
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCALING VALUE ITERATION NETWORKS TO
5000 LAYERS FOR EXTREME LONG-TERM PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The Value Iteration Network (VIN) is an end-to-end differentiable architecture
that performs value iteration on a latent Markov Decision Process (MDP) for plan-
ning in reinforcement learning (RL). However, VINs struggle to scale to long-term
and large-scale planning tasks, such as navigating a 100× 100 maze—a task that
typically requires thousands of planning steps to solve. We observe that this de-
ficiency is due to two issues: the representation capacity of the latent MDP and
the planning module’s depth. We address these by augmenting the latent MDP
with a dynamic transition kernel, dramatically improving its representational ca-
pacity, and, to mitigate the vanishing gradient problem, introduce an “adaptive
highway loss” that constructs skip connections to improve gradient flow. We eval-
uate our method on 2D maze navigation environments, the ViZDoom 3D navi-
gation benchmark, and the real-world Lunar rover navigation task. We find that
our new method, named Dynamic Transition VIN (DT-VIN), scales to 5000 layers
and solves challenging versions of the above tasks. Altogether, we believe that
DT-VIN represents a concrete step forward in performing long-term large-scale
planning in RL environments.

1 INTRODUCTION

Planning is the problem of finding a sequence of actions that achieve a specific pre-defined goal.
As the aim of both some older algorithms (e.g., Dyna (Sutton, 1991), A* (Hart et al., 1968), and
others (Schmidhuber, 1990a;b)) and many recent ones (e.g., the Predictron (Silver et al., 2017), the
Dreamer family of algorithms (Hafner et al., 2020; 2021; 2023), SoRB (Eysenbach et al., 2019),
SA-CADRL (Chen et al., 2017), and the LLM-planner (Song et al., 2023)), effective planning is a
long-standing and important challenge in artificial intelligence (AI).

Traditional search-based planning algorithms like A* require an accurate environmental model.
Thus, these algorithms are limited in their effectiveness when faced with unknown Markov decision
processes. In such scenarios, a policy can be learned either through imitation learning (IL), which
leverages expert demonstrations, or through trial and error with reinforcement learning (RL). Within
RL and IL, the Value Iteration Network (VIN) (Tamar et al., 2016) stands out as quite unique due
to its distinctive architecture that integrates a differentiable latent “planning module” into the deep
neural network, rather than maintaining an explicit learned environment model like Dreamer (Hafner
et al., 2020) or MuZero (Schrittwieser et al., 2020). This integrated architecture allows VINs to be
trained end-to-end, meaning that both the state representation components and the planning com-
ponents are implicitly trained jointly. Additionally, the integrated planning capability of VINs still
enables them to effectively generalize to related but unseen tasks. VINs have been shown to perform
well in some small-scale short-term planning situations, like path planning (Pflueger et al., 2019; Jin
et al., 2021), autonomous navigation (Wöhlke et al., 2021), and complex decision-making in dy-
namic environments (Li et al., 2021). However, they still struggle to solve larger-scale and longer-
term planning problems. We refer to large-scale planning tasks as those with high-dimensional
observation space (e.g., the maze size), and long-term planning tasks as those necessitating ex-
tended planning horizons to achieve the goal. For example, in a 100×100 maze navigation task, the
success rate of VINs in reaching the goal drops to well below 40% (see Figure 1(b)). Even in smaller
35 × 35 mazes, the success rate of VINs drops to 0% when the required planning steps exceed 60
(see Figure 1(c)).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) 100×100 Maze Navigation

15 25 35 100
Maze Size

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Maze with Various Sizes

DT-VIN (ours)
VIN

(b) Performance for Different Domain Scales

0 100 200 300
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

35 × 35 Maze

DT-VIN (N=600)
DT-VIN (N=300)
DT-VIN (N=100)
VIN (N=600)
VIN (N=300)
VIN (N=100)

(c) Performance for Different Planning Steps

Figure 1: (a) shows an example of 100× 100 maze navigation task, where the green line shows the
optimal path from the start position (blue) to the goal position (red). See Figure 8 in Appendix B
for more examples of mazes with other sizes. (b) shows the success rate of VIN and DT-VIN on the
maze navigation tasks as a function of maze size. The reported results are computed in expectation
over different shortest path lengths for each maze size. (c) shows the success rate of VIN (Tamar
et al., 2016) and our DT-VIN as a function of planning steps on the 35× 35 maze benchmark.

Our work identifies that the principal deficiency causing this is the mismatch between the com-
plexity of planning and the comparatively weak representational capacity of the relatively shallow
networks that it uses. And while there has been moderate success in learning more complicated
networks (e.g., GPPN (Lee et al., 2018) and Highway VINs (Wang et al., 2024a)), until now, VINs
of a scale capable of long-term or large-scale planning have not been computationally tractable due
to persistent issues with vanishing and exploding gradients—a fundamental problem of deep learn-
ing (Hochreiter, 1991).

In this work, we aim to surgically correct deficiencies in VIN-based architectures to enable large-
scale long-term planning. Specifically, we first identify the limitations of the latent MDP in the
planning module of VIN and propose a dynamic transition kernel to dramatically increase the rep-
resentational capacity of the network. We then build on existing work that identifies the connec-
tion between network depth and long-term planning (Wang et al., 2024a) and propose an “adaptive
highway loss” that selectively constructs skip connections to the final loss according to the actual
number of planning steps. This approach helps mitigate the vanishing gradient problem and enables
the training of very deep networks. With these changes, we find that our new Dynamic Transition
Value Iteration Network (DT-VIN), is able to be trained with 5000 layers and scale to 1800 planning
steps in a 100× 100 maze navigation task (compared to the original VIN, which only scaled to 120
planning steps in a 25× 25 maze). We apply our method to top-down image-based maze navigation
tasks, the first-person image-based ViZDoom benchmark (Wydmuch et al., 2019), and real-world
Lunar rover navigation tasks (Berlin, 2018). We find that DT-VINs can solve both despite these
problems requiring hundreds to thousands of planning steps. Together, these demonstrate the prac-
tical utility of our method on vision-based tasks that previous methods are simply unable to solve.
This also serves to highlight the potential of our method to scale to increasingly complex planning
tasks alongside the increasing availability of computing power.

2 PRELIMINARIES

Reinforcement Learning (RL) and Imitation Learning (IL). The most common formalism used
for RL is that of the Markov Decision Process (MDP) (Bellman, 1957). We consider an MDP—as
per Puterman (2014)—to be the 6-tuple (S,A, T ,R, γ, µ), where S is a countable state space, A
is a finite action space, T (s′|s, a) represents the probability of transitioning to state s′ ∈ S when
being in state s ∈ S and taking action a ∈ A, R(s, a, s′) is the scalar reward function, γ ∈ [0, 1)
is a discount factor, and µ is a distribution over initial states. The behaviour of an artificial agent in
an MDP is defined by its policy π(a|s), which specifies the probability of taking action a in state s.
The state value function V π(s) is the expected discounted sum of rewards from state s and following
policy π, i.e., V π(s) ≜ E [

∑∞
t=0 γ

tR(st, at, st+1)|s0 = s;π]. The goal of RL is usually to find an
optimal policy π∗ that achieves the highest expected discounted sum of rewards. The value function

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

of an optimal policy is denoted by V ∗(s) = maxπ V
π(s), and satisfies V π∗

(s) = V ∗(s)∀s. The
Value Iteration (VI) algorithm iteratively applies the following update to all states to obtain the
optimal value function: V (n+1)(s) = maxa

∑
s′ T (s′|s, a)

[
R (s, a, s′) + γV (n) (s′)

]
, where n

is the iteration number. In situations where designing a comprehensive reward function is difficult,
imitation learning (IL) offers a practical alternative. IL techniques enable an agent to learn behaviors
by observing demonstrations from human or algorithmic experts. Approaches such as Behavioral
Cloning directly mimic the actions of an expert in similar states, whereas Inverse Reinforcement
Learning (IRL) (Ng et al., 2000) involves inferring the underlying reward function based on the
expert’s behavior, thereby enabling the agent to optimize its own policy (Schaal, 1996).

Value Iteration Networks (VINs). VIN is an end-to-end differentiable neural network architec-
ture for planning which demonstrates strong generalization to unseen domains through the incor-
poration of an explicit planning module (Tamar et al., 2016). The main idea of VIN is to map
observations into a latent MDP M and then use the embedded planning module to perform value
iteration (VI) on this latent MDP. Below, we use · to denote all the terms associated with the latent
MDP M.

