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Abstract

Graph neural networks (GNNs) can efficiently process text-attributed graphs1

(TAGs) due to their message-passing mechanisms, but their training heavily re-2

lies on the human-annotated labels. Moreover, the complex and diverse local3

topologies of nodes of real-world TAGs make it challenging for a single mecha-4

nism to handle. Large language models (LLMs) perform well in zero-/few-shot5

learning on TAGs but suffer from a scalability challenge. Therefore, we propose6

a preference-driven knowledge distillation (PKD) framework to synergize the7

complementary strengths of LLMs and various GNNs for few-shot node classi-8

fication. Specifically, we develop a GNN-preference-driven node selector that9

effectively promotes prediction distillation from LLMs to teacher GNNs. To10

further tackle nodes’ intricate local topologies, we develop a node-preference-11

driven GNN selector that identifies the most suitable teacher GNN for each node,12

thereby facilitating tailored knowledge distillation from teacher GNNs to the stu-13

dent GNN. Extensive experiments validate the efficacy of our proposed framework14

in few-shot node classification on real-world TAGs. Our code is available at15

https://anonymous.4open.science/r/PKD-B162.16

1 Introduction17

Text-attributed graphs (TAGs [1]), such as citation, webpage, and product graphs [2, 3], have nodes18

associated with text attributes. Graph neural networks (GNNs) [4, 5] have demonstrated excellent19

performance and efficiency in node classification on TAGs, which are supported by high-quality labels20

and effective message-passing mechanisms [6]. However, the manual labeling of nodes is undoubtedly21

a tedious, expensive, and time-consuming task [7]. In many scenarios, only a few node labels are22

available. Additionally, nodes often have complex and diverse interaction relationships with each23

other—their local topologies are intricate—which challenge traditional GNNs with fixed message-24

passing mechanisms. Compared with GNNs, large language models (LLMs) exhibit impressive25

zero-/few-shot learning capabilities on TAGs [8, 9, 10]. But the large parameter scale considerably26

hinders their inference efficiency [11].27

A natural idea is to blend their complementary strengths for few-shot node classification on TAGs.28

Knowledge distillation (KD) [12] is a feasible solution. However, directly distilling knowledge from29

the LLM to GNN is impractical. Firstly, the discrepancy of decoder-only (LLMs) and encoder-only30

(GNNs) leads to fundamentally different characteristics in their embedding spaces [13]. And the huge31

embedding-dimension difference needs sophisticated embedding alignment, which also brings high32

training cost [14]. In contrast, conducting prediction distillation from LLMs to GNNs by annotating33

node labels can efficiently alleviate the label scarcity and scalability dilemma [15]. The critical34

question is how to select the nodes for the LLM’s label annotation to effectively enhance teacher35

GNNs. Generally, one may use uncertainty [16] as a selection metric in the embedding space of GNN.36

However, owing to nodes’ diverse semantic and complex structural attributes (e.g., local topologies),37
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a single GNN cannot capture the essences of nodes completely [17]. Therefore, we investigate the38

embedding spaces of various-architecture GNNs to effectively mitigate cognitive limitations [18]39

associated with relying on a single GNN, thereby better selecting nodes for LLM’s label annotations.40

Nevertheless, since nodes have intricate local topologies, which need tailored message-passing41

mechanisms, how to tailor for each node the most appropriate message-passing mechanism is another42

challenge. Different GNNs provide different prediction attributes for each node during the learning43

process [19], encompassing the understandings of its topologies, its interaction relationships to44

other nodes, and its latent patterns. These node-specific attribute differences suggest that a single45

message-passing mechanism cannot fundamentally handle the entire graph. Some studies [20, 17]46

distill knowledge sequentially or simultaneously from teacher GNNs without taking into account the47

node-specific local topologies, resulting in no obvious performance improvement or even performance48

degradation [21]. Therefore, it is essential to identify the GNN message-passing mechanisms that49

align with the node-specific attributes.50

To this end, we propose a preference-driven knowledge distillation (PKD) framework that unites the51

complementary strengths of LLMs and various-architecture GNNs for few-shot node classification52

on TAGs. It mainly includes two modules: GNN-preference-driven Node Selector (GNS) and Node-53

preference-driven GNN Selector (NGS). The prerequisite of GNS is that the LLM should be able54

to comprehend the graph topology. Thus, we develop the graph topology aware (GTA) prompts to55

fine-tune the LLM, enhancing its capacity to comprehend graph topology. GNS fully exploits nodes’56

prediction discrepancies among various GNNs to decide nodes whose labels are annotated by the57

LLM will effectively enhance teacher GNNs, facilitating knowledge distillation from the LLM to58

teacher GNNs. NGS selects for each node the most appropriate GNN message-passing mechanism,59

facilitating the tailored knowledge distillation from various teacher GNNs to the student GNN. It60

regards the fine-tuned LLM as the RL (reinforcement learning) agent, which treats all textualized61

node-specific attributes (including node’s semantic, structure, and prediction attributes) as state and62

the student GNN’s performance as reward.63

Contributions ❶ We introduce a preference-driven knowledge distillation (PKD) framework to64

synergize the complementary strengths of the LLM and various GNNs ingeniously for few-shot65

node classification on TAGs; ❷ we propose a GNN-preference-driven node selector, effectively66

determining nodes for annotation by the LLM and promoting knowledge distillation from the LLM to67

teacher GNNs; ❸ we propose a node-preference-driven GNN selector to tailor for each node the most68

appropriate message-passing mechanism, promoting knowledge distillation from teacher GNNs to69

the student GNN; ❹ we validate the efficacy of PKD for few-shot node classification on nine TAGs.70

The experiments show that it even defeats some state-of-the-art methods that use more node labels.71

2 Related Work72

2.1 Graph Neural Networks73

The field of graph learning has been dominated by GNNs, such as GCN [4], GAT [22], APPNP [23],74

H2GCN [24], and GPRGNN [25]. Recently, HoloNets [26] introduces a dual-filter mechanism75

with spectral response, extending spectral convolutions to directed graphs. DirGNN [27] defines76

the in-neighbors and out-neighbors and performs separate propagation and aggregation, improving77

the message passing through the incorporation of edge directionality. To deal with label scarcity,78

GCNII [28] introduces initial residual connections and identity mapping to construct a deep GNN79

while EGNN [29] enforces equivariance constraints for the enhancement of data efficiency and80

generalization. AGST [30] and IceBerg [31] leverage the different self-training [32] methods to81

effectively utilize unlabeled nodes.82

2.2 Knowledge Distillation83

KD is not only used for model compression, but for strengthening purposeful abilities of the student84

model. GFL [33] extracts structural knowledge from a pre-prepared similar auxiliary graph, distilling85

it to the target graph for enhancing few-shot node classification performance. KDGA [34] utilizes86

multiple graph augmentation strategies to make student GNN produce robust node representations87

after distillation. MSKD [35] mitigates the diverse classification situations requiring for different88

nodes by capturing multi-scale topological semantics distilled from varying layers. However, the89

capability of an individual teacher is inherently limited. BGNN [20] distills complementary knowl-90
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Figure 1: Overview of PKD. The framework has two key modules: GNN-preference-driven Node
Selector (GNS) and Node-preference-driven GNN Selector (NGS). Before starting GNS, we first
fine-tune the LLM with GTA prompts to enable it to comprehend graph properties. In the GNS
module, we exploit the proposed K-uncertainty based on the node prediction uncertainty in each
teacher GNN’s embedding space to select nodes. For effectively exploiting the LLM to annotate those
selected nodes, we combine the semantic attributes and structure attributes derived from the proposed
Distance-based Neighbor Selector (DNS) module on these nodes to construct prompt, promoting
the prediction distillation from the fine-tuned LLM to teacher GNNs (T1, T2, . . . , TB). In the NGS
module, we select for each node the most appropriate teacher GNN for tailored knowledge distillation.
The teacher GNN selection is achieved by reinforcement learning with the fine-tuned LLM as agent.

edge from multiple GNN teachers sequentially and integrate it by the adaptive temperature parameter91

and weight boosting modules. MTAAM [21] distills knowledge of multiple teacher GNNs into an92

MLP-student, offering quick inference speed without compromising accuracy. FairGKD [36] obtains93

equitable and informative node representations by synergizing multiple GNN experts into a teacher.94

DMKD [17] harnesses complementary knowledge from various GNNs and conducts layer-level95

knowledge distillation to mitigate the constraint of a single teacher. Furthermore, [13] is a label-free96

method that proposes the LLM-GNN, which uses LLMs to get high-quality annotation through active97

and confidence-awareness node selection, thereby circumventing the difficulty of label annotation98

by humans. LinguGKD [14] introduces a kind of ingenious contrastive learning to align the LLM’s99

semantic features with GNN’s structural features to achieve knowledge transfer. Most of the above100

knowledge distillation methods do not tailor for each node the most appropriate message-passing101

mechanism and underperform on few-shot node classification.102

3 Method: PKD103

In this section, we present the preference-driven knowledge distillation (PKD) framework. PKD104

involves two key modules: GNN-preference-driven Node Selector (GNS) and Node-preference-driven105

GNN Selector (NGS). The main goal of the former module is to select node groups whose labels are106

annotated by the LLM will drastically enhance teacher GNNs. The main goal of the latter module107

is to select the most appropriate teacher GNN for each node, thereby tackling the complication of108

node-specific local topologies. The PKD framework is illustrated in detail in Figure 1.109

