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ABSTRACT

We introduce mpLLM, a prompt-conditioned hierarchical mixture-of-experts
(MoE) architecture for visual question answering over multiparametric 3D brain
MRI (mpMRI). mpLLM routes across modality-level and token-level projection
experts to fuse multiple interrelated 3D modalities, enabling efficient training with-
out image–report pretraining. To address limited image-text paired supervision,
mpLLM integrates a synthetic visual question answering (VQA) protocol that gen-
erates medically relevant VQA from segmentation annotations, and we collaborate
with medical experts for clinical validation. mpLLM outperforms strong medical
VLM baselines by 5.2% on average across multiple mpMRI datasets. Our study
features three main contributions: (1) the first clinically validated VQA dataset for
3D brain mpMRI, (2) a novel multimodal LLM that handles multiple interrelated
3D modalities, and (3) strong empirical results that demonstrate the medical utility
of our methodology. Ablations highlight the importance of modality-level and
token-level experts and prompt-conditioned routing. We have included our source
code in the supplementary materials and will release our dataset upon publication.

1 INTRODUCTION

Multiparametric MRI (mpMRI) plays a significant role in diagnosing, grading, treating, and assessing
treatment responses for brain tumors and other intracranial lesions (Sawlani et al., 2020; Wang
et al., 2022a; Cherubini et al., 2016). Describing imaging that involves a complex pattern of brain
lesions across multiple regions can be challenging and time-consuming for clinicians. Consequently,
several studies have been conducted to develop image recognition and localization models to support
clinicians (Ghadimi et al., 2025; Rathore et al., 2018; Wang et al., 2022a; Li et al., 2023c; Osman,
2019).

However, existing models have limited clinical utility because clinicians cannot effectively pose natu-
ral language queries about mpMRI. While 3D vision-language models (VLMs) have been developed
for other imaging domains, current architectures do not naturally leverage the interdependencies
among mpMRI modalities (Li et al., 2023a; Wu et al., 2023; Bai et al., 2024; Xin et al., 2025). Addi-
tionally, the standard multi-image approach multiplies the number of vision tokens by the number of
images, which significantly increases computational constraints (Wu et al., 2023).

We introduce mpLLM, a prompt-conditioned hierarchical mixture-of-experts (MoE) for VQA over
mpMRI. Our approach is an extension of the LLaVa architecture Liu et al. (2023b), tailored to
multiparametric MRI. In our approach, instead of the simple LLaVa-based projection function, we
leverage a prompt-conditioned hierarchical MoE projection function, which generates a weighted
average of high-level expert blocks to fuse the different sequences in multiparametric MRI for a
more effective and efficient visual token representation for the LLM. Unlike modality-specific or
modality-agnostic vision encoders (which must be trained independently and are difficult to train), we
use lightweight projection functions that train end-to-end with the language model during fine-tuning.

To address limited image-text paired supervision, we pair mpLLM with a synthetic VQA protocol that
derives medically relevant VQA from segmentation annotations, and we obtain clinician validation of
both the generated data and model responses. In contrast to prior works, we fine-tune our model using
next-token prediction directly on the VQA dataset without pretraining on a paired imaging-report
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Answer:
”The volume of
Resection Cavity is
5-10%.”

Answer:
“The insights indicates
that the volume of
Resection Cavity is <1%.”

Clinical Question:
”Can you provide insights concerning
the volume of Resection Cavity?"
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Figure 1: High-level comparison between LLaVA-Med and mpLLM. While LLaVA-Med uses a
standard projection layer, our method uses a hierarchical MoE block which ingests both the prompt
and imaging to produce prompt-conditioned vision tokens that leverage all the 3D modalities.

dataset. We also train a multi-task head end-to-end with the multimodal LLM for improved task
proficiency and more reliable evaluation. In summary, our research makes these key contributions:

1. In collaboration with medical experts, we introduce a synthetic VQA protocol that produces
the first clinically validated VQA dataset for 3D brain mpMRI.

2. We design mpLLM, a multimodal LLM that uses a prompt-conditioned hierarchical MoE to
effectively leverage the interdependence between 3D modalities in mpMRI.

3. Strong empirical results that support our methodology as a foundation for future research
with multimodal LLMs in brain mpMRI.

2 RELATED WORK

Medical vision-language models Most vision-based medical multimodal LLMs can be broadly
classified into CLIP-based discriminative models (Radford et al., 2021; Wang et al., 2022b; Eslami
et al., 2023; Zhang et al., 2023a; Xu et al., 2024; Zhou et al., 2024; Huang et al., 2023) and LLM
decoder-based generative models (Zhang et al., 2023b; Li et al., 2023a; Moor et al., 2023). Although
discriminative models have proven helpful for various image recognition tasks, they possess limited
utility in generation tasks such as VQA or report generation. Several popular generative models
including MedVInt (Zhang et al., 2023b), LLaVA-Med (Li et al., 2023a), and MedFlamingo (Moor
et al., 2023) share very similar architectures. However, these architectures and many others (Liu et al.,
2024c; Lin et al., 2023; Li et al., 2023b; Zhu et al., 2024a; Lin et al., 2025; Zhang et al., 2025b; Nath
et al., 2024; Guo et al., 2025) are designed specifically for 2D medical imaging and are not tailored
to handle multiple 3D medical image modalities.

Although several 3D VLMs exist for natural images (Zhu et al., 2024b; Li et al., 2024b; Zhu et al.,
2023), they require access to extremely large annotated datasets, which are often unavailable in
medical contexts. While a few 3D VLMs have been developed for medical imaging, these methods
have certain limitations. In one recent paper, researchers adapted the LLaVA-Med architecture to
utilize spatial pooling and pretrain a 3D vision encoder with 700k radiology images (Bai et al., 2024).
In another paper, researchers pretrain segmentation modules to generate brain imaging reports (Lei
et al., 2024). In recent work, researchers exploit vision-language pretraining for CT report generation
(Liu et al., 2023a; Chen & Hong, 2024; Blankemeier et al., 2024; Xin et al., 2025; Cao et al., 2025; Li
et al., 2025a). However, these prior works assume a large paired imaging-report pretraining dataset,
which is infeasible to collect and imposes a significant training burden.

Furthermore, previous methods focus on report generation instead of VQA, leading to less precise
feedback regarding model strengths and weaknesses. Additionally, some models train directly on
segmentation annotations (Lei et al., 2024; Rui et al., 2024), which are impractical to obtain, especially
for novel use cases. Moreover, none of the previously discussed methods are tailored to handle
multiple interdependent 3D image modalities, like in mpMRI, as input.