For each decision, VIN first maps an observation x, e.g., an image of a maze and the current position
of the agent, to M. M is described by the latent state space S = {(i, j)}i,j∈[m]; a fixed discrete
latent action space A; a latent reward matrix R = fR(x) ∈ Rm×m, where fR is a learnable NN
called a reward mapping module; and a latent transition matrix (or kernel) T

inv ∈ R|A|×F×F with
F representing the dimension of the kernel. The latent transition matrix is a parameter matrix that
is invariant for each latent state (i, j), independent of the observation x, and not restricted to satisfy
the probabilistic property, i.e., its elements are not required to represent probabilities or sum to one.
Next, VIN conducts VI on the latent MDP M to approximate the latent optimal value function
V

∗
. To ensure the differentiability of the VI computation, a differentiable VI module is proposed.

This module simulates VI computation using differentiable CNN operations, i.e., convolutional and
max-pooling operations: V

(n)

i,j = maxa
∑

i′,j′ T
inv

a,i′,j′

(
Ri−i′,j−j′ + V

(n−1)

i−i′,j−j′

)
, i, j ∈ [m]. This

equation sums over a matrix patch centered around position (i, j).

After the above, by stacking the VI module for N layers, the latent value function is then fed
to a policy mapping module by fπ to represent a policy that is applicable to the actual MDP
M. Here, fπ

(
V

(n)
(x), a

)
represents the probability of taking action a given observation x.

Finally, the model can be trained by standard RL and IL algorithms with the following gen-
eral loss: L (θ) = 1

|D|
∑

(x,y)∈D ℓ
(
fπ

(
V

(N)
(x), ·

)
, y
)

, where D = {(x, y)} is the training
data, x is the observation, y is the label, and ℓ is the sample-wise loss function. The specific
meaning of these items varies depending on the task. For example, in imitation learning, where
the expert data is provided, the label y is the expert action and ℓ is the cross-entropy loss, i.e.,
ℓ
(
fπ

(
V

(N)
(x)

)
, y
)
= −

∑
a∈A 1{a=y} log f

π
(
V

(n)
(x), a

)
, where 1 is the indicator function.

3 METHOD

In this section, we discuss how to train scalable VINs for long-term large-scale planning tasks. Our
method addresses the two key issues with VIN that are identified as hampering its scalability: the
capacity of the latent MDP representation and the depth of the planning module.

3.1 INCREASING THE REPRESENTATION CAPACITY OF THE LATENT MDP

Motivation. VIN utilizes the computational similarities between VI and CNNs to directly imple-
ment VI through a CNN-based VI module, as described in Section 2. However, there is a discrepancy
between the CNN-based VI module and the general VI computation process.

CNN-based VIN uses an invariant latent transition kernel T
inv ∈ R|A|×F×F as a learnable parame-

ter, which is the same for each latent state s = (i, j) and independent of the current observation, e.g.,
the map of the maze. This severely limits the representational capacity of the latent MDP which,
to be effective, should model what will in practice be the complex and state-dependent transition

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: The architecture of VIN and DT-VIN in the maze navigation task. (a) shows the observa-
tion of the maze, which is mapped to the latent reward/transition matrix of the latent MDP through
the reward/transition mapping module. (c) shows the “planning module”, the policy mapping mod-
ule and the loss. The “planning module” contains numerous stacked Value Iteration (VI) modules.
The green and orange connections show an example of adaptive highway loss for planning tasks
starting from A and B, respectively. (b1) shows the VI module of the original VIN with invariant
transition T

inv ∈ R|A|×F×F . (b2) shows the VI module of DT-VIN with dynamic transition kernel
T
dyn ∈ Rm×m×|A|×F×F .

function of the actual MDP. For example, in the maze navigation problem shown in Figure 1(a),
the transition probabilities are quite different if the adjacent cell is a wall versus an empty cell.
Additionally—as the latent transition kernel of VIN is independent of the real observation—VIN is
unable to exploit any information in the observations to simultaneously model the different transition
dynamics of different environments. In the maze example, this means that it will greatly struggle
because the model is employed to plan on completely different mazes. Altogether, this lack of rep-
resentation capacity does not affect VIN’s performance in small-scale, short-term planning tasks (as
were tested on in the original work) where the state space is limited and only a few steps are needed
to reach the goal. However, we found it to be a major barrier to VIN’s effectiveness in large-scale,
long-term planning tasks. As we have shown in Figure 1(c), VIN fails on large-scale 100 × 100
maze navigation tasks and long-term planning tasks requiring more than 60 steps.

Method. Due to the above, we aim to increase the representation capacity of VIN’s latent MDP.
To this end, we propose a new architecture called Dynamic Transition VINs (DT-VINs). Instead
of using an invariant latent transition kernel, DT-VINs employ a dynamic latent transition kernel
T
dyn

= fT (x) ∈ Rm×m×|A|×F×F . For this dynamic kernel, we adhere the same framework
outlined in the original VIN paper, which inputs the observation into a learnable transition mapping
module fT.1 With a dynamic transition kernel, we condition on the latent state s = (i, j), allowing it
to vary alongside s, whereas in classical VIN, the kernels T

inv ∈ RA×F×F remain invariant across
all latent states s. The augmented dynamic transition VI module is computed as follows:

V
(n)

i,j = max
a

∑
i′,j′

T
dyn

i,j,a,i′,j′

(
Ri−i′,j−j′ + V

(n−1)

i−i′,j−j′

)
. (1)

1Although the original VIN paper proposes a general framework where the latent transition kernel depends
on the observation, i.e., T = fT (x), they implement it as an independent parameter.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The transition mapping module fT can be any type of neural network, such as CNNs or fully con-
nected networks. In our Maze Navigation tasks, fT includes only one convolutional layer with a
kernel size of F × F , which iteratively maps each local patch of the maze to a |A| × F × F la-
tent transition kernel for each latent state. This architecture requires |A|F 4 number of parameters,
compared to the original VIN’s |A|F 2. Note that in practice, a small kernel size F of 3 is used
and is sufficient to produce strong performance. Thus, this alternative module greatly improves the
representation capacity of VIN, but typically does not introduce a significant change in training cost.

3.2 INCREASING DEPTH OF PLANNING MODULE

Motivation. Recent work on Highway VIN has demonstrated the relationship between the depth
of VIN’s planning module and its planning ability (Wang et al., 2024a). A deeper planning module
implies more iterations of the value iterations process, which is proved to result in a more accu-
rate estimation of the optimal value function (see Theorem 1.12 (Agarwal et al., 2019)). How-
ever, training very deep neural networks is challenging due to the vanishing or exploding gradient
problem (Hochreiter, 1991). Highway VINs address this issue by incorporating skip connections
within the context of reinforcement learning, showing similarities to existing works for classifica-
tion tasks (Srivastava et al., 2015a; He et al., 2016). Although Highway VINs can be trained with up
to 300 layers, they still fail to achieve perfect scores in larger-scale and longer-term planning tasks
and necessitate a more intricate implementation. Here, we present a more simple, easy-to-implement
method for training very deep VINs.

Method. To facilitate the training of very deep VINs, we also adopt the skip connections structure
but implement it differently. Our central insight is that short-term planning tasks generally require
fewer iterations of value iteration compared to long-term planning tasks. This is because the in-
formation from the goal position propagates to the start position in fewer steps when their distance
is short. Therefore, we propose adding additional loss to shallower layers directly when the task
requires only a few steps. We achieve this by introducing the following adaptive highway loss:

L (θ) =
1

K|D|
∑

(x,y,l)∈D

∑
1≤n≤N

1{n≥l}ℓ

(
fπ
(
V

(n)
(x), ·

)
, y

)
, (2)

Here, K =
∑

(x,y,l)∈D

∑
1≤n≤N

1{n≥l}, 1 is the indicator function, and l is the length of planning

path or trajectory, which can be computed from the training data. For example, in the imita-
tion learning of the maze navigation task, for each maze in the dataset, l is the length of the
provided expert path from the start to the goal, and the loss function in Equation (2) can be
written as L (θ) = 1

K|D|
∑

(x,y,l)

∑
n 1{n≥l}

(
−
∑

a 1{a=y} log f
π
(
V

(n)
(x), a

))
. In RL, where

the policies are learned through policy gradient, the loss function can be rewritten as L (θ) =
1

