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ABSTRACT

Unsupervised domain adaptation (UDA) has seen significant efforts to enhance
model accuracy for an unlabeled target domain with the help of one or more
labeled source domains. However, UDA models often exhibit poorly calibrated
predictive uncertainty on target data, a problem that remains under-explored and
poses risks in safety-critical UDA applications. The two primary challenges in
addressing predictive uncertainty calibration in UDA are the absence of labeled
target data and severe distribution shifts between the two domains. Traditional
supervised calibration methods like temperature scaling are inapplicable due to
the former challenge. Recent studies address the first challenge by employing
importance-weighting with labeled source data but still suffer from the second
challenge and require additional complex density modeling. We propose Pseudo-
Calibration (PseudoCal), a novel post-hoc calibration framework. Unlike prior
approaches, we consider UDA calibration as a target-domain specific unsupervised
problem rather than a covariate shift problem across domains. Our innovative
use of inference-stage mixup and cluster assumption guarantees that a synthesized
labeled pseudo-target set captures the structure of the real unlabeled target data.
In this way, we turn the unsupervised calibration problem into a supervised one,
readily solvable with temperature scaling. Extensive empirical evaluation across 5
diverse UDA scenarios involving 10 UDA methods consistently demonstrates the
superior performance of PseudoCal over alternative calibration methods.

1 INTRODUCTION

In recent years, unsupervised domain adaptation (UDA) (Pan & Yang, 2009) has gained popularity
for enhancing the generalization of deep learning models (He et al., 2016; Dosovitskiy et al., 2021)
from labeled source domains to an unlabeled target domain that share similar tasks but have varying
data distributions. Notable progress has been achieved in developing effective UDA methods (Ganin
& Lempitsky, 2015; Long et al., 2018; Saito et al., 2018), practical applications (Chen et al., 2018;
Tsai et al., 2018), and real-world settings (Long et al., 2015; Cao et al., 2018; Liang et al., 2020a),
with a predominant focus on improving target domain model accuracy.

However, for a classification model, achieving reliable predictive uncertainty estimation is as crucial
as high accuracy, especially in safety-critical decision-making scenarios like autonomous driving and
medical diagnosis (Guo et al., 2017). Calibrated models should produce probability predictions that
accurately reflect correctness likelihood (Guo et al., 2017; Lakshminarayanan et al., 2017). Although
predictive uncertainty calibration has garnered substantial attention in IID supervised learning tasks
with deep models (Thulasidasan et al., 2019; Krishnan & Tickoo, 2020), the calibration problem
in UDA remained largely unexplored until a pioneering UDA study (Wang et al., 2020), which
revealed that improved UDA model accuracy comes at the expense of poor uncertainty calibration
on target data. This phenomenon is vividly illustrated in Figure 1(a), where increasing target data
accuracy is accompanied by significant overfitting of the negative log-likelihood (NLL) loss during
adaptation. Calibrating predictive uncertainty in UDA presents unique challenges compared with the
IID situation. The first challenge is the absence of labeled data in the target domain, rendering the
direct application of supervised IID calibration methods like temperature scaling (Guo et al., 2017)
impossible. Another significant challenge arises from severe domain distribution shifts between
source and target. Consequently, UDA models calibrated with labeled source data cannot ensure
effective calibration for unlabeled data in the target domain (Wang et al., 2020).
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Figure 1: ATDOC (Liang et al., 2021) on a closed-set UDA task Ar → Cl. (a) illustrates the target
error and target NLL loss (rescaled to match error) during UDA training. (b) divides confidence values
into 50 bins, displaying the count of correct and wrong predictions in each bin. For real target data,
correctness is determined by comparing predictions with ground truths, and for pseudo-target data,
it’s assessed by comparing predictions with synthesized labels. (c) shows reliability diagrams (Guo
et al., 2017) for both pseudo and real target data. Perfect: ideal predictions without miscalibrations.

To address these challenges, existing approaches (Park et al., 2020; Pampari & Ermon, 2020; Wang
et al., 2020) treat calibration in UDA as a covariate shift problem (Sugiyama et al., 2007) across
domains. They typically employ importance weighting (Cortes et al., 2008) to estimate weights for
source samples based on the similarity to target data and then perform sample-weighted temperature
scaling with a labeled source validation set. However, these methods have some drawbacks that
impede effective and efficient model calibration in UDA. Firstly, importance weighting may not be
reliable under severe covariate shift and other distribution shifts, such as label shift (Park et al., 2020).
Secondly, despite being based on the simple and post-hoc temperature scaling, all of these approaches
require additional model training for accurate density estimation, adding complexity. Lastly, these
methods rely on labeled source data, which limits their applicability in privacy-preserving UDA
scenarios like the recent source-free UDA settings (Li et al., 2020; Liang et al., 2020a; 2022).

