 3.

As shown in Table 4, the original masked modeling strategy yielded poor performance in both tasks.
This outcome aligns with our previous assertion that masking in the original circuits disrupts their
logical equivalence, thereby preventing the method from learning effective circuit features. In con-
trast, both our MGM and VGA approaches demonstrated significant improvements in the two tasks,
underscoring their effectiveness in enhancing GNNs’ capacity to extract fine-grained structural in-
formation and abstract functional data. Furthermore, VGA not only facilitates GNNs’ extraction of
circuit function features but also enhances their ability to recognize circuit structure during the re-
construction process. This improvement occurs under the constraint of logically equivalent Verilog
codes, highlighting the versatility of our VGA approach.

4.7 GENERALIZATION ON VARIOUS GNNS

To evaluate the generalization capability of our MGVGA, we perform circuit representation learn-
ing using various traditional GNNs, including GraphSAGE (Hamilton et al., 2017) and graph trans-
former (Shi et al., 2021). Similarly, based on the optimal performance observed in Table 3, where
MGVGA achieves the best results with the MGM masking ratio of 0.3 and the VGA masking ratio
of 0.5, we apply these same masking ratios to the constrained masked modeling of other GNNs.

As shown in Table 5, all GNNs trained with MGVGA exhibited significant improvements compared
to the baseline DeepGate2 model. These results demonstrate the exceptional generalization ability
of our proposed methods across different GNN architectures. This consistent performance enhance-
ment across various models underscores the robustness and versatility of our MGVGA paradigm in
extracting better circuit representation via circuit representation learning.

5 CONCLUSION

In conclusion, this study introduces a novel constrained mask modeling paradigm, MGVGA, for
circuit representation learning. This method integrates MGM and VGA to extract fine-grained struc-
tural information and abstract functions of circuits. MGM operates by masking gates in the latent
space rather than in the original circuits, subsequently reconstructing the attributes of these masked
gates. This approach preserves the logical equivalence of circuits, overcoming the limitations of
traditional masked gate modeling strategies. However, MGM primarily focuses on circuit structure
instead of circuit function. Meanwhile, LLMs have demonstrated excellent comprehension of the
Verilog code functionality. Consequently, we developed VGA, which performs masking operations
on the original circuits and reconstructs them under the constraints of equivalent Verilog codes, en-
abling GNNs to learn circuit functions from LLMs. Our comprehensive evaluations demonstrate the
superior performance of MGVGA compared to previous SOTA methods in QoR prediction and logic
equivalent identification tasks. This represents a significant advancement in applying the constrained
masked modeling paradigm to general circuit representation learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Christoph Albrecht. IWLS 2005 benchmarks. IEEE/ACM International Workshop on Logic Synthe-
sis, 2005.

Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The EPFL combinational
benchmark suite. In IEEE/ACM International Workshop on Logic Synthesis, 2015.

Krste others Asanovic. The Rocket Chip Generator. EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT Pre-Training of Image Trans-
formers. In International Conference on Learning Representations (ICLR), 2021.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapa-
dos, and Siva Reddy. LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders.
arXiv preprint, 2024.

Robert Brayton and Alan Mishchenko. ABC: An academic industrial-strength verification tool. In
International Conference on Computer-Aided Verification (CAV), pp. 24–40, 2010.

Robert Brummayer and Armin Biere. Local Two-Level And-Inverter Graph Minimization without
Blowup. Proc. MEMICS, 6:32–38, 2006.

Hao Chen, Kai-Chieh Hsu, Walker J Turner, Po-Hsuan Wei, Keren Zhu, David Z Pan, and Haoxing
Ren. Reinforcement Learning Guided Detailed Routing for Custom Circuits. In ACM Interna-
tional Symposium on Physical Design (ISPD), pp. 26–34, 2023.

Jingsong Chen, Jian Kuang, Guowei Zhao, Dennis J-H Huang, and Evangeline FY Young. PROS
2.0: A plug-in for routability optimization and routed wirelength estimation using deep learning.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 42
(1):164–177, 2022.

Brendon Chetwynd, Kevin Bush, and Kyle Ingols. Common Evaluation Platform. https://
github.com/mit-ll/CEP.git, 2019.

Animesh Basak Chowdhury, Benjamin Tan, Ramesh Karri, and Siddharth Garg. OpenABC-D: A
Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis. arXiv preprint,
2021.

