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Abstract— Grasping objects in cluttered environments re-
mains a fundamental yet challenging problem in robotic
manipulation. While prior works have explored learning-
based synergies between pushing and grasping for two-fingered
grippers, few have leveraged the high degrees of freedom
(DoF) in dexterous hands to perform efficient singulation for
grasping in cluttered settings. In this work, we introduce
DexSinGrasp, a unified policy for dexterous object singulation
and grasping. DexSinGrasp enables high-dexterity object singu-
lation to facilitate grasping, significantly improving efficiency
and effectiveness in cluttered environments. We incorporate
clutter arrangement curriculum learning to enhance success
rates and generalization across diverse clutter conditions, while
policy distillation enables a deployable vision-based grasping
strategy. To evaluate our approach, we introduce a set of
cluttered grasping tasks with varying object arrangements and
occlusion levels. Experimental results show that our method
outperforms baselines in both efficiency and grasping suc-
cess rate, particularly in dense clutter. Codes, appendix, and
videos are available on our project website https://nus-lins-
lab.github.io/dexsingweb/.

I. INTRODUCTION

Dexterous grasping of target objects in cluttered environ-
ments is crucial for various applications, from production
lines [1] to assembly processes [2], [3] and beyond. While
dexterous hands offer high degrees of freedom (DoF) and
substantial potential for complex manipulation tasks [4]–
[9], effectively leveraging their capabilities for grasping in
cluttered settings remains a challenging problem. Recent
dexterous grasping approaches [10], [11] focus primarily
on grasping target objects in scenarios without the need
to rearrange surrounding objects. However, due to the lack
of explicit singulation training, these approaches struggle in
denser clutter, where avoiding interaction with surrounding
objects is insufficient to ensure grasp success.

One approach to handling densely cluttered environments
is to singulate the target object from surrounding objects.
Researchers have explored frameworks to learn the synergies
between pushing and grasping [12]–[14] for two-fingered
grippers. However, due to the mechanical limitations of
parallel grippers, the target object must be fully isolated
from surrounding clutter, often requiring multiple inefficient
steps of pushing and grasping. In contrast, dexterous hands
perform singulation using only their fingers, minimizing

* denotes equal contribution
† denotes the corresponding author
1Lixin Xu, Zixuan Liu, Zhewei Gui, Jingxiang Guo, Zeyu Jiang,

Zhixuan Xu, Chongkai Gao, Lin Shao are with the School of Comput-
ing, National University of Singapore. davidxulixin@gmail.com,
zixuanliu@u.nus.edu, linshao@nus.edu.sg

Fig. 1. We propose DexSinGrasp to learn a unified policy for dexterous
object singulation and grasping in cluttered environments

movement of the end-effector (i.e., the palm) and providing a
more flexible and efficient approach to object rearrangement
in cluttered settings. However, the high degrees of freedom
(DoF) of dexterous hands and the complexity of cluttered
scenes make this synergy challenging to learn. One approach
to addressing this challenge is task decomposition [15] which
simplifies learning by breaking the problem into manageable
sub-tasks, but it limits the synergy between singulation and
grasping. Alternatively, curriculum learning [16] has proven
effective in tackling complex tasks and has already been
successfully applied to dexterous grasping policies [8], [17].

In this work, we develop a reinforcement learning frame-
work to train a unified policy that seamlessly integrates
object singulation and grasping. This framework enables
a dexterous hand to efficiently grasp target objects from
tightly cluttered environments, as illustrated in Fig. 1. Due
to the challenges of directly solving grasping tasks in gen-
eral cluttered environments, our method leverages clutter
arrangement curriculum learning to progressively enhance
the performance of the teacher policy in generated cluttered
environments with increasing complexity in object quan-
tity, types, and arrangements. Furthermore, through teacher-
student policy distillation, we obtain a vision-based student
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policy that generalizes across diverse cluttered environments
and can be deployed on a real-world robot.