In contrast, we adopt a novel perspective, treating UDA calibration as an unsupervised calibration
problem specific to the target domain, which allows us to focus solely on the first challenge: the
absence of labeled target data for supervised calibration. We first study the ‘Oracle’ case of using la-
beled target data for temperature scaling and then factorize its NLL objective into a joint optimization
involving both correct and wrong predictions. This factorization uncovers a key insight with tempera-
ture scaling: datasets with similar correct-wrong statistics should share similar temperatures. Inspired
by this insight, we introduce a novel post-hoc calibration framework called Pseudo-Calibration
(PseudoCal). PseudoCal is based on temperature scaling and estimates the temperature for target data
through calibration on a synthesized labeled pseudo-target dataset that mimics similar correct-wrong
statistics as the real target data. Concretely, PseudoCal utilizes mixup (Zhang et al., 2018) during the
inference stage with unlabeled target data to generate a labeled pseudo-target set. It then performs
supervised calibration on this labeled set to determine the final temperature. PseudoCal’s effective-
ness depends on the presence of similar correct-wrong statistics between pseudo and real target
data. We elucidate the behind support with an intuitive analysis grounded in the well-established
cluster assumption (Grandvalet & Bengio, 2004). UDA models adhering to this assumption can
ensure sample-level correspondence between each pseudo-target sample and its primary real target
sample used in the mixup operation. Specifically, pseudo-target samples with correct predictions
correspond to correct real target samples, and vice versa, as shown in Figure 1(b). Benefitting from the
high resemblance of correct-wrong statistics between our synthesized pseudo-target and real target,
PseudoCal achieves significantly improved calibration performance, as demonstrated in Figure 1(c).

We make three key contributions: 1) We explore the under-studied problem of predictive uncertainty
calibration in UDA from a novel target-domain perspective, enabling a unified approach across
diverse UDA scenarios, including those with label shift or limited source access. 2) We propose
a novel calibration framework, PseudoCal, which only requires unlabeled target data and a fixed
UDA model. PseudoCal adopts inference-stage mixup to synthesize a labeled pseudo-target set,
successfully converting the challenging unsupervised calibration problem into a readily solvable
supervised one. 3) We conduct a comprehensive evaluation of PseudoCal, involving 5 calibration
baselines, to calibrate 10 UDA methods across 5 UDA scenarios. Experimental results demonstrate
that, on average, PseudoCal consistently and significantly outperforms all other calibration methods.
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Table 1: Comparisons of typical methods for predictive uncertainty calibration in UDA.

Calibration Method Covariate
Shift

Label
Shift

No harm to
accuracy

No extra
training

No source
data

TempScal-src (Guo et al., 2017) ✗ ✗ ✓ ✓ ✗
MC-Dropout (Gal & Ghahramani, 2016) ✓ ✓ ✗ ✓ ✓
Ensemble (Lakshminarayanan et al., 2017) ✓ ✓ ✓ ✗ ✓
CPCS (Park et al., 2020) ✓ ✗ ✓ ✗ ✗
TransCal (Wang et al., 2020) ✓ ✗ ✓ ✗ ✗
PseudoCal (Ours) ✓ ✓ ✓ ✓ ✓

2 RELATED WORK

Unsupervised domain adaptation (UDA) has been extensively studied in image classification
tasks. Mainstream methods can be categorized into two lines: 1) Distribution alignment across
domains using specific discrepancy measures (Long et al., 2015; Sun & Saenko, 2016) or adversarial
learning (Ganin & Lempitsky, 2015; Tzeng et al., 2017; Long et al., 2018; Saito et al., 2018),
and 2) Target domain-based learning with self-training (Shu et al., 2018; Liang et al., 2021) or
regularizations (Xu et al., 2019; Cui et al., 2020; Jin et al., 2020). Moreover, UDA has also been
studied in object detection (Chen et al., 2018; Saito et al., 2018) and image segmentation (Tsai
et al., 2018; Vu et al., 2019). Initially, UDA was based on the covariate shift assumption (Sugiyama
et al., 2007) – two domains share similar label and conditional distributions but have different input
distributions. This is commonly referred to as closed-set UDA. In recent years, new practical settings
have arisen, notably addressing label shift (Lipton et al., 2018). These include partial-set UDA (Cao
et al., 2018; Liang et al., 2020b), where some source classes are absent in the target domain, and open-
set UDA (Panareda Busto & Gall, 2017), where the target domain includes samples from unknown
classes. Recently, there has been a growing interest in a setting called source-free UDA, which can
preserve source privacy. Source-free UDA has two key settings: the white-box setting (Li et al.,
2020; Liang et al., 2020a) uses the source model for target adaptation, while the stricter black-box
setting (Zhang et al., 2021; Liang et al., 2022) only employs the source model for inference.