Mixture-of-experts Previous work in MoE has concentrated on training and inference efficiency
(Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022; Zoph et al., 2022; Liu et al., 2024a),
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Figure 2: Detailed overview of our mpLLM pipeline.

transfer learning (Li et al., 2022; Zhong et al., 2022), class imbalance (Han et al., 2024), and multi-
domain information (Zhang et al., 2024). There have also been earlier efforts with multimodal LLMs,
covering sparsity learning (Lin et al., 2024), task interference (Shen et al., 2025), and embedding
models (Li & Zhou, 2024). Related to our work, several studies have employed MoE with VLMs to
select between vision encoders and vision-language projections (Li et al., 2025b; Zong et al., 2024;
Wang et al., 2023; Ma et al., 2025). However, these studies address two modalities and do not account
for interactions between different 3D image modalities, which present additional challenges our work
seeks to address.

MoE also has various applications in the medical field. These applications include addressing missing
modalities (Yun et al., 2025; Novosad et al., 2024; Liu et al., 2024d), fairness (Wang et al., 2025),
pediatric care (Huy et al., 2025), parameter reduction and efficiency (Jiang et al., 2024; Nathani
et al., 2024), and super resolution (Lin et al., 2021). Additionally, several studies have focused on the
segmentation of multimodal medical imaging (Zhang et al., 2025a; Jiang & Shen, 2024). However,
no existing research has explored using MoEs for multiple interrelated 3D image modalities. This
area is particularly complex due to the need to project multiple interrelated vision modalities into the
language modality.

Medical VQA Datasets One of the primary challenges in report generation is evaluation: lexical
metrics such as BLEU, ROUGE-L, and BERTScore have been shown to correlate poorly with
radiologist evaluations (Yu et al., 2023). In contrast, VQA allows for more granular and interpretable
model evaluation. While there are several medical VQA datasets, many focus on 2D imaging (Liu
et al., 2024b; 2021; He et al., 2020; Lau et al., 2018). In a prior work, researchers used a scene
graph generator to generate surgical VQA (Yuan et al., 2024). In a recent work, researchers extracted
multi-task questions from structured lung cancer screening data (Niu et al., 2025). However, there
is no existing VQA dataset for 3D brain mpMRI due to a significant lack of source data for VQA
extraction. In our work, we remedy this by leveraging publicly available segmentation annotations as
source data.

3 METHODOLOGY

Brain mpMRI has several 3D imaging modalities. For a given modality m, let Im ∈ RC×D×H×W

denote the corresponding 3D volume, where C, D, H , and W represent the channel, depth, height,
and width, respectively. A 3D vision encoder hvis maps each modality to a sequence of image tokens
vm = hvis(Im) ∈ RT×dV , where T is the number of image tokens and dV is the vision embedding
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dimension. We apply spatial pooling to reduce the token length (reusing the symbol T for the pooled
length for simplicity) and then concatenate the pooled tokens across the M image modalities before
passing them to the hierarchical MoE.

Let v ∈ RM×T×dV denote the concatenated image modality embeddings. The hierarchical MoE
projects these embeddings into the LLM space, e = MoE(v, t) ∈ RM×T×dT , where MoE denotes
the hierarchical MoE block, t represents the text prompt, and dT is the LLM embedding dimension.
In practice we flatten the modality and token dimensions and provide (t, e) as a soft prompt to the
LLM for multi-task prediction and text generation. A detailed visualization of our approach can be
seen in Figure 2.

3.1 HIERARCHICAL MIXTURE-OF-EXPERTS FOR MULTIPARAMETRIC MRI PROJECTION

In what follows, we use the term expert exclusively for projection modules that map vision features
into the LLM embedding space, and the term router for the MLPs that output mixing weights over
experts. Each high-level expert block therefore consists of a router together with its associated
projection experts.

High-level router Our hierarchical MoE architecture includes a high-level router r(h) that assigns
weights over a set of high-level expert blocks {E(h)

1 , . . . , E(h)
H }, where H is the number of high-level

experts. These expert blocks operate at the image modality and image token levels. The router is
implemented as a two-layer MLP that takes as input the final hidden state of the language model
corresponding to the text prompt t. It produces a normalized weight distribution over expert blocks:
π(h)(t) = softmax(r(h)(t)) ∈ RH . Since task information is embedded within the text prompt, the
router implicitly infers the task, enabling high-level experts to specialize in different task proficiencies.

High-level image modality-level and image token-level experts Our hierarchical MoE includes
high-level experts operating at different granularity levels: image modality-level and image token-
level. Each high-level expert block consists of a two-layer MLP low-level router r(l) and an associated
set of low-level projection experts {W (l)

1 , . . . ,W
(l)
L }, where L is the number of low-level experts

within the block.

The image modality-level expert block uses a low-level router that takes as input the concatenated
[CLS] tokens from all image modalities (e.g., T1, T2) and outputs modality-level weights over the
corresponding low-level experts: π(l)

mod(v) = σ(r
(l)
mod(v)) ∈ RL. In contrast, the token-level expert

block uses a low-level router that receives, for each token position i, the i-th image tokens from all
modalities and outputs token-level weights π

(l)
tok(v) = σ(r

(l)
tok(v)) ∈ RL×T . As discussed in prior

work (Li et al., 2024a), providing weights at different granularities improves task performance by
enhancing domain generalizability.

Low-level image modality-specific and image modality-agnostic (shared) experts Each low-
level expert W represents a projection transformation from the vision encoder embedding space to
the LLM embedding space: W : RNI×dI → RNI×dT . We utilized a simple linear transformation
for the projection transformation as in the original LLaVa paper (Liu et al., 2023b). Each image
modality embedding is processed through a modality-specific expert and a modality-agnostic (shared)
expert. The modality-specific expert emphasizes extracting image modality-specific features, whereas
the modality-agnostic expert focuses on deriving common features from all image modalities. The
parameters for the modality-specific expert are unique to each image modality (T1Gd, T1, T2, and
FLAIR), while those for the modality-agnostic expert are consistent across all image modalities.