Animesh Basak Chowdhury, Benjamin Tan, Ryan Carey, Tushit Jain, Ramesh Karri, and Sid-
dharth Garg. Bulls-Eye: Active few-shot learning guided logic synthesis. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 42(8):2580–2590, 2022.

Scott Davidson. Characteristics of the ITC’99 benchmark circuits. In IEEE International Test
Synthesis Workshop (ITSW), 1999.

Wenji Fang, Mengming Li, Min Li, Zhiyuan Yan, Shang Liu, Hongce Zhang, and Zhiyao Xie.
AssertLLM: Generating and Evaluating Hardware Verification Assertions from Design Specifica-
tions via Multi-LLMs. arXiv preprint, 2024.

Winston Haaswijk, Mathias Soeken, Alan Mishchenko, and Giovanni De Micheli. Sat-based exact
synthesis: Encodings, topology families, and parallelism. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2019.

Gary D Hachtel and Fabio Somenzi. Logic synthesis and verification algorithms. Springer Science
& Business Media, 2005.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Annual Conference on Neural Information Processing Systems (NIPS), 2017.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
Autoencoders Are Scalable Vision Learners. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 16000–16009, 2022.

11

https://github.com/mit-ll/CEP.git
https://github.com/mit-ll/CEP.git

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining (KDD, pp. 594–604, 2022.

Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang.
GraphMAE2: A Decoding-Enhanced Masked Self-Supervised Graph Learner. In ACM Web Con-
ference (WWW), pp. 737–746, 2023.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A
general architecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795, 2021.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

Kalervo Järvelin and Jaana Kekäläinen. IR evaluation methods for retrieving highly relevant docu-
ments. In ACM SIGIR Forum, volume 51, pp. 243–250, 2017.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Annual Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL), pp. 4171–4186,
2019.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. NV-Embed: Improved Techniques for Training LLMs as Generalist Embed-
ding Models. arXiv preprint arXiv:2405.17428, 2024.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. DeepGCNs: Can GCNs go as deep
as CNNs? In IEEE International Conference on Computer Vision (ICCV), pp. 9267–9276, 2019.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. DeeperGCN: All you need to train
deeper GCNs. arXiv preprint arXiv:2006.07739, 2020.

Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian, Liang Zhu, Changhua Meng, Zibin
Zheng, and Weiqiang Wang. What’s Behind the Mask: Understanding Masked Graph Model-
ing for Graph Autoencoders. In ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), pp. 1268–1279, 2023a.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281,
2023b.

Rongjian Liang, Siddhartha Nath, Anand Rajaram, Jiang Hu, and Haoxing Ren. BufFormer: A
Generative ML Framework for Scalable Buffering. In IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC), pp. 264–270, 2023.

Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. RTLCoder: Outper-
forming GPT-3.5 in design RTL generation with our open-source dataset and lightweight solution.
arXiv preprint, 2023.

Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. RTLLM: An Open-Source Benchmark for
Design RTL Generation with Large Language Model. In IEEE/ACM Asia and South Pacific
Design Automation Conference (ASPDAC), 2024.

Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. DAG-aware AIG rewriting a fresh look
at combinational logic synthesis. In ACM/IEEE Design Automation Conference (DAC), pp. 532–
535, 2006.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. Generative Representational Instruction Tuning. arXiv preprint, 2024.

OpenRISC. OpenRISC - OR1200. https://github.com/openrisc/or1200, 2009.

12

https://github.com/openrisc/or1200

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zehua Pei, Hui-Ling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu. BetterV: Controlled Verilog
Generation with Discriminative Guidance. arXiv preprint, 2024.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In International
Joint Conference on Artificial Intelligence (IJCAI), 2021.

Zhengyuan Shi, Hongyang Pan, Sadaf Khan, Min Li, Yi Liu, Junhua Huang, Hui-Ling Zhen, Mingx-
uan Yuan, Zhufei Chu, and Qiang Xu. DeepGate2: Functionality-aware circuit representation
learning. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–9,
2023.

Zhengyuan Shi, Ziyang Zheng, Sadaf Khan, Jianyuan Zhong, Min Li, and Qiang Xu. Deepgate3:
Towards scalable circuit representation learning. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2024.