Predictive uncertainty calibration was initially stuidied on binary classification tasks (Zadrozny &
Elkan, 2001; 2002; Platt et al., 1999). Guo et al. (2017) extends Platt scaling (Platt et al., 1999) to
multi-class classification and introduces matrix scaling (MatrixScal), vector scaling (VectorScal),
and temperature scaling (TempScal). These post-hoc methods require a labeled validation set for
calibration. On the other hand, there are methods that address calibration during model training,
including Monte Carlo Dropout (MC-Dropout)(Gal & Ghahramani, 2016), Ensemble (Lakshmi-
narayanan et al., 2017), and Stochastic Variational Bayesian Inference (SVI) (Blundell et al., 2015;
Louizos & Welling, 2017; Wen et al., 2018). However, an evaluation in (Ovadia et al., 2019) reveals
that these methods do not maintain calibration performance under dataset shift. In addition, there is
growing interest in calibration under distribution shifts (Alexandari et al., 2020; Wang et al., 2020;
Park et al., 2020) and in semantic segmentation tasks (Ding et al., 2021; Wang et al., 2022; de Jorge
et al., 2023). In this paper, we specifically address the calibration problem in single-source UDA. A
vanilla baseline is to apply IID calibration methods such as TempScal with a labeled source validation
set, dubbed TempScal-src. Regarding calibration methods considering the domain distribution shifts,
the mainstream idea is to utilize importance weighting (Cortes et al., 2008) to address calibration
under covariate shift in UDA, exemplified by CPCS (Park et al., 2020) and TransCal (Wang et al.,
2020). Some works perturb the source validation set to serve as a general target set (Tomani et al.,
2021; Salvador et al., 2021) or employ it for density estimation (Tomani et al., 2023). More recently,
some methods (Gong et al., 2021; Yu et al., 2022) have utilized multiple source domains to calibrate
the unlabeled target domain in UDA. Additionally, there are training-stage calibration methods that
employ smoothed labels (Thulasidasan et al., 2019; Liu et al., 2022) or optimize accuracy-uncertainty
differentiably (Krishnan & Tickoo, 2020). Among these methods, CPCS and TransCal are noteworthy
as they specifically address transductive target calibration in UDA. For more general approaches like
MC-Dropout and Ensemble, we compare our method directly with Ensemble because it consistently
outperforms MC-Dropout. Table 1 presents a comprehensive comparison of these typical UDA cali-
bration methods. In contrast to existing calibration methods, PseudoCal stands out by not requiring
any extra model training. It is a simple, post-hoc, and general calibration approach, solely relying on
a fixed or even black-box UDA model and unlabeled target data for calibration.
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3 APPROACH

We begin by introducing unsupervised domain adaptation (UDA) with a C-way image classification
task. UDA generally involves two domains: a labeled source domain and an unlabeled target domain.
The source domain Ds = {(xi

s, y
i
s)}

ns
i=1 consists of ns images xs with their corresponding labels ys,

where xi
s ∈ Xs and yis ∈ Ys. The target domain Dt = {xi

t}
nt
i=1 contains unlabeled images xt, where

xi
t ∈ Xt. The objective of UDA is to learn a UDA model ϕ that can predict the unknown ground

truth labels {yit}
nt
i=1 for the target domain, utilizing data from both domains simultaneously (Ganin &

Lempitsky, 2015) or sequentially (Liang et al., 2020a).

Next, we introduce predictive uncertainty calibration and relevant metrics. When feeding an arbitrary
sample (x, y) into the UDA model ϕ, we can obtain the predicted class ŷ and the corresponding
softmax-based confidence p̂. Ideally, the confidence should accurately reflect the probability of
correctness, expressed as P(ŷ = y|p̂ = p) = p, ∀ p ∈ [0, 1]. This perfect calibration, also known as
Perfect, is impossible to achieve (Guo et al., 2017). The widely used metric for evaluating calibration
error is the expected calibration error (ECE) (Guo et al., 2017). ECE involves partitioning probability
predictions into M bins, with Bm representing the indices of samples falling into the m-th bin. It
calculates the weighted average of the accuracy-confidence difference across all bins:

LECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)|

Here, n represents the number of samples, and for the m-th bin, the accuracy is computed as
acc (Bm) = |Bm|−1

∑
i∈Bm

1(ŷi = yi), and the confidence is computed as conf (Bm) =

|Bm|−1
∑

i∈Bm
p̂i. The introduction of additional popular metrics, such as NLL (Goodfellow

et al., 2016) and Brier Score (BS) (Brier et al., 1950), is provided in Appendix B for further reference.

3.1 SUPERVISED ‘ORACLE’: FACTORIZED TEMPERATURE SCALING

Unlike the mainstream cross-domain covariate shift perspective, we view calibration in UDA as an
unsupervised calibration problem within the unlabeled target domain. Before tackling this challenging
problem, we study an ‘Oracle’ solution based on supervised temperature scaling (TempScal) (Guo
et al., 2017). TempScal is a post-hoc calibration method that optimizes a temperature scalar, denoted
as T , on a labeled validation set using the NLL loss between the temperature-flattened softmax
predictions and the ground truth labels. For the unlabeled target domain in UDA, we define the
calibration achieved by applying TempScal with raw target predictions and unattainable target ground
truths as the ‘Oracle’ calibration. Let z represent the corresponding logit vector for the image input
x, and let σ(·) denote the softmax function. The ‘Oracle’ target temperature, denoted as To, can be
obtained using the original temperature scaling optimization formulated as follows.

