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Mean-Shift Distillation for Diffusion Mode Seeking
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Abstract

We present mean-shift distillation, a novel diffu-

sion distillation technique that provides a provably

good proxy for the gradient of the diffusion output

distribution. This is derived directly from mean-

shift mode seeking on the distribution, and we

show that its extrema are aligned with the modes.

We further derive an efficient product distribution

sampling procedure to evaluate the gradient.

Our method is formulated as a drop-in replace-

ment for score distillation sampling (SDS), requir-

ing neither model retraining nor extensive mod-

ification of the sampling procedure. We show

that it exhibits superior mode alignment as well

as improved convergence in both synthetic and

practical setups, yielding higher-fidelity results

when applied to both text-to-image and text-to-

3D applications with Stable Diffusion.

1. Introduction

Soon after image diffusion (Dhariwal & Nichol, 2021) mod-

els exploded in popularity, Poole et al. (2022) introduced the

idea of using them for image optimization. Intuitively, this

can be expressed as the notion that images more likely to

be generated by a diffusion model are “better” in the sense

of being more faithful to the data distribution the diffusion

model was trained on.

Formally, diffusion models provide a mechanism to sample

images x ∈ I from some learned distribution p(x). We

then have a parameter vector ϑ ∈ P , along with an image-

generating model g : P → I. Given an initialization ϑ0,

we seek to optimize a ϑk such that p(M(ϑk)) > p(M(ϑ0)).
We expect this to yield an image M(ϑk) of higher quality,

under the metric the diffusion model is trained for.

We could imagine optimizing ϑ by determining the gradient

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

∇p(M(ϑ)) and ascending along it. However, while we may

use our diffusion model to sample from p(x), we can nei-

ther easily evaluate p(x) nor determine its gradient∇xp(x).
Even though we can formally express p(x) in terms of the

score function ϵ(x, t) through the instantaneous change of

variable formula (Grathwohl et al., 2019), evaluating this

formula requires calculating the divergence of the score

function along the entire ODE path, making this of only

theoretical interest. Evaluating the gradient of this quantity

is even less practical.

Score distillation sampling (SDS) (Poole et al., 2022) at-

tempts to address this problem by offering proxies for the

density gradient that are easier to estimate. However, their

theoretical properties are not rigorously established, and

SDS suffers from significant bias as well as variance, yield-

ing inaccurate gradients. Examining the loss landscape of

SDS in Figure 1, we indeed see that not only are the maxima

of this function not collocated with the modes of p(x), but

even in the simplest cases the loss creates “phantom modes”

that are well out of distribution.

Our method offers both better alignment with the distribu-

tion and lower variance of the gradient estimate.

Contributions. In this paper, we propose mean-shift distil-

lation, a distribution-gradient proxy based on a well-known

mode-seeking technique. Furthermore, we show that:

• This proxy can be implemented easily, with minimal

changes to the diffusion sampling procedure;

• It evaluates with less variance than SDS with improved

mode alignment;

• It has superior behavior, converging to modes of the

trained distribution with a clear termination criterion.

2. Related Work

Denoising diffusion. In our work we rely most directly

on the mean-shift method of mode seeking (Cheng, 1995;

Comaniciu & Meer, 2002), but our ability to apply it to dif-

fusion rests on a body of theoretical analysis of this process.

Mathematically, denoising diffusion consists of solving an

initial value problem (IVP) on a random variable from a

1
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Mean-Shift Distillation for Diffusion Mode Seeking

simple, typically standard normal distribution, where the

time-dependent gradient is learned by reversing the process

of adding noise to the distribution being modeled (Song

et al., 2021b;a). Already in these works authors suggest

ways in which the output distribution may be manipulated

by adding terms to the differential equation underlying the

initial value problem, a property we will rely on to manipu-

late the output to our method’s advantage.

A surprising connection between mean shift and diffu-

sion emerged from the analysis of the optimal denoising

model (Karras et al., 2022; Chen et al., 2024). Since the

forward (noising) process can be expressed as successive

convolutions with a Gaussian kernel, the intermediate distri-

butions are in fact Gaussian-kernel density estimates of the

data distributions, with kernel bandwidth proportional to the

time parameter. Therefore in the ODE of the reverse (infer-

ence) process, the gradient of the denoiser is theoretically

equal to the mean-shift vector with appropriate kernel and

bandwidth. Mean-shifting on the IVP time domain does not

in fact seek modes of the output distribution, but we take

advantage of this knowledge to implement mean shift on

that domain.