Kazuyuki Takeda. OpenCores. https://opencores.org/, 2008.

Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan, Ramesh Karri,
Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking Large Language Models for Auto-
mated Verilog RTL Code Generation. In IEEE/ACM Proceedings Design, Automation and Test in
Eurpoe (DATE), pp. 1–6, 2023.

Yun-Da Tsai, Mingjie Liu, and Haoxing Ren. RTLFixer: Automatically Fixing RTL Syntax Errors
with Large Language Models. arXiv preprint, 2024.

A Vaswani. Attention is all you need. In Annual Conference on Neural Information Processing
Systems (NIPS), 2017.

Ziyi Wang, Chen Bai, Zhuolun He, Guangliang Zhang, Qiang Xu, Tsung-Yi Ho, Bei Yu, and
Yu Huang. Functionality Matters in Netlist Representation Learning. In ACM/IEEE Design
Automation Conference (DAC), pp. 61–66, 2022.

Liangjian Wen, Yi Zhu, Lei Ye, Guojin Chen, Bei Yu, Jianzhuang Liu, and Chunjing Xu. Lay-
ouTransformer: Generating Layout Patterns with Transformer via Sequential Pattern Modeling.
In IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–9, 2022.

Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free Verilog synthesis suite. In Austrian
Workshop on Microelectronics (Austrochip), 2013.

Haoyuan Wu, Zhuolun He, Xinyun Zhang, Xufeng Yao, Su Zheng, Haisheng Zheng, and Bei Yu.
ChatEDA: A Large Language Model Powered Autonomous Agent for EDA. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

YosysHQ. PicoRV32 - A Size-Optimized RISC-V CPU. https://github.com/YosysHQ/
picorv32, 2020.

Yanqing Zhang, Haoxing Ren, and Brucek Khailany. GRANNITE: Graph Neural Network Inference
for Transferable Power Estimation. In ACM/IEEE Design Automation Conference (DAC), pp. 1–
6, 2020.

Haisheng Zheng, Zhuolun He, Fangzhou Liu, Zehua Pei, and Bei Yu. LSTP: A Logic Synthesis Tim-
ing Predictor. In IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC),
pp. 728–733, 2024.

13

https://opencores.org/
https://github.com/YosysHQ/picorv32
https://github.com/YosysHQ/picorv32

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 MORE DETAILS OF MGVGA

A.1.1 LOGIC EQUIVALENCE PRESERVATION

In traditional masked graph modeling processes, nodes in graphs are masked directly and then re-
constructed without any constraint except labels of masked nodes. However, any valid circuits can
be labels during the reconstruction process for circuit representation learning. It’s hard for GNNs
to learn useful features for downstream tasks in this way. Consequently, we introduce constraints
during the decoding process to ensure that GNNs learn useful features related to the circuit.

In our work, “logical equivalence preservation” describes the equivalence between an AIG G =
(V,A) and its different representations including X = gE(V,A) and XV . In MGM, G and its
latent space embedding X are logically equivalent. According to X = gE(V,A), the latent space
embedding X is derived from G through the GNN encoding process without masking gates(nodes).
Consequently, we can say that X and G comes from the same truth table. In VGA, G and its
corresponding Verilog code embedding XV are logically equivalent. XV is extracted via LLM
according to the given Verilog code and G is obtained from the Verilog code via logic synthesis tools
as illustrated in Figure 2. Similarly, we can say that the truth tables of XV and G are the same.

In summary, we won’t change the original structure of AIG G during the reconstruction process and
the logic information is retained in X or XV as the constraint for the decoding process.

A.1.2 UNMASKED ADJACENCY MATRIX

As we mentioned, following previous masked modeling paradigms (Hou et al., 2022; 2023), we do
not mask the adjacent matrices A during the entire process. Here are the detailed reasons.

Logical Equivalence: Our MGVGA emphasizes logical equivalence during training, ensuring that
the circuit has a unique solution during reconstruction. If both A and X were masked, the problem
would become NP-hard due to multiple possible solutions, making it much more difficult to train
the model effectively and convergently.