To = argmin
T

E(xi
t,y

i
t)∈Dt

LNLL

(
σ(zit/T ), y

i
t

)
(1)

With further analysis, we observe that target samples can be classified as either being correctly or
wrongly predicted when evaluated by target ground truths. Moreover, both types of samples have
contrasting effects on the temperature optimization process. Specifically, the NLL minimization
favors a small temperature to sharpen the correct predictions and a large temperature to flatten the
wrong predictions. Therefore, we can factorize Equation 1 as follows:

To = argmin
T

Nc

N
E(xi

t,y
i
t)∈Dc

LNLL

(
σ(zit/T ), y

i
t

)
+

Nw

N
E(xj

t ,y
j
t )∈Dw

LNLL

(
σ(zjt /T ), y

j
t

)
, (2)

where Dc represents the set of correctly predicted target samples, comprising Nc instances. Similarly,
Dw denotes the set of wrongly predicted target samples, consisting of Nw instances. Obviously, this
factorization suggests that when applying TempScal to another labeled set with matching correct-
wrong statistics (i.e., the same count of correct and wrong predictions) as the ‘Oracle’ calibration in
Equation 2, the objective of the NLL optimization remains highly consistent, yielding a temperature
approximation close to the target oracle temperature To.

3.2 UNSUPERVISED SOLUTION: PSEUDO-CALIBRATION

Inspired by this factorization, we introduce our Pseudo-Calibration (PseudoCal) framework. The
main idea is to use the unlabeled target data to synthesize a labeled pseudo-target set that mimics the
correct-wrong statistics of the real target set and then apply TempScal to this labeled set.
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Figure 2: The pipeline of PseudoCal for calibrating predictive uncertainty in UDA.

With only unlabeled target data and a fixed UDA model, the use of predicted labels as pseudo-
labels (Lee et al., 2013) is a simple method to generate a labeled set. However, optimizing NLL
between raw target predictions and pseudo-labels treats all predictions as correct, ignoring the
optimization of wrong predictions in Equation 2. This mismatch in correct-wrong statistics can result
in poor calibration performance, as demonstrated in Table 9. Instead, we employ mixup (Zhang et al.,
2018) with data across clusters (i.e., with different pseudo-labels), generating mixed samples that
inherently include both correct and wrong predictions when evaluated with mixed labels.

Step 1: Pseudo-target synthesis. We generate a pseudo-target set by applying mixup to target
samples in the inference stage. Specifically, a pseudo-target sample xpt and its label ypt are obtained
by taking a convex combination of a pair of real target samples xi

t, x
j
t from different clusters and their

pseudo-labels ŷit, ŷ
j
t . Consequently, we obtain a labeled pseudo-target set {(xi

pt, y
i
pt)}

npt

i=1, where npt

represents the amount. The general process of pseudo-target synthesis is formulated as follows:

xpt = λ ∗ xi
t + (1− λ) ∗ xj

t , ypt = λ ∗ ŷit + (1− λ) ∗ ŷjt , (3)

where λ ∈ (0.5, 1.0) is a fixed scalar used as the mix ratio, different from that in common mixup.

Step 2: Supervised calibration. Using the synthesized labeled pseudo-target set {(xi
pt, y

i
pt)}

npt

i=1,
we can easily determine the optimal pseudo-target temperature through TempScal. This estimated
temperature serves as an approximation of the ‘Oracle’ target temperature To.

With the above two simple steps, PseudoCal successfully transforms the challenging unsupervised
calibration problem associated with the unlabeled real target set into a supervised one with the labeled
pseudo-target set and readily solves it with TempScal. The pipeline of PseudoCal is illustrated in
Figure 2, where the UDA model is utilized as a black box solely for inferring the predictions of input
data. A comprehensive Pytorch-style pseudocode for PseudoCal is provided in Appendix A.

Analysis. Built upon the well-established cluster assumption (Grandvalet & Bengio, 2004; Chapelle
& Zien, 2005), we intuitively analyze how mixed samples can exhibit similar correct-wrong statistics
as real target data, as empirically depicted in Figure 1(b). This assumption suggests that within a
well-learned data structure, samples located far from the classification boundary are more likely to be
correctly classified, while those near the boundary are prone to misclassification. While previous
works often incorporate this assumption as an objective in model training (Shu et al., 2018; Verma
et al., 2022), our focus here is to employ it for explaining the inference behavior of a UDA model
ϕ. We assume that the model has effectively learned the underlying target-domain structure. For
simplicity, let’s assume all involved labels in Equation 3 are one-hot, and consider a fixed mix ratio λ
noticeably greater than 0.5 (e.g., 0.65). This ensures a clear distinction between two involved real
samples: one primary sample xi

t with a mix ratio greater than 0.5, determining the mixed label ypt for
the mixed sample xpt, and the other as the minor sample xj

t , serving only as an input perturbation. If
xpt yields a correct model prediction ŷpt evaluated by its mixed label (i.e., ŷpt == ypt), it suggests
that the real sample xi

t maintains its prediction after cross-cluster perturbation. This implies that xi
t

is likely distant from the classification boundary, and its prediction or pseudo-label ŷit is genuinely
correct when evaluated against its ground truth yit. Similarly, if xpt yields a wrong model prediction
ŷpt (i.e., ŷpt ̸= ypt), we can reasonably infer that xi

t has a truly incorrect prediction. The presence of
sample-level correspondence, when observed at the dataset level, manifests as similar correct-wrong
statistics. However, this correspondence may not hold under extreme perturbation degrees (i.e., λ
near 0.5 or 1.0). Kindly refer to Appendix D for detailed empirical evidence.
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4 EXPERIMENTS