Further related to the analysis of modes in particular, Kar-

ras et al. (2024); Bradley & Nakkiran (2024) suggest that

applying classifier-free guidance (CFG) (Ho & Salimans,

2021) to diffusion has the effect of sharpening the modes

of the output distribution. This guidance does not explicitly

seek modes, but we have found that using CFG synergizes

well with both SDS and our methodß.

Distilling diffusion priors. Score distillation sampling

(SDS) (Poole et al., 2022; Wang et al., 2022) has emerged

as a useful technique for leveraging the priors learned by

large-scale image models beyond 2D raster images. SDS

provides an optimization procedure to estimate the param-

eters of a differentiable image generator, such that the ren-

dered image is pushed towards a higher-probability region

of a pre-trained prompt-conditioned image diffusion model.

Originally proposed to optimize volumetric representations

like NeRFs, it has been extended to other non-pixel-based

representations (Jain et al., 2023; Yi et al., 2024; Bahmani

et al., 2024; Thamizharasan et al., 2024).

The tendency of SDS to produce over-smoothened results

due to high variance is well documented. A plethora of

works have been proposed to mitigate this behavior, e.g. to

factorize the gradient to reduce the bias (Hertz et al., 2023;

Yu et al., 2024; Katzir et al., 2024; Alldieck et al., 2024), or

to replace the uniform noise sampling in SDS with noise

obtained by running DDIM inversion Liang et al. (2023);

Lukoianov et al. (2024). Wang et al. (2023a) propose a con-

trol variate for SDS, Wang et al. (2023b); Xu et al. (2024);

Yan et al. (2025) improve diversity of generations, and Wang

et al. (2024) alleviate the multi-view inconsistency problem.

3. Mean-Shift Distillation

In this section we derive the mean-shift vector for the diffu-

sion output distribution, and show how it approximates the

gradient thereof. We further show how an efficient estimate

of this vector may be obtained with a minimal modification

of diffusion sampling. We begin with a motivation of our

development by illustrating the pitfalls of SDS.

3.1. Motivation

Given a pre-trained diffusion model ϵϕ, the SDS loss penal-

izes the KL-divergence of a unimodal Gaussian distribution

centered around x and the data distribution pϕ(zt; y, t) cap-

tured by the frozen diffusion model conditioned on text

embeddings y. With x = g(ϑ), an image rendered by ϑ via

a differentiable renderer g, Poole et al. (2022) derive the

gradient of the loss LSDS with respect to ϑ:

∇ϑLSDS = Et,ϵ

[

α(t) (ϵϕ(α(t)x+ ϵ; t)− ϵ)
]∂x

∂ϑ
,

with t ∼ U(0, T ), ϵ ∼ N (0, σ(t)I). (1)

To illustrate the pitfalls of SDS, we simulate it in 2D us-

ing a small denoising diffusion network (Figure 1). This

allows us to set ϑ = x ∈ R
2 (where g becomes an iden-

tity map). We construct a fractal-like dataset as shown by

Karras et al. (2024), with analytic ground-truth probability

density and score. This data distribution is a mixture of

highly anisotropic Gaussians, where most of the probability

mass resides in narrow regions, emulating the low intrinsic

dimensionality of natural images (Roweis & Saul, 2000;

Belkin & Niyogi, 2003). For a baseline, we compare it

with DDIM (Song et al., 2021a), a popular first-order sam-

pling algorithm, with classifier-free guidance (CFG) (Ho &

Salimans, 2021). More details can be found in Section 4.2.

It is immediately apparent how even in this simple setting,

the optima to which SDS converges do not model the output

distribution well. Furthermore, the convergence itself is

problematic due to very high variance of SDS, which we

will address later.