3.1 Background110

A text-attributed graph (TAG) is denoted by GT = (V, E ,X,A,T), where V = {v1, . . . , vN} is a set111

of nodes with semantic attributes T = {t1, . . . , tN} and E is a set of edges. Each semantic attribute112
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can then be encoded as a sentence embedding X = [x1, . . . ,xi, . . . ,xN ] ∈ RN×F with the help113

of language models. A ∈ RN×N is the adjacency matrix. Given the few-shot node classification114

task, let DL = {(xi,yi)}Qi=1 (Q ≪ N) be the set of labeled nodes with yi as the one-hot label of115

the training sample xi and DU be the set of unlabeled nodes, respectively. The goal is to accurately116

predict the labels of nodes that belong to DU given few labeled nodes in DL.117

We assume B teacher GNNs denoted by {Tb}Bb=1, and fθ
Tb

is the model parameters of Tb. The B118

logit outputs of teacher GNNs for node vi are written as zTi = [zTi,1, . . . , z
T
i,b, . . . , z

T
i,B ], which is the119

concatenation of the logit of each teacher zTi,b = [zTi,b,1, . . . , z
T
i,b,c, . . . , z

T
i,b,C ] (1 ≤ b ≤ B), where120

zTi,b,c is the probability of vi belonging to class c (1 ≤ c ≤ C) computed by teacher Tb. Our final121

objective for the KD from node-preference GNNs to the student GNN can be divided into three parts:122

LKD = α · (− 1

N

N∑
i

z̃Ti · logfθ
S(xi))+β · (− 1

Q

Q∑
i

yi · logfθ
S(xi))+ γ · ( 1

N

N∑
i=1

H(fθ
S(xi))) (1)

where α, β, γ are hyper-parameters to balance three losses. For student GNN with parameters fθ
S , the123

first loss, distillation loss LDL, is defined as the cross-entropy between the predictions of the teacher124

GNNs and that of the student GNN. The fθ
S(xi) is the Softmax output of student GNN and it denotes125

the probability distribution of vi belonging to class c. z̃Ti = mi ⊗ zTi , where mi is a one-hot vector126

denoting which teacher GNN is preferred by vi. The second loss, LCE , is the cross-entropy loss in127

the training of student GNN. The last loss is inspired by [37], we add LE part to the objective, which128

makes the logits of student GNN closer to one-hot vectors. The H(·) denotes Shannon entropy.129

3.2 LLM Fine-tuning130

Figure 2: The performance improve-
ments in zero-shot node classification
on homophily and heterophily graphs.

Recent studies reveal that LLMs possess reasoning capabil-131

ities [38], but they often underperform compared to even132

the simple GNNs when tackling graph learning. The key133

challenge lies in the inability to directly process the raw134

graph data and understand topology properties, which af-135

fects LLM’s generalization ability in this field. To address136

this, we propose GTA prompts fine-tuning.137

This method consists of four distinct fine-tuning instruc-138

tion types, each designed to enhance structural compre-139

hension, such as local connectivity, node degree, cycle140

structure, and path-based dependencies, by addressing141

specific tasks: (1) Connectivity involves determining142

whether or not two nodes in an undirected graph are con-143

nected; (2) Degree requires the LLM to determine the144

degree of a given node based on the adjacency matrix A;145

(3) Cycle Detection requires the LLM to ascertain whether a cycle exists within the given se-146

quence of nodes; (4) Text Generation demands the LLM to generate textual contents of given147

nodes based on the semantic attributes of preceding nodes in the random walk. Through fine-tuning,148

LLM exhibits significant improvements on the zero-shot node classification task, as demonstrated149

in Figure 2. More detailed task descriptions and detailed task-specific GTA prompt templates are150

provided in Appendix B.3.151

3.3 GNN-preference-driven Node Selector152

After being fine-tuned, the LLM can generate superior node label annotations (as shown in Figure 2).153

However, how to select nodes for LLM’s label annotation to effectively enhance teacher GNNs154

(those nodes are assumed to be preferred by GNNs) is a challenging problem. Uncertainty is an155

essential metric for node selection. It mainly consists of two parts: random uncertainty caused156

by inherent noise and cognitive uncertainty caused by insufficient observation. The former type157

is inevitable, so we focus on the latter type. From the perspective of collective consensus [39],158

we design the GNN-preference-driven Node Selector based on the defined K-uncertainty (δK).159

Specifically, we measure the cognitive disagreement among the teacher GNNs’ SoftMax outputs160

using the Kullback-Leibler (KL) divergence, and get the preference ranks of all nodes by δK , i.e.,161
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VPR = Sort({v1, . . . , vN} , δK(v1), δK(v2), . . . , δK(vN )). High K-uncertainty of nodes indicates162

that their prediction uncertainty by GNNs is higher. Those nodes can effectively enhance GNNs163

if their more accurate labels, annotated by the LLM, are provided to train GNNs, as the following164

proposition suggests.165

Proposition 3.1. These nodes with higher K-uncertainty (δK ) are beneficial for GNNs enhancement.166

δK(v) ≜
B∑

1≤i<j≤B

[DKL(f
θ
Ti
(v)||fθ

Tj
(v)) +DKL(f

θ
Tj
(v)||fθ

Ti
(v))] ∝ δv (2)

where δv is the uncertainty of node v, is defined as 1
B

∑B
i=1 DKL(f

θ
Ti
(v)||M(v)). TheM(v) is the167

average prediction probability distribution of all B teacher GNNs (See Definition D.1 for details).168

DKL(·||·) is the function to calculate KL divergence.169

fθ
T

∗
(D̃L) = argmin

vi∈{v1
PR,v2

PR,...,vW
PR|δK(vW

PR)>δ̃K}

1

W

∑
L(fθ

T , vi) (3)

where D̃L is the expanded training dataset. fθ
T

∗
is the optimal parameter of teacher GNN. vwPR170

represents the w-th nodes in the preference rank. W is the number of selected nodes by GNS and the171

δ̃K is the K-uncertainty threshold depending on the expansion ration.172

Figure 3: This is exemplified using the
CORA dataset. Starting from the arrow
and progressing counterclockwise, the
KL divergence sum gradually increases,
accompanied by a darkening of the trian-
gle colors. The length of each triangle in-
dicates the number of nodes within a spe-
cific KL divergence sum range, where
NP denotes the number of classes pre-
dicted by the teacher GNNs.

The proof is given in Appendix D. By selecting these173

nodes (illustrated in Figure 3), we ensure that the most174

uncertain and informative nodes are labeled by the LLM175

to promote the progress of prediction distillation through176

the cross-entropy function. Correspondingly, GNS also177

reduces the inference costs associated with LLMs by not178

querying all nodes in DU . To generate high-quality an-179

notations for GNN-preferred nodes, we further design180

the Distance-based Neighbors Selection (DNS) module,181

which performs the K-Nearest Neighbor (KNN) search182

around each selected node across the embedding spaces183

generated by pretrained teacher GNNs and deletes re-184

peated neighbors. The structure attributes composed of185

selected neighbors and their textual contents are integrated186

into the category-induction prompt and inputted into the187

LLM. Unlike relying solely on neighbors identified by the188

adjacency matrix (prone to biases from 1-hop homophily),189

our approach ensures a more robust and diverse selection190

of high-quality neighbors, facilitating better construction191

of the category-induction prompt for the LLM. We do not192

select common KNN neighbors across all the embedding193

spaces generated by the teacher GNNs, as they may overfit194

to the adjacency structure.195

3.4 Node-preference-driven GNN Selector196

Distilling knowledge simultaneously from multiple teach-197

ers to the student is not a good option since nodes with varying local topologies require distinct198

message-passing modes for optimal representation updates. To achieve this, we introduce the Node-199

preference-driven GNN Selector (NGS) to select the most appropriate teacher for each node according200

to the specific attributes and promote tailored knowledge distillation. For each node in the expanded201

training data (including the initial few labeled nodes and those selected nodes whose labels are202

annotated by the LLM), we construct a node-specific prompt by combining its semantic, structural,203

and prediction attributes derived from the enhanced teacher GNNs. This prompt is then inputted to204

the fine-tuned LLM to determine the most suitable teacher for this node. The GNN selection task is205

formulated as a reinforcement learning problem. The fine-tuned LLM, serving as the agent, selects206

the most appropriate teacher for each node. The policy is trained to maximize classification accuracy207

on the expanded training data, with the reward tied to the student’s performance. To address the208

non-differentiability of the LLM’s decoding process, we add two additional projectors (MLPs) after209
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the logit layer to generate action probabilities and corresponding value estimations, enabling the210

agent to take discrete teacher-selection actions.211

In the RL framework, the elements are structured as (State, Action, Reward ). During each iteration,212

the agent interacts with the environment by receiving all attributes of one node in the expanded213

training data. The agent then takes an action on which teacher is more appropriate.214

State: Each state corresponds to the prompt Pi of a node, which includes node-specific semantic,215

structural, and prediction attributes. These prompts are detailed in Appendix B.2. The size of the216

expanded training data is denoted as W .217

Action: The Policy Model (the fine-tuned LLM combined with an MLP projector) generates a text-218

related output to indicate its selection from multiple teachers, which is formulated as a probability219

distribution vector πT = [πT1
, πT2

, . . . , πTB
], where πTb

denotes the probability of selecting the b-th220

teacher Tb. The action is determined through sampling.221

Reward : The function is correlated with the performance of the student GNN, which is trained by222

distilling knowledge from the selected teacher for each node. The reward function consists of three223

key parts: classification accuracy, cross-entropy loss, and distillation loss. It can be written as follows:224