K|D|
∑

(x,y,R,l)∈D
∑

1≤n≤N 1{n≥l}

(
−R log fπ

(
V

(n)
(x), y

))
, where y is the excuted action,

and R the cumulative future reward. As Equation (2) implies, it constructs skip connections for
the hidden layers to improve information flow, similar to existing works such as Highway Nets and
Residual Nets (Srivastava et al., 2015a; He et al., 2016). However, we connect the hidden layers
directly to the final loss, while existing works typically connect skip connections between the in-
termediate layers. Note that we construct skip connections for each layer n ≥ l rather than at the
specific layer n = l. This is because it would be beneficial for a relatively deeper VIN with depth
n > l to also output the correct action in short-term planning tasks. Additionally, during the exe-
cution phase, the actual planning steps are unknown, so only the output of the last layer of the VIN
will be used. Note that this additional loss will not alter the inherent structure of the value iteration
process and will be removed during the execution phase. To avoid the gradient exploding problem,
we enforce a softmax operation on the values of the latent transition kernel for each latent state s.
This gives a statistical semantic meaning to the latent transition kernel. This change is simple but
critical to training stability, as will be shown in experimental results in Section 4.1 and Figure 4(d).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

We perform several experiments to test if our modifications to VIN’s planning module allow train-
ing very deep DT-VINs for large-scale long-term planning tasks. Following previous work (Tamar
et al., 2016; Lee et al., 2018), we focus on the imitation learning scenario, where we leverage expert
demonstrations to evaluate planning capabilities. IL offers a more stable and controlled setting by
reducing the variability that typically arises from the exploratory processes in RL. In line with pre-
vious works (e.g., (Lee et al., 2018)), we assess our planning algorithms on navigation tasks within
2D mazes and 3D ViZDoom (Wydmuch et al., 2019) environments (see Sections 4.1 and 4.2, re-
spectively). Each task includes a start position and a goal position, and the agent navigates the four
adjacent cells by moving one step at a time in any of the four cardinal directions. Our experiments
look at each method’s effectiveness over several versions of the tasks with the different versions
having different shortest path lengths (SPLs). The SPLs are precomputed using Dijkstra’s algorithm
and serve as a good proxy measure for the complexity of the planning task. We say that an agent
has succeeded in a task if it generates a path from the start position to the goal position within a pre-
determined number of steps (m2 in our paper). We further say that the agent has found an optimal
path if the corresponding path has a minimal length. We follow GPPN and use these for the success
rate (SR), which is the rate at which the algorithm succeeds in the task, and the optimality rate (OR),
which is the rate at which the algorithm generates an optimal path. In addition to the above, we
also test the generality of the DT-VIN approach to two additional tasks. In the style of a bench-
mark examined in the original VIN paper, a lunar rover navigation task (see Section 4.3); and, to
demonstrate the potential for complex action spaces, a continuous control task (see Appendix C.3).

On the above tasks, we compare our DT-VIN method with several advanced neural networks de-
signed for planning tasks, including the original VIN (Tamar et al., 2016), GPPNs (Lee et al., 2018),
and Highway VIN (Wang et al., 2024a). The models are trained through imitation learning using
a labelled dataset. We then identify the best-performing model based on its results on a validation
dataset and evaluate it on a separate test dataset. Following the methodology from the GPPN paper,
we conduct evaluations using three different random seeds for each algorithm. This is sufficient to
provide a reliable performance estimate here due to the low standard deviation we observe in the
tasks. All figures that show learning curves report the mean and standard deviation on the test set.

4.1 2D MAZE NAVIGATION

Setting. In our evaluation, we use 2D maze navigation tasks with sizes M set to 15, 25, 35, and
100. Many of these mazes require hundreds or thousands of planning steps to be solved. To assess
the performance of each algorithm, we test various neural network depths N . Specifically, for
mazes of size M = 15 and M = 25, we examine depths in N = 30, 100, 200. For M = 35, we
examine depths in N = 30, 100, 300, 600. For the largest mazes, M = 100, we examine depths of
N = 600, 5000. For each maze size, we generate a dataset following the methodology in GPPN (Lee
et al., 2018). Each sample has a starting position, a visual representation of the m×m map, and an
m×m matrix indicating the position of the goal. For more details, see Appendix B.1.

Results and Discussion. Figure 3(a) and Table 1 show the success rates (SRs) of our method and
the baseline methods, as a function of the SPLs. For each algorithm and environment configuration,
we report the performance of the NN with the best depth N across the ranges specified in the
previous paragraph (see Figure 9 in Appendix C for other values of N). Here, DT-VIN outperforms
all the other methods on all the maze navigation tasks under all the various sizes M and SPLs.
Notably, on small-scale mazes with size in M = 15, 25, 35, DT-VIN achieves approximately 100%
SRs on all the tasks. For the most challenging environment with M = 100, DT-VIN performs best
with the full 5000 layers, and it maintains an SR of approximately 100% on short-term planning
tasks with SPL ranging in [1, 200] and an SR of approximately 88% on tasks with SPLs over 1200.
Comparatively, VIN performs well on small-scale and short-term planning tasks. However, even on
a small-scale maze with size M = 15, VIN’s SRs drop to 0% when the SPL exceeds 30. Moreover,
when the maze size increases to 100, VIN only achieves an SR of less than 40%—even on short-
term planning tasks with SPL within [1, 100]. GPPN performs well on short-term planning tasks,
but it fails to generalize well on long-term planning tasks, which also decreases to an SR of 0% as
the SPL increases. Highway VIN performs well across tasks with various SPLs on a small-scale
maze with M = 15, 25. However, it shows a performance decrease on larger-scale maze tasks with

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: The success rates for each method under tasks with different ranges of shortest path length.
For each algorithm, we choose the best result from a range of depths. Specifically, for our DT-VIN,
the optimal depth consistently corresponds to the maximum value in the range: 600 for size 35, and
5000 for size 100. For other compared methods, the optimal depth differs depending on the task.
In the maze of size 100, the optimal depth for all the baselines is 600. For additional results, see
Figure 9 in Appendix C.

Maze Size 35× 35 100× 100
SPL [1,100] [100, 200] [200, 300] [1,600] [600, 1200] [1200, 1800]

VIN (Tamar et al., 2016) 68.41±6.25 0.0±0.00 0.00±0.00 45.05±0.04 0.00±0.00 0.00±0.00

GPPN (Lee et al., 2018) 95.71±0.33 0.39±0.27 0.00±0.00 75.72±0.64 0.00±0.00 0.00±0.00

Highway VIN (Wang et al., 2024a) 90.67±3.92 65.50±5.59 54.40±10.2 69.12±0.02 0.00±0.00 0.00±0.00

DT-VIN (ours) 100.00±0.00 99.99±0.01 99.77±0.23 99.98±0.00 99.56±0.20 88.65±4.76

DT-VIN (ours) VIN GPPN Highway VIN

0 20 40 60
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

15 × 15 Maze

0 50 100 150
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

25 × 25 Maze

0 100 200 300
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

35 × 35 Maze

0 500 1000 1500
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

100 × 100 Maze

(a) Success Rate

0 20 40 60
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

15 × 15 Maze

0 50 100 150
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

25 × 25 Maze

0 100 200 300
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

35 × 35 Maze

0 500 1000 1500
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

100 × 100 Maze

(b) Optimality Rate

Figure 3: SRs and ORs for different algorithms as a function of the shortest path length and the
maze size. For each algorithm, we select the best result across various depths. Specifically, for our
DT-VIN, the optimal depth consistently corresponds to the maximum value in the range: 200 for
mazes of size 15 and 25, 600 for size 35, and 5000 for size 100. For other methods, the optimal
depth differs per task. In the maze of size 100, the optimal depth for all the baselines is 600. See
Figure 9 and Figure 10 in Appendix C for additional results at other depths.

M = 35, 100. Figure 3(b) shows the optimality rates (ORs) of the algorithms, which measure the
rate at which the model outputs the optimal path. Our DT-VIN maintains consistent ORs compared
to SRs. However, some other methods—especially Highway VIN—exhibit a clear decrease in ORs,
indicating that the paths generated by these methods is often sub-optimal.

Ablation Study. We perform multiple ablation studies with a M = 35 maze and an NN with depth
N = 600 to assess the impact on DT-VIN of (1) the dynamic latent transition kernel, as described
in Section 3.1; (2) the network depth, as outlined in Section 3.2; (3) the adaptive highway loss, also
covered in Section 3.2; and (4) the softmax function on the latent transition kernel, as mentioned in
Section 3.2. Unless otherwise indicated, all these elements are present.