• We develop a unified reinforcement learning policy for
dexterous object singulation and grasping, enabling dex-
terous hands to effectively and efficiently grasp objects
in tightly cluttered environments.

• We incorporate clutter arrangement curriculum learning
to improve policy performance across various cluttered
scenes and employ policy distillation to obtain a vision-
based grasping policy suitable for real-world deploy-
ment.

• We design a set of cluttered grasping tasks and ex-
periments with varying difficulty levels and conduct
extensive experiments to demonstrate the effectiveness
and efficiency of our proposed DexSinGrasp.

II. METHOD

Overview. We formulate dexterous grasping and object
singulation as a reinforcement learning task. As illustrated in
Fig. 2, we train a unified policy for dexterous object singula-
tion and grasping through a structured learning framework,
and adopt teacher-student policy distillation for real-world
deployment. First, we introduce a unified reward design (Sec.
II-A) that seamlessly integrates singulation and grasping into
a single objective, enabling more efficient policy learning.
Then, to improve learning efficiency in cluttered environ-
ments, we adopt Clutter Arrangement Curriculum Learning
(Sec. II-B) to progressively train state-based teacher policies.
Finally, we employ Teacher-Student Policy Distillation (Sec.
II-C) to transfer knowledge from the teacher policies to
a vision-based student policy, allowing deployment on a
real robot by mapping high-dimensional visual observations
to effective actions. Further details of problem formula-
tion, unified reward function, clutter arrangement curriculum
learning, and teacher-student policy distillation are provided
in Appendix A, B, C, and D.

A. Unifying Dexterous Object Singulation and Grasping

We propose a unified reward design that seamlessly inte-
grates dexterous object singulation and grasping into a single
learning objective. The piece-wise reward function is defined
as

rt =


rPt + rJt + rSt , if dPt ≥ 0.06 or dJt ≥ 0.2,

rPt + rJt + rFt + rLt

+ rGt + rSt + rBt ,
if dPt < 0.06 and dJt < 0.2,

(1)
Refer to Appendix for further explanation. Despite this uni-
fied learning framework, training remains highly challenging
due to the increasing complexity of cluttered environments.
To further improve learning efficiency and policy generaliza-
tion, we introduce Clutter Arrangement Curriculum Learn-
ing, which progressively increases clutter complexity.

B. Clutter Arrangement Curriculum Learning

To ensure successful and efficient object singulation and
grasping in tightly cluttered environments, we begin by

training the teacher policy with privileged information from
the simulation and adopt clutter arrangement curriculum
learning, allowing our teacher policy to progressively im-
prove as object diversity and spatial complexity increase.
Using Proximal Policy Optimization (PPO) [18], we optimize
the policy to maximize the cumulative discounted reward
E[

∑T
t=1 γ

t−1rt], enabling effective reinforcement learning
in cluttered environments.

C. Teacher-Student Policy Distillation

Since privileged observations—such as object states and
singulation distances—are difficult to obtain in the real
world, and some proprioceptive data, like finger-joint forces,
are limited by hardware constraints, we learn a vision-based
student policy to ensure feasible real-world deployment.
The teacher policy leverages simulator-provided privileged
information, including object pose, singulation distances,
and relative positions, to facilitate training. We then collect
demonstration data using point cloud-based approximations
of object location and hand-object distances, replacing privi-
leged inputs during data collection, and train the vision-based
student policy through behavior cloning.

III. EXPERIMENT

In this section, we conduct comprehensive experiments to
evaluate our proposed method, DexSinGrasp, in both simula-
tion and real-world tasks. Through these experiments, we aim
to address the following key questions: (1) How effective and
efficient is our method for grasping in clutter environments?
(2) How does our method generalize to different objects
and tasks? (3) How effective is our clutter arrangement
curriculum learning? (4) How does our method perform on
real-world tasks?