3.2. Mean-shift Gradient Approximation

We start by convolving the data density p with a radial

Gaussian kernel Gλ(x) = cλe
−x2/λ2

with bandwidth λ,

normalized by a constant cλ. This convolution yields a

smoothed density p∗λ(x):

p∗λ(x) = p ∗Gλ(x) =
∫

Gλ(x− y)p(y)dy. (2)

2
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Mean-Shift Distillation for Diffusion Mode Seeking

(a) Ground truth (b) DDIM ⋆ (c) SDS ⊗ (d) Our MSD ⊗

• data sample ⊗ without guidance ⋆ with guidance (CFG=4) loss landscape

Figure 1: Mode-seeking simulated in a fractal-like 2D distribution with two (orange, gray) classes, adapted from Karras

et al. (2024). We compare the behavior of diffusion sampling (DDIM) to optimization-based diffusion distillation, in a

class-conditional setting. With class=orange, (a) Ground truth distribution, (b) DDIM sampling, (c) SDS optimization

without guidance, and (d) our MSD optimization without guidance.

We now take the gradient∇xp∗λ(x) of the smoothed density

and substitute the Gaussian kernel’s gradient:

∇xp∗λ(x) =
∫

∇xGλ(x− y)p(y)dy (3)

=

∫

cλ(x− y)Gλ(x− y)p(y)dy. (4)

We then take the stationary-point equation and reorganize it

as a fixed-point iteration:

∇xp∗λ(x) = 0 =⇒ x′=

∫

yGλ(x− y)p(y)dy
∫

Gλ(x− y)p(y)dy
, (5)

where the constant cλ cancels out. We will discuss the

practical estimation of the integrals in Section 3.3 below.

The iterative process in Equation (5) is a continuous version

of mean shift (Comaniciu & Meer, 2002). We may turn

this into gradient proxy with several desirable properties.

Defining the mean-shift vector m⃗(x) = x′ − x, it follows

from Equation (3) that

m⃗(x) ∝ p∗λ(x)∇xp∗λ(x). (6)

Since the smoothed density p∗λ(x) is always non-negative,

m⃗(x) is always aligned with its gradient∇p∗λ(x). It is also

aligned with the gradient of the true density p as λ → 0
(when such gradient exists). This means that a differential

step along the vector m⃗(x) will improve the likelihood of x,

making this a good proxy for the kernel density estimation

gradient. Furthermore, it implies that m⃗(x) will be zero at

the modes of p∗λ(x), giving us a convergence criterion.

3.3. Gradient Estimation via Product Sampling

The integrals in Equation (5) can be both estimated using

samples y from the density p; such estimation yields the

classical mean-shift expression

x′ =

∑

yi∼p
Kλ(x− yi)yi

∑

yi∼p
Kλ(x− yi)

. (7)

In our case, we do not have such samples readily available.

We could in theory use images from the training dataset as

these samples, or else use the diffusion model to generate

them – either as a pre-process or on-the-fly during iteration.

Unfortunately, that would be prohibitively costly as the

datasets are typically quite large and accurate estimation

would require a very large number of samples for practical

(i.e. small) kernel bandwidths λ.

Our key insight is that the right-hand side of Equation (5)

can be viewed as an expectation with respect to a density

ṗλ that is the product of p and the kernel Gλ centered at x:

x′ =

∫

y ṗλ(y|x)dy = Ey∼ṗλ(y|x)[y]. (8)

To generate samples y from this product density, we exploit

the fact that diffusion models employ score-based sampling

(Song et al., 2021b; Dhariwal & Nichol, 2021). Instead of

using the score∇log p of the density p in DDIM sampling,

we use the score of our product density:

∇zt log(ṗλ(y|x)) = ∇zt log p(zt) +∇zt logGλ(x− zt)

= ∇zt log p(zt)−
x− zt
λ2

, (9)

3



165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

Mean-Shift Distillation for Diffusion Mode Seeking

which is the sum of the density score (provided by the

diffusion model) and the score of our Gaussian kernel.