4.1 SETTINGS

Datasets. For image classification, we adopt 5 popular UDA benchmarks of varied scales. Office-
31 (Saenko et al., 2010) is a small-scale benchmark with 31 classes in 3 domains: Amazon (A),
DSLR (D), and Webcam (W). Office-Home (Venkateswara et al., 2017) is a medium-scale benchmark
with 65 classes in 4 domains: Art (Ar), Clipart (Cl), Product (Pr), and Real-World (Re). VisDA (Peng
et al., 2017) is a large-scale benchmark with over 200k images across 12 classes in 2 domains:
Training (T) and Validation (V). DomainNet (Peng et al., 2019) is a large-scale benchmark with
600k images. We take a subset of 126 classes with 7 tasks(Saito et al., 2019) from 4 domains: Real
(R), Clipart (C), Painting (P), and Sketch (S). Image-Sketch (Wang et al., 2019) is a large-scale
benchmark with 1000 classes in 2 domains: ImageNet (I) and Sketch (S). For semantic segmentation,
we use Cityscapes(Cordts et al., 2016) as the target domain and either GTA5(Richter et al., 2016) or
SYNTHIA (Ros et al., 2016) as the source.

UDA methods. We evaluate calibration on 10 UDA methods across 5 UDA scenarios. For image
classification, we cover closed-set UDA methods (ATDOC (Liang et al., 2021), BNM (Cui et al.,
2020), MCC (Jin et al., 2020), CDAN (Long et al., 2018), SAFN (Xu et al., 2019), MCD (Saito et al.,
2018)), partial-set UDA methods (ATDOC (Liang et al., 2021), MCC (Jin et al., 2020), PADA (Cao
et al., 2018)), the whit-box source-free UDA method (SHOT (Liang et al., 2020a)), and the black-box
source-free UDA method (DINE (Liang et al., 2022)). For semantic segmentation, we focus on
calibrating source-only models without any adaptation.

Calibration baselines. For a comprehensive comparison, we consider 5 typical calibration baselines
in UDA, including the no calibration baseline (No Calib.), source-domain calibration (TempScal-
src (Guo et al., 2017)), cross-domain calibration (CPCS (Park et al., 2020), TransCal (Wang et al.,
2020)), and a generic calibration method (Ensemble (Lakshminarayanan et al., 2017)).

Implementation details. We train all UDA models using their official code until convergence on a
single RTX TITAN 16GB GPU. We adopt ResNet-101 (He et al., 2016) for VisDA and segmentation
tasks, ResNet-34 (He et al., 2016) for DomainNet, and ResNet-50 (He et al., 2016) for all other
tasks. For PseudoCal, a fixed mix ratio λ of 0.65 is employed in all experiments. The UDA model is
fixed for only inference use. We use it for one-epoch inference with mixup to generate the labeled
pseudo-target set. The reported results are averaged over five random runs.

Table 2: ECE (%) of closed-set UDA on Office-Home (Home). Lower is better. bold: Best case.

Method ATDOC BNM MCC
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg

No Calib. 10.07 22.35 8.61 6.06 11.77 30.97 39.85 19.70 16.73 26.81 13.25 23.11 12.33 10.53 14.81
TempScal-src 6.19 17.54 3.98 3.03 7.68 23.11 30.32 13.70 10.25 19.35 6.74 16.25 5.08 4.10 8.04
CPCS 14.13 14.75 11.02 7.33 11.81 24.76 25.02 14.90 8.80 18.37 19.11 28.59 14.65 5.55 16.97
TransCal 18.09 6.52 16.03 18.29 14.73 17.44 27.22 9.14 5.47 14.82 11.73 3.86 6.70 8.16 7.61
Ensemble 7.38 18.01 5.51 4.22 8.78 22.50 30.68 14.38 12.53 20.02 9.76 19.20 9.48 7.90 11.58
PseudoCal (ours) 2.42 2.93 5.84 5.07 4.07 17.34 16.03 6.20 4.68 11.06 2.85 2.25 5.18 3.57 3.47
Oracle 1.71 1.91 2.29 1.69 1.90 2.20 2.53 2.36 1.60 2.17 2.25 1.64 2.22 1.91 2.00
Accuracy (%) 66.42 52.39 76.60 77.74 68.29 65.42 53.69 76.51 78.98 68.65 61.03 47.47 72.37 74.03 63.73