Dynamic Latent Transition Kernel. Figure 5(a) gives an illustration of DT-VIN’s dynamic transition
kernels and Figure 4(a) shows the SRs of our method with the proposed dynamic and the origi-
nal invariant latent transition kernel. When using only the invariant transition kernel, a large drop
in performance is observed. It is important to note here that the additional adaptive highway loss
requires a high representational capacity of the latent MDP, meaning that removing the dynamic
property of the kernel without removing the additional adaptive highway loss would be expected
to adversely affect the performance of the original VIN. The dynamic transition kernel would be
expected to be more beneficial in environments characterized by complex transitions—something
common in advanced reinforcement learning domains. Indeed, as illustrated in Figure 5(b), the per-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 100 200 300
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

35 × 35 Maze

Dynamic Transition
Invariant Transition

(a) Dynamic Transition

0 100 200 300
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

35 × 35 Maze

DT-VIN (N=600)
DT-VIN (N=300)
DT-VIN (N=100)
DT-VIN (N=30)

(b) Depth N

0 100 200 300
Shortest Path Length

70

80

90

100

Su
cc

es
s R

at
e

(%
)

35 × 35 Maze

Adaptive Highway Loss
Fully Highway Loss
w/o Highway Loss

(c) Adaptive Highway Loss

0 100 200 300
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

35 × 35 Maze

Softmax
w/o Softmax

(d) Softmax Operation

Figure 4: The results of ablation studies of our DT-VIN with 600 layers. (a) shows the performance
of DT-VIN using a dynamic versus an invariant latent transition kernel. (b) shows the performance
of DT-VIN over various depths of the planning module. (c) shows the performance of DT-VIN
over different loss functions. (d) shows the performance of DT-VIN with and without the softmax
operation on the latent transition kernel.

(a) Dynamic Transition Kernels

0 100 200 300 400
Number of Walls

0

20

40

60

80

100
Su

cc
es

s R
at

e
(%

)
35 × 35 Maze

DT-VIN (ours)
VIN

(b) Performance w.r.t. Number of Walls

0 50 100 150 200 250 300
Shortest Path Length

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cr
os

s E
nt

ro
py

 L
os

s

35 × 35 Maze
DT-VIN (ours)
VIN

(c) Loss w.r.t. SPLs

Figure 5: (a): Dynamic transition kernels of our DT-VIN, illustrated in a maze navigation example.
The kernels on the left and right sides correspond to two distinct positions, respectively. Note that
the size of latent action space is 4, resulting in 4 kernel matrices for each position. (b): Performance
of our DT-VIN and VIN relative to the number of walls in the mazes. (c): Cross-entropy loss
comparisons for the methods across tasks with varying SPLs.

formance gap between our DT-VIN and VIN grows when the number of walls increases. Likewise,
the dynamic transition kernel is expected to be useful in long-term planning because it increases the
representational capacity of the latent MDP. As demonstrated in Figure 5(c), this is the case here,
with our DT-VIN exhibiting reduced compounding model errors over extended planning horizons
when compared to the original VIN.

Depth of Planning Module. Figure 4(b) shows the SRs of our DT-VIN with various depths. Here,
increasing the depth dramatically improves the long-term planning ability. For example, for tasks
with an SPL of 200, the variant with depth N = 300 performs much better than the variant with
depth N = 100. Moreover, for tasks with an SPL of 300, the deeper variant with depth N =
600 performs much better. Other methods like VIN and GPPN do not show a clear performance
improvement when the depth increases. Figure 9 in Appendix C shows the performance of other
methods over all depths.

Adaptive Highway Loss. We evaluate two variants of our DT-VIN, the first without the highway loss,
and the second with a “fully highway loss,” where the latter enforces a highway loss for each hidden
layer without adaptive adjustment based on the actual planning steps. As shown in Figure 4(c),
the variant without the highway loss suffers a decrease in performance, and the one with the fully
highway loss performs even worse. These results imply that enforcing additional loss on hidden
layers without any adjustment could harm performance. See Appendix C.4 for additional ablations
on the highway loss components, the choice of the hyperparameter l, and the impact of the softmax
operation on gradient stability.

Softmax Latent Transition Kernel. As shown in Figure 4(d), the variant without the softmax opera-
tion on the latent transition kernel fails on all the tasks. This failure is due to exploding gradients,
wherein the gradient becomes extremely large, eventually resulting in the model’s parameters over-
flowing and becoming a NaN (Not a Number) value.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.2 3D VIZDOOM NAVIGATION

(a) 3D ViZDoom

0 100 200
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

3D ViZDoom

DT-VIN (ours)
VIN
GPPN
Highway VIN

(b) Performance

Figure 6: (a) an example of
a ViZDoom 3D maze and the
first-person view of the envi-
ronment with each of the cor-
responding four orientations.
(b) the success rates of the al-
gorithms over various SPLs.

Following the methodology of the GPPN paper, we test our method
on 3D ViZDoom (Wydmuch et al., 2019) environments. Here, in-
stead of directly using the top-down 2D maze as in the previous ex-
periments, we use the observation consists of RGB images capturing
the first-person perspective of the environment, as illustrated in Fig-
ure 6(a). Then, a CNN is trained to predict the maze map from the
first-person observation. The map is then given as input to the plan-
ning model, using the same architecture and hyperparameters as the
2D maze environments (see Appendix B.2 for more implementation
details). For each algorithm, we select the best result across the vari-
ous network depths N = 30, 100, 300, 600. We find that the optimal
depth for DT-VIN is 600, for GPPN is 300, for VIN is 300, and for
Highway VIN is 300. We evaluated the algorithm on 3D ViZDoom
mazes with grid 35×35, where each cell in the grid corresponds to a
64×64 map unit area, the standard spatial measurement in the game
engine. Figure 6(b) shows the SRs. Predictably, the performance of
all the baselines decreases compared to the 2D maze environments
due to the additional noise introduced by the predictions. Here, DT-
VIN outperforms all the methods compared to the task over all the
various SPLs.

4.3 ROVER NAVIGATION

We further evaluate the algorithms on the rover navigation task, where the algorithm must conduct
planning based on an orthomosaic image (e.g., Figure 7(a)) created from aerial photographs. These
images are usually more availible than elevation data (e.g., Figure 7(b)), which involve more com-
plex processing using stereo image pairs (Goodchild, 2009). Therefore, we directly evaluate the
path planning abilities of DT-VIN on orthomosaic images. We evaluate the Apollo 17 landing tasks,
featuring images with a resolution of 0.5 meters per pixel, generated from images taken by the Lunar
Reconnaissance Orbiter Camera’s Narrow Angle Camera (Berlin, 2018). We crop the orthomosaic
image into patches of various sizes, each 18 × 18 patch defining a cell. The expert paths are gen-
erated using external elevation data. The cell is considered a wall if the associated area exhibits
an elevation angle exceeding 10 degrees. Note that elevation data are utilized solely for creating
expert paths to train the algorithms and assessing algorithm performance, not as input to the neural
networks. Please refer to Appendix B.3 for details on the task setting and the models’ architecture.
This task is challenging as orthomosaic image data does not typically include elevation information.
Our DT-VIN outperforms all compared methods across various image sizes. Notably, with larger
image sizes (particularly 630× 630) our DT-VIN outperforms VIN by more than 5%.We also com-
pare with an unfair baseline: CNN+A∗, which first trains a CNN to classify whether an 18 × 18
image patch is an obstacle with the elevation data and then use A∗ to conduct planning based on
the prediction. While this unsuprisingly is able to outperform VIN, it still is itself outperformed by
DT-VIN—despite DT-VIN being given access to only to expert trajectories and not to the elevation
data (representing an overall weaker assumption).