Each image modality is passed through both low-level experts and then summed embedding
dimension-wise. The overall formulation for the hierarchical MoE is as follows:

MoE(v, t) =

H∑
h=1

π
(h)
h (t)

M∑
m=1

(
α(h)
m W (h)

m (vm) + β(h)
m W

(h)
shared(vm)

)
, (1)
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Table 1: Statistics for the synthetic VQA datasets.

Dataset # questions # mpMRI # unique questions # unique answers
GLI 38,904 1,621 38,023 36,773
MET 11,718 651 11,607 11,284
GoAT 24,318 1,351 23,859 23,223

where h indexes the high-level expert blocks, m indexes the image modalities, and α
(h)
m and β

(h)
m are

the modality-specific and modality-agnostic weights produced by the corresponding low-level router
(which sum to one within an expert block h). Our validation experiments on the GLI dataset found
that the optimal number of high-level experts was 16, corresponding to the number of labels times
the number of tasks.

The fused image token embeddings are combined with the text prompt token embeddings. Then, these
embeddings are input into the LLM decoder at the token embedding layer for multi-task prediction
and text generation.

3.2 TRAINING OBJECTIVES

3.2.1 SYNTHETIC VQA PROTOCOL

Because of the lack of brain mpMRI VQA data, we propose a novel method of synthetic VQA
generation that leverages the publicly available brain mpMRI segmentation data. To generate relevant
VQA data, we consult with clinicians to identify important topics that can be extracted from the label
masks, focusing on mask volume relative to brain volume (Kaifi, 2023), brain region localization
(Lau et al., 2018), shape (Ismail et al., 2018), and spread (Islam et al., 2019). For each label mask,
we compute the quantities using standard formulas and validate the thresholds with synthetic masks
and a subset of data. To emulate the subjectivity found in medical reports, we categorize each of
the quantities based on their magnitude using terminology similar to that found in medical reports.
Rather than using an LLM, we employ a rules-based method to assign medical terms to the quantities,
ensuring our approach is clinically relevant and highly reliable. We assign “N/A” if the label is not
found.

Volume To calculate the relative mask volume, we determine the number of mask pixels and divide
by the number of brain pixels in the volume (which are the nonzero pixels in the skull-stripped T1
image modality). The subjective labels we use are “< 1%”, “1 − 5%”, “5 − 10%”, “10 − 25%”,
“25− 50%”, and “50− 75%”.

Region For the BraTS GLI volumes, we use the Nibabel python library (Abraham et al., 2014) to
register the volumes to the AAL atlas (version SPM12) Rolls et al. (2020) and extract the following
brain regions: “frontal”, “parietal”, “occipital”, “temporal”, “limbic”, “insula”, “subcortical”, and
“cerebellum”. For the BraTS MET and GoAT volumes, we register the volumes to the LPBA40 atlas
(in SRI24 space) (Shattuck et al., 2008) and extract the following brain regions: “frontal”, “parietal”,
“occipital”, “temporal”, “limbic”, “insula”, “subcortical”, “cerebellum”, and “brainstem”. The percent
coverages of the segmentation masks with the atlases are 67.3%, 70.9%, and 57.7% for the GLI,
MET, and GoAT datasets respectively.

Shape We first quantify each mask’s overall size and compute classical 3-D shape metrics (spheric-
ity, elongation, flatness, solidity, compactness). If the mask is tiny, it is classified as “focus”; otherwise,
we classify it as “round,” “oval,” “elongated,” or “irregular” by comparing its sphericity and elon-
gation values to empirically chosen thresholds that correspond to near-sphere, mildly flattened, and
strongly stretched geometries.

Spread We identify all disconnected islands, noting the largest as the “core,” and compute what
proportion of the total mask volume it occupies. If there is only one island, the pattern is “single
lesion”; if multiple islands are present but the core retains ≥70% of the volume, it is described as
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“core with satellite lesions”; otherwise, when no dominant island exists, the distribution is marked
“scattered lesions.”

Question-answer pair generation After computing the previous quantities for each label mask,
we create a dataset that simulates the natural variability of human input. First, we consider all
combinations of the four major tasks to create multi-task question-answer pairs. After we have the 15
question-answer pair types, we use ChatGPT-4o to generate approximately 3000 perturbations of
each question-answer pair (without affecting the label and answer term) that emulates the language a
clinician would use. We also add question-answer pairs with partially out-of-scope and completely
out-of-scope tasks to improve the model’s self-awareness of its capabilities. Thus, for each label
and mpMRI in each dataset, we sample four multitask question-answer pairs without replacement
such that each major task is addressed in at least one question-answer pair, one partially out-of-scope
question-answer pair, and one completely out-of-scope question-answer pair. Examples of generated
question-answer pairs can be seen in the Appendix in Table 6. The answers are used as supervision
for next-token prediction for the multimodal LLM.

3.2.2 MULTI-TASK HEADS

For increased task proficiency and more accurate task evaluation, we train a multi-task head end-to-
end with the multimodal LLM. After providing the soft-prompt to the multimodal LLM, we extract the
hidden state from the last layer and apply task-specific heads (which consist of a single linear layer)
to generate multi-task predictions. For volume, shape, spread, and out-of-scope task identification,
the task is multi-class classification, and the associated loss is categorical cross-entropy; whereas for
region localization, the task is multi-label classification, and the associated loss is multi-label binary
cross-entropy. These losses are added to the next-token prediction loss to produce our multi-task loss:

L = LNext-token + LVolume + LRegion + LShape + LSpread + LOut-of-scope (2)

4 EXPERIMENTS

4.1 DATASETS DETAILS

For our synthetic VQA protocol, we leverage the 2024 Brain Tumor Segmentation (BraTS) challenge
(LaBella et al., 2024), which provides a standardized benchmarking environment for automated brain
tumor segmentation. All datasets comprise of co-registered multiparametric MRI scans (T1, T1Gd,
T2, FLAIR) at 1mm3 resolution, skull-stripped and manually annotated by experts. To enable fair
comparison and manage GPU memory, all BraTS sequences were resampled to 32× 256× 256. This
allowed for compatibility with baseline methods, such as M3D (Bai et al., 2024) and Med3DVLM
(Xin et al., 2025). We consider three challenges in BraTS: GLI, MET and GoAT. The challenges
are collected from over ten institutions and encompass diverse pathological contexts and imaging
protocols.

GLI (Adult Glioma Post Treatment) focuses on post-treatment diffuse glioma segmentation and
consists of multi-institutional routine post-treatment clinically-acquired multiparametric mpMRI
scans of glioma. The task requires the delineation of enhancing tumor (ET), non-enhancing tumor
core (NETC), surrounding FLAIR hyperintensity (SNFH), and resection cavity (RC) (de Verdier
et al., 2024).