Method CDAN SAFN MCD Home
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg AVG

No Calib. 13.38 22.94 12.15 10.00 14.62 16.57 27.90 13.16 11.93 17.39 16.36 25.96 13.29 11.97 16.89 17.05
TempScal-src 6.89 15.44 5.01 4.19 7.88 6.99 16.13 4.56 4.07 7.94 6.01 12.15 3.56 3.54 6.31 9.53
CPCS 18.38 33.56 15.29 9.90 19.28 14.98 30.54 10.06 12.11 16.92 25.13 27.26 10.17 14.29 19.21 17.09
TransCal 14.76 4.72 12.07 13.73 11.32 3.50 6.87 3.77 4.15 4.57 10.78 2.66 10.31 11.27 8.76 10.30
Ensemble 10.07 18.58 9.15 7.23 11.26 14.82 24.90 11.17 9.86 15.19 12.36 20.87 8.93 7.64 12.45 13.21
PseudoCal (ours) 5.10 3.72 4.71 2.40 3.98 3.05 3.34 6.86 4.37 4.41 4.07 2.86 6.26 3.72 4.23 5.20
Oracle 3.61 2.84 2.26 1.94 2.66 1.96 2.48 2.52 1.74 2.17 2.65 2.27 2.30 2.22 2.36 2.21
Accuracy (%) 62.26 49.99 71.19 73.79 64.31 65.84 51.90 73.78 75.09 66.66 59.04 46.80 68.75 71.39 61.49 65.52

4.2 RESULTS

We evaluate PseudoCal across 5 UDA scenarios. For classification, we report the averaged ECE
across UDA tasks sharing the same target domain in Tables 2-6. For segmentation, we take each pixel
as a sample and report the results in Table 7. ‘Oracle’ refers to the ‘Oracle’ calibration with target
labels. ‘Accuracy’ (%) denotes the target accuracy of the fixed UDA model. Refer to Appendix C for
segmentation details and Appendix F for full results, including ECE results for each UDA task.
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Closed-set UDA. We evaluate 6 UDA methods on 4 benchmarks for closed-set UDA. Specifically, we
report the ECE for Office-Home in Table 2, ECE for both Office-31 and VisDA in Table 3, and ECE
for DomainNet in Table 4. PseudoCal consistently achieves a low ECE close to ‘Oracle’, significantly
outperforming other calibration methods by a large margin. On the evaluated benchmarks, PseudoCal
shows average ECE improvements of 4.33% on Office-Home, 1.88% on Office-31, 2.77% on VisDA,
and 5.95% on DomainNet when compared to the second-best calibration method.

Table 3: ECE (%) of closed-set UDA on Office-31 (Office) and VisDA.

Method ATDOC BNM MCC
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V

No Calib. 12.17 4.59 6.66 7.81 10.38 23.41 11.12 8.27 14.27 17.10 19.29 6.18 7.80 11.09 17.42
TempScal-src 22.39 3.39 4.18 9.99 10.53 23.85 9.23 4.98 12.69 13.72 21.38 3.79 3.00 9.39 13.28
CPCS 24.64 7.98 8.94 13.85 16.65 22.45 11.65 2.02 12.04 15.36 30.16 4.69 3.03 12.63 7.14
TransCal 12.14 14.21 14.64 13.67 6.36 14.86 5.22 2.70 7.59 8.79 6.53 3.77 3.91 4.74 12.21
Ensemble 9.79 3.60 4.09 5.83 8.53 19.77 6.92 4.63 10.44 14.84 17.48 3.07 4.88 8.48 15.32
PseudoCal (ours) 3.85 6.64 4.98 5.16 5.27 9.48 6.30 3.97 6.58 3.03 4.61 2.68 2.82 3.37 1.20
Oracle 2.13 2.49 3.15 2.59 0.52 2.52 2.65 1.40 2.19 0.93 2.24 2.36 2.67 2.42 1.12
Accuracy (%) 73.23 91.57 88.93 84.58 75.96 72.56 88.35 90.94 83.95 76.23 69.69 91.37 89.06 83.37 78.00

Method CDAN SAFN MCD Office VisDA
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V AVG AVG

No Calib. 17.02 9.34 7.96 11.44 15.90 21.34 6.17 6.68 11.40 18.53 16.71 9.49 8.88 11.69 17.58 11.28 16.15
TempScal-src 18.54 5.70 3.41 9.21 14.19 23.95 3.21 2.83 9.99 14.40 25.37 3.44 2.36 10.39 10.22 10.28 12.72
CPCS 17.47 30.95 5.67 18.03 15.45 23.15 8.21 18.21 16.52 17.88 27.69 11.85 19.01 19.52 10.56 15.43 13.84
TransCal 4.84 7.44 6.84 6.38 4.07 8.14 3.04 2.81 4.67 8.23 5.13 5.65 4.76 5.18 3.74 7.04 7.23
Ensemble 10.92 4.98 3.29 6.40 13.30 18.89 3.81 5.75 9.48 17.31 14.56 6.25 5.49 8.77 14.82 8.23 14.02
PseudoCal (ours) 6.58 4.78 3.04 4.80 3.04 4.13 7.92 5.51 5.85 7.54 4.22 5.97 5.33 5.17 6.71 5.16 4.46
Oracle 3.21 3.26 2.17 2.88 1.00 2.21 2.90 1.75 2.29 1.82 2.11 3.55 1.76 2.47 0.99 2.47 1.06
Accuracy (%) 66.03 87.15 87.17 80.12 75.24 68.95 89.96 88.55 82.49 73.91 67.07 86.14 85.53 79.58 72.18 82.35 75.25