Having the ability to generate samples yi from the product

density, we can estimate the mean-shift iterate (8) as

x′ ≈ 1

N

∑

yi∼ṗλ(y|x)

yi. (10)

In practice we use a single sample y, which simplifies our

mean-shift vector to

m⃗(x) = y − x. (11)

We can thus step along m⃗ to seek the modes of the data den-

sity p. Substituting a learned score model into Equation (9)

gives us

ϵ̂t = ϵθ(zt; t)−
x− zt
λ2

. (12)

3.4. Practical Considerations

Impact of guidance. Conditional score estimates from

diffusion models, ϵθ(zt, c) ≈ −σt∇zt log p(zt|c), are im-

proved in practice with classifier-free guidance (CFG) (Ho

& Salimans, 2021), which sharpens the distribution around

the modes:

ϵ̃θ(zt, c) = (1 + w)ϵθ(zt, c)− wϵθ(zt). (13)

We may directly substitute this for the denoiser term in

Equation (12). Despite its practical success, the denoising

direction induced by CFG does not provide theoretical guar-

antees in producing samples from p0,w(zt|c) (Bradley &

Nakkiran, 2024). Even in simple settings, as observed in

Figure 1(b), CFG can lead to mode drops. While alternative

guidance strategy exists (Karras et al., 2024), we stick with

the dominant practice of using CFG (Equation (13)). We

have found that this synergizes well with mode-seeking by

mean-shift, and show the effects of this in evaluation below.

Integrating kernel score. Because the magnitude of the

kernel term in Equation (12) can be quite high when |y − zt|
is high relative to λ, directly implementing this can result

in instability while denoising particularly with explicit inte-

grators. Higher-order integrators are generally capable of

dealing with this instability, but require many more score

function evaluations.

To address this, we note that in isolation the kernel term

has the form of a negative exponential centered on y, or

explicitly:

zt+∆t = y + (zt − y)e
∆t

λ2 , (14)

where ∆t is negative. We take advantage of this to formulate

a stable approximation that avoids the stability issues with

a minimal change to the integration process. Instead of

feeding the full composite score function to the integrator,

in each time step we first integrate only the score function

with the existing integrator to get z′t+∆t. Immediately after,

we separately account for the kernel term by computing the

final output as

zt+∆t = y + (z′t+∆t − y)e
∆t

λ2 . (15)

We note such numerically instability has been observed

when using high CFG values. A remedy is to apply guid-

ance in a limited interval (Kynkäänniemi et al., 2024). We

leverage similar ad-hoc tricks by applying the kernel term

in limited interval through the sampling chain.

4. Practical Implementation and Evaluation

In this section, we construct synthetic examples on which

we demonstrate that our proposed method behaves as theory

predicts, alleviating the issues SDS exhibits even in these

simple scenarios. We further explain the issues encoun-

tered when translating this theory into practice, and describe

adaptations we designed to make our method work with

real-world diffusion models. Finally, we evaluate that in

these real-world scenarios, we retain the desirable properties

and performance of our method. When applicable, we make

comparisons with SDI (Lukoianov et al., 2024), a method

that improves upon SDS by proposing a better noise term,

yet, retaining the same gradient computation.

4.1. Idealized Setting

In order to manage large data dimensionality as well as mas-

sive training datasets, diffusion in practice employs a trained

neural network to represent the denoiser D. However, Kar-

ras et al. (2022) have identified an analytical solution to

minimizing the denoiser error, the ideal denoiser D∗(x; t):

D∗(x; t) =

∑

i yiN (x; yi, σ(t))
∑

iN (x; yi, σ(t))
, (16)

where y0 . . . yn are samples in our training set. Attentive

readers will notice that this is in fact the discrete mean shift

formula (Comaniciu & Meer, 2002), with training samples

taking the place of data samples and noise magnitude σ(t)
taking place of the kernel bandwidth λ. This expression is

feasible to compute in practice for small datasets, and we

may substitute it into the SDS formula (1) to get an explicit

solution for the SDS gradient:

∇xLSDS = Et,zt∼N (αtx,σ2
t
I)

[

w(t)
zt −D∗(zt;σt)

σt

∂x

∂θ

]

.

This gives us an integral we can numerically evaluate with

reasonable guarantees of its behavior. This allows us to

compare both methods on synthetic datasets, eliminating

any error introduced by training and evaluating a neural

model to show that the theoretical properties hold.

