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Abstract

Ghost imaging (GI) reconstructs images from single-pixel measurements but re-
mains hindered by slow pattern projection and noise-sensitive reconstruction. We
present a dual-comb ghost imaging framework that addresses these limitations.
Dual optical frequency combs generate hundreds of uncorrelated speckle patterns
in parallel, enabling snapshot bucket-sum detection through a single-core fiber
without spatial or spectral scanning. For recovery, we introduce Optical Ghost-GPT,
a transformer-based model that achieves real-time, high-fidelity reconstruction at
ultra-low sampling ratios. This combination of dual-comb hardware and deep learn-
ing significantly outperforms classical GI in speed, robustness, and image quality.
As a proof of concept, we highlight fiber-based endoscopy as a key application,
where our approach could deliver minimally invasive, high-resolution imaging with
sub-millimeter hardware.

1 Introduction

Ghost imaging circumvents the need for conventional 2-D array sensor cameras by replacing them
with correlated intensity measurements from a single-pixel (bucket) detector [1]. In a typical setup,
a sequence of known illumination patterns is projected onto the sample, and the total transmitted
or reflected intensity is measured. Statistical correlations between the projected patterns and the
measured signals are then used to computationally reconstruct the image. This framework has demon-
strated key advantages: enhanced signal-to-noise ratios in sparse light conditions [2, 3, 4], robustness
to scattering and turbid media [5, 6], and inherent compatibility with single-pixel detectors. These
properties make ghost imaging particularly attractive for fiber-based endoscopy, where conventional
2D detector arrays are difficult to integrate, and miniaturization is critical for patient comfort and
access to small or delicate anatomical regions [7, 8].

Despite these advantages, classical ghost imaging suffers from fundamental bottlenecks in acquisition
and reconstruction. Each illumination pattern is typically projected sequentially, requiring thousands
of measurements to achieve acceptable fidelity. Reconstruction methods, often based on iterative
correlation or compressive sensing, converge slowly, degrade in the presence of noise, and fail at low
sampling ratios—making real-time, high-resolution imaging impractical for clinical use.

To overcome these challenges, we propose a dual-pronged solution. First, we integrate dual optical
frequency comb (dual-comb) interferometry [9, 10, 11] with compressive ghost imaging to generate
snapshot speckle illumination and detection through a single-core fiber, thereby eliminating the need
for slow spatial or spectral scanning. Second, we introduce Optical Ghost-GPT, a transformer-based



reconstruction framework that leverages global attention mechanisms to rapidly and accurately map
illumination–signal correlations. This enables real-time, high-fidelity imaging even under noisy and
undersampled conditions.

Our contributions include: (1) the first demonstration of dual-comb–enabled ghost imaging in a
fiber-compatible architecture with deep learning–based reconstruction, (2) significant improvements
in speed (greater than 60 FPS) at ultra-low sampling ratios (down to 0.29%) . Together, these advances
establish ghost imaging as a promising strategy for next-generation fiber-based endoscopy, offering
high-performance imaging in minimally invasive and resource-constrained settings.

2 Dual-Comb Ghost Imaging: Experimental Details
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Figure 1: Optical Fiber-based Dual-Comb Ghost Imaging. (a) Conceptual illustration of optical
fiber-based ghost imaging using dual optical frequency combs. Each comb line generates an uncorre-
lated speckle pattern at the fiber tip, and the set of speckle patterns is mapped onto the target object
x. The encoded speckle pattern (H × x) is collected by a single-pixel detector, and the resulting
dual-comb interference signal ("interferogram") is recorded. (b) Experimental setup diagram. SMF:
Single Mode Fiber, OSA: Optical Spectrum Analyzer, PD: Photodetector, FL: Focusing Lens, BS:
Beam Splitter, NDF: Neutral Density Filter.

An optical frequency comb (OFC) consists of equally spaced, mutually coherent frequency lines.
In our approach, dual OFCs generate a set of uncorrelated 2D speckle patterns H at the fiber tip,
which are projected onto the target object x. The encoded intensity (H × x) is measured by a
single-pixel detector, producing a dual-comb interferogram. A fast Fourier transform (FFT) converts
this time-domain signal into frequency-domain bucket-sum data y = H × x, enabling parallelized
speckle projection and significantly increased imaging speed.

Two electro-optic (EO) combs with slightly different free spectral ranges (fFSR and fFSR +∆fFSR)
are generated from a CW laser at 1550 nm. After frequency shifting with acousto-optic modulators,
the EO modulators produce combs at fFSR = 20GHz with ∆fFSR = 200Hz. Recombination yields
RF-domain beat signals upon photodetection, allowing fast and precise electronic measurement of
the bucket intensities as well as with coherent averaging for improved SNR. A Waveshaper enables
selection of individual comb lines to allow for the measurement of the speckle patterns in the inital
calibration procedure. Light is coupled into a 200µm-core multimode fiber, producing hundreds of
modes and corresponding speckle patterns. These are projected through the target, split into signal
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and reference arms, and detected with InGaAs photodiodes (500 kHz bandwidth). Speckle patterns
are calibrated separately with a 256× 256 InGaAs camera.