MET (Brain Metastases) contains a retrospective compilation of treatment-naive brain metastases
mpMRI scans obtained from various institutions under standard clinical conditions. The challenge
addresses the segmentation of small metastatic lesions using a 3-label system (NETC, SNFH, ET)
and demonstrates variable tumor component distribution across cases (Moawad et al., 2024).

GoAT (Generalizability Across Tumors) assesses algorithmic generalizability across different
tumor types (i.e., different number of lesions per scan, lesion sizes, and locations in the brain),
institutions (i.e., different MRI scanners, acquisition protocols), and demographics (i.e., different age,
sex, etc.). The challenge uses consistent labels (necrosis, edema/invaded tissue, and enhancing tumor)
despite varying tumor morphology to evaluate algorithm adaptability to new disease types with

6
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Table 2: Comparison of task performance for all models on all datasets with accuracy metric with
standard deviation.

Dataset Method Volume Region Shape Spread Mean

GLI

RadFM (Wu et al., 2023) 13.1±0.8 68.5±0.5 17.6±0.9 17.0±0.9 29.0±0.4

Med3DVLM (Xin et al., 2025) 31.3±1.1 72.9±0.4 42.0±1.2 37.5±1.2 45.9±0.6

M3D (Bai et al., 2024) 39.7±1.2 73.4±0.5 53.7±1.1 52.9±1.2 54.9±0.6

LLaVA-Med (Li et al., 2023a) 40.2±1.2 76.3±0.5 52.1±1.2 49.7±1.3 54.6±0.7

mpLLM (Ours) 62.0±1.2 83.0±0.4 57.6±1.2 57.2±1.2 64.9±0.6

MET

RadFM 12.8±1.3 69.5±1.0 13.8±1.5 13.3±1.3 27.3±0.7

Med3DVLM 44.4±1.9 70.1±1.0 34.3±1.9 35.2±1.8 46.0±1.0

M3D 66.7±1.9 73.3±0.9 50.9±1.9 43.4±1.9 58.6±1.0

LLaVA-Med 45.9±2.1 68.5±1.0 38.9±2.0 34.7±1.9 47.0±1.0

mpLLM (Ours) 65.8±2.0 76.4±0.8 52.9±2.0 52.7±2.0 62.0±1.0

GoAT

RadFM 11.9±1.0 64.7±0.6 35.1±1.4 28.1±1.3 34.9±0.6

Med3DVLM 33.0±1.5 65.4±0.6 58.4±1.4 51.2±1.4 52.0±0.7

M3D 57.6±1.5 75.4±0.6 76.0±1.2 65.5±1.4 68.6±0.7

LLaVA-Med 59.4±1.4 76.7±0.5 76.4±1.2 67.2±1.3 69.9±0.6

mpLLM (Ours) 64.4±1.4 77.2±0.5 73.4±1.3 67.8±1.3 70.7±0.7

limited training data (de Verdier et al., 2024; Moawad et al., 2024; LaBella et al., 2023; Kazerooni
et al., 2024; Adewole et al., 2023).

To generate the train, validation, and test sets, we randomly sample 80%, 10%, and 10% from the
imaging studies. For GLI we generated 31,104, 4,176, and 3,624 question-answer pairs for the train,
validation, and test sets based on 1,621 mpMRIs. For MET, we generated 9,090, 1,368, and 1,260
question-answer pairs for the train, validation, and test sets, based on 651 mpMRIs. For GoAT, we
generated 19,440, 2,430, and 2,448 question-answer pairs for the train, validation, and test sets, based
on 1351 mpMRIs.

Clinical validation

We collaborated with two radiologists who annotated 20 mpMRIs from the BraTS-GLI test set, 10
mpMRIs from the BraTS-MET test set, and 10 mpMRIs from the BraTS-GoAT test set with questions
spanning four tasks and four findings for the BraTS-GLI dataset and three findings for the BraTS-
MET and BraTS-GoAT datasets, yielding a total of 560 questions. We used 10 annotated mpMRIs
from BraTS-GLI for validation to improve the task label thresholds for the synthetic data. We used
the other 30 annotated mpMRIs to evaluate the interannotator agreement between the synthetic data
and the radiologist, obtaining 55.1% accuracy and compared this with the agreement between the two
radiologists, obtaining 58.9% accuracy (see Table 10). We observe that the accuracies are very similar,
indicating that the synthetic data quality is comparable to radiologist-annotated data. The primary
reason that the synthetic data agreement accuracy is reduced relative to the second annotator is due to
the region accuracy, which is primarily dependent on the quality of the brain-atlas registration.

To assess the quality of our synthetic questions, a radiologist evaluated the clarity of 160 synthetic
questions from 10 mpMRIs from the BraTS-GLI test set using a binary scoring system (1 = valid,
0 = invalid). The synthetic questions achieved a 92.2% validity rate, indicating high acceptability.
More statistics about the synthetic datasets can be seen in Table 1, and more details can be found in
Appendix A and B.

4.2 EXPERIMENTAL SETTINGS

Models In our experiments, we utilized the Phi-3-Mini-4K-Instruct LLM. We also explored utilizing
the Llama models and chose Phi-3 because of the increased efficiency and negligible performance
benefits of the Llama models. For versatility and generality, we utilize the 3D Vision Transformer
(3D ViT) (Dosovitskiy et al., 2020) as the vision encoder and use medically pretrained weights (Bai
et al., 2024).
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Figure 3: Heatmap for correlation between high-level expert weight vectors for standard prompts in
the GLI dataset. NETC = non-enhancing tumor core, ET = enhancing tissue, SNFH = surrounding
FLAIR hyperintensity, RC = resection cavity.

Training We fine-tune the multimodal LLM using the loss defined in Equation 2 on the VQA
training dataset. We freeze the vision encoder while unfreezing the hierarchical MoE and LLM
weights. We train the model on the train dataset for 2 epochs. The LLM is trained with LoRA, setting
r to 16 and alpha to 32, with a dropout of 0.1. We employ a cosine learning rate scheduler that starts
at a learning rate of 2.0× 10−4.