Table 4: ECE (%) of closed-set UDA on DomainNet (DNet).

Method ATDOC BNM MCC
→C →P →R →S avg →C →P →R →S avg →C →P →R →S avg

No Calib. 9.54 7.38 3.75 12.29 8.24 28.57 22.10 15.37 31.27 24.33 8.63 7.77 4.79 13.61 8.70
TempScal-src 8.69 7.71 1.94 11.82 7.54 19.04 13.62 9.40 20.30 15.59 8.38 8.32 2.36 13.88 8.23
CPCS 10.78 4.72 4.46 13.38 8.34 8.23 7.92 7.98 9.29 8.36 9.03 4.33 3.44 17.21 8.50
TransCal 23.02 24.76 26.65 19.68 23.52 6.52 1.84 5.82 9.39 5.89 22.27 24.06 23.45 18.03 21.95
Ensemble 6.32 4.54 1.59 9.05 5.37 23.44 18.61 12.61 26.21 20.22 5.71 5.10 2.57 10.34 5.93
PseudoCal (ours) 1.82 1.41 2.51 1.70 1.86 10.27 6.01 6.18 5.86 7.08 1.35 1.89 2.38 3.10 2.18
Oracle 1.55 0.94 0.86 1.07 1.10 2.40 1.66 3.40 1.30 2.19 1.16 1.44 1.09 0.89 1.14
Accuracy (%) 56.05 60.64 74.95 52.08 60.93 56.62 63.13 74.30 52.25 61.57 50.89 57.74 71.62 46.39 56.66

Method CDAN SAFN MCD DNet
→C →P →R →S avg →C →P →R →S avg →C →P →R →S avg AVG

No Calib. 10.17 9.64 5.56 14.44 9.95 17.94 14.44 10.15 21.26 15.95 9.56 7.40 3.80 12.93 8.42 12.60
TempScal-src 7.92 8.31 2.75 12.30 7.82 9.61 8.15 4.12 14.18 9.02 6.48 6.96 4.06 11.20 7.18 9.23
CPCS 10.75 4.28 5.57 6.91 6.88 10.92 5.91 8.22 22.59 11.91 7.02 3.51 1.96 21.79 8.57 8.76
TransCal 20.92 21.41 22.93 16.93 20.55 10.75 12.88 14.28 6.88 11.20 21.48 24.99 27.45 18.95 23.22 17.72
Ensemble 7.21 6.74 3.54 11.29 7.20 16.59 13.25 9.08 19.52 14.61 7.25 5.27 2.86 11.34 6.68 10.00
PseudoCal (ours) 1.58 1.89 1.86 2.67 2.00 3.33 1.30 1.50 2.76 2.22 2.27 1.16 1.01 1.70 1.53 2.81
Oracle 1.45 1.08 1.07 0.94 1.13 1.43 0.92 1.21 0.72 1.07 1.33 0.97 0.56 0.68 0.88 1.25
Accuracy (%) 53.11 59.13 71.82 49.09 58.29 49.59 58.03 66.40 47.66 55.42 48.85 57.99 65.32 47.95 55.03 57.98

Table 5: ECE (%) of partial-set UDA on Office-Home (Home).

Method ATDOC MCC PADA Home
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg AVG

No Calib. 16.68 28.47 20.00 12.26 19.35 12.71 22.17 12.21 8.99 14.02 9.45 19.09 9.19 6.77 11.13 14.83
TempScal-src 13.40 24.79 14.91 8.72 15.45 7.12 15.97 6.04 4.35 8.37 8.92 18.20 6.21 4.08 9.35 11.06
CPCS 19.39 29.74 13.86 14.63 19.41 12.73 28.11 9.09 10.69 15.16 24.40 22.74 17.30 27.67 23.03 19.20
TransCal 10.64 5.17 5.88 11.30 8.25 9.44 4.27 5.41 6.98 6.53 22.70 11.00 23.00 26.77 20.87 11.88
Ensemble 11.98 21.28 13.44 8.62 13.83 9.22 18.54 10.11 6.78 11.16 5.30 11.86 4.43 3.92 6.38 10.46
PseudoCal (ours) 7.87 10.90 6.24 4.83 7.46 3.74 3.63 6.93 4.81 4.78 4.72 3.45 10.77 6.69 6.41 6.22
Oracle 4.13 4.45 4.37 4.08 4.26 2.81 3.01 3.06 2.37 2.81 3.94 2.65 4.80 3.03 3.61 3.56
Accuracy (%) 63.02 50.70 65.92 73.71 63.34 65.53 51.68 73.41 78.23 67.21 55.65 44.06 61.23 66.54 56.87 62.47

Partial-set UDA. We evaluate 3 partial-set UDA methods on Office-Home and report the ECE in
Table 5. PseudoCal consistently performs the best on average and outperforms the second-best
method (Ensemble) by a significant margin of 4.24%.