R = η ∗ (L
′

DL − LCE) + (1− η) ∗Acc (4)

where Acc represents the classification accuracy of the student GNN on the expanded training data,225

η is a hyper-parameter to balance the three parts, where L′

DL = − 1
W

∑W
i z̃Ti · logfθ

S(xi), and226

LCE = − 1
Q

∑Q
i yi · logfθ

S(xi).227

To effectively optimize the agent’s actions for better knowledge distillation, we employ the simplified228

version of Proximal Policy Optimization (PPO) [40] algorithm, which retains the core principles.229

Specifically, we do not instantiate the Reward Model explicitly and calculate the reward based on the230

performance of the student GNN. The Reference Model is also not explicitly referenced, because231

the parameter update objective function we utilize involves a comparison with the previous strategy.232

To avoid large fluctuations between the current and old policies, we adopt the CLIP strategy [40] to233

limit the update margin. During the KD process, the parameters fθ
A of NGS, remain fixed, while the234

parameters fθ
S of the student GNN are trained. During the NGS process, the parameters fθ

S of the235

student GNN are kept fixed to compute the reward, while the parameters fθ
A of NGS based on the236

collected rewards from all episodes are optimized. The pseudocode, detailed implementations, and237

time complexity analysis are provided in Appendix C.238

4 Experiments239

4.1 Experimental Setup240

Datasets In order to assess the few-shot node classification performance of our method on TAGs,241

we conduct a comprehensive series of experiments across 9 real-world datasets: CORNELL, WASH-242

INGTON, TEXAS, WISCONSIN [24], AMAZON RATINGS [41], OGBN-ARXIV [42], WIKI CS [43],243

PUBMED, CORA [44]. They have various 1-hop homophily ratios [45] and additional details of the244

datasets can be found in Appendix A. For the KD-baselines, we partition the nodes of each graph245

into training, validation, and test sets, allocating 48%, 32%, and 20%, respectively, based on the246

proportion division mentioned in [46]. For PKD and other baselines, we randomly select 1, 3, and247

5 labeled nodes per class as the initial training data and then expand the dataset to 48% of the total248

using the GNS module. The remaining data is randomly split into 32% for validation and 20% for249

testing, with the preserved indices for the baselines. This operation is repeated 5 times. We report the250

average test classification accuracy and standard deviation of each model with parameters that lead to251

the peak validation accuracy.252

Baselines We compare our method against the following baseline models: (i) Advanced GNNs:253

GCNII [28] and EGNN [29]; (ii) GNNs enhanced by LLMs: LLMGNN [13] and GAugLLM [47];254

(iii) self-training for graph learning: Self-training [32], AGST [30] and IceBerg [31]; (iv) Knowledge255

Distillation (KD) for GNNs: KDGA [34], MSKD [35], BGNN [20], MTAAM [21], and FairGKD [36].256

For homophily graphs, the teacher GNNs used are: GCN [4] (T1), GAT [22] (T2), APPNP [23] (T3),257

H2GCN [24] (T4), and the student is GCN; for heterophily graphs, the teacher GNNs employed258
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are: DirGNN [27] (T1), GPRGNN [25] (T2), HoloNets [26] (T3), H2GCN (T4) and the student is259

H2GCN. The LLM used in the experiments is Llama-3.1-8B-Instruct [48].260

4.2 Performance Analysis and Discussion261

Notably, # LN 1, # LN 3, # LN 5 indicate only 1, 3, 5 labeled nodes per class are used for training262

PKD, while the results of the teacher GNNs ({Ti}4i=1) and other baselines are trained under the data263

splitting of 48%/32%/20% as mentioned above. According to Table 1, our method almost achieves264

the best or second-best accuracy results.265

Table 1: Node classification accuracies (%) on real-world datasets. T1, T2, T3, and T4 denote the
teacher GNNs for homophily or heterophily graphs (refer to the descriptions in Baselines for more
details of the teacher and student GNNs). The OOM stands for Out-Of-Memory. The best results are
highlighted in dark gray, while the runner-up results are marked in light gray.

Methods Dataset CORNELL WASHINGTON TEXAS WISCONSIN
AMAZON
RATINGS

OGBN-
ARXIV WIKI CS PUBMED CORA

T1 58.04±1.1 57.84±2.1 53.43±4.1 59.32±2.1 41.22±6.6 56.51±1.2 81.57±0.7 83.34±2.4 87.79±1.6

T2 46.29±0.9 65.00±2.5 82.83±2.0 48.30±2.5 36.69±0.2 59.19±5.2 79.08±1.8 82.52±2.1 87.59±0.8

T3 44.62±4.3 55.27±1.7 45.19±2.5 61.49±0.6 37.41±2.2 56.71±3.6 80.17±1.6 79.57±2.3 88.38±0.6

T4 32.73±2.8 58.33±1.7 63.64±0.1 62.89±1.3 48.93±0.5 53.64±1.3 72.01±2.5 55.15±1.4 77.07±4.0

GCNII [28] / # LN 5 57.82±2.8 64.17±3.1 68.79±4.3 60.94±1.5 48.22±4.3 35.14±5.6 58.29±2.8 67.83±7.7 77.74±3.7

EGNN [29] / # LN 5 53.38±7.8 63.33±1.2 71.72±2.9 55.97±3.6 49.03±8.6 36.15±3.9 63.97±6.6 66.12±9.3 72.85±0.7

LLMGNN [13] / # LN 5 52.63±4.3 41.09±2.2 62.82±3.6 46.54±0.9 47.64±2.0 44.11±2.5 66.09±0.4 78.84±1.1 76.23±1.7

GAugLLM [47] / # LN 5 62.98±3.3 65.13±1.1 73.81±2.2 62.20±0.9 42.42±6.0 53.47±0.5 83.10±1.7 85.98±0.6 79.48±4.5

Self-training [32] / # LN 5 61.90±6.1 65.89±0.5 72.62±2.4 66.29±0.9 41.99±5.0 33.40±2.5 74.99±0.9 83.11±0.4 83.19±1.7

AGST [30] / # LN 5 71.43±0.7 70.09±0.8 68.45±0.8 70.08±0.7 43.11±0.4 OOM 72.49±3.1 73.75±0.5 77.25±5.6

IceBerg [31] / # LN 5 33.33±11.9 67.76±2.9 50.00±4.9 41.53±2.0 25.99±1.5 33.63±1.2 84.88±0.2 62.41±9.3 76.23±2.6

KDGA [34] 54.39±2.9 60.00±0.1 66.67±1.5 58.74±3.9 38.06±1.2 OOM 65.03±4.1 OOM 68.87±0.8

MSKD [35] 51.27±4.2 50.39±0.2 62.63±2.0 41.51±0.2 35.60±5.8 58.27±1.0 62.73±2.9 45.86±0.3 51.61±0.6

BGNN [20] 58.60±3.3 56.67±0.8 65.66±2.0 59.12±6.9 37.53±2.0 46.67±8.1 56.96±4.3 76.12±0.7 71.28±3.7

MTAAM [21] 72.68±1.0 73.33±0.8 80.81±4.0 71.69±1.9 39.54±0.2 32.32±5.5 65.24±3.3 83.42±2.3 79.16±4.0

FairGKD [36] 61.05±2.4 60.00±4.1 84.85±1.1 57.11±0.9 43.93±0.5 42.03±2.1 60.25±1.2 70.40±0.3 69.85±2.7

RANDOM / # LN 5 54.31±1.7 58.04±1.2 58.93±1.1 58.04±2.7 57.95±2.5 54.97±3.3 65.27±1.8 66.60±2.9 70.64±2.6

VOTING / # LN 5 44.97±3.0 58.88±3.5 61.31±2.0 46.97±3.6 58.64±2.1 58.53±2.0 72.28±2.2 70.64±3.1 74.32±3.1

PKDLlama

# LN 1 74.60±2.1 76.64±0.9 80.36±1.3 69.32±2.8 64.11±1.7 53.67±1.6 79.31±0.8 83.75±1.1 85.64±2.1

# LN 3 76.72±0.9 81.36±1.0 83.33±0.7 71.49±1.5 65.64±0.9 58.65±2.2 80.01±0.6 84.34±0.9 86.18±1.7

# LN 5 80.95±1.1 83.74±0.4 86.31±0.5 76.89±0.9 66.79±0.3 61.03±0.7 81.39±0.4 85.69±0.3 91.14±0.3

Due to the extreme insufficiency of labels, GCNII and EGNN are restricted in further improvement,266

although they have distinctive network architectures. Lacking carefully designed fine-tuning and267

enough cognition makes LLMGNN fail to produce high-quality pseudo labels and is dramatically268

defeated by our method PKD. Although GAugLLM harnesses LLM for feature and structure augmen-269

tations to benefit GNN, its self-training depends only on SoftMax scores to identify candidate nodes270

to assign pseudo-labels, which are unreliable sometimes. GAugLLM achieves the best result on the271