Baseline models We compare our approach to several baseline models, including LLaVA-Med
(Li et al., 2023a), M3D (Bai et al., 2024), Med3DVLM (Xin et al., 2025), and RadFM (Wu et al.,
2023)1. To process the multiple 3D MRI image modalities, we use a multi-image approach, in
which we concatenate the image tokens generated from each MRI image modality from a shared
projection layer and vision encoder (Wu et al., 2023). Because LLaVA-Med is not implemented
with a 3D vision encoder, to ensure a fair comparison, we test it with our model’s vision encoder
(Bai et al., 2024). Similar to our method, the vision encoder is frozen and only the projection layer
and LLM are trainable. To provide a comparison to our model’s multi-task heads, which are trained
end-to-end with the rest of our framework, we independently train a new multi-task head. We use a
Phi3 language model with multi-task heads to predict the multi-task outputs given the prompt and text
generation. The model is trained on our train dataset and had 99.8% accuracy on the validation set.
Other hyperparameter settings mirror our method as closely as possible to ensure a fair comparison.

Evaluation For evaluating the models’ task proficiency, we use accuracy for volume, shape, spread,
and out-of-scope tasks, and per-label accuracy for the region task. We estimate the standard deviation
using 500 bootstrap resamples.

1We planned to evaluate Merlin (Blankemeier et al., 2024), but the report-generation model weights were not
publicly available at the time of submission.
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Table 3: Ablation study on the MoE architecture on the GLI validation set with accuracy metric.

Modality-level
MoE

Token-level
MoE

Prompt-based
MoE weights

Task
Mean

✗ ✗ ✗ 63.3
✓ ✗ ✗ 64.1
✗ ✓ ✗ 64.4
✓ ✓ ✓ 65.5

Computing environment All our experiments were mainly conducted using a single NVIDIA
A100 GPU on an internal cluster. Training our model on the GLI dataset took roughly 8 hours.

Table 4: Radiologist acceptance rate comparison between mpLLM and M3D.

Model Radiologist Acceptance Rate (%)

M3D 34.1
mpLLM 50.0

Table 5: Comparison of model performance for differentiating primary gliomas versus secondary
metastatic lesions

Model Accuracy AUROC

M3D 88.5 95.5
mpLLM 95.6 99.0

4.3 RESULTS

All model results across the evaluated datasets are presented in Table 2. Our model consistently
achieves strong performance across all task categories and datasets, outperforming the second-best
model by an average margin of 5.2%. Furthermore, it ranks first in nearly all sub-categories and
datasets, highlighting both its broad capabilities and strong generalizability.

Examining the memory usage, our model only required approximately 20 GB of GPU memory during
training and inference – significantly less than M3D, LLaVA-Med, and Med3DVLM, all of which
exceed 40 GB – suggesting the computational benefits of a fused vision token representation. In our
experiments, we also noticed that the top three models had above a 99.8% accuracy on out-of-scope
task identification, which suggests our dataset was effective at hallucination mitigation.

4.4 ABLATION STUDIES

The ablation study on the MoE architecture is in Table 3. Image modality-level and token-level
high-level MoE experts perform better than the single projection layer baseline approach. A prompt-
conditioned weighted combination of the different high-level experts performs the best.

Fine-grained results comparing our MoE-based approach and a single shared expert are in Table 14
and Table 15. The more complex multimodal reasoning is helpful for all tasks and findings, and
especially helpful for the volume task and SNFH finding. Fine-grained results comparing modality-
level MoE, token-level MoE, as well prompt-conditioned MoE on tasks as well as findings are in
Table 16 and Table 17. Token-level MoE is stronger in the volume, region, and spread tasks while
modality-level MoE is stronger in the shape task. For findings, token-level MoE is stronger with
the ET, SNFH, and RC findings while modality-level MoE is stronger with the NETC finding. The
prompt-conditioned MoE excels in all of them, suggesting that based on the question, it is able to
accurately combine the optimal token-level MoE or modality-level MoE blocks.

To qualitatively evaluate our architecture, we construct all 60 template task prompts from our GLI
dataset (four findings × 15 task combinations = 60 template prompts) and input them into our model’s

9
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high-level router to generate high-level expert weight vectors. We then calculate the correlation
between these weight vectors and generate a heatmap, which is in Figure 3. There’s high correlation
between expert weight vectors within the same finding, suggesting similar image features are extracted.
For findings that are closer anatomically, such as non-enhancing tumor core and enhancing tissue,
there is also relatively high correlation between the expert weight vectors. This is reasonable because
of their close proximity anatomically, which suggests similar extracted image features. For findings
like resection cavity and surrounding FLAIR hyperintensity that are more diverse anatomically from
the other findings, there’s much lower correlation, which again is sensible.

4.5 CLINICAL UTILITY

In order to validate the usefulness of the model generated responses, we collaborated with a radiologist
to conduct a user study. We created a clinical validation set of 208 questions stemming from 13 cases
from the GLI test set, each question focusing on either volume, region, shape, or spread (specifically
questions 1 through 4 as described in Appendix A). We had mpLLM as well as M3D (one of the
most competitive baseline models) provide responses to these questions and we asked the clinician
to independently evaluate each model’s response as sufficient or lacking. The results are in Table 4.
While there is still more work to be done before clinical deployment, the results are quite promising.
Additionally, we see a significant margin between our approach and the current baseline.

In order to further emphasize the importance of the model extracted features from brain mpMRI,
we have constructed an additional downstream task, which aims to differentiate primary gliomas
from secondary metastatic lesions based on imaging patterns, using features like volume, region,
shape, and spread. For this task, we combined the BraTS GLI and MET datasets, which have samples
with primary gliomas and secondary metastatic lesions respectively. Because our models are trained
with guard rails and indicate if tasks are outside of the scope of what they were trained on, we fitted
logistic regression models based on the model generated features on the train set to predict primary
glioma versus secondary metastatic lesions and evaluated them on the test set, which can be seen
in Table 5. mpLLM additionally performs well on this important clinical task, scoring 7 percentage
points and 4 percentage points higher than the M3D model on the accuracy and AUROC metrics
respectively.

5 CONCLUSION

We present mpLLM, a multimodal LLM with prompt-conditioned hierarchical MoE that routes across
modality- and token-level projection experts for mpMRI VQA, enabling efficient end-to-end fine-
tuning without paired image–report pretraining. With a clinician-validated synthetic VQA pipeline
derived from segmentation annotations, mpLLM improves over strong medical VLM baselines by an
average of +5.2% while using <50% GPU memory. Ablations highlight the modality/token experts,
prompt-conditioned routing, and an integrated multi-task head. Strong results on user studies as
well as downstream tasks suggest high potential for clinical use. Future work includes open-ended
VQA/report generation, broader multi-reader validation, and fairness analyses.