A. Baselines

To evaluate our approach, we design three experimental
configurations with two baseline methods and our proposed
approach:

GraspReward-Only Method. In this baseline, pure dex-
terous grasping is conducted without singulation. This base-
line is trained from scratch in a single target object environ-
ment with the singulation reward set to zero [8], [9].

Multi-Stage Singulation Method This baseline is a two-
stage framework where separately trained singulation and
grasping policies operate in sequence as adopted by SOPE
[15]. We train the separate singulation policy without the
grasping reward stage as mentioned in Sec. II-A. We also
include a singulation bonus to encourage singulation. The
singulation stage is switched to the grasping stage when∑n

i=1 ∥ptarget − pi∥2/n > 0.16, where n is the number of
surrounding objects.

B. Evaluation Metrics

Success Rate. The proportion of trials in which the target
object successfully reaches the predefined target position
above the table surface is defined by ∥pgoal−ptarget∥2 < 0.05.
We denote the success rate as SR to evaluate the performance
of each method.



Fig. 2. Framework of DexSinGrasp. Firstly, we adopt clutter arrangement curriculum learning to progressively improve the performance of our teacher
policy to address the challenge of training from scratch in dense or random clutter arrangements, and acquire two teacher policies for dense and random
arrangement tasks, respectively. We then collect data with visual observation from these two teachers and finally train a vision-based student policy via
behavior cloning, which better facilitates real-world deployment.

Fig. 3. Qualitative results on object singulation and grasping in simulation environments.

Average Steps. The average number of simulation steps
required to singulate and grasp the target object to goal
positions. The unsuccessful trials are excluded from the
calculation. We denote average steps as AS to evaluate the
efficiency of each method.

C. Implementation Details

We use Isaac Gym for clutter arrangement curriculum
learning. For each D/R-n task, we used 1000 simulated
environments and trained the PPO policy network over 10K
iterations with a learning rate of 3e-4. We then evaluated
and selected the best-performing iteration as the policy for
the next-stage clutter arrangement curriculum learning. The
student policy is trained over 200 epochs with a batch size
of 12 trajectories, each composed of 300 steps of recorded
simulation data and a learning rate of 1e-4.

D. Main Results and Analysis

We tested the dense-clutter teacher policy and the distilled
vision student policy on D-4, D-6, and D-8 tasks and
compared their performance with the GraspReward-only and
multi-stage singulation methods. All methods were evalu-
ated in 10 environments over 10 episodes each, except the

multi-stage singulation policy, which was tested in a single
environment for 100 episodes due to its non-parallelizable
stage-switching mechanism.

Based on the results presented in Tab. I, the multi-stage
singulation policy demonstrates a higher success rate than the
GraspReward-only baseline, suggesting that the singulation
stage plays a positive role in task performance. Our dense-
clutter teacher policy achieves a significantly higher average
success rate of 98%, with a substantially lower AS compared
to the multi-stage singulation policy. While the distilled
vision student policy exhibits a lower SR than the teacher
policy, it still outperforms the baseline policies. It maintains
an AS comparable to that of the teacher policy. Our results
show that while combining separate singulation and grasping
policies can achieve a higher success rate, it increases action
steps and reduces efficiency, whereas our unified policy
balances effectiveness and efficiency for grasping in clutter
environments, addressing Q1.

In response to Q2, we evaluate the random-clutter teacher
policy and the distilled vision student policy on R-4, R-
6, and R-8 tasks with different object arrangements to
test the generalization ability of our policy. In Tab. II, we



TABLE I
EVALUATION ON DENSE ARRANGEMENTS.

Method
SR(%)↑ AS↓

D-4 D-6 D-8 Avg. D-4 D-6 D-8 Avg.

GraspReward-Only 66% 40% 10% 39% 152 180 223 185

Multi-Stage Singulation 77% 76% 64% 72% 169 181 199 183

Ours (Teacher) 98% 99% 97% 98% 96 113 133 114

Ours (Student) 90% 92% 84% 89% 102 108 132 114

first observe the baseline policies perform better in random
arrangements than dense arrangements, as the presence of
relatively loose gaps provides more opportunities to grasp
the target object directly. Our teacher policy can achieve an
average SR of 96% across all tasks. While the distilled vision
student policy exhibits an SR drop compared to the teacher
policy, it still outperforms the baseline policies with a higher
SR and lower AS for better task efficiency.