PUBMED dataset, but it is outperformed by PKD on other datasets. AGST is excessively dependent on272

the original graph topology for label propagation, rendering it vulnerable to structural noise and facing273

significant challenges when transferred to large-scale graphs, such as OGBN-ARXIV. IceBerg does274

not perform well on heterophily graphs because its capacity to disseminate information across longer275

distances is hampered by the proliferation of noise edges. MTAAM shows satisfactory performance276

on most datasets, which is due to its ability to autonomously identify the most valuable knowledge277

from each teacher during training. FairGKD achieves runner-up results on some datasets. The poor278

performances of KDGA and BGNN result from their excessive sensitivity to GNN selection. MSKD279

is equipped with the fixed message-passing mechanism, which shows that the single message-passing280

mechanism underperforms on all the datasets compared to PKD. The RANDOM / # LN 5 approach281

refers to randomly selecting node predictions from 4 teachers, utilizing 5 labeled nodes per class to282

train teacher GNNs. The VOTING / # LN 5 method selects the most frequently predicted label from 4283

teachers as the annotation label. We can see that these two simple and intuitive strategies are defeated284

by PKD on all datasets.285

Our PKD consistently achieves superior node classification results across all datasets, irrespective286

of the specific type of LLM. The few-shot node classification results after replacing Llama-3.1-8B-287

Instruct with Qwen2.5-7B-Instruct [49] and Mixtral-7B-Instruct-v0.3 [50] are shown in Table 2. As288

Llama-3.1-8B-Instruct [48] has the largest number of parameters compared to the other two LLMs289

with 7B parameters, it demonstrates superior performance across a wider range of datasets.290
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4.3 Ablation Study291

Generally, the fine-tuned LLM using our proposed GTA prompts also demonstrates pretty zero-shot292

node classification performance, which surpasses some semi-supervised GNNs from the values in293

Figure 2.294

Table 2: Few-shot node classification accuracy (%) on eight TAGs using three different LLMs. The
# LN 1, # LN 3, # LN 5 represent 1, 3, 5 labeled nodes per class, respectively. The best results are
highlighted in dark gray, while the runner-up results are marked in light gray.

Methods Dataset CORNELL WASHINGTON TEXAS WISCONSIN
AMAZON
RATINGS WIKI CS PUBMED CORA

PKDQwen

# LN 1 73.54±2.6 75.70±1.1 82.14±0.8 72.59±1.3 74.58±1.1 79.49±1.2 82.81±0.8 86.45±1.0

# LN 3 77.25±1.4 77.35±0.9 84.52±0.4 73.86±0.7 75.46±0.8 80.01±0.6 83.61±1.1 87.74±0.8

# LN 5 79.84±0.6 79.63±0.6 85.71±0.2 74.24±0.2 77.69±0.6 81.21±0.2 85.96±0.6 90.07±0.4

PKDMixtral

# LN 1 76.31±2.2 74.42±1.5 79.41±3.3 69.81±0.5 70.02±1.2 80.56±0.8 82.42±0.9 84.87±2.4

# LN 3 78.95±1.2 76.74±3.1 82.86±1.7 75.47±0.8 71.50±2.6 81.96±1.3 83.19±2.7 87.64±1.1

# LN 5 81.58±2.1 81.39±2.5 85.29±1.9 77.36±3.1 73.96±1.9 83.33±1.4 84.71±1.6 88.56±0.7

Furthermore, we assess the significance of the GTA prompts, DNS and VPR with the following295

default parameter settings: # LN = 3, K = 4. Here, K denotes the number of selected neighbors296

surrounding the node, to be annotated, within each embedding space of the teacher GNNs structure297

attributes. In the absence of DNS, neighbors are selected according to the adjacency matrix directly;298

in the non-use of VPR, we expand the training data by random selection.299

Table 3: Ablation study for GTA, DNS, and VPR. ⇑ denotes an accuracy (%) increment. The three
components play different roles in the improvement of the performance of our method.

Dataset/Modeule GTA DNS VPR Accuracy Dataset/Module GTA DNS VPR Accuracy

CORA

45.02
AMAZON
RATINGS

42.01
⇑ 26.94 ⇑ 13.02
⇑ 30.99 ⇑ 16.96
⇑ 41.14 ⇑ 23.97

Figure 4: The comparison of dif-
ferent Rewards. When including
all three parts simultaneously, our
method (the curve in green) per-
forms the best.

As shown in Table 3, the implementations of GAT prompts,300

DNS, and VPR result in varying degrees of performance im-301

provement. Supported by fine-tuning with GTA prompts, the302

LLM’s enhanced logical reasoning ability, combined with high-303

quality neighboring nodes, substantially enhances zero-shot304

node classification capability, leading to superior classification305

performance improvement.306

To assess the effectiveness of each part in the reward function307

(Equation 4), we visualize the training processes of three vari-308

ants in Figure 4: (a) R1: The reward function for teacher GNN309

selection depends solely on the classification accuracy of the310

student GNN on the expanded training data; (b) R2: In addition311

to classification accuracy, the reward function also incorporates312

the negative cross-entropy loss (−LCE); (c) R3: Building upon313

R2, the reward function also includes the negative knowledge314

distillation loss (−LDL). As shown in Figure 4, both the three315

parts contribute to the improved classification performance.316

4.4 Sensitivity Analysis317

We investigate the impact of the hyper-parameter K on the zero-shot node classification performance.318

We vary the value of K within the range {1, 2, 3, 4, 5} for homophily graphs and heterophily graphs319

to observe the variation in zero-shot node classification accuracy. As illustrated in Figure 5, accuracy320

exhibits significant fluctuations as K changes. When K = 4, the fine-tuned LLM demonstrates321

strong performance on most graphs.322
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Table 4: The few-shot node classification accuracy (%) of PKD with different parameter-scale LLM.
Datasets CORA PUBMED

LLM Qwen2.5-7B-Instruct

Parameters scales 7B 14B 32B 7B 14B 32B

PKD 90.07 90.58 91.54 85.96 86.64 87.16

Figure 5: The effects of K on
homophily and heterophily graphs.
When K = 4, zero-shot node clas-
sification accuracy of the fine-tuned
LLM is the highest on most graphs.

To further explore the relationship between the parameter scale323

of LLM and PKD’s performance, we evaluated Qwen2.5-7B-324

Instruct with three different parameter scales: 7B/14B/32B325

parameters. The results are shown in Table 4. Obviously, the326

classification performance of PKD basically gets better with the327

increase of parameter scale. This is mainly related to the LLMs328

with larger parameter-scale have richer knowledge storage and329

better ability handling complex tasks.330

Next, we investigate the ratios of nodes selected for annotating331

their labels by the LLM as a means to expand the training332

set. The results are given in Table 5. Increasing the expansion333

ratio can enhance the performance of PKD. This improvement334

can be attributed not only to the high-quality label annotation335

generated by the fine-tuned LLM, but also to the characteristic336

of PKD that is underpinned by selecting each node the most337

appropriate teacher GNN for knowledge distillation.338

Table 5: The results with different node annotation ratios. The best results are highlighted in dark
gray, while the runner-up results are marked in light gray.

Node annotation ratios 10% / # LN 5 20% / # LN 5 30% / # LN 5 40% / # LN 5 48% / # LN 5

AMAZON RATINGS 50.27±6.6 55.91±1.8 62.07±3.5 63.93±1.1 66.79±0.3

CORA 73.37±5.1 77.51±1.1 81.49±2.5 83.27±2.2 91.14±0.3

4.5 Running Time339

We also study the training efficiencies of PKD and all baselines. The running times on CORA are340

shown in Tabel 6. There is a trade-off between accuracy and time complexity. The incorporation of341

the LLM undoubtedly boosts the few-shot classification accuracy of GNNs on TAGs, but the training342

time increases. When applied to the bigger graphs, the time increase will be more obvious.343

Table 6: Running time (second per epoch) of each method, including the pretraining process.

Datasets / Methods T1 T2 T3 T4 GCNII EGNN LLMGNN GAugLLM
CORA 0.006 0.197 0.247 0.035 0.014 0.366 0.630 0.402

Datasets / Methods Self-training AGST IceBerg KDGA MSKD BGNN MTAAM FairGKD PKD
CORA 0.016 0.018 0.011 3.911 2.289 1.001 3.318 4.100 7.314

5 Conclusions, Limitations & Future Work344

In this work, we have proposed a preference-driven knowledge distillation (PKD) framework for345

few-shot node classification on TAGs, which mainly consists of GNN-preference-driven Node346

Selector (GNS) and Node-preference-driven GNN Selector (NGS). Fine-tuned with our proposed347

GTA prompts, the refined LLM generates high-quality annotations. The GNS effectively determines348

nodes for the fine-tuned LLM to annotate and promotes knowledge distillation from the LLM to349

teacher GNNs. The NGS tailors for each node the most appropriate message-passing mechanism,350

promoting knowledge distillation from teacher GNNs to the student GNN. On various real-world351

TAGs, our method PKD outperforms almost all advanced GNNs and KD methods for few-shot node352

classification while using only a few node labels. One limitation of our method is that it is designed353

for TAGs. Moving forward, we plan to further explore more efficient mechanism of synergizing LLM354

and GNN to address the limitation of training efficiency as well as datasets beyond TAGs.355
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A Detailed Description of Datasets527

Table 7: Statistics of datasets. The Hom. ratio means 1-hop homophily ratio.