6 ETHICS STATEMENT

This work uses publicly available, fully de-identified BraTS datasets, minimizing risks to patient
privacy and data security. Our synthetic VQA questions are generated from segmentation annotations,
and both the generated questions and model outputs underwent clinician review to mitigate typical
risks of synthetic supervision. Nonetheless, fairness and bias remain open concerns: synthetic prompts
and limited demographic metadata can yield models that underperform for underrepresented groups
or clinical scenarios. The model is intended for research only and must not be used for autonomous
clinical decision-making; it is designed to abstain on out-of-scope queries, and any deployment
would require prospective, multi-site validation under qualified clinical oversight. In future work,
we will expand evaluations to demographically diverse cohorts where available, document dataset
composition and known limitations, and incorporate explicit fairness analyses and bias-mitigation
strategies alongside robustness and calibration assessments.
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7 REPRODUCIBILITY STATEMENT

We use a publicly available dataset and detail the full data-generation pipeline in Sections 3.2.1 and 4.1,
with additional information in Appendix A. We include documented code in the supplementary
materials, and report all experimental settings and computational resources in Section 4.2.
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neuroimaging with scikit-learn. Frontiers in neuroinformatics, 8:14, 2014.

Maruf Adewole, Jeffrey D Rudie, Anu Gbdamosi, Oluyemisi Toyobo, Confidence Raymond, Dong
Zhang, Olubukola Omidiji, Rachel Akinola, Mohammad Abba Suwaid, Adaobi Emegoakor, et al.
The brain tumor segmentation (brats) challenge 2023: Glioma segmentation in sub-saharan africa
patient population (brats-africa). ArXiv, pp. arXiv–2305, 2023.

Fan Bai, Yuxin Du, Tiejun Huang, Max Q-H Meng, and Bo Zhao. M3d: Advancing 3d medical
image analysis with multi-modal large language models. arXiv preprint arXiv:2404.00578, 2024.

Louis Blankemeier, Joseph Paul Cohen, Ashwin Kumar, Dave Van Veen, Syed Jamal Safdar Gardezi,
Magdalini Paschali, Zhihong Chen, Jean-Benoit Delbrouck, Eduardo Reis, Cesar Truyts, et al.
Merlin: A vision language foundation model for 3d computed tomography. Research Square, pp.
rs–3, 2024.

Weiwei Cao, Jianpeng Zhang, Zhongyi Shui, Sinuo Wang, Zeli Chen, Xi Li, Le Lu, Xianghua Ye,
Tingbo Liang, Qi Zhang, et al. Boosting vision semantic density with anatomy normality modeling
for medical vision-language pre-training. arXiv preprint arXiv:2508.03742, 2025.

Qiuhui Chen and Yi Hong. Medblip: Bootstrapping language-image pre-training from 3d medical
images and texts. In Proceedings of the Asian Conference on Computer Vision, pp. 2404–2420,
2024.

Andrea Cherubini, Maria Eugenia Caligiuri, Patrice Péran, Umberto Sabatini, Carlo Cosentino, and
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A ADDITIONAL INFORMATION REGARDING DATASET

In the following, we will describe the formulas used to derive the shape and spread descriptors for our
synthetic VQA protocol. Let M ⊂ Z3 be a binary mask of foreground voxels sampled with spacing
s = (sx, sy, sz) [mm] (typically sx = sy = sz = 1). Write ∆V = sxsysz for the physical volume
of one voxel and |M | for the number of foreground voxels.

Total volume
Vtot = |M |∆V [mm3].

Multiplicity We decompose M into 26-connected components M1, . . . ,MNc
(scipy ‘ndimage.label‘

with a unit “ball” structuring element) and record Nc.

Spread Let the core component index be i⋆ = argmaxi Vi. Define

fcore =
Vi⋆

Vtot
∈ [0, 1].

spread =


“single lesion” Nc = 1,

“core with satellite lesions” Nc > 1, fcore ≥ 0.7,

“scattered lesions” otherwise.

For each component Mi:

Component surface area Marching cubes (scikit-image ‘measure.marching cubes‘) produces a
triangular mesh (Vi,Fi) in real-world coordinates. The mesh area (which we describe as the surface
area) is

Ai =
∑

(p,q,r)∈Fi

1
2

∥∥(q − p)× (r − p)
∥∥
2
.

Component volume Vi = |Mi|∆V .

Component sphericity

Φi =
π1/3 (6Vi)

2/3

Ai
.

Component compactness

Ci =
Ai

Vi
.

Component principal-axis statistics Assemble voxel coordinates xj = (xj , yj , zj) ∈ R3 for j ∈
Mi. The covariance matrix Σi =

1
|Mi|

∑
j(xj − x̄)(xj − x̄)⊤ yields eigenvalues λ1 ≥ λ2 ≥ λ3 > 0.

Component elongation
Ei =

√
λ1/λ2.

Component flatness
Fi =

√
λ3/λ2.

Component solidity A convex hull (scipy ‘ConvexHull‘) provides volume V hull
i ;

Si =
Vi

V hull
i

.
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Metric aggregation

(Φ, E, F, S, C) =


(Φi⋆ , Ei⋆ , Fi⋆ , Si⋆ , Ci⋆) Nc = 1 or fcore ≥ 0.7,

1

Nc

Nc∑
i=1

(Φi, Ei, Fi, Si, Ci) otherwise.

Shape Convert the continuous metrics to one of five categories:

shape =



“focus” Vtot < 0.1 cm3 ( Vtot × 10−3 < 0.1 )

“round” Φ ≥ 0.85 ∧ E ≤ 1.3,

“oval” 0.60 ≤ Φ < 0.85 ∧ 1.3 < E ≤ 2.5,

“elongated” E > 2.5,

“irregular” otherwise.

The thresholds were set empirically on a development set of annotated masks and match clinicians’
qualitative intuition of near-spherical, mildly flattened, and strongly stretched geometries. All
computations are implemented in Python using scipy, scikit-image, numpy, and ndimage as shown in
the listing above.