4
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(a) DDIM (b) SDS⋆ (c) SDI⋆ (d) Ours⋆ f -1

⊗ ⋆

⊗ without guidance ⋆ with guidance ♦ guidance in limited interval f−1 noise scaling

Figure 2: We juxtapose diffusion sampling vs diffusion distillation in low-dimensional (R2) and high-dimensional

(R64×64×4) setting. Top: (a) text-conditioned generation of image via DDIM with 32 steps, (b) - (d) optimized coordinate-

based neural implicit image for SDS, SDI, and our MSD respectively with StableDiffusion (CFG=7.5, § 4.4). Bottom: (a)

class-conditioned generation of 2D points via DDIM with 32 steps, (b) - (d) optimized 2D points for SDS, SDI, and our

MSD respectively (CFG=4, § 4.2). Text-prompts in clockwise order: “A DSLR photo of a ... hamburger, squirrel dressed as

a samurai weighing a katana, knight in silver armor, and bluejay on basket of macarons”.

4.2. Toy Distributions in R
2

In addition to the fractal dataset (Figure 1), we extend our

analysis to other 2D datasets, with yi
m
i=1 ⊂M ∈ R

2 sam-

pled from various challenging toy 2D densities (van der Walt

et al., 2014; Rozen et al., 2021). Given 104 samples from

the data distribution and points densely initialized across a

grid [−1.5, 1.5]2, we evaluate SDS (Algorithm 1) and our

MSD (Algorithm 2) with 103 Monte Carlo samples. We

perform distillation with a learned denoiser (13) and an ideal

denoiser (16). For the learned denoiser, we use the archi-

tecture and training setup used by Karras et al. (2024) and

similarly represent the densities as mixtures of Gaussians.

We use the Adam optimizer (Kingma & Ba, 2015) and run

the optimization procedure for 150 steps with a learning

rate of 0.08. For our MSD, we set an initial bandwidth of

0.316 ∼
√
0.1 which is linearly decayed over the course of

the optimization. For the ideal denoiser, due to it’s high cost

requirements in time and memory, we instead opt to use a

few steps of gradient descent with high learning rate.

We visualize the generated samples produced by our method

and SDS after the optimization in Figure 3. In addition

to optimizing samples, we evaluate both SDS and MSD

gradients across the domain and then numerically integrate

them to reconstruct the loss functions they represent. This

makes the bias in SDS particularly obvious, as the peaks of

this reconstructed function may be well out of distribution.

We suspect that this bias persists in SDS in higher dimen-

sional settings and is what causes SDS optimized results to

be blurry and exhibit other artifacts (top row of Figure 2).

In addition to bias, we are interested in evaluating the vari-

ance of the gradient estimate. This is an important factor

for convergence, since ascending a stochastic estimate of

the gradient is essentially a random walk. In such, high

variance of the estimate may make the walk take longer to

converge – indeed, with sufficiently high variance we may

find the iteration often taking backwards steps with respect

to the true gradient. Furthermore, a walk with high variance

may not stay converged at an optima, and instead randomly

oscillate around them.

To quantify the variance of an estimate ĝ(x) of the gradi-

ent g(x), we employ a slight variation of the Monte Carlo

5
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Table 2: Metrics for 2D toy density datasets. Left: ideal

denoiser (D∗) / Right: learned denoiser (Dθ). MMD scaled

by 10−4.

Dataset Method NLL ↓ Precision ↑ Recall ↑ MMD ↓

Fractal

DDIM† -1.85 / -1.51 0.97 / 0.95 0.93 / 0.96 0.86 / 0.007

SDS 36.15 / 9.12 0.08 / 0.01 0.03 / 0.0 328.03 / 87.04

Ours -1.32 / -2.02 0.92 / 0.97 0.33 / 0.42 30.46 / 12.79

Spiral

DDIM† -1.39 / -1.32 0.97 / 0.96 0.93 / 0.96 0.41 / 1.16

SDS 30.37 / 8.13 0.02 / 0.04 0.03 / 0.11 13.85 / 274.35

Ours -1.28 / -1.51 0.99 / 0.98 0.18 / 0.18 4.49 / 18.41

Pinwheel

DDIM† -1.19 / -1.1 0.97 / 0.97 0.94 / 0.97 1.05 / 0.27

SDS 2.29 / 2.00 0.85 / 0.90 0.03 / 0.005 5.18 / 36.37

Ours -1.94 / -2.19 0.99 / 0.99 0.01 / 0.13 5.83 / 7.25

estimator efficiency formula

ε(ĝ(x)) =
|g(x)|2

MSE(ĝ(x)) cost(ĝ(x))
. (17)

We measure cost as number of invocations of the score

model, since that is the typical bottleneck in diffusion. Nor-

malization by the squared norm of g is included to account

for the fact that due to bias and scaling, different estimators

may converge to gradients of different magnitude, and the

normalized MSE then roughly describes the probability of

the estimated gradient pointing the “right” way.