Dataset CORNELL WASHINGTON TEXAS WISCONSIN
AMAZON
RATINGS

OGBN-
ARXIV WIKI CS PUBMED CORA

Hom. ratio 0.1504 0.1545 0.1989 0.2109 0.4777 0.6542 0.6588 0.7924 0.8252
# Node 189 214 168 264 5068 169343 11701 19717 2708
# Edge 166 182 91 388 17334 1166243 216123 88648 10556
# Features 1703 1703 1703 1703 300 128 300 500 1433
# Classes 5 5 5 5 5 40 10 3 7
Domain Web page Web page Web page Web page Co-purchase Co-citation Wikipedia page Co-citation Co-citation

CORNELL, WASHINGTON, TEXAS, WISCONSIN:528

These four datasets are derived from the WEBKB webpage dataset, collected from the computer529

science departments of various universities. In these datasets, nodes represent web pages, while edges530

denote hyperlinks connecting them. All words from the given web pages are collected as the features531

for the nodes. The webpage categories can be listed as following: Student, Project, Course,532

Staff, Faculty.533

AMAZON RATINGS:534

This dataset is derived from the AMAZON product co-purchasing network metadata, sourced from535

the SNAP datasets [51]. Nodes represent products (Books, Music CDs, DVDs, Videos) and edges536

signify relationships between products that are frequently co-purchased. The task involves predicting537

the average rating assigned to each product by reviewers. The possible rating values are grouped into538

five distinct classes. For node features, we utilize the NV-Embed-v2 [52] embeddings generated from539

the product descriptions. To reduce the size of the graph, we only consider the largest connected540

component of the 5-core of the graph.541

WIKI CS:542

WIKI CS is a graph derived from the Wikipedia platform. The nodes in WIKI CS represent543

Wikipedia page descriptions, while the edges correspond to hyperlinks between distinct pages.544

The WIKI CS dataset and its raw text [43] are sourced from OFA [53]. The graph consists545

of 11,701 nodes and 216,123 edges. The WIKI CS dataset is suitable for node classifica-546

tion tasks. The WIKI CS dataset is categorized into 10 distinct categories: Computational547

Linguistics, Databases, Operating Systems, Computer Architecture, Computer548

Security, Internet Protocols, Computer File Systems, Distributed Computing549

Architecture, Web Technology, Programming Language Topics.550

CORA, PUBMED and OGBN-ARXIV:551

The CORA dataset represents a co-citation graph of computer science research papers. The dataset552

is sourced from OFA [53], with the original data derived from [8]. In [8], the authors recollect the553

dataset due to the commonly employed bag-of-words features in the widely used CORA dataset554

within the GNN community, where raw text is difficult to retrieve. The revised CORA dataset contains555

2,708 nodes and 10,556 edges, matching the specifications of the original dataset. The dataset is di-556

vided into 7 categories: Theory, Reinforcement Learning, Genetic Algorithms, Neural557

Networks, Probabilistic Methods, Case-Based, Rule Learning.558

The PUBMED dataset represents a co-citation graph of biomedical research papers focused on diabetes559

mellitus. The source and processing procedure of PUBMED are identical to those of CORA. After560

processing, the dataset consists of 19,717 nodes and 88,648 edges. The dataset is classified into 3561

categories: Experimentally Induced Diabetes, Type 1 Diabetes, Type 2 Diabetes.562

The OGBN-ARXIV dataset is a citation graph of papers from the arXiv platform. It is collected from563

the Arxiv dataset and its raw text as OGB[42] and OFA [53]. There are 169,343 nodes and 1,166,243564

edges in the graph. It contains 40 sub-categories of compute science.565
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B Detailed Prompts566

We provide all specific prompt templates in the following for zero-shot node classification, Node-567

preference-driven GNN Selector and GTA Prompts, respectively.568

B.1 Prompts for Zero-shot Node Classification569

The complete prompts for zero-shot node classification are provided as below. Similarly, for each570

dataset, we refine specific descriptions to ensure contextual coherence.571

Role Prompt
System
Prompt Papers in this field can be divided into 7 categories: [Case Based, Genetic

Algorithms, Neural Networks, Probabilistic Methods, Reinforcement
Learning, Rule Learning, Theory]. You will serve as an assistant to help me to
classify this target paper into the 7 categories above according to its description and
related papers’ descriptions, who may be of the same category as this target paper. I
will provide you with the descriptions of this target paper and its related papers.
Here are the instructions:
I will provide you with information in the form of a JSON string that describes the
target paper:
Title: the title of this target paper. Abstract: the abstract of this target paper.
Related Title: the title of the related paper. Related Abstract: the abstract of the related
paper.
Related Title: the title of the related paper. Related Abstract: the abstract of the related
paper.
. . . . . .
Requirements:
❶ Please provide your response in JSON format, following this structure:
Reasoning: Briefly explain your reasoning process for the predicted category.
Category: The best category you predict for this paper, this category must belong
to these 7 categories: [Case Based, Genetic Algorithms, Neural Networks,
Probabilistic Methods, Reinforcement Learning, Rule Learning,
Theory];
❷ There are 2000 words limits for the reasoning;
❸ Do not provide any other text outside the JSON string;
❹ Focus only on content in the actual text and avoid making false associations;
❺ The output can only contain category and reasoning.

User
Prompt Title: ttitle. Abstract: tabstract.

Related Title: tr1title. Related Abstract: tr1abstract.
Related Title: tr2title. Related Abstract: tr2abstract.
Related Title: tr3title. Related Abstract: tr3abstract.
...

B.2 Prompts for Node-preference-driven GNN Selector572

Unlike the prompts used zero-shot node classification described above, we do not collect responses573

from the LLM; instead, we focus solely on the outputs generated by the subsequent projector.574

Similarly, for each dataset, we refine certain descriptions to maintain contextual consistency.575
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Role Prompt
System
Prompt There are four names of teacher networks: [APPNP, GCN, H2GCN, GAT]. We

need to perform knowledge distillation for each node in this graph consist of nodes
(papers) and edges (citation relationships). You will serve as an assistant to help me
to assign the best teacher network for the target node (paper) based on the following
information.I will provide you with three kinds of attributes of the target node (paper).
Here are the instructions:
I will provide you with information in the form of a JSON string that describes the node
(paper):
Semantic attributes: the title and abstract of this paper.
Structure attributes: four teacher networks’ logit output of this target node.
Prediction attributes: important neighbors (papers), which are closely related the
target node (paper) and their contents.

Requirements:
❶ Please provide your response in JSON format, following this structure:
Reasoning: Briefly explain your reasoning process for the selected teacher network.
Teacher network: The best teacher network you assign for this node (paper), this
result must belong to these 4 teachers: [APPNP, GCN, H2GCN, GAT];
❷ There are 2000 words limits for the reasoning;
❸ Do not provide any other text outside the JSON string;
❹ Focus only on content in the actual text and avoid making false associations;
❺ The output can only contain teacher network and reasoning.

User
Prompt Semantic attributes: It is the content description of this target paper: t.

Structure attributes: It has following important neighbors (papers), which are closely
related the target paper. Their content descriptions are: ...
Prediction attributes:
The APPNP’s logits output of this target paper is str(zAPPNP ),
The GCN’s logits output of this target paper is str(zGCN ),
The H2GCN’s logits output of this target paper is str(zH2GCN),
The GAT’s logits output of this target paper is str(zGAT )
...

B.3 Graph Topology Aware (GTA) Prompts576

Generating effective prompts for graph-based tasks can be challenging for LLMs, due to the inherent577

complexity of graph structures and relationships that must be accurately represented. To address578

this challenge, we propose structured-tasks text for graph topology aware, designed specifically for579

fine-tuning LLMs.580

TASK 1: Connectivity This task is determining whether or not two nodes vi and vj in an581

undirected graph are connected. Specifically, we randomly select node pairs vi, vj ∈ V and ask582

whether or not an edge exists between them in the graph, answering with a ”True/False” response. To583

ensure prompt diversity, only one-third of the possible node pairs are selected for each graph.584

TASK 2: Degree The degree of a node, D, is the number of nodes directly connected to it. In this585

task, we group nodes based on their degree and select a node vi from a group. The LLM is then given586

the node’s local structure according to the adjacency matrix A, and is asked for the degree of the587

node. To prevent repetitive prompts, only one-third of the nodes from each degree group are selected.588

TASK 3: Cycle Detection A cycle in an undirected graph without self-loop is a path where the589

first and last nodes are the same. This task requires the LLM to answer whether a cycle exists in the590

given sequence of nodes, {v1, ..., vl, ..., v1}. We generate random walks [54] of length greater than591

10 and arrange them into node sequences. After describing their neighbors information (derived from592

the adjacency matrix A), the LLM is then asked whether or not any sequence of nodes forms a cycle.593
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TASK 4: Text Generation We randomly select a node setW = {vi}N/3
i=1 as the source nodes,594

and a breadth-first search (BFS) is conducted from each source node to identify nodes in graph at595

a distance greater than t edges from vi, which are collected as target nodes. Redundant nodes are596

removed via the long-to-short path conversion module [55]. The LLM is tasked with generating597

textual descriptions of target nodes based on the semantic attributes of the preceding nodes in the598

path.599

Specifically, TASK 1 enhances the LLM’s ability to identify neighboring nodes and understand the600

structure of local neighborhoods; TASK 2 strengthens the LLM’s ability to recognize the significance601

of node degrees within the graph context; TASK 3 reinforces the LLM to reason about complex602

graph topologies, such as cycles and long-range node dependencies; TASK 4 improves path-based603

reasoning and contextualization of nodes in the local graph structure.604

The full prompts for Connectivity is presented below. When generating prompts for different605

datasets, we adjust certain descriptions to better align with the specific context. For example, when606

constructing prompts for TEXAS, the background description should be adapted to reflect web pages,607

and the relationship should be revised to hyperlinks, along with other context-specific adjustments.608

Similarly, for each task, the prompts must also be modified to correspond to the specific content609

described in Section 3.2.610

Role Prompt
System
Prompt You will serve as a graph machine learning expert in connectivity detection to help me

to determine whether the edge exists between the given two targeted nodes. There is
a undirected graph consisting of papers (nodes) and the citation relationships (edges)
between them. I will provide the information of the two targeted nodes and their
neighbors, consisting of indexes, textual content.
Here are the instructions:
I will provide you with information in the form of a JSON string that describes the
target papers:
The first targeted paper:
Node index: ...; Title: ...; Abstract: ...;
The kth neighbor: Index:...; Title: ...; Abstract: ...;
...
The second targeted paper:
Node index: ...; Title: ...; Abstract: ...;
The kth neighbor: Index:...; Title: ...; Abstract: ...;
...
Requirements:
❶ Please provide your response in JSON format, following this structure:
Reasoning: Briefly explain your reasoning process for the selected teacher network.
Answer: You only can select one from [True, False] as the best answer;
❷ There are 2000 words limits for the reasoning;
❸ Do not provide any other text outside the JSON string;
❹ Focus only on content in the actual text and avoid making false associations;
❺ The output can only contain answer and reasoning.