TABLE II
EVALUATION ON RANDOM ARRANGEMENTS.

Method
SR(%)↑ AS↓

R-4 R-6 R-8 Avg. R-4 R-6 R-8 Avg.

GraspReward-Only 73% 61% 33% 56% 134 148 182 155

Multi-Stage Singulation 88% 72% 78% 79% 136 120 143 133

Ours (Teacher) 97% 96% 94% 96% 88 86 90 88

Ours (Student) 91% 86% 88% 88% 81 82 89 84

During training and testing, we found the policy learned
several singulation patterns, including finger flickering, palm
rubbing, and finger-palm vibration, to displace, nudge, or
destabilize surrounding objects, effectively singulating tar-
gets in cluttered environments, as shown in Fig. 3.

E. Clutter Arrangement Curriculum Learning Analysis

The clutter arrangement curriculum learning process is
designed to enhance success rates in increasingly complex
scenes. We evaluate each policy trained on D/R-n tasks
under various curriculum directions—dense to random (SO,
D-4, D-6, D-8, R-4, R-6, R-8), random to dense (SO, R-
4, R-6, R-8, D-4, D-6, D-8), and no curriculum (training
each D/R-n task from scratch)—as shown in Tab. III. For
the dense-to-random curriculum, we use the best-performing
checkpoints at iterations 2k, 7.8k, 9.2k, 4.6k, 2.9k, 2.7k, and
2.5k respectively from trained 10k iterations; for the random-
to-dense curriculum, at iterations 2k, 6.5k, 7.5k, 3.3k, 5.2k,
7.4k, and 1.6k respectively from trained 10k iterations.
The curriculum with dense-to-random direction consistently
yields the best performance across tasks. The results indicate
that with the progression of the curriculum, the teacher policy
demonstrate greater accuracy and efficiency, addressing Q3.

F. Real-World Experiments

We conduct real-world experiments using a uFactory
xArm6 robot equipped with the LEAP Hand [19] and two

TABLE III
EVALUATION ON DIFFERENT CURRICULUMS.

Curriculum
SR(%)↑ on D-n tasks SR(%)↑ on R-n tasks

D-4 D-6 D-8 Avg. R-4 R-6 R-8 Avg.

Training from scratch 90% 75% 97% 87% 74% 26% 0% 33%

Random-to-dense 96% 87% 81% 88% 97% 92% 97% 95%

Dense-to-random 98% 92% 97% 96% 96% 96% 94% 95%

Fig. 4. Real-world experiment setting.

side view Realsense D435 RGB-D cameras, as illustrated
in Fig. 4. We mount our LEAP hand vertically to the
end-effector of the xArm6. In the experimental setup, we
calibrate the camera intrinsics with 1280x720 RGB and depth
pixels and fuse two RGB-D real-time point cloud outputs
in the world coordinate system using the Iterative Closest
Point (ICP) algorithm. We go through a spatial position
filtering and downsampling step to obtain 1024 clean points
at 20Hz.We accomplish singulation and grasping on the
D-4, D-6, D-8, R-4, R-6, and R-8 tasks in the real-world
environment. For experiment videos, please visit our website
at https://nus-lins-lab.github.io/dexsingweb/.