(a) Orthomosaic Image (b) Elevation Data

Training Method Model 270×270 450×450 630×630
VIN 85.32±0.14 82.43±0.74 71.71±3.48

without GPPN 85.79±0.31 81.72±0.22 76.31±0.75

elevation data Highway VIN 85.81±0.6 81.88±0.86 73.21±0.81

DT-VIN (ours) 86.54±0.5 82.78±0.6 77.4±0.98

with
elevation data

CNN+A∗ 84.42±0.67 82.11±0.74 76.19±1.23

(c) The Sucess Rates on Tasks with Various Image Sizes

Figure 7: (a) and (b) shows a patch of orthomosaic image and elevation data from Apollo 17 landing
tasks. (c) lists the success rates of the algorithms on rover navigation tasks with various image sizes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 RELATED WORK

Variants of Value Iteration Networks (VINs). Several variants of VIN (Tamar et al., 2016) have
been proposed in recent years. Gated Path Planning Networks employ gating recurrent mechanisms
to reduce the training instability and hyperparameter sensitivity seen in VINs (Lee et al., 2018).
To mitigate overestimation bias (which is detrimental to learning here), dVINs were proposed and
use a weighted double estimator as an alternative to the maximum operator (Jin et al., 2021). For
addressing challenges in irregular spatial graphs, Generalized VINs adopt a graph convolution op-
erator, extending the traditional convolution operator used in VINs (Niu et al., 2018). To improve
scalability, AVINs introduce an abstraction module that extracts higher-level information from the
environment and the goal (Schleich et al., 2019). For transfer learning, Transfer VINs address the
generalization of VINs to target domains where the action space or the environment’s features differ
from those of the training environments (Shen et al., 2020). More recently, VIRN was proposed
and employs larger convolutional kernels to plan using fewer iterations as well as self-attention to
propagate information from each layer to the final output of the network (Cai et al., 2022). Simi-
larly, GS-VIN also uses larger convolutional kernels but to stabilize training and also incorporates a
gated summarization module that reduces the accumulated errors during value iteration (Cai et al.,
2023). Most related to DT-VIN is other recent work that focused on developing very deep VINs
for long-term planning. Specifically, Highway VIN (Wang et al., 2024a) incorporates the theory of
Highway Reinforcement Learning (Wang et al., 2024b) to create deep planning networks with up
to 300 layers for long-term planning tasks. Highway VIN modifies the planning module of VIN
by introducing an exploration module that injects stochasticity in the forward pass and uses gating
mechanisms to allow selective information flow through the network layers. Our method, however,
achieves even deeper planning by incorporating a dynamic transition matrix in the latent MDP and
adaptively weighting each layer’s connection to the final output.

Neural Networks with Deep Architectures. There is a long history of developing very deep
neural networks (NNs). For sequential data, this prominently includes the LSTM architecture and
its gated residual connections, which help alleviate the “vanishing gradient problem” (Hochreiter &
Schmidhuber, 1997; Hochreiter, 1991). For feedforward NNs, a similar gated residual connection ar-
chitecture was used in Highway Networks (Srivastava et al., 2015a) and later in the ResNet architec-
ture (He et al., 2016), where the gates were kept open. Such residual connections are still ubiquitous
in modern language architectures, such as the Generative Pre-trained Transformer (GPT) (Achiam
et al., 2023). Our method dynamically employs skip connections from select hidden layers to the
final loss, utilizing a state and observation map-dependent transition kernel. This approach is more
closely aligned with the computation of the true VI algorithm. Similar kernels, dependent on an in-
put image (Chen et al., 2020) or the coordinates of an image (Liu et al., 2018), have been previously
used in Computer Vision.

6 CONCLUSIONS

Planning is a long-standing challenge in the field of artificial intelligence and its subfield: rein-
forcement learning. Previous work proposed VIN as an end-to-end differentiable neural network
architecture for this task. While VINs have been successful at short-term small-scale planning, they
start to fail quite rapidly as the horizon and the scale of the planning grows. We observed that this
decay in performance is principally due to limitations in the (1) representational capacity of their
network and (2) its depth. To alleviate these problems, we propose several modifications to the
architecture, including a dynamic transition kernel to increase the representation capacity and an
adaptive highway loss function to ease the training of very deep models. Altogether, these modifi-
cations have allowed us to train networks with 5000 layers. In line with previous work, we evaluate
the efficacy of our proposed Dynamic Transition VINs (DT-VINs) on 2D maze, 3D ViZDoom, and
rover navigation environments. We find that DT-VINs scale to longer-term and larger-scale planning
problems than previous attempts. To the best of our knowledge, DT-VINs is, at the time of publica-
tion, the current state-of-the-art planning solution for these specific environments. We note that the
upper bound for this approach (i.e., the scale of the network and, consequentially, the scale of the
planning ability) remains unknown. As our experiments were limited mostly by computational cost
and did not observe instability, we expect that with the growth of available computational power,
our method will scale to even longer-term and larger-scale planning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

The details of model architecture, along with specific training protocols, can be found in Section 4
and Appendix B. We will open-source the code for reproducing the results of this paper after publi-
cation.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.

Richard E. Bellman. A markovian decision process. Journal of Mathematics and Mechanics, 6(5):
679–684, 1957. URL http://www.jstor.org/stable/24900506.

Technical University Berlin. Moon apollo 17 lroc nac landing site orthomosaic 50cm,
2018. URL https://astrogeology.usgs.gov/search/map/moon_apollo_17_
lroc_nac_landing_site_orthomosaic_50cm. Accessed: 2024-10-02.

Jinyu Cai, Jialong Li, Zhenyu Mao, and Kenji Tei. Value iteration residual network with self-
attention. In International Conference on Intelligent Systems Design and Applications, pp. 16–24.
Springer, 2022.

Jinyu Cai, Jialong Li, Mingyue Zhang, and Kenji Tei. Value iteration networks with gated summa-
rization module. IEEE Access, 2023.

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
convolution: Attention over convolution kernels. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11030–11039, 2020.

Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P How. Socially aware motion planning with
deep reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1343–1350. IEEE, 2017.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. Advances in neural information processing systems, 32,
2019.

Michael F Goodchild. Geographic information systems and science: today and tomorrow. Annals
of GIS, 15(1):3–9, 2009.

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
ing behaviors by latent imagination. Proceedings of the 8th International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=S1lOTC4tDS.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. Proceedings of the 9th International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=0oabwyZbOu.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy P. Lillicrap. Mastering Diverse Domains
through World Models. arXiv, 2023. URL https://arxiv.org/abs/2301.04104.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107,
1968. doi: 10.1109/TSSC.1968.300136.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

11

http://www.jstor.org/stable/24900506
https://astrogeology.usgs.gov/search/map/moon_apollo_17_lroc_nac_landing_site_orthomosaic_50cm
https://astrogeology.usgs.gov/search/map/moon_apollo_17_lroc_nac_landing_site_orthomosaic_50cm
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=0oabwyZbOu
https://arxiv.org/abs/2301.04104

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut für
Informatik, Lehrstuhl Prof. Brauer, Technische Universität München, 1991. Advisor: J. Schmid-
huber.

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–
1780, 1997.

Xiang Jin, Wei Lan, Tianlin Wang, and Pengyao Yu. Value iteration networks with double estimator
for planetary rover path planning. Sensors, 21(24):8418, 2021.

Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep reinforcement learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan Salakhutdinov. Gated
path planning networks. In International Conference on Machine Learning, pp. 2947–2955.
PMLR, 2018.

Wei Li, Bowei Yang, Guanghua Song, and Xiaohong Jiang. Dynamic value iteration networks for
the planning of rapidly changing uav swarms. Frontiers of Information Technology & Electronic
Engineering, 22(5):687–696, 2021.

Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex Sergeev, and Jason
Yosinski. An intriguing failing of convolutional neural networks and the coordconv solution.
Advances in neural information processing systems, 31, 2018.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

Sufeng Niu, Siheng Chen, Hanyu Guo, Colin Targonski, Melissa Smith, and Jelena Kovačević. Gen-
eralized value iteration networks: Life beyond lattices. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Max Pflueger, Ali Agha, and Gaurav S Sukhatme. Rover-irl: Inverse reinforcement learning with
soft value iteration networks for planetary rover path planning. IEEE Robotics and Automation
Letters, 4(2):1387–1394, 2019.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Stefan Schaal. Learning from demonstration. Advances in neural information processing systems,
9, 1996.

Daniel Schleich, Tobias Klamt, and Sven Behnke. Value iteration networks on multiple levels of
abstraction. arXiv preprint arXiv:1905.11068, 2019.

J. Schmidhuber. Making the world differentiable: On using fully recurrent self-supervised neu-
ral networks for dynamic reinforcement learning and planning in non-stationary environments.
Technical Report FKI-126-90 (revised), Institut für Informatik, Technische Universität München,
November 1990a. (Revised and extended version of an earlier report from February.).