User
Prompt The first targeted paper:

Node index: i; Title: tititle; Abstract: tiabstract
The kth neighbor’s node index: Iik Title: tI

i
k

title Abstract: tI
i
k

abstract...
...
The second targeted paper:
Node index: j; Title: tjtitle; Abstract: tjabstract
The kth neighbor’s node index: Ijk Title: tI

j
k

title Abstract: tI
j
k

abstract ...
...
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C Implementation Details and Time Complexity Analysis611

First of all, we outline the training setup employed for the experiments detailed in Section 4.2.612

Uniform training hyper-parameters are applied across all baseline models and datasets. Specifically,613

the following hyper-parameter values are utilized: the hidden dimension is set to 128. We use ReLU614

activation functions in all our baseline models. The Adam optimizer is utilized with a learning rate615

of 1 × e−2 and weight decay of 5 × e−4. We train each baseline for 600 steps and select the best616

step based on the validation accuracy. In our proposed method, we train the student 5 epochs after617

GNN selection driven by node attributes every time and train the agent 200 epochs. Our baselines are618

implemented using PyTorch [56] and PyTorch-Geometric [57]. The other weight hyper-parameters619

are set as follows: α = 0.5, β = 1, γ = 0.1, η = 0.3, c1 = 0.5, c2 = 0.01, ϵ = 0.2.620

Additionally, the parameters of Action Model and Value Model are updated as follows:621

fθ
A ← fθ

A − ρA∇fθ
A
(LA + c1LV − c2H(πT )) (5)

622

fϕ
V ← fϕ

V − ρV∇fϕ
V
LV (6)

where fθ
A and fϕ

V represent the trainable parameters of the Policy Model and Value Model, respectively.623

ρA and ρV are their learning rates and∇fθ
A

and∇fϕ
V

are the gradients of their parameters. LA and624

LV are objective functions belonging to the Policy Model and Value Model, respectively. c1, c2 are625

hyper-parameters to balance weights. H(πT ) is employed to enhance the entropy of the policy and626

promote sufficient exploration. Based on the CLIP strategy [40], the final objective function of the627

Policy Model is:628

LA = −Ei[min(ri(fθ
A)Âi, clip(ri(fθ

A), 1− ϵ, 1 + ϵ)Âi)] (7)

where Ei represents the expectation in the time step i. ri(fθ
A) is the ratio of the i-th policy to the629

(i− 1)-th policy. Âi is the advantage estimation in the current step, denoting how good or bad the630

Action is. ϵ is a hyper-parameter, which determines the range of the CLIP operation.631

The objective functions of the Value Model and H(πT ) are:632

LV = Ei[(f
ϕ
V (Pi)− R̂i)

2] (8)
633

H[πT ] = −Ei[πfθ
A
(AT |Pi)logπfθ

A
(AT |Pi)] (9)

where fϕ
V (Pi) and R̂i denote the Value Model’s estimation of State Pi and the target value of real634

Reward Ri, respectively. AT denotes the specific action and πfθ
A
(AT |Pi) is the probability that635

Policy fθ
A takes action AT in state Pi.636

The detailed training procedure is shown in Algorithm 1.637

The specific analysis of the time complexity of PKD training and testing are provided below:638

The time complexity of PKD training is mainly divided into three parts: LLM fine-tuning, GNN-639

preference-driven Node Selector and Node-preference-driven GNN Selector. The GNN-preference-640

driven Node Selector also can be divided into the annotations generation and prediction distillation.641

First, we use Low-Rank Adaptation (LoRA) strategy [58] for efficient parameter training, with642

hyperparameters set to r = 4, α = 4, epoch = 2, and the rest are set according to the default643

settings of llama-factory1. Weight merge is also involved. In general, the time complexity of this644

part is O(nLdr + Ld2r), where n is the number of instructions, L is the number of layers applying645

Lora, and d is the dimension of the LLM hidden layer. r ≪ d, so the time complexity is bound by646

O(NLd+ Ld2).647

The process of annotations generation includes sorting the selected nodes and the reasoning process648

of LLM, and its time complexity is O(W logW ) and O(WL′(l2d+ ld2)), where W is the number649

of selected nodes, L′ is the number of transformer layers in LLM, and l is the input sequence length.650

Generally, W ≪ l, L′ ≪ l, then the time complexity is O(l2d+ ld2).651

The time complexity of teacher GNN (2-layers) re-training is bound by O((NF +M)D), where N652

is the number of nodes, F is the node feature dimension, M is the number of edges, and D is the653

GNN hidden layer dimension.654

1https://github.com/hiyouga/LLaMA-Factory
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Algorithm 1: The training of PKD.

Input: GT = (V, E ,X,A,T), training dataset with true labels DL, teacher GNNs {Tb}4b=1 with
parameters {fθ

Tb
}4b=1, student GNN S with parameter fθ

S , fine-tuned LLM LLMθ, Policy
Model fθ

A, Value Model fϕ
V , epoch number of RL L1

Output: The expanded training dataset D̃L, optimized parameters LLMθ∗
, fθ∗

S , fθ∗

A , fϕ∗

V and
predicted labels ỹ.

1 D̃L ← DL // Training dataset initialization;
// LLM fine-tuning;

2 LLMθ∗ ← LLMθ;
// GNN-preference-driven Node Selector;

3 Filter out GNN-preference nodes based on the preference rank VPR and get their annotations
from LLMθ∗

;
4 Conduct prediction distillation from LLMθ∗

to {fθ
Tb
}4b=1 for retrain them ;

// Node-preference-driven GNN Selector;
5 for l1 ← 1 to L1 do
6 Shuffle D̃L to get a new training sequence;
7 Complete prompts {Pi}Wi=1 for each selected nodes;
8 for each node vPR ∈ D̃L do
9 NSG select teacher GNN for vPR and get one-hot vector mi;

10 Update the parameter fθ
S and get reward Ri by (1);

11 Store (Pi,mi, Ri) to the episode history F ;

12 Update the parameter fθ
A and fϕ

V by (5) (6) ;

13 return D̃L, LLM
θ∗
, fθ∗

S , fθ∗

A , fϕ∗

V ;

The time complexity of Node-preference-driven GNN Selector is O(W (l2d + ld2 + dd′ + d′a)),655

where d′ is the dimension of the MLP hidden layer, a is the number of action categories, W ≪ l,656

a ≪ d, so the time complexity is bound by O(l2d + ld2 + dd′). The training time complexity of657

student GNN isO((NF +M)D) Therefore, the overall time complexity is bound byO((L+2l)d2+658

(d′ + nL)d+ 2l2 + 2D(NF +M)).659

The inference time complexity of PKD is determined by the testing process of the student GNN. So660

its time complexity is bound by O((NF +M)D).661

D Proofs for Propositions 3.1662

The uncertainty usually refers to a measure of the confidence of a model in predicting a certain663

sample. From the perspective of collective consensus [39], we define the K-uncertainty of one node664

as the deviation of each teacher GNN’s prediction probability distribution from the overall prediction665

probability distribution. From the Proposition 3.1, we can get that, the larger δK of one node, the666

stronger the uncertainty of this node, which is more beneficial to teacher GNNs training.667

Proof. For each node v, the prediction probability distributions of B teacher GNNs can be denoted668

by P1, P2, ..., PB . The K-uncertainty of node v is defined as:669

δK(v) ≜
N∑

1≤i<j≤B

[DKL(Pi(v)||Pj(v)) +DKL(Pj(v)||Pi(v))] (10)

Here, we define the average prediction probability distribution as following:670

Definition D.1. The average prediction probability distributionM is the benchmark for the overall671

prediction probability distribution to measure both the models confidence and the consistency of each672
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GNN with the overall probability distribution.673

M(v) =
1

B

B∑
i=1

Pi(v) (11)

674

Then, the uncertainty of node v is,675

δv =
1

B

B∑
i=1

DKL(Pi(v)||M(v)) (12)

According to Jenson’s inequality, we have676

δK(v) ≥ Nδv (13)

For any probability distribution P , we have677

DKL(P ||M) = H(P,M)−H(P ) (14)

Then,678

δK =
1

N

∑
[H(Pi,M)−H(Pi)] (15)

As the K-uncertainty increases, the entropy of the GNN’s prediction probability distribution Pi in-679

creases, and the cross-entropy H(Pi,M) grows significantly due to the larger probability distribution680

differences. So there is,681

δK(v) ∝
B∑
i=1

[H(Pi,M)−H(Pi)] ∝ δv (16)

That is,682

δK(v) ∝ δv (17)

From the Proposition 3.1, we also can get that, selecting high-uncertainty nodes to expand the683

training set benefits GNNs training.684

For a GNN with prediction probabilities P (y = c|v), the entropy of an unlabeled node v is685