IV. CONCLUSION

Our proposed approach demonstrates that a unified re-
inforcement learning framework can effectively integrate
object singulation and grasping in densely or randomly
cluttered environments using dexterous robotic hands. The
integration of clutter arrangement curriculum learning and
policy distillation further enhances the generalization of the
vision-based policy, ensuring successful skill transfer from
simulation to real-world applications. Additionally, the intro-
duction of various cluttered grasping environments provides
a comprehensive testbed for evaluating performance across
various clutter configurations, reinforcing the superiority of
our approach over conventional methods. Future work can
extend these promising results by addressing more complex
object arrangements and incorporating a broader range of
object shapes and dynamic clutter scenarios to push the limits
of the current framework.

https://nus-lins-lab.github.io/dexsingweb/
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APPENDIX

A. Problem Formulation

Specifically, we consider a tabletop scene with the target
object btarget and n surrounded objects {bi}ni=1. This setup
represents common cluttered scenarios and introduces signif-
icant grasping challenges due to the tight arrangement of sur-
rounding objects. The target object is positioned at the center
of the clutter, making direct grasping difficult. To overcome
this challenge, we train robots to singulate the target object
from its surroundings, thereby creating sufficient space for
inserting fingers during dexterous grasping.

1) Observation Space: The observation space of this
singulation and grasping is defined as

st ≜
[
sRt , at−1, s

O
t , d

HO
t , Tt, d

S
t

]
∈ R168, (2)

where the proprioceptive robot state sRt ∈ R72 includes
the wrist pose as well as joint positions, velocities, and
forces for each finger and wrist dummy joints; the action
at−1 at the previous time step will be discussed later; the
object state sOt ∈ R16 consists of the object’s position
and quaternion, linear and angular velocity, and object-hand
position difference; the hand-object distances dHO

t ∈ R21

present the minimum distances between each hand links and
points on the object; the time encoding Tt ∈ R29 encodes the
current time along with a sine-cosine time embedding. The
singulation distance dSt ∈ R8 presents the distances between
the target object and surrounding objects, indicating the level
of enclosure within the clutter. If the number of surrounding
objects satisfies n < 8, the corresponding dimensions are
padded with 0.

2) Action Space: The action space at ≜
[
aPt , a

F
t

]
∈ R22

includes palm delta pose aPt ∈ R6 and linearly smoothed
finger joint positions aFt := λaFt + (1 − λ)aFt−1 ∈ R16 for
each finger.

B. Unifying Dexterous Object Singulation and Grasping

TABLE IV
REWARD-RELATED TERMS

Term Equation

dP minpi=1 ∥p
palm − p

target
i ∥2

rP −2.0× dP

dJ
∑m

j=1 minpi=1 ∥p
link
j − p

target
i ∥2

rJ −dJ

rF −
∑h

j=1 minpi=1 ∥p
fingertip
j − p

target
i ∥2

rL 0.2 + 0.6× aPtz

rG 0.9− 2.5× ∥pgoal − ptarget∥2
rS 50×minni=1 ∥ptarget − pi∥2
rB (1 + 10× ∥pgoal − ptarget∥2)−1

The terms in the piece-wise reward function are summa-
rized in Tab. IV, where t subscript is omitted for simplicity.
In the rewards, rPt encourages the hand palm to stay close
to the target object; rJt and rFt both encourage the hand to
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grasp the target object; rLt encourage the hand to lift the
target object once contact is made, rSt encourages separation
of the target object from the obstacles, rGt encourages the
hand to move to the goal position; rBt is a bonus term for
a successful singulation and grasping process; dPt is the
minimum distance between hand palm and target object;
dJt is the minimum distance between hand links and target
object.

{
ptarget
i

}p

i=1
are the positions of p points on the target

object; ppalm is the palm position of the hand;
{
plink
j

}m

j=1

are the positions of m links of the hand;
{
pfingertip
j

}h

j=1
are

the positions of h fingertips of the hand; pgoal and ptarget are
the goal position and current position for the target object;
{pi}ni=1 are the positions of n obstacles; aPtz refers to the
palm translation in the +z direction, which corresponds to
the lifting motion of the target object.