Computational Complexity: Reconstructing the adjacency matrix A would require handling a
matrix of size N2 for N gates, which is computationally infeasible for large circuits (e.g., those with
millions of gates). By not masking A, we only need to reconstruct the masked gate information in X ,
significantly reducing computational complexity and improving the efficiency of both training and
inference. Moreover, both MGM and VGA in MGVGA operate at the gate level without masking
the adjacency matrix A, focusing on local feature extraction. Consequently, we can utilize parallel
processing techniques, distributed computing, etc., to reduce overhead in both MGM and VGA
stages for high-complexity circuits.

In summary, we perform the MGVGA without masking the adjacency matrix A, which is the same
as previous masked graph modeling methods (Hou et al., 2022; 2023). Consequently, there are only
two tasks for gate-level prediction to reconstruct masked circuits as illustrated in Section 3.4.

A.2 SPECIFIC EXPERIMENT SETTINGS

A.2.1 BASELINE SELECTION

During the baseline selection process, we acknowledged and recognized the progress made with
DeepGate3 (Shi et al., 2024), the upgraded version of DeepGate2 (Shi et al., 2023). However, we
encountered several challenges in our practical implementation.

Specifically, DeepGate3’s architecture is built upon DeepGate2 and incorporates transformer mod-
els, which have a quadratic time complexity during attention computation. This becomes a critical
issue when dealing with large-scale datasets. Our training set includes digital circuits with up to mil-
lions of gates, leading to substantial and often unmanageable computational costs during training.
During the testing phase, DeepGate3 is limited to circuits with up to thousands of gates. When at-
tempting to infer circuits with millions of gates, the computational overhead becomes prohibitively

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

high. This limitation makes it impractical for our use case, where we need to handle circuits of
varying sizes, including very large ones.

Consequently, we choose DeepGate2 as our baseline because it’s the best model that provides a
more practical and scalable solution for the digital circuits we aim to model and optimize within the
EDA toolchain. Moreover, we also provide some experiment results for the comparison between
DeepGate3 and MGVGA on the small-scale designs with just thousands of gates in Appendix A.3.

A.2.2 MODEL SETTINGS

Model Size. DeepGate2 (Shi et al., 2023) has 0.64M parameters with 1 layer and DeepGate3 (Shi
et al., 2024) has 8.17M parameters with transformer architecture. Meanwhile, our MGVGA has
only 0.12M parameters with 7 layers. According to the experiment results, MGVGA achieved much
better performance compared to DeepGate2 and DeepGate3 with fewer model parameters, which
demonstrates the effectiveness of our method.

Bidirectional LLM. We utilize gte-Qwen2-7B-instruct (Li et al., 2023b) model for Verilog code
representation extraction, which is based on a BERT-like encoder transformer architecture with
bidirectional attention. The base model of gte-Qwen2-7B-instruct, Qwen2-7B-instruct (Yang et al.,
2024), is a decoder-based model with causal attention. Qwen2-7B-instruct has been extensively
trained on a diverse corpus of Verilog and demonstrates an extraordinary ability to understand and
process various styles and complexities of Verilog/System Verilog code, including less standard-
ized or non-optimized representations. Although it excels in generating text and understanding
sequential dependencies, it is not well-suited for embedding tasks due to its unidirectional attention
mechanism. Consequently, Li et al. (2023b) proposes GTE to transform Qwen2-7B-instruct into
gte-Qwen2-7B-instruct, enabling the model to capture bidirectional context while preserving the
original capabilities in understanding Verilog codes.

A.2.3 BENCHMARK SELECTION

Given the practical requirements of our application, we chose DeepGate2 as our baseline. Deep-
Gate2 uses a portion of the design from opensource benchmarks as training data. To ensure fair
and reliable testing, we excluded these designs from our test set. To further validate the reliabil-
ity and practicality of our method, we have supplemented our test set with designs from different
opensource benchmarks (Chowdhury et al., 2021; Amarú et al., 2015; OpenRISC, 2009; YosysHQ,
2020; Asanovic, 2016) that were not used during training. These additional test sets cover a range
of graph sizes and complexities, ensuring that our evaluation is comprehensive and representative of
real-world EDA tool requirements.