H(v) = −
C∑

c=1

P (y = c|v) logP (y = c|v) (18)

To maximize information gain, we select the node v∗ with the highest uncertainty (entropy):686

v∗ = argmax
v

H(v) (19)

After expanding v∗ to the training dataset, the loss function becomes:687

Lnew = Lold(θ) + L(fθ(v∗), y∗) (20)
Here, y∗ is considered the true label based on the fine-tuned LLM. The GNN parameters are updated688

as:689

θnew = θold − r · ∇θL(fθ(v∗), y∗) (21)

Since the prediction probability distribution of v∗ is close to uniform (due to high entropy) [59], the690

gradient more effectively corrects the GNN parameters [60], reducing the error. According to the691

preference rank: VPR = Sort({v1, . . . , vN} , δK(v1), δK(v2), . . . , δK(vN )), we can get the follows:692

fθ
T

∗
(D̃L) = argmin

vi∈{v1
PR,v2

PR,...,vW
PR|δK(vW

PR)>δ̃K}

1

W

∑
L(fθ

T , vi) (22)

where D̃L is the expanded training dataset. fθ
T

∗ is the optimal parameter of teacher GNN. vwPR693

represents the w-th nodes in the preference rank.694

695
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E Other Experimental Results696

(a) Original student GNN (b) GCNII (c) EGNN (d) LLMGNN

(e) GAugLLM (f) AGST (g) KDGA (h) MSKD

(i) BGNN (j) MTAAM (k) FairGKD (l) PKD # LN 5

Figure 6: t-SNE [61] visualizations on CORA.

Figure 6 presents the outstanding node classification performance we mentioned in Section 4.2, which697

is illustrated by the t-SNE [61] visualization of the embedding spaces for CORA. Notably, Figure 6(a)698

illustrates the results of the student GNN (GCN) under the # LN 5 condition.699

From the Figure 6, we can see that, some KD methods fail to enable the student GNN to learn700

discriminative node representations, as evidenced by the absence of clustered structures in the701

embedding space, exemplified by MSKD, BGNN, and MTAAM. GCNII and KDGA struggle to702

form well-separated clusters, whereas methods like LLMGNN, GAugLLM, and FairGKD yield703

clusters with limited purity. Compared to these baselines, our method generates embeddings with704

significantly enhanced inter-class separability and high cluster purity, resulting in improved few-shot705

node classification performance.706

F Broader Impact707

The proposed PKD offers significant broader impacts by enhancing few-shot node classification on708

TAGs. By combining the strengths of LLM and GNN, it improves learning efficiency, reducing the709

need for expensive and time-consuming manual annotation. This can benefit industries like social710

media, recommendation systems, and network analysis, enabling more accurate and scalable models711

for personalized services, fraud detection, and dynamic optimization.712

Additionally, PKD can tailor message-passing mechanisms to node-specific attributes can lead to713

more adaptive and efficient machine learning models. It also democratizes access to advanced714
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machine learning, allowing smaller organizations and researchers with limited resources to develop715

effective models. However, ethical considerations, such as privacy and fairness, must be prioritized to716

ensure responsible deployment.717
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NeurIPS Paper Checklist718

1. Claims719

Question: Do the main claims made in the abstract and introduction accurately reflect the720

paper’s contributions and scope?721

Answer: [Yes]722

Justification: In this paper, we propose a preference-driven knowledge distillation (PKD)723

framework that unites LLMs and various-architectures GNNs for few-shot node classification724

on TAGs. We claim the contributions and scope in the abstract and introduction sections725

(See Abstract and Introduction Section).726

Guidelines:727

• The answer NA means that the abstract and introduction do not include the claims728

made in the paper.729

• The abstract and/or introduction should clearly state the claims made, including the730

contributions made in the paper and important assumptions and limitations. A No or731

NA answer to this question will not be perceived well by the reviewers.732

• The claims made should match theoretical and experimental results, and reflect how733

much the results can be expected to generalize to other settings.734

• It is fine to include aspirational goals as motivation as long as it is clear that these goals735

are not attained by the paper.736

2. Limitations737

Question: Does the paper discuss the limitations of the work performed by the authors?738

Answer: [Yes]739

Justification: In this work, we discuss the limitations of our research and outline directions740

for future work (See Conclusion).741

Guidelines:742

• The answer NA means that the paper has no limitation while the answer No means that743

the paper has limitations, but those are not discussed in the paper.744

• The authors are encouraged to create a separate "Limitations" section in their paper.745

• The paper should point out any strong assumptions and how robust the results are to746

violations of these assumptions (e.g., independence assumptions, noiseless settings,747

model well-specification, asymptotic approximations only holding locally). The authors748

should reflect on how these assumptions might be violated in practice and what the749

implications would be.750

• The authors should reflect on the scope of the claims made, e.g., if the approach was751

only tested on a few datasets or with a few runs. In general, empirical results often752

depend on implicit assumptions, which should be articulated.753

• The authors should reflect on the factors that influence the performance of the approach.754

For example, a facial recognition algorithm may perform poorly when image resolution755

is low or images are taken in low lighting. Or a speech-to-text system might not be756

used reliably to provide closed captions for online lectures because it fails to handle757

technical jargon.758

• The authors should discuss the computational efficiency of the proposed algorithms759

and how they scale with dataset size.760

• If applicable, the authors should discuss possible limitations of their approach to761

address problems of privacy and fairness.762

• While the authors might fear that complete honesty about limitations might be used by763

reviewers as grounds for rejection, a worse outcome might be that reviewers discover764

limitations that aren’t acknowledged in the paper. The authors should use their best765

judgment and recognize that individual actions in favor of transparency play an impor-766

tant role in developing norms that preserve the integrity of the community. Reviewers767

will be specifically instructed to not penalize honesty concerning limitations.768

3. Theory assumptions and proofs769
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Question: For each theoretical result, does the paper provide the full set of assumptions and770

a complete (and correct) proof?771

Answer: [Yes]772

Justification: In this work, we provide the Proposition 3.1 and its complete proof(See773

Method and Appendix. D).774

Guidelines:775

• The answer NA means that the paper does not include theoretical results.776

• All the theorems, formulas, and proofs in the paper should be numbered and cross-777

referenced.778

• All assumptions should be clearly stated or referenced in the statement of any theorems.779

• The proofs can either appear in the main paper or the supplemental material, but if780

they appear in the supplemental material, the authors are encouraged to provide a short781

proof sketch to provide intuition.782

• Inversely, any informal proof provided in the core of the paper should be complemented783

by formal proofs provided in appendix or supplemental material.784

• Theorems and Lemmas that the proof relies upon should be properly referenced.785

4. Experimental result reproducibility786

Question: Does the paper fully disclose all the information needed to reproduce the main ex-787

perimental results of the paper to the extent that it affects the main claims and/or conclusions788

of the paper (regardless of whether the code and data are provided or not)?789

Answer: [Yes]790

Justification: We provide the code necessary for replicating the studies described in this791

paper via an anonymous link, and we detail the experimental setup for the replication in the792

article itself (See Experiments and Appendix. C).793

Guidelines:794

• The answer NA means that the paper does not include experiments.795

• If the paper includes experiments, a No answer to this question will not be perceived796

well by the reviewers: Making the paper reproducible is important, regardless of797

whether the code and data are provided or not.798

• If the contribution is a dataset and/or model, the authors should describe the steps taken799

to make their results reproducible or verifiable.800

• Depending on the contribution, reproducibility can be accomplished in various ways.801

For example, if the contribution is a novel architecture, describing the architecture fully802

might suffice, or if the contribution is a specific model and empirical evaluation, it may803

be necessary to either make it possible for others to replicate the model with the same804

dataset, or provide access to the model. In general. releasing code and data is often805

one good way to accomplish this, but reproducibility can also be provided via detailed806

instructions for how to replicate the results, access to a hosted model (e.g., in the case807

of a large language model), releasing of a model checkpoint, or other means that are808

appropriate to the research performed.809

• While NeurIPS does not require releasing code, the conference does require all submis-810

sions to provide some reasonable avenue for reproducibility, which may depend on the811

nature of the contribution. For example812

(a) If the contribution is primarily a new algorithm, the paper should make it clear how813

to reproduce that algorithm.814

(b) If the contribution is primarily a new model architecture, the paper should describe815

the architecture clearly and fully.816

(c) If the contribution is a new model (e.g., a large language model), then there should817

either be a way to access this model for reproducing the results or a way to reproduce818

the model (e.g., with an open-source dataset or instructions for how to construct819

the dataset).820

(d) We recognize that reproducibility may be tricky in some cases, in which case821

authors are welcome to describe the particular way they provide for reproducibility.822

In the case of closed-source models, it may be that access to the model is limited in823
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some way (e.g., to registered users), but it should be possible for other researchers824

to have some path to reproducing or verifying the results.825

5. Open access to data and code826

Question: Does the paper provide open access to the data and code, with sufficient instruc-827

tions to faithfully reproduce the main experimental results, as described in supplemental828

material?829

Answer: [Yes]830

Justification: For the datasets disclosed in the article, we have provided information regarding831

their sources and origins (See Appendix. A).832

Guidelines:833

• The answer NA means that paper does not include experiments requiring code.834

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/835

public/guides/CodeSubmissionPolicy) for more details.836

• While we encourage the release of code and data, we understand that this might not be837

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not838

including code, unless this is central to the contribution (e.g., for a new open-source839

benchmark).840

• The instructions should contain the exact command and environment needed to run to841

reproduce the results. See the NeurIPS code and data submission guidelines (https:842