We accumulate both MSE and cost over many indepen-

dent estimations, and average over many values of x.

Table 1: Efficiency ↑

Dataset SDS Ours

Fractal -6.89 7.65

Spiral -7.57 6.32

Pinwheel -6.99 7.08

The result of these efficiency com-

parisons between our method and

SDS is in Table 1 (in log-scale).

Although getting a single estimate

with our method requires more

score model invocations, the ef-

ficiency of our method is signif-

icantly higher. We observe similar

behavior in complex settings (Fig-

ure 4). In Table 2, we evaluate the quality of the generated

samples. Our method outperforms SDS, in both the ideal

denoiser and learned denoiser setting.

4.3. Practical Setting

For large-scale image datasets, idealized denoiser is no

longer tractable and we have to contend with a learned

denoising function, as well as all the associated machinery.

This introduces numerical issues. Namely, as already men-

tioned in Section 3.4, the magnitude of the kernel term may

grow to where the standard first or second order integra-

tors can no longer manage it; but conversely, so does the

magnitude of the learned score term when zt is far out of

distribution; why this is the case becomes apparent when we

consider that the ideal denoiser (Section 4.1) uses the same

equation as mean shift. This is a problem because at the start

input samples

D* 

SDS Ours

Dθ 

D* 

Dθ 

Figure 3: Unconditional distillation on two toy density

datasets, given an ideal denoiser (D∗) and a learned denoiser

(Dθ). For each method and denoiser, we show the optimized

samples (left) and the loss landscape (right). Zoom in for

clarity.

of the optimization, it is likely in a high-dimensional space

that x will be out of distribution and we have to choose

between the integration failing because the denoiser term

has a high magnitude, or because the kernel term has a high

magnitude.

To alleviate this, we use two heuristic approximations: ap-

plying guidance in limited interval (Section 3.4) and scaling

our sample in Equation (15) by noise corresponding to time

step t. In practice, we apply inversion to get the latter. These

are designed to keep the iterate in a region with reasonable

score magnitude and still sample a distribution that is an

approximation of the product distribution.

4.4. Pre-trained Stable Diffusion

We use the latent-space diffusion model, Stable Diffusion,

as the diffusion prior for text-conditioned optimization of

parameters of differentiable image generators. Specifically,

we optimize parameters ϑ of generator g, a rendering func-

tion that maps ϑ to an image I . The rendered image I is fed

to the image encoder to get xk, our latent at optimization

step k, over which the gradient is computed. We define

two settings, (1) where ϑ represents an RGB image, and (2)

where ϑ represents a 3D volume. Specifically:

1. Text-to-2D. We represent 2D images via a coordinated-

based MLP f with learnable parameters ϑ that takes

as input a 2D point p in the unit square p = (x, y) ∈
[0, 1]2 and outputs RGB ∈ [0, 1]3; f(p;ϑ) : R2 →
RGB. We use this non pixel-based representation of an

image for two reasons, (1) to prevent our method and

the baselines from taking the exact gradient step i.e.
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Table 3: Text-to-2D quantitative comparison. We evaluate fi-

delity with FID and CLIP-SIM. †FID measured with DDIM

as ground truth.

Method FID ↓ CLIP-SIM (L/14) ↑
DDIM† - 44.1 ± 2.8

SDS 198.90 27.7 ± 1.9

SDI 166.16 31.0 ± 0.7

Ours 114.12 32.6 ± 0.8

Figure 4: FID vs optimization iterations.

running diffusion sampling and setting xk to the de-

noised latent z0, and (2) we can directly compare with

images sampled via DDIM, an unconstrained image

generation setting.