The reward function consists of an approach reward that
encourages the hand to move toward the target object and a
lifting reward that promotes object elevation after contact
is established. The singulation reward rSt is incorporated
into both components, incentivizing the hand to separate
the target object from surrounding obstacles. The transition
between these two reward stages is achieved by a contact
criterion specified by dPt < 0.06 and dJt < 0.2. These values
are selected such that the palm and fingers are close enough
for a successful full-hand grasping, ensuring grasp stability
and robustness in cluttered environment.

C. Clutter Arrangement Curriculum Learning

1) Cluttered Environment Generation: We introduce a
cluttered environment generation module designed to create
diverse object-based tasks. Our cluttered environment pri-
marily consists of block-shaped objects with varying quan-
tities (from 4 to 8) and shapes (1×1, 1×2, and 1×3 blocks).
Based on the degree of enclosure, the tasks are generally
divided into two categories, as shown in Fig. 5.

Dense Arrangements. This type of task arranges different
quantities of the surrounding 1×1 blocks densely near the
target object to create an extreme scenario that challenges
the singulation and grasping policies under dense and narrow
conditions.

Random Arrangements. This type of task arranges ob-
jects of different quantities and shapes randomly around the
target object for grasping, mainly to test the generalization
of the singulation and grasping policies.

For simplicity, we use D/R-n to denote task setting with
n objects for dense (D) or random (R) arrangements, such
as D-8.

2) Clutter Arrangement Curriculum Learning: Since it is
challenging to learn object singulation and grasping with
dexterous hands in compact or diverse environments, such
as the D-8 or R-8 tasks, we design clutter arrangement
curriculum to gradually increase the object diversity and
spatial complexity. We begin by training a grasping policy
designed exclusively for single-object scenarios, where the
objective is to grasp a single block. Based on this initial
policy, we continuously follow the curriculum and train on

Fig. 5. We introduce a cluttered environment generation module to create
diverse object settings, including different obstacle quantities from 0 to
8, dense and random arrangements, various poses, and block shapes. For
simplicity, we only show obstacles with numbers 4 to 8.

increasingly complex singulation and grasping tasks. Specif-
ically, we first train on dense arrangements with D-4, then
D-6, and finally D-8 tasks. We then use the expert obtained
from the D-8 training as the starting point for training on
random arrangements with R-4, R-6, and R-8 tasks. At the
end of the training process, we extract the final policy from
the D-8 training as the dense-clutter teacher policy (optimal
on D-n tasks) and the final policy from the R-8 training as
the random-clutter teacher policy (optimal on R-n tasks).

D. Teacher-Student Policy Distillation

1) Data Collection for Distillation: The data collection
phase involves preparing training data using two distinct
teacher policies: the dense-clutter teacher policy for the
D-4/6/8 tasks and the random-clutter teacher policy for
the R-4/6/8 tasks, respectively. In total, 1000 episodes of
observation and action data, along with scene point cloud,
are prepared as {(sVt , at)}, where sVt will be discussed later.
The dataset is structured so that the D-4 and R-4 tasks each
account for 10% of the total, while the D-6, D-8, R-6, and
R-8 tasks each contribute 20%. This balanced distribution
ensures a comprehensive representation of varying task com-
plexities, which is critical for effective policy distillation and
better generalizability.

2) Vision-Based Policy Behavior Cloning: Our vision-
based student policy uses scene point cloud instead of
object poses, which cannot be accurately obtained in such
heavily occluded, cluttered environments. We specifically
use behavior cloning to train the student policy, with data
collected from two teachers. The different visual observation
sVt for the vision-based student policy is defined as

sVt ≜
[
sRt , at−1, s

O′

t , dHO
t , Tt, v

t
]
∈ R275 (3)

where singulation distance dSt is removed from st in the
state-based teacher policy, and object state sOt ∈ R16 is
substituted with center position of scene point cloud sO

′

t ∈
R3 as the object state is hard to acquire. Moreover, the vision-
based policy includes the visual features vt ∈ R128 encoded
from the scene point cloud using a pre-trained point cloud
encoder from UniGraspTransformer [9], with the encoder
weights frozen during the policy distillation.
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