A.2.4 EVALUATION DETAILS OF QOR PREDICTION

For the evaluation of the QoR prediction task, we evaluate the performance across ten circuit de-
signs as illustrated in Table 1, with each circuit undergoing synthesis through 1500 optimization se-
quences, each containing 20 steps. Notably, normalization is applied to A ∈ R1×1500, representing
the count of optimized gates per sequence, following (Chowdhury et al., 2021). Specifically, each
element Ai is standardized using Ai =

Ā−Ai

σA
, where Ā and σA is the mean and the standard de-

viation of A, respectively. For QoR prediction, we need to rank the predicted scores B ∈ R1×1500

to identify the best optimization sequence. Consequently, we utilize the Normalized Discounted
Cumulative Gain (NDCG) (Järvelin & Kekäläinen, 2017; Järvelin & Kekäläinen, 2002) metric to
assess the quality of the ranking algorithms for the predicted scores B. The NDCG@k is calculated
as follows:

NDCG@k = (

k∑
i=1

Arank(B,i)

log2(i+ 1)
)/(

k∑
i=1

Arank(A,i)

log2(i+ 1)
), (10)

where k represents the position considered in the ranking. Here, rank(A, i) and rank(B, i) denote
the indices in A and B of the i-th largest elements, respectively. The NDCG@k score ranges from
-1 to 1, with a higher score indicating better ranking performance. A perfect ranking would achieve
an NDCG@k score of 1. Furthermore, we evaluate and compare the predictions on a reference
set of optimization sequences with actual synthesis labels using the Top-k% Commonality metrics,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: Performance of DeepGate models and MGVGA on logic equivalence identification.

Design # PI # PO # Gates
DeepGate2 DeepGate3 MGVGA (Ours)

F1-Score AUC F1-Score AUC F1-Score AUC

bc0 21 11 2784 0.327 0.813 0.373 0.819 0.396 0.817
apex1 45 45 2661 0.223 0.601 0.326 0.725 0.394 0.826
k2 45 45 4075 0.276 0.695 0.345 0.834 0.492 0.919
i10 257 224 3618 0.575 0.918 0.601 0.928 0.805 0.985
mainpla 26 49 9441 0.290 0.732 0.305 0.763 0.281 0.746

Average 0.338 0.752 0.390 0.834 0.474 0.859

defined as num(Ãk∩B̃k)

num(Ãk)
, where Ãk and B̃k represent the top k% performing optimization sequences,

actual and predicted, respectively.

A.3 EXTENDED EXPERIMENTAL RESULTS

A.3.1 LOGIC EQUIVALENCE IDENTIFICATION

As shown in Table 6, we present the performance comparison between DeepGate models (Shi et al.,
2023; 2024) and MGVGA on small circuit designs considering the computation overhead. The
experiment results show that MGVGA outperforms DeepGate3, achieving an average F1-score of
0.474 compared to 0.390, and an average AUC of 0.859 versus 0.834.

A.3.2 BOOLEAN SATISFIABILITY SOLVING

Boolean satisfiability (SAT) solving aims to determine whether there exists an assignment of truth
values that satisfies a Boolean formula. In logic synthesis, SAT solvers are indispensable for tasks
such as logic optimization, ensuring both the correctness and efficiency of circuits. Despite their
critical role, SAT solving remains computationally challenging, often leading to significant run-
time overhead, especially for large or complex designs. To address this challenge, several stud-
ies (Haaswijk et al., 2019; Shi et al., 2023; 2024) have proposed various methods to accelerate the
SAT solving process. For instance, Exact synthesis (Haaswijk et al., 2019) enhanced SAT solving by
systematically varying the number of nodes and levels in directed acyclic graph (DAG) topologies,
a technique referred to as Boolean fences. A Boolean fence is a partition of nodes across multiple
levels, with each level containing at least one node. By tuning these parameters, they effectively
constrained the search space for the SAT solver, resulting in more efficient and predictable synthesis
outcomes. Despite achieving significant speedup over SAT solvers, the solution still has room for
further enhancement. Building on the work presented in (Haaswijk et al., 2019), we demonstrate
how MGMVA can efficiently accelerate the SAT solving process.

Exact Synthesis generates logic circuits that guarantee logical equivalence between the resulting
circuit and the target logic function, intending to find an optimal implementation based on specific
criteria, such as gate count or depth.