Question augmentation details We use ChatGPT to generate question augmentations of our
multitask dataset. For generating question augmentations for the standard multi-task prompts, we first
provide this prompt “Please produce hundred alternative wordings that a clinician may use for the
following question and answer. Please include everything surrounded by curly braces {} as they are
because they are placeholders. Please generate the reworded question starting with “Q:” and reworded
answer starting with “A:” and separate each generated question-answer pair with a newline. Please
do not produce any additional text.” and append this to each of the multitask prompts below. We
produce 40 repetitions with a temperature of 1.0, top p of 1, and model “gpt-4o-mini-2024-07-18”.

1. Q: How large is the volume covered by {label}? A: The overall volume of {label} is
{volume}.

2. Q: Which region(s) of the brain is {label} located in? A: The {label} is located in {regions}.

3. Q: What is the shape of {label}? A: The shape of {label} is {shape}.

4. Q: How spread out is {label}? A: The spread of {label} is {spread}.

5. Q: How large is the volume of {label} and where is it located? A: The overall volume of
{label} is {volume}, and it is located in {regions}.

6. Q: How large is the volume of {label} and what is its shape? A: The overall volume of
{label} is {volume}, and its shape is described as {shape}.

7. Q: How large is the volume of {label} and how spread out is it? A: The overall volume of
{label} is {volume}, and it is characterized as {spread}.

8. Q: In which region is {label} and what is its shape? A: The {label} is located in {regions},
and its shape is described as {shape}.

9. Q: In which region is {label} and how spread out is it? A: The {label} is located in {regions},
and it is characterized as {spread}.

10. Q: What is the shape of {label} and how spread out is it? A: The shape of {label} is
described as {shape}, and it is characterized as {spread}.

11. Q: What is the volume, region, and shape of {label}? A: The overall volume of {label} is
{volume}, it is located in {regions}, and its shape is described as {shape}.

12. Q: What is the volume, region, and spread of {label}? A: The overall volume of {label} is
{volume}, it is located in {regions}, and it is characterized as {spread}.

13. Q: What is the volume, shape, and spread of {label}? A: The overall volume of {label} is
{volume}, its shape is described as {shape}, and it is characterized as {spread}.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Qualitative examples illustrating the four question types generated by our pipeline.

Type Question Answer

Single-task Could you identify the shape of the
Resection Cavity?

The shape of the Resection Cavity is
irregular.

Multi-task How do you quantify the volume of
Surrounding Non-enhancing FLAIR
hyperintensity, and what does its distri-
bution look like?

The total volume of Surrounding Non-
enhancing FLAIR hyperintensity is de-
scribed as 1–5%, characterized as core
with satellite lesions.

Partial-out-of-
scope

What areas does Surrounding
Non-enhancing FLAIR hyperintensity
encompass, what is its volume, and
synthesize findings into a comprehen-
sive care plan?

Surrounding Non-enhancing FLAIR
hyperintensity has a volume of 1–5%
in cerebellum, frontal and parietal.
Synthesizing this into a care plan is
outside my domain.

Out-of-scope How do genetic factors influence the
development of Non-Enhancing Tu-
mor in adolescents?

I cannot provide information regarding
the influence of genetic factors on the
development of Non-Enhancing Tu-
mor in adolescents.

14. Q: What is the region, shape, and spread of {label}? A: The {label} is located in {regions},
its shape is described as {shape}, and it is characterized as {spread}.

15. Q: What is the volume, region, shape, and spread of {label}? A: The overall volume of
{label} is {volume}, it is located in {regions}, its shape is described as {shape}, and it is
characterized as {spread}.

For generating question augmentations for the partially out-of-scope multi-task prompts, we first
provide this prompt “Please produce hundred alternative wordings that a clinician may use for the
following question and answer and incorporate an additional clinical task or tasks which the model
cannot solve in the reworded question. These can be before, after, or interspersed between the other
tasks (please make sure to vary the order and number of out-of-scope tasks). Do not mention that
the model cannot answer these in the question; however, indicate that the model cannot answer that
part of the question in the reworded answer (potentially using different phrasings). The model can
describe the volume, brain region, shape, and spread of {label} which is the region of interest. Please
include everything surrounded by curly braces {} as they are because they are placeholders. Please
generate the reworded question starting with “Q:” and reworded answer starting with “A:” and do not
produce any additional text.” and append this to each of the multitask prompts above. We produce 10
repetitions with a temperature of 1.0, top p of 1, and model “gpt-4o-2024-08-06”.

For generating question augmentations for completely out-of-scope prompts, we first provide this
prompt “Please produce a hundred questions (with one or more tasks) that a clinician may ask that the
model does not have information to answer. The model can describe the volume, brain region, shape,
and spread of {label} which is the region of interest. Please include {label} in the question but do
not include anything else with curly braces. In the answer, please indicate the model cannot answer
the question (potentially using different phrasings). Please generate the question starting with “Q:”
and answer starting with “A:” and do not produce any additional text.” We produce 10 repetitions
with a temperature of 1.0, top p of 1, and model “gpt-4o-mini-2024-07-18”.

After generating the question augmentations, we check the generated results for quality (ensuring the
contents within the curly braces are retained for easy formatting with Python and that the responses
are in English). Then, for each finding and mpMRI in each dataset, we sample four multitask
questions without replacement such that each major task is addressed in at least one question, one
partially out-of-scope question, and one completely out-of-scope question. Examples of generated
question types can be seen in Table 6.

After the application of our synthetic VQA protocol, the percentage frequency of each task per
question for all the generated datasets can be seen in Table 7, Table 8, and Table 9.
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Table 7: Percentage frequency of each task label per question for the GLI dataset

Task Label name Label frequency

Volume

Unspecified 52.4
N/A 12.3
<1% 12.7
1-5% 13.1
5-10% 5.2

10-25% 3.8
25-50% 0.5
50-75% 0.0

Region

Unspecified 53.2
N/A 12.2

frontal 23.8
parietal 20.8
occipital 13.2
temporal 17.2
limbic 21.7
insula 14.7

subcortical 14.9
cerebellum 2.9
Unspecified 52.4

N/A 12.3
focus 1.0
round 4.7
oval 6.9

elongated 0.4
irregular 22.4

Spread

Unspecified 53.4
N/A 12.2

single lesion 6.9
core with satellite lesions 20.9

scattered lesions 6.5

Out-of-scope
Not out-of-scope 66.7

Out-of-scope 33.3

B ADDITIONAL ABLATION RESULTS

Additional ablation results validating the number of high-level experts, softmax versus sigmoid for
summing lower-level experts, and concatenation versus element-wise summing of vision tokens are
in Table 11, Table 12, and Table 13 respectively. In Table 18, we see a comparison of our model
performance trained with our multi-task loss versus the next-token prediction baseline loss. There is
a significant performance improvement with our multi-task loss.