J. Schmidhuber. An on-line algorithm for dynamic reinforcement learning and planning in reactive
environments. In Proc. IEEE/INNS International Joint Conference on Neural Networks, San
Diego, volume 2, pp. 253–258, 1990b.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Junyi Shen, Hankz Hankui Zhuo, Jin Xu, Bin Zhong, and Sinno Pan. Transfer value iteration
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 5676–
5683, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel
Dulac-Arnold, David P. Reichert, Neil C. Rabinowitz, André Barreto, and Thomas Degris. The
predictron: End-to-end learning and planning. Proceedings of the 34th International Conference
on Machine Learning, 70:3191–3199, 2017. URL http://proceedings.mlr.press/
v70/silver17a/silver17a.pdf.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2998–3009,
2023.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep networks. Advances
in neural information processing systems, 28, 2015a.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015b.

Richard S. Sutton. The Bitter Lesson. URL http://incompleteideas.net/IncIdeas/
BitterLesson.html.

Richard S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
SIGART Bulletin, 2(4):160–163, 1991. doi: 10.1145/122344.122377.

Aviv Tamar, Sergey Levine, Pieter Abbeel, Yi Wu, and Garrett Thomas. Value iteration networks.
Advances in Neural Information Processing Systems, 29:2146–2154, 2016.

Yuhui Wang, Weida Li, Francesco Faccio, Qingyuan Wu, and Jürgen Schmidhuber. Highway value
iteration networks. Proceedings of the 41st International Conference on Machine Learning,
2024a. URL https://arxiv.org/abs/2406.03485.

Yuhui Wang, Haozhe Liu, Miroslav Strupl, Francesco Faccio, Qingyuan Wu, Xiaoyang Tan, and
Jürgen Schmidhuber. Highway Reinforcement Learning. arXiv, 2024b. URL https://arxiv.
org/abs/2405.18289.

Jan Wöhlke, Felix Schmitt, and Herke van Hoof. Hierarchies of planning and reinforcement learning
for robot navigation. In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pp. 10682–10688. IEEE, 2021.

Marek Wydmuch, Michał Kempka, and Wojciech Jaśkowski. ViZDoom Competitions: Playing
Doom from Pixels. IEEE Transactions on Games, 11(3):248–259, 2019. doi: 10.1109/TG.2018.
2877047.

13

http://proceedings.mlr.press/v70/silver17a/silver17a.pdf
http://proceedings.mlr.press/v70/silver17a/silver17a.pdf
http://incompleteideas.net/IncIdeas/BitterLesson.html
http://incompleteideas.net/IncIdeas/BitterLesson.html
https://arxiv.org/abs/2406.03485
https://arxiv.org/abs/2405.18289
https://arxiv.org/abs/2405.18289

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A LIMITATIONS AND FUTURE WORKS

The principal limitation of our work compared to VIN and Highway VIN is the increased computa-
tional cost (see Appendix C.5). This is a consequence of the scale of the network. The past decades
have seen AI dominated by the trend of scaling up systems (Sutton), so this is not likely a long-term
issue. Other limitations include the requirement to know the length of the shortest path l in the
highway loss in imitation learning. In a general RL problem, such a quantity could be estimated
online. Future work will explore the impact of a more sophisticated transition mapping module (this
work uses a single CNN layer for this purpose) in more challenging real-world applications, such as
real-time robotics navigation in dynamic and unpredictable environments.

B EXPERIMENTAL DETAILS

The below subsections detail specific information about the experiments that have been deemed too
minor to appear in the main text.

B.1 2D MAZE NAVIGATION

Figure 8 shows some visualizations of some of the different 2D maze navigation tasks we experiment
with. Our experimental setup follows the guidelines established in the GPPN paper (Lee et al.,
2018). For these tasks, the datasets for training, validation, and testing comprise 25000, 5000, and
5000 mazes, respectively. Each maze features a goal position, with all reachable positions selected
as potential starting points. Note that this setting, as done by GPPN, produces a distribution of mazes
with non-uniform SPLs, which is skewed towards shorter SPLs. Table 3 shows the hyperparameters
used by our method. Note that, while DT-VIN consistently uses 3 for the size of the latent transition
kernel F and 4 for the size of the latent action space |A|, other methods instead used their best-
performing sizes from between 3 and 5, and between 4 and 150, respectively.

Moreover, to reduce the computational complexity of highway loss, we apply adaptive highway loss
only to layers n satisfying the condition n mod J = 0, where J is a hyperparameter set to 10 in
our experiments. Here, the main idea is to build the highway connections at interval J , for example,
every 10 neural network layers. Using this, the number of the loss terms will reduce to only 1/J of
the original one. Table 2 shows the magnitude of the computational speedup as a concequence of
this implementation detail.

Wall-Clock Time (hours) [1,100] [100,200] [200,300]

J = 1 37 100.00±0.00 99.99±0.01 99.78±0.21

J = 10 12.1 100.00±0.00 99.99±0.01 99.77±0.23

J = 50 7.1 100.00±0.00 99.98±0.02 99.69±0.27

Table 2: Training Time and Success Rate (%) across Different Ranges of SPLs for DT-VIN with
Different J Values.

B.2 3D VIZDOOM

To be in line with previous work, we use a state representation preprocessing stage for the 3D
ViZDoom environment similar to that used in the GPPN paper and others (Lee et al., 2018; Lample
& Chaplot, 2017). In 3D ViZDoom, a maze is designed on a grid of M × M cells. Each cell in
this grid corresponds to an area of 64 × 64 map units within the 3D ViZDoom environment. The
map unit is the basic measure of space used in the ViZDoom game engine to define distances and
sizes. Specifically, for each cell in the M ×M 3D maze, the RGB first-person views for each of the
four cardinal directions are given as state to a preprocessing network (see Figure 6(a)). This network
then encodes this state and produces an M×M binary maze matrix. The hyperparameters and exact
specification of the network are given in Table 5.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(a) 15× 15 Maze (b) 25× 25 Maze

(c) 35× 35 Maze (d) 100× 100 Maze

Figure 8: Some examples of the 2D maze navigation tasks.

Table 3: 2D Maze Navigation Hyperparameters

Hyperparameter Value

Transition Mapping Module Conv with 3× 3 kernel
Reward Mapping Module Conv with 1× 1 kernel
Latent Transition Kernel Size (F) 3
Latent Action Space Size (|A|) 4
Optimizer RMSprop
Learning Rate 1e-3
Batch Size 32

Depth of Planning Module

15× 15 maze: 200
25× 25 maze: 200
35× 35 maze: 600
100× 100 maze: 5000

B.3 ROVER NAVIGATION

Table 4 shows the hyperparameters of DT-VIN for the rover navigation tasks. For the transition and
reward mapping modules, we employ 10-layer CNNs, with the first 8 layers shared between them.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Rover Navigation Hyperparameters

Hyperparameter Value

Transition Mapping Module A 10-layer CNN

Reward Mapping Module A 10-layer CNN (sharing the first 8 layers
with Transition Mapping Module)

Latent Transition Kernel Size (F) 3
Latent Action Space Size (|A|) 4
Optimizer RMSprop
Learning Rate 1e-3
Batch Size 32

Depth of Planning Module
270× 270 : 50
450× 450 : 100
630× 630: 200

Table 5: 3D ViZDoom Preprocessing Network

Hyperparameter Value

Batch Size (B) 32
Image Directions (D) 4
Image Channels (C) 3
Image Width (W) 24
Image Height (H) 32
Input Size (B,M,M,D,W,H,C)
Layer 1 (Convolution) (3, 32, 8, 4, 1)
Layer 2 (Convolution) (32, 64, 4, 2, 1)
Layer 3 (Linear) (384, 256)
Layer 4 (Convolution) (1024, 64, 3, 1, 1)
Layer 5 (Convolution) (64, 1, 3, 1, 1)
Output Size (B,M,M)
Optimizer Adam
Learning Rate 1e-3
Betas (0.9, 0.999)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 20 40 60
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

15 × 15 Maze

DT-VIN(N=200)
DT-VIN(N=100)
DT-VIN(N=30)

0 50 100 150
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

25 × 25 Maze

DT-VIN(N=200)
DT-VIN(N=100)
DT-VIN(N=30)

0 100 200 300
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

35 × 35 Maze

DT-VIN(N=600)
DT-VIN(N=300)
DT-VIN(N=100)
DT-VIN(N=30)

0 500 1000 1500
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

100 × 100 Maze

DT-VIN(N=5000)
DT-VIN(N=600)

(a) DT-VIN (ours)

0 20 40 60
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

15 × 15 Maze

VIN (N=200)
VIN (N=100)
VIN (N=30)

0 50 100 150
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

25 × 25 Maze

VIN (N=200)
VIN (N=100)
VIN (N=30)

0 100 200 300
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

35 × 35 Maze

VIN (N=600)
VIN (N=300)
VIN (N=100)
VIN (N=30)

0 500 1000 1500
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

100 × 100 Maze

VIN(N=5000)
VIN(N=600)

(b) VIN

0 20 40 60
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

15 × 15 Maze

GPPN (N=200)
GPPN (N=100)
GPPN (N=30)

0 50 100 150
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

25 × 25 Maze

GPPN (N=200)
GPPN (N=100)
GPPN (N=30)

0 100 200 300
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

35 × 35 Maze

GPPN (N=600)
GPPN (N=300)
GPPN (N=100)
GPPN (N=30)

0 500 1000 1500
Shortest Path Length

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

100 × 100 Maze

GPPN(N=5000)
GPPN(N=600)

(c) GPPN

Figure 9: The success rate of each method as a function of shortest path length and network depth.
The green and red curves overlap in the first plot of (a).