Experiment Settings. We integrate the MGMVA into the SAT solver (Haaswijk et al., 2019) to
perform exact synthesis tasks. For the training process, we apply the exact synthesis process to the
EPFL (Amarú et al., 2015) and IWLS (Albrecht, 2005) benchmarks using the SAT solver (Haaswijk
et al., 2019) to obtain the number of nodes and levels in the subcircuits, which are subsequently
used as labels. We extract the circuit embeddings from MGVGA and feed them into MLP to per-
form regression tasks. As for the SAT solving process with MGVGA, we first extract several small
subcircuits from the original circuits following the exact synthesis process. These subcircuits, which
have a maximum of 8 inputs and a single output, are still computationally challenging due to the
exponential number of Boolean functions 2256 resulting in large runtime overhead. Then, we can
use the MGMVA to predict the number of nodes and levels required for the optimal equivalent im-
plementation of the input subcircuit and use MGMVA to further constrain the search space of the
Boolean fence, thereby accelerating the SAT solving process. Finally, to assess the efficacy of our
model in accelerating SAT solving, we employ DeepGate2 (Shi et al., 2023) and DeepGate3 (Shi
et al., 2024) as baselines. All experiments are conducted using the same computational resources.

Evaluation Results. Table 7 and Table 8 present a runtime comparison among the exact synthesis,
DeepGate2, DeepGate3, and our MGVGA settings, with runtime measured in seconds (s). We

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 7: The comparison of SAT solving runtime (solver only).

Design # Subcircuits Exact Synthesis DeepGate2 DeepGate3 MGVGA (Ours)

Solver Red. Solver Red. Solver Red.

adder 27 365.19 480.72 -31.64% 464.21 -27.11% 184.19 49.56%
sqrt 38 5.55 6.65 -19.82% 6.92 -24.68% 4.77 14.05%
hyp 80 328.58 351.25 -6.90% 351.71 -7.04% 213.20 35.11%
i2c 169 267.15 62.21 76.71% 34.01 87.27% 32.98 87.65%
div 1968 4033.48 1096.21 72.83& 882.59 78.12% 844.45 79.06%

Average 999.99 399.41 18.24% 347.89 21.31% 255.92 53.09%

Table 8: The comparison of SAT solving runtime (overall).

Design Exact Synthesis DeepGate2 DeepGate3 MGVGA (Ours)

Model Solver Overall Model Solver Overall Model Solver Overall

adder 365.19 0.66 480.72 481.38 10.86 464.21 475.07 0.17 184.19 184.36
sqrt 5.55 0.65 6.65 7.30 10.91 6.92 17.83 0.24 4.77 5.01
hyp 328.58 2.13 351.25 353.38 36.01 351.71 387.72 1.32 213.20 215.84
i2c 267.15 2.60 62.21 64.81 45.95 34.01 79.96 1.06 32.98 34.04
div 4033.48 40.80 1096.21 1137.01 763.71 882.89 1646.60 17.11 844.45 861.56

Average 999.99 9.37 399.41 408.78 173.49 347.89 521.38 3.99 255.92 259.91

choose exact synthesis as our baseline setting the runtime reduction compared to the baseline setting
is denoted as Red. As shown in Table 7, MGVGA achieves an average runtime reduction of 53.09%
while DeepGate2 and DeepGate3 achieve an average reduction of 18.24% and 21.31% separately for
SAT solving process. However, it is worth noting that the SAT solver with GNN is less effective for
easier cases, as the model inference process accounts for a significant portion of the total runtime as
illustrated in Table 8. In general, MGVGA exhibits significant improvement compared to DeepGate
models in this task, indicating that MGVGA can capture more informative abstract functional and
fine-grained structural representations for solving practical SAT solving problems.

17

	Introduction
	Related Work
	Methodology
	AIG Autoencoder
	Masked Gate Modeling
	Verilog-AIG Alignment
	AIG Reconstruction
	Constrained Masked Modeling: MGVGA

	Experiments
	Data Preparation
	Implementation Details
	QoR Prediction
	Logic Equivalence Identification
	Analysis of Masking Ratio
	Effectiveness of Constraint Masked Modeling
	Generalization on Various GNNs

	Conclusion
	Appendix
	More Details of MGVGA
	Logic Equivalence Preservation
	Unmasked Adjacency Matrix

	Specific Experiment Settings
	Baseline Selection
	Model Settings
	Benchmark Selection
	Evaluation Details of QoR Prediction

	Extended Experimental Results
	Logic Equivalence Identification
	Boolean Satisfiability Solving