Fine-grained results comparing our MoE-based approach and a single shared expert are in Table 14
and Table 15. The more complex multimodal reasoning is helpful for all tasks and findings, and
especially helpful for the volume task and SNFH finding. Fine-grained results comparing modality-
level MoE, token-level MoE, as well prompt-conditioned MoE on tasks as well as findings are in
Table 16 and Table 17. Token-level MoE is stronger in the volume, region, and spread tasks while
modality-level MoE is stronger in the shape task. For findings, token-level MoE is stronger with
the ET, SNFH, and RC findings while modality-level MoE is stronger with the NETC finding. The
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Table 8: Percentage frequency of each task label per question for the MET dataset

Task Label name Label frequency

Volume

Unspecified 51.8
N/A 8.5
<1% 24.7
1-5% 9.2
5-10% 2.7

10-25% 2.7
25-50% 0.4
50-75% 0.0

Region

Unspecified 53.0
N/A 17.1

frontal 19.5
parietal 16.1
occipital 14.5
temporal 14.5
limbic 9.2
insula 6.3

subcortical 7.3
cerebellum 12.8
brainstem 4.1

Shape

Unspecified 51.4
N/A 8.3
focus 2.8
round 13.5
oval 4.3

elongated 0.2
irregular 19.5

Spread

Unspecified 53.1
N/A 7.9

single lesion 7.4
core with satellite lesions 12.9

scattered lesions 18.7

Out-of-scope
Not out-of-scope 66.7

Out-of-scope 33.3

prompt-conditioned MoE excels in all of them, suggesting that based on the question, it is able to
accurately combine the optimal token-level MoE or modality-level MoE blocks.

We also constructed an additional experiment in which, for each finding, we appended the region
information to the prompt, which can be seen in Table 19. There is an increase of approximately 5%
on the other task scores with the additional localization prompt. This suggests that providing the
localization information can be extremely beneficial.

We also evaluated the frequency of hallucination. We define a hallucination as the instance in
which a model predicts a non-zero finding volume and the ground-truth indicates there is no finding.
Additionally, we define a correct prediction as the instance in which the model predicts a non-zero
finding volume and the ground-truth also indicates a non-zero finding volume. We report the percent
of hallucinations over total predictions (correct predictions + hallucinations) based on finding on the
GLI test set in Table 20. While this is out of scope for our current work, it is notable that the model is
already achieving no hallucinations for SNFH.
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Table 9: Percentage frequency of each task label per question for the GoAT dataset

Task Label name Label frequency

Volume

Unspecified 52.2
N/A 2.2
<1% 10.3
1-5% 18.6
5-10% 8.9

10-25% 7.2
25-50% 0.6

Region

Unspecified 52.9
N/A 2.3

frontal 30.0
parietal 23.4
occipital 17.5
temporal 29.7
limbic 29.8
insula 25.9

subcortical 27.9
cerebellum 9.8
brainstem 8.0

Shape

Unspecified 51.9
N/A 2.1
focus 0.5
round 6.1
oval 3.2

elongated 0.1
irregular 36.0

Spread

Unspecified 53.3
N/A 1.9

single lesion 5.3
core with satellite lesions 32.7

scattered lesions 6.7

Out-of-scope
Not out-of-scope 66.7

Out-of-scope 33.3

Table 10: Agreement with first annotator

Annotator Multi-class Accuracy Region Accuracy Task Mean Accuracy
second annotator 50.0 74.2 58.9

synthetic groundtruth 48.7 85.5 55.1

C LLM USAGE

We used large language models (LLMs) to (i) improve the clarity and style of the manuscript, (ii)
brainstorm refinements to the MoE-based architecture and dataset-construction procedures, (iii) draft
code prototypes for selected ideas, and (iv) find potentially relevant related work. All LLM outputs
were reviewed and verified by the authors before inclusion.
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Table 11: Model performance comparison with different number of high-level experts on the GLI
validation set with accuracy metric.

Number of blocks Task Mean
12 64.5
16 65.5
20 65.0

Table 12: Model performance with softmax versus sigmoid for summing lower-level experts on the
GLI validation set with accuracy metric.

Method Task Mean
softmax 65.5
sigmoid 64.8

Table 13: Comparison of projection and fusion methods on the GLI validation set with accuracy
metric.

Projection Method Fusion Method Task Mean

MoE-based sum 65.5
Shared expert learned weighted sum 63.3
Shared expert sum 51.1
Shared expert concatenation 52.4

Table 14: Comparison of MoE-based and shared expert approach based on task on the GLI validation
set with accuracy metric

Method Volume Region Shape Spread

MoE-based 57.6 83.5 60.9 59.9
Shared expert 53.2 82.8 59.7 57.5

Table 15: Comparison of MoE-based and shared expert approach based on finding on the GLI
validation set with accuracy metric

Method ET SNFH NETC RC

MoE-based 65.1 72.5 75.1 49.9
Shared expert 63.2 70.8 71.3 48.7

Table 16: Comparison of MoE approaches based on task on the GLI validation set with accuracy
metric

Method Volume Region Shape Spread

Prompt-conditioned MoE 57.6 83.5 60.9 59.9
Token-level MoE 56.0 83.5 60.0 58.1
Modality-level MoE 53.7 83.4 59.7 59.4

Table 17: Comparison of MoE approaches based on finding on the GLI validation set with accuracy
metric

Method ET SNFH NETC RC

Prompt-conditioned MoE 65.1 72.5 75.1 49.9
Token-level MoE 64.0 72.2 72.2 49.9
Modality-level MoE 63.5 71.1 73.9 48.6
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Table 18: Model comparison with multi-task loss on the GLI validation set with accuracy metric.

Method Task Mean
mpLLM without multi-task loss 56.7
mpLLM with multi-task loss 65.5

Table 19: Comparison of task means with and without region information on the GLI validation set
with accuracy metric.

Model Task Mean without Region Scores

With Region Information 64.1
Without Region Information 59.5

Table 20: Hallucination frequency across findings on the GLI test set.

ET SNFH NETC RC

Values 22.6 0.0 13.5 15.3
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