2. Text-to-3D. We represent 3D volumes as NeRFs, fol-

lowing (Poole et al., 2022). The NeRF is parameterized

by two MLPs, one for foreground and one for back-

ground. The former has 64 hidden nodes and 2 layers,

with input (x, y, z) coordinates encoded via HashGrid

(Müller et al., 2022).

Implementation details. We implement all our code in

PyTorch, on a single NVIDIA A100 gpu. We use the Three-

studio (Guo et al., 2023) framework for experiments in-

volving pre-trained Stable Diffusion. All the experiments

use Adam optimizer with lr= 10−2. We set optimization

steps to 400 for text-to-2D and 7k for text-to-3D. We use a

monotonically decreasing schedule for the bandwidth λ.

4.5. Evaluation

Dataset. We use a subset of the prompts curated by Poole

et al. (2022); Hertz et al. (2023). We include all prompts in

Appendix B.

Metrics. For toy density dataset (Section 4.2), we com-

pute negative log-likelihood scores (NLL), generative preci-

sion and recall (Kynkäänniemi et al., 2019), and maximum

mean discrepancy (MMD). For text-to-2D, we use images

produced by DDIM to represent the ground truth distribu-

tion. To evaluate fidelity of the images, FID (Heusel et al.,

2017) is computed for each baseline (SDS, SDI) and ours

against this ground truth image set. We also compute CLIP

scores (cli) to measure prompt-generation alignment.

Quantitative comparisons. Table 3 reports results for

FID and CLIP-based similarity, comparing our method with

SDS and SDI. We outperform both baselines in image fi-

delity and are our generations are more faithful to the input

prompt.

Qualitative comparisons. Figure 2 (top row) and Figure 8

compares our method with SDS and SDI on text-to-2D gen-

eration, qualitatively. In the latter, we show the importance

of the two heuristics (Section 4.3) to resolve numerical in-

stabilities, absence of which can result in visual artifacts.

SDS, as discussed, produces low-fidelity results while SDI’s

inversion accumulates numerical errors during early stages

of optimization. In Figure 5, we qualitatively compare re-

sults for text-to-3D optimization. We restrict to qualitative

comparison for this task as quantitative metrics have high

variance due to the absence of a ground truth dataset.

Impact of bandwidth. Figure 6 shows the impact of the

bandwidth (λ) term on the denoising process. First, we sam-

ple three parameters {ϑk} from our text-to-2D optimization

pipeline at iterations k = {100, 200, 400} and also sample

three discrete λ values {λ1 ≪ λ2 ≪ λ3}. Then, we run our

forward pass once for each λi, independently. We visualize

four decoded denoised latents z0 (with different random

seeds). The highlighted images show the optimal choices of

λ for each xk (the encoded latent for ϑk). At high bandwidth

value λ3, the influence of the kernel term in the product sam-

pling is negligible. This degenerates to vanilla denoising

and we observe high variance in the output, irrespective of

our current xk. This is ideal at early stages of optimization.

As bandwidth is annealed, we observe reduction in variance.

Yet, the quality of the outputs can degrade if the kernel

term dominates while xk is not “in-distribution”. As xk

approaches the mode of the distribution corresponding to

the input text-prompt at final stages of optimization (when

k = 400), with a low bandwidth λ1, our denoised latent

z0 ≈ xk. This provides us with a convergence criteria and

we terminate when λ is below the threshold λ1.

5. Conclusion

In this paper, we have reframed diffusion distillation in terms

of explicitly ascending the gradient of the data distribution.

We have derived mean-shift distillation as a proxy that prov-

ably aligns with this gradient, and in the limit its maxima

are collocated with the modes of the data distribution.
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”†a hamburger” ”†a tulip” ”†a statue‡”
S

D
S

S
D

I
O

u
rs

Figure 5: Comparison of 3D generation with other score

distillation methods. Full prompt: †“A DSLR photo of a ...”,
‡“a Michelangelo statue of a man on a chair”.

We have demonstrated that compared to SDS, this method

achieves better mode alignment as well as lower gradient

variance, which in practice translates to more realistic opti-

mization results as well as improved convergence rate.

Since this method simply provides optimization gradient

much like SDS does, it may be used as a one-to-one replace-

ment without retraining of the underlying model, or indeed

substantial code modification.

While the basic algorithm works as the theory predicts in

synthetic scenarios, with real-world models we have to con-

tend with integrator error due to large score magnitudes.