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.843

• The authors should provide instructions on data access and preparation, including how844

to access the raw data, preprocessed data, intermediate data, and generated data, etc.845

• The authors should provide scripts to reproduce all experimental results for the new846

proposed method and baselines. If only a subset of experiments are reproducible, they847

should state which ones are omitted from the script and why.848

• At submission time, to preserve anonymity, the authors should release anonymized849

versions (if applicable).850

• Providing as much information as possible in supplemental material (appended to the851

paper) is recommended, but including URLs to data and code is permitted.852

6. Experimental setting/details853

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-854

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the855

results?856

Answer: [Yes]857

Justification: we have specified all the training and test details (e.g., data splits, hyperpa-858

rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results859

(See Experiments and Appendix. C).860

Guidelines:861

• The answer NA means that the paper does not include experiments.862

• The experimental setting should be presented in the core of the paper to a level of detail863

that is necessary to appreciate the results and make sense of them.864

• The full details can be provided either with the code, in appendix, or as supplemental865

material.866

7. Experiment statistical significance867

Question: Does the paper report error bars suitably and correctly defined or other appropriate868

information about the statistical significance of the experiments?869

Answer: [Yes]870

Justification: In this paper, we have reported the standard deviation of the experiments (See871

Experiments and Appendix. E).872

Guidelines:873

• The answer NA means that the paper does not include experiments.874
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-875

dence intervals, or statistical significance tests, at least for the experiments that support876

the main claims of the paper.877

• The factors of variability that the error bars are capturing should be clearly stated (for878

example, train/test split, initialization, random drawing of some parameter, or overall879

run with given experimental conditions).880

• The method for calculating the error bars should be explained (closed form formula,881

call to a library function, bootstrap, etc.)882

• The assumptions made should be given (e.g., Normally distributed errors).883

• It should be clear whether the error bar is the standard deviation or the standard error884

of the mean.885

• It is OK to report 1-sigma error bars, but one should state it. The authors should886

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis887

of Normality of errors is not verified.888

• For asymmetric distributions, the authors should be careful not to show in tables or889

figures symmetric error bars that would yield results that are out of range (e.g. negative890

error rates).891

• If error bars are reported in tables or plots, The authors should explain in the text how892

they were calculated and reference the corresponding figures or tables in the text.893

8. Experiments compute resources894

Question: For each experiment, does the paper provide sufficient information on the com-895

puter resources (type of compute workers, memory, time of execution) needed to reproduce896

the experiments?897

Answer: [Yes]898

Justification: In this paper, we provide detailed information about the experimental resources,899

including GPU configurations used in our studies and running time costs about all methods900

(See Experiments).901

Guidelines:902

• The answer NA means that the paper does not include experiments.903

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,904

or cloud provider, including relevant memory and storage.905

• The paper should provide the amount of compute required for each of the individual906

experimental runs as well as estimate the total compute.907

• The paper should disclose whether the full research project required more compute908

than the experiments reported in the paper (e.g., preliminary or failed experiments that909

didn’t make it into the paper).910

9. Code of ethics911

Question: Does the research conducted in the paper conform, in every respect, with the912

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?913

Answer: [Yes]914

Justification: The study presented in this paper conforms to the NeurIPS Code of Ethics.915

Guidelines:916

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.917

• If the authors answer No, they should explain the special circumstances that require a918

deviation from the Code of Ethics.919

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-920

eration due to laws or regulations in their jurisdiction).921

10. Broader impacts922

Question: Does the paper discuss both potential positive societal impacts and negative923

societal impacts of the work performed?924

Answer: [Yes]925

Justification: We have provided the societal impacts of the work (See Appendix F).926

26

https://neurips.cc/public/EthicsGuidelines


Guidelines:927

• The answer NA means that there is no societal impact of the work performed.928

• If the authors answer NA or No, they should explain why their work has no societal929

impact or why the paper does not address societal impact.930

• Examples of negative societal impacts include potential malicious or unintended uses931

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations932

(e.g., deployment of technologies that could make decisions that unfairly impact specific933

groups), privacy considerations, and security considerations.934

• The conference expects that many papers will be foundational research and not tied935

to particular applications, let alone deployments. However, if there is a direct path to936

any negative applications, the authors should point it out. For example, it is legitimate937

to point out that an improvement in the quality of generative models could be used to938

generate deepfakes for disinformation. On the other hand, it is not needed to point out939

that a generic algorithm for optimizing neural networks could enable people to train940

models that generate Deepfakes faster.941

• The authors should consider possible harms that could arise when the technology is942

being used as intended and functioning correctly, harms that could arise when the943

technology is being used as intended but gives incorrect results, and harms following944

from (intentional or unintentional) misuse of the technology.945

• If there are negative societal impacts, the authors could also discuss possible mitigation946

strategies (e.g., gated release of models, providing defenses in addition to attacks,947

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from948

feedback over time, improving the efficiency and accessibility of ML).949

11. Safeguards950

Question: Does the paper describe safeguards that have been put in place for responsible951

release of data or models that have a high risk for misuse (e.g., pretrained language models,952

image generators, or scraped datasets)?953

Answer: [NA]954

Justification: This paper does not address issues related to this aspect.955

Guidelines:956

• The answer NA means that the paper poses no such risks.957

• Released models that have a high risk for misuse or dual-use should be released with958

necessary safeguards to allow for controlled use of the model, for example by requiring959

that users adhere to usage guidelines or restrictions to access the model or implementing960

safety filters.961

• Datasets that have been scraped from the Internet could pose safety risks. The authors962

should describe how they avoided releasing unsafe images.963

• We recognize that providing effective safeguards is challenging, and many papers do964

not require this, but we encourage authors to take this into account and make a best965

faith effort.966

12. Licenses for existing assets967

Question: Are the creators or original owners of assets (e.g., code, data, models), used in968

the paper, properly credited and are the license and terms of use explicitly mentioned and969

properly respected?970

Answer: [Yes]971

Justification: All creators and original owners of the assets used in our paper, such as code,972

data, and models, have been properly credited.973

Guidelines:974

• The answer NA means that the paper does not use existing assets.975

• The authors should cite the original paper that produced the code package or dataset.976

• The authors should state which version of the asset is used and, if possible, include a977

URL.978

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.979
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• For scraped data from a particular source (e.g., website), the copyright and terms of980

service of that source should be provided.981

• If assets are released, the license, copyright information, and terms of use in the982

package should be provided. For popular datasets, paperswithcode.com/datasets983

has curated licenses for some datasets. Their licensing guide can help determine the984

license of a dataset.985

• For existing datasets that are re-packaged, both the original license and the license of986

the derived asset (if it has changed) should be provided.987

• If this information is not available online, the authors are encouraged to reach out to988

the asset’s creators.989

13. New assets990

Question: Are new assets introduced in the paper well documented and is the documentation991

provided alongside the assets?992

Answer: [NA]993

Justification: The research presented in this paper is not concerned with new assets.994

Guidelines:995

• The answer NA means that the paper does not release new assets.996

• Researchers should communicate the details of the dataset/code/model as part of their997

submissions via structured templates. This includes details about training, license,998

limitations, etc.999

• The paper should discuss whether and how consent was obtained from people whose1000

asset is used.1001

• At submission time, remember to anonymize your assets (if applicable). You can either1002

create an anonymized URL or include an anonymized zip file.1003

14. Crowdsourcing and research with human subjects1004

Question: For crowdsourcing experiments and research with human subjects, does the paper1005

include the full text of instructions given to participants and screenshots, if applicable, as1006

well as details about compensation (if any)?1007

Answer: [NA]1008

Justification: This paper does not involve experiments or research related to human subjects.1009

Guidelines:1010

• The answer NA means that the paper does not involve crowdsourcing nor research with1011

human subjects.1012

• Including this information in the supplemental material is fine, but if the main contribu-1013

tion of the paper involves human subjects, then as much detail as possible should be1014

included in the main paper.1015

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1016

or other labor should be paid at least the minimum wage in the country of the data1017

collector.1018

15. Institutional review board (IRB) approvals or equivalent for research with human1019

subjects1020

Question: Does the paper describe potential risks incurred by study participants, whether1021

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1022

approvals (or an equivalent approval/review based on the requirements of your country or1023

institution) were obtained?1024

Answer: [NA]1025

Justification: This paper does not address potential risks incurred by study participants.1026

Guidelines:1027

• The answer NA means that the paper does not involve crowdsourcing nor research with1028

human subjects.1029
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• Depending on the country in which research is conducted, IRB approval (or equivalent)1030

may be required for any human subjects research. If you obtained IRB approval, you1031

should clearly state this in the paper.1032

• We recognize that the procedures for this may vary significantly between institutions1033

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1034

guidelines for their institution.1035

• For initial submissions, do not include any information that would break anonymity (if1036

applicable), such as the institution conducting the review.1037

16. Declaration of LLM usage1038

Question: Does the paper describe the usage of LLMs if it is an important, original, or1039

non-standard component of the core methods in this research? Note that if the LLM is used1040

only for writing, editing, or formatting purposes and does not impact the core methodology,1041

scientific rigorousness, or originality of the research, declaration is not required.1042

Answer: [Yes]1043

Justification: LLMs is an important component of the core methods in this research and we1044

has describe the usage in detail (See Method, Experiments and Appendix C).1045

Guidelines:1046

• The answer NA means that the core method development in this research does not1047

involve LLMs as any important, original, or non-standard components.1048

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1049

for what should or should not be described.1050
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