C ADDITIONAL EXPERIMENTAL RESULTS

Due to space constraints, the below results could not appear in the main text.

C.1 PERFORMANCE OF MODELS ACROSS DIFFERENT DEPTHS

Figure 9 shows the success rate of all the algorithms on the 15 × 15, 25 × 25, 35 × 35, 100 × 100
mazes as a function of the shortest path length and the depth of the network. Similarly, Figure 10
shows the corresponding optimality rates.

C.2 DIFFERENT TRANSITION KERNELS

Following the GPPN paper (Lee et al., 2018), We have run an additional ablation using different
transition kernels: the Differential Drive transition kernel, where the agent can move forward along
its orientation or rotate 90 degrees left or right, and the MOORE transition kernel, where the agent
can relocate to any of the eight adjacent cells that comprise its Moore neighborhood. As shown in
Table 6 and 7, DT-VIN consistently outperforms all the compared methods regardless of the kernel
used.

C.3 EXPERIMENTS ON CONTINUOUS CONTROL

To further demonstrate the generalizability of DT-VIN to different domains, we compare its per-
formance to VIN, GPPN, and Highway VIN on Point Maze (He et al., 2016), a continuous control

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 20 40 60
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

15 × 15 Maze

DT-VIN(N=200)
DT-VIN(N=100)
DT-VIN(N=30)

0 50 100 150
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

25 × 25 Maze

DT-VIN(N=200)
DT-VIN(N=100)
DT-VIN(N=30)

0 100 200 300
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

35 × 35 Maze

DT-VIN(N=600)
DT-VIN(N=300)
DT-VIN(N=100)
DT-VIN(N=30)

0 500 1000 1500
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

100 × 100 Maze

DT-VIN(N=5000)
DT-VIN(N=600)

(a) DT-VIN (ours)

0 20 40 60
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

15 × 15 Maze

VIN (N=200)
VIN (N=100)
VIN (N=30)

0 50 100 150
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

25 × 25 Maze

VIN (N=200)
VIN (N=100)
VIN (N=30)

0 100 200 300
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

35 × 35 Maze

VIN (N=600)
VIN (N=300)
VIN (N=100)
VIN (N=30)

0 500 1000 1500
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

100 × 100 Maze

VIN(N=5000)
VIN(N=600)

(b) VIN

0 20 40 60
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

15 × 15 Maze

GPPN (N=200)
GPPN (N=100)
GPPN (N=30)

0 50 100 150
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

25 × 25 Maze

GPPN (N=200)
GPPN (N=100)
GPPN (N=30)

0 100 200 300
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

35 × 35 Maze

GPPN (N=600)
GPPN (N=300)
GPPN (N=100)
GPPN (N=30)

0 500 1000 1500
Shortest Path Length

0

20

40

60

80

100

Op
tim

al
ity

 R
at

e
(%

)

100 × 100 Maze

GPPN(N=5000)
GPPN(N=600)

(c) GPPN

Figure 10: The optimality rate of each method as a function of shortest path length and network
depth. The green and red curves overlap in the top-left plot.

Table 6: The success rate (%) for each method in 35 × 35 2D maze navigation with Differential
Drive transition kernel, where the agent can move forward along its orientation or rotate 90◦ left or
right.

Shortest Path Length [1,150] [150,300] [300,500]
VIN 68.44±3.12 0.03±0.01 0.00±0.00

GPPN 83.1±1.23 0.31±0.01 0.0±0.0

Highway VIN 87.1±3.73 57.1±3.98 49.1±8.73

DT-VIN (ours) 100.00±0.00 100.00±0.00 99.99±0.01

domain. Here, as shown in Figure 11, the agent needs to apply force to a ball to navigate a maze and
reach the goal within 800 steps. Table 8 shows the results of this experiment. Again, DT-VIN is able
to solve the mazes at a much higher rate than all the baseline methods and typically ends episodes
with the ball much closer to the goal.

C.4 ABLATION ON SOFTMAX OPERATION AND HIGHWAY LOSS

Ablation on Highway Loss We conduct an ablation study for the adaptive highway loss by eval-
uating the following variants in shorter planning tasks:

1. Implement skip connections for intermediate layers of the planning module of VIN, like
what has been done in Residual Nets (He et al., 2015) and Highway Nets (Srivastava et al.,
2015b). As shown in Table 9, this variant performs poorly, achieving only 61.35% success
rate in comparison to DT-VIN’s 99.98% on 100 × 100 Maze. These results are consistent
with those in existing work (Wang et al., 2024a).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: The success rate for each method in 35 × 35 2D maze navigation with Moore transition
kernel, where the agent can relocate to any of the eight adjacent cells that comprise its Moore
neighborhood.

Shortest Path Length [1,100] [100,200] [200,250]

VIN 66.44±3.21 0.00±0.00 0.00±0.00

GPPN 89.94±1.31 0.04±0.01 0.00±0.00

Highway VIN 83.14±2.21 37.1±1.98 25.1±3.28

DT-VIN (ours) 100.0±0.00 98.9±0.72 96.7±1.23

Figure 11: The Point Maze environment (He et al., 2016).

Table 8: Comparison of Final Distance to the Goal and Success Rate for Different Models in the
Continuous Control Setting.

Final Distance to the Goal (Euclidean Distance) Success Rate (%)

VIN 5.12±3.19 62.00±2.18
GPPN 4.12±2.18 68.12±4.17
Highway VIN 4.98±3.28 67.31±3.28
DT-VIN (ours) 2.28± 1.20 82.00±3.89

2. 1{n=l}, only building highway loss for a specific layer n which satisfies n = l. As shown
in Table 9, this variant performs worse than the adaptive highway loss, showing that the
component n > l plays an important role in the performance.

3. Building highway loss for all intermediate layers n, without the term 1{n≥l}. This variant
is already verified to be less effective in Figure 4(c).

Table 9: Success rates for the variants of adaptive highway loss on 2D Maze.

Method 35× 35, SPL [1,100] 100× 100, SPL [1,600]
Skip Connections for intermediate layers 90.35±2.53 61.35±3.43

1{n≥l} (Adaptive Highway Loss) 100.00±0.00 99.98±0.00

1{n=l}} (without 1{n≥l}) 98.35±2.23 92.81±3.78

Without 1{n≥l} (Fully Highway Loss) 98.11±1.23 91.11±2.00

Gradient and Loss Analysis The softmax operation ensures that the values of the dynamic tran-
sition kernels remain within [0, 1], helping to prevent the gradient exploding problem. In our ex-
periments, we found that the gradient of DT-VIN lacking softmax operation explodes at the first
forward-backward pass of training, resulting in the loss escalating to NaN (Not a Number) during
the training process. Figure 12 shows the gradient and the loss of DT-VIN with and without Softmax
Operation.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

5 10 15 20 25 30
Shortest Path Length

0.4

0.6

0.8

1.0

1.2

L1
 N

or
m

 o
f G

ra
di

en
t

35 × 35 Maze
Softmax

(a) L1 Norm of Gradient

5 10 15 20 25 30
Shortest Path Length

0.4

0.6

0.8

1.0

Cr
os

s E
nt

ro
py

 L
os

s

35 × 35 Maze
Softmax

(b) Loss

Figure 12: The L1 norm of gradient averaged over the first 10 layers and the loss during the training
process for DT-VIN with Softmax Operation, evaluated on 35× 35 2D maze with depth N = 600.
The result of DT-VIN without softmax operation is missing, as the gradient explodes at the first
forward-backward pass of training, resulting in the loss escalating to NaN (Not a Number) during
the training process.