Approximately 200 comb lines spanning 1530–1565 nm were used, yielding speckle patterns that
were uncorrelated across wavelengths. A negative USAF 1951 resolution chart served as the target.
To overcome the slow image reconstruction speed on the computational side we, we developed
Optical Ghost-GPT, a transformer-based reconstruction model that strongly suppresses noise and
enhances image fidelity.

3 Transformer Modeling

Transformers, originally developed for natural language processing [12], have since become a
foundation for computer vision [13], speech [14], and scientific data analysis [15]. Their self-
attention mechanism models long-range dependencies while enabling efficient parallel computation,
powering state-of-the-art models such as BERT, GPT [16], and Vision Transformers (ViTs) [17, 18].
In ViTs, images are divided into patches that act as tokens. To adapt this idea to dual-comb ghost
imaging, we instead define each token by concatenating a flattened illumination pattern from the
sensing matrix Ψ with its corresponding bucket value.

Figure 2: Schematic of Optical Ghost-GPT. The speckle patterns are first compressed into a latent
space and then concatenated with the corresponding bucket measurements to form the input token
sequence.

Model Architecture. Each token consists of a speckle pattern (flattened to 256 × 256) linearly
projected to a smaller embedding dimensions concatenated with its bucket sum, and augmented
with learned positional embeddings (context size C = 250). A stack of L = 12 transformer blocks
with multi-head self-attention (H = 32) and feedforward layers (GELU activations) processes the
sequence, with dropout (0.1), residual connections, and batch normalization. Final token representa-
tions are projected to R16, flattened, and mapped back to the original 256×256 image with a sigmoid
output.

Training. Calibration speckle patterns (188 total) are collected with a 2D camera and convolved
with MNIST/Omniglot images to generate synthetic bucket sums. The network is trained to recon-
struct the target image from speckle–bucket pairs using mean squared error (MSE) loss and AdamW
optimizer.

4 Ghost-GPT Reconstruction Results

To test our trained transformer model, we performed reconstructions on experimental optics data
taken with our setup. Figure 3 and Table 1 shows the reconstruction results of a stripe (top) and
the number 2 (bottom) compared with classical algorithms and Ghost-GPT and the corresponding
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MSE and SSIM values. In real world environments, we demonstrate that Ghost-GPT is able to
successfully reconstruct images with higher fidelity for both targets compared to classical methods,
while reconstructing images in approximately 8 ms (order of magnitudes faster than the iterative
classical algorithms). In addition to comparisons with classical algorithm, we also explored other
deep learning models, such as CNN and U-Net architectures, and found that our transformer model
outperformed by 46.2 % and 36.4% respectively, based on mean squared error.

Figure 3: Reconstruction using experimental bucket measurements compared with classical algo-
rithms and Ghost-GPT. (Top row): Striped lines correspond to group 0, element 4 (1.41 line pairs per
millimeter). (Bottom Row): The number 2 corresponds to group 0, element 2 (1.12 lp/mm).

Table 1: MSE/SSIM for Experimental Targets with Classical Algorithms and Ghost-GPT
Experimental Target DGI PI FISTA Ghost-GPT (Ours)

Stripes 0.231/0.030 0.140/0.028 0.072/0.057 0.045/0.604
Number 2 0.204/0.036 0.138/0.028 0.084/0.064 0.058/0.658

To demonstrate the speed of our optical setup and reconstruction model, we experimentally demon-
strated the ghost imaging of a dynamic scene. As shown in Figure 4, our system achieves video-rate
ghost imaging at 60 FPS with high image fidelity for each frame.

Target Object Moving at 2.4 mm/s

Illuminated Area

Frame 3 Frame 14 Frame 26 Frame 42

A
m

p
lit

u
d

e
 (

V
)

0.0
Time (s)

0.2 0.4 0.6 0.8 1.0

0.1

0.0

-0.1

Frame 58

A
m

p
lit

u
d

e
 (

V
)

0.434 0.436 0.438 0.440 0.442 0.444 0.446 0.448 0.450

0.05

0.00

-0.05

Zoomed-in Signal Intergerogram (Frame 26)

Figure 4: Video-rate image reconstruction of a moving target. A hyperspectral speckle pattern is
projected onto a USAF1951 resolution target (Group 0, Element 4; 1.41 lp/mm), which is mounted
on a motorized stage and translated horizontally at a speed of 2.4 mm/s.
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