We have designed heuristics to alleviate this and achieve

improvements on SDS in practice, but we hope future work

will be able to improve the integration and/or sampling pro-

cedure, obviating the need for heuristics.

Impact Statement

As a more or less straightforward substitute of an existing

method (SDS), our method inherits ethical concerns of the

diffusion models it is being applied to, and the applications

it is being put towards. It remains important to take care

with sourcing training data to avoid copyright issues, bias

issues, and training harmful content into the model. On

the output side, generative models improve accessibility to

creative expression, which however also makes it easier to

produce harmful content including, but not limited to, mis-

information, defamatory and obscene images. Ultimately

these issues are impossible to fully solve on the tooling side

and we must rely on other methods to analyse content and

establish authenticity thereof to compensate.

o
p

ti
m

iz
at

io
n

 s
te

p
s

𝑥𝑘 𝜆1 𝜆2 𝜆3 ≪ ≪ 𝑧0 

Figure 6: Impact of bandwidth (λ) on the denoised latent

(z0). We set λ3 = 103, λ2 = 10, λ1 = 10−2. Highlighted

images show the optimal bandwidth value corresponding to

the kth optimization.

That said, improved convergence properties of our method

mean that less computation is required to achieve the same

result, alleviating some of the environmental impacts asso-

ciated with these generative methods.
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A. Implementation details

Input : pre-trained diffusion model ϵθ : Rd1×···×dk → R
d1×···×dk , target parameters ψ ∈ R

d, condition c, mapping

function g(ψ) : Rd → R
d1×···×dk , time-dependent functions w(t), α(t), Monte Carlo sample size N .

Output :ψ∗

Algorithm 1 Distillation via SDS

for k = 1, . . . , steps do

xk ← g(ψ)
for i = 1, . . . , N do

t← U(0, 1)
zt ← α(t)xk + ϵt
yi ← w(t)[ϵθ(zt, t, c)− ϵt]

end

∇ψLSDS ← 1
N

∑
(yi − xk)

// Backpropagate ∇ψLSDS, update ψ

end

Algorithm 2 Distillation via MSD (Ours)

function ODESolver(x, λ) (eq 12)
zT ← N (0, I)
for t = T − 1, . . . , 0 do

zt ← ϵθ(zt, t, c)− (x− zt)/λ2

end

return z0
function ODESolver(x, λ, stable) (eq 15)

{z∗t }Tt=0 ← inversion(x)

zT ← z∗T + (ϵ− z∗T )e−∆t/λ2

for t = T − 1, . . . , 0 do

zT ← z∗t + (ϵθ(zt, t, c)− z∗t )e−∆t/λ2

end

return z0

// initialize λ, set λmin
for k = 1, . . . , steps do

xk ← g(ψ)
for i = 1, . . . , N do

yi ← ODESolver(xk, λ)
end

∇ψLMSD ← 1
N

∑N
i (yi − xk)

// Backpropagate ∇ψLMSD, update ψ
// Anneal λ
if λ < λmin then

// terminate

end

end

Figure 7: Pseudocode of SDS and our procedure, MSD. We additionally show the numerically stable solver, which is used

for experiments with Stable Diffusion.

B. List of prompts

“A DSLR photo of a hamburger”

“A blue jay standing on a large basket of rainbow macarons”

“A DSLR photo of a squirrel dressed as a samurai weighing a katana”

“A DSLR photo of a knight in silver armor”

“Line drawing of a Lizard dressed up like a victorian woman, lineal color”

“A photo of a car made out of sushi”
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“A DSLR photo of a tulip”

“A DSLR photo of a Pumpkin head zombie, skinny, highly detailed, photorealistic”

“A watercolor painting of a sparrow, trending on artstation”

“Michelangelo style statue of man sitting on a chair”

C. Ablations and more results

Ours⋆
Ours⋆ f -1

Ours 

SDI

SDS

⋆ f -1

⋆
⋆

Figure 8: We extend Figure 2 with two ablations; applying guidance in the entire denoising trajectory (row 1) and noise

scaled sample in the kernel term (row 2) (§ 4.3). We also show additional results for our method, SDI and SDS (row 3,4,5

respectively).
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