5 10 15 20 25 30
Shortest Path Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L1
 N

or
m

 o
f G

ra
di

en
t

35 × 35 Maze
Adaptive Highway Loss
w/o Adaptive Highway Loss

(a) L1 Norm of Gradient

5 10 15 20 25 30
Shortest Path Length

0.4

0.6

0.8

1.0

Cr
os

s E
nt

ro
py

 L
os

s
35 × 35 Maze

Adaptive Highway Loss
w/o Adaptive Highway Loss

(b) Loss

Figure 13: The L1 norm of gradient averaged over the first 10 layers and the loss during the training
process for DT-VIN with and without Adaptive Highway Loss, evaluated on 35× 35 2D maze with
depth N = 600.

The adaptive highway loss improves gradient flow toward shallower layers. As shown in Figure 13,
without adaptive highway loss, the L1 norm of the gradient for DT-VIN is closer to zero in the first
10 layers of the network. The adaptive highway loss can reduce this vanishing gradient problem,
resulting in lower loss.

Ablation on the Choice of l The knowledge of the length l of the expert path naturally exists in
the imitation learning case. However, for the case where such information is unknown, one can use
either the length of non-expert data or some heuristic methods to estimate l when the actual l is
completely unknown, e.g., using the distance between the start and the goal position.

To measure the effect of overestimation/underestimation, we experiment with various estimated
values of the length of the shortest path l̂, which are 0, l/2, l, 2l, N (where l is the actual length of
the shortest path, N is the depth of the planning module). Second, to evaluate the case when the
etsimation of l has variance, we use l ·max(ϵ, 0) as the estimation, with ϵ sampled from a Gaussian
distribution N (1, 1). Third, we also assess two additional variants for estimating l: (a) One variant
that utilizes the length of non-expert trajectories for l; (b) Another variant that estimates the shortest
path length heuristically using the L1 distance between the start (xs, ys) and the goal (xg, yg), i.e.,
D = |xs − xg|+ |ys − yg|.
As indicated in Table 10, both overestimation and underestimation lead to a performance degradation
of no more than 7%. Additionally, we find that leveraging non-expert data or the heuristic L1

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

distance only yields a nearly 3% degradation in performance, and performs better than the case when
the optimal length is extremely overestimated/underestimated. These resutls imply that employing
the information from non-expert data or heuristic estimation could be taken as an alternative when
the optimal length is not available.

Table 10: Ablation study for using various estimated lengths of optimal paths for adaptive highway
loss, under 35× 35 ViZDoom navigation. The best results are highlighted.

Shortest Path Length [1,100] [100, 200] [200,300]

l̂ = 0 (connected to all hidden layers) 99.49±0.35 94.51±0.77 89.1±3.56

l̂ = l/2 99.62±0.91 96.21±0.44 91.24±1.68

l̂ = l 99.67±0.22 97.92±0.11 96.41±0.37

l̂ = 2 ∗ l 99.61±0.18 96.29±0.48 93.12±0.73

l̂ = N (connected to only last layer) 99.52±0.29 95.52±0.86 91.12±1.64

l̂ = l ·max(ϵ, 0), ϵ ∼ N (1, 1) 99.62±0.50 96.19±0.15 93.21±0.92

l̂ = len(non-expert path) 99.62±0.12 97.01±0.69 93.31±0.31

l̂ = D (L1 distance) 99.64±0.49 96.92±0.05 93.52±0.87

C.5 SCALING EXPERIMENTS

Compute As we have discussed in Section 3.1, our approaches only require |A|×F 4 parameters,
where we set |A| = 4 and F = 3 in our experiments. Table 12 shows the memory consumption
and training time on NVIDIA A100 GPUs for DT-VIN and the compared methods when using 5000
layers and training for 90 epochs on 100 × 100 maze. As shown in the table below, our DT-VIN
consumes significantly less GPU memory compared to GPPN, while requiring a similar amount of
GPU hours. These results are generally consistent with those observed in the 35 × 35 2D maze in
Table 11.

Table 11: The computational complexity during traning of each method, employing 600 layers and
trained over 30 epochs, evaluated in a 35× 35 2D maze navigation.

Method GPU Memory (GB) Wall-Clock Time (h) GPU Hours (h)

VIN 4.2 8.4 8.4
GPPN 182 4.2 12.6
Highway VIN 41.3 14.3 14.3
DT-VIN 53.3 12.1 12.1

Table 12: Computational complexity during of training of each method using 5000 layers and train-
ing for 90 epochs, evaluated on a 100× 100 2D maze navigation.

Method GPU Memory (GB) Wall-Clock Time (h) GPU Hours (h)
VIN 35 36 36
GPPN 710 31 310
Highway VIN 111 112 224
DT-VIN (ours) 182 98 294

Model size In our experiments, the depth of the network required to solve the problem is close to
linear with the number of planning steps required by the problem. For maze size M = 15, 25, 35,
we test DT-VIN models at increasing depths in increments of 100 until the optimal performance
is achieved. For instance, for mazes of size 25 × 25, we assess depths of 100, 200, 300, 400. For
maze size M = 100, we assess depths of 4000, 5000, 6000. As Table 13 illustrates, the depth of
the smallest network that can solve the task increases slightly more than linearly with the required
planning steps. Therefore, it might be feasible to continue increasing the network depth as the
problems become more complex.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 13: Minimal depths of DT-VIN model across various maze sizes.

Maze Size Longest Length of Optimal Path Minimal Depth of DT-VIN

15 80 100
25 200 300
35 300 500
100 1800 5000

Data The scale of the dataset needs to scale up with the complexity of the problem rather than
the model depth. Under the same scale of the problem, we didn’t find that increasing model depth
requires additional data. As shown in Table 14, without expanding the dataset, increasing the model
depth does not reduce the performance.

Moreover, even in situations where data is rare, DT-VIN still outperforms compared methods. As
shown in Table 15, with only 50% of the original dataset, DT-VIN greatly outperforms existing
methods. We also highlight the changes compared to the performance with a full-sized dataset in
Table 16, where DT-VIN results in less than a 0.2% degradation for tasks within the range [1, 100],
while the best-performing comparison method, GPPN, incurs a degradation of nearly 12%.

Table 14: The success rate of DT-VIN across various model depths N , maintaining the same size as
the original dataset.

Shortest Path Length [1,100] [100,200] [200,300]

N = 300 99.99±0.01 99.81±0.13 92.11±1.31

N = 600 100.00±0.00 99.99±0.01 99.77±0.23

N = 1200 100.00±0.00 99.99±0.01 99.81±0.11

Table 15: The success rate for each method, using a dataset reduced to 50% of the original size.

Shortest Path Length [1,100] [100,200] [200,300]

VIN 32.41±4.25 0.00±0.00 0.00±0.00

GPPN 83.11±1.33 0.01±0.01 0.00±0.00

Highway VIN 45.41±4.13 37.41±3.25 21.41±6.98

DT-VIN (ours) 99.96±0.01 99.8±0.12 96.01±0.32

Table 16: The changes in success rate for each method, using a dataset reduced to 50% of the
original size, compared to the full-sized dataset (more negative is worse).

Shortest Path Length [1,100] [100,200] [200,300]

VIN −36.00±3.12 0.00±0.00 0.00±0.00

GPPN −12.60±1.29 −0.38±0.11 0.00±0.00

Highway VIN −45.26±3.48 −28.09±2.98 −32.99±3.11

DT-VIN (ours) −0.04±0.01 −0.19±0.04 −3.76±0.31

22

	Introduction
	Preliminaries
	Method
	Increasing the Representation Capacity of the Latent MDP
	Increasing Depth of Planning Module

	Experiments
	2D Maze Navigation
	3D ViZDoom Navigation
	Rover Navigation

	Related Work
	Conclusions
	Limitations and Future Works
	Experimental Details
	2D Maze Navigation
	3D ViZDoom
	Rover Navigation

	Additional Experimental Results
	Performance of Models Across Different Depths
	Different Transition Kernels
	Experiments on Continuous Control
	Ablation on Softmax Operation and Highway Loss
	Scaling Experiments