Source-free UDA. We evaluate source-free UDA settings using SHOT and DINE. We report the ECE
for DomainNet and Image-Sketch together in Table 6. PseudoCal outperforms Ensemble on both
benchmarks by significant margins, with 7.44% on DomainNet and 15.05% on Image-Sketch.
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Figure 3: (a) and (b) provide the reliability diagrams of various calibration methods for a qualitative
comparison. (c) and (d) present the sensitivity analysis of the fixed mix ratio λ.

Table 6: ECE (%) of source-free UDA on DomainNet (DNet) and ImageNet-Sketch (Sketch).

Method SHOT DINE DNet Sketch
→C →P →R →S avg I→S →C →P →R →S avg I→S AVG AVG

No Calib. 17.16 21.19 10.03 23.14 17.88 34.71 21.99 22.51 12.39 30.34 21.81 58.85 19.84 46.78
Ensemble 14.24 17.94 7.81 19.49 14.87 33.03 17.88 18.86 10.83 25.33 18.22 53.24 16.54 43.14
PseudoCal (ours) 6.66 7.78 2.91 6.67 6.00 8.42 14.42 12.95 5.30 16.15 12.20 47.76 9.10 28.09
Oracle 3.27 2.52 1.37 2.18 2.33 4.39 1.75 1.80 1.29 1.37 1.55 5.90 1.94 5.14
Accuracy (%) 66.52 64.48 78.34 59.64 67.25 34.29 63.76 65.47 80.69 55.51 66.36 22.27 66.80 28.28

Table 7: ECE (%) of segmentation.
Method GTA5 SYNTHIA AVG

No Calib. 7.87 23.08 15.48
TempScal-src 4.61 19.24 11.93
Ensemble 2.66 20.84 11.75
PseudoCal (ours) 5.73 15.99 10.86
Oracle 0.52 4.50 2.51

Semantic segmentation. In addition to assessing
the performance of PseudoCal in classification tasks,
we also evaluate PseudoCal on the domain adaptive
semantic segmentation tasks and report the ECE in
Table 7. Remarkably, PseudoCal performs the best on
average and demonstrates an average ECE improve-
ment of 4.62% over the no-calibration baseline.

4.3 DISCUSSION

Qualitative comparisons. Reliability diagrams in Figure 3(a)-(b) show that PseudoCal consistently
aligns with ‘Oracle’, while the existing state-of-the-art method TransCal deviates significantly.

Impact of mix ratio λ. The fixed mix ratio λ is the sole hyperparameter in PseudoCal. We investigate
its impact on calibration performance by experimenting with values ranging from 0.51 to 0.9. The
results of two closed-set UDA methods (including SHOT) on DomainNet are presented in Figure 3(c),
and the results of two partial-set UDA methods on Office-Home are shown in Figure 3(d). We first
examine mixup with both ‘Hard’ (one-hot labels) and ‘Soft’ (soft predictions) labels, finding similar
trends with differences that are generally not visible when λ > 0.6. In addition, optimal performance
for PseudoCal occurs with a moderate λ value between 0.6 and 0.7. The reason for this is that a
λ value closer to 0.5 generates more ambiguous samples, resulting in increased wrong predictions,
whereas a λ value closer to 1.0 has the opposite effect. For more details, kindly refer to Appendix D,
where we examine the impact of different λ values on the sample-level correspondence. At last, for
simplicity, we use a fixed λ value of 0.65 with hard labels for all experiments.

Table 8: ViT results of MCC on C→S.
Method ECE (%) BS NLL

No Calib. 11.52 0.5674 1.9592
TempScal-src 10.63 0.5647 1.9418
CPCS 5.48 0.5579 1.8781
TransCal 23.38 0.6279 2.1089
Ensemble 10.08 0.5618 1.9260
PseudoCal (ours) 3.63 0.5553 1.8697
Oracle 1.29 0.5519 1.8597

Impact of backbones and metrics. In order to
examine the robustness of PseudoCal across differ-
ent backbones and calibration metrics, we assess
its performance using ViT-B (Dosovitskiy et al.,
2021) as the backbone and present the results
for the aforementioned three metrics in Table 8.
The findings reveal that PseudoCal consistently
achieves the best performance regardless of the
choice of backbone or calibration metric.

Impact of UDA model quality. We’ve provided the target-domain accuracy for each UDA model
in the ‘Accuracy’ row. PseudoCal remains effective as long as the UDA model has learned the
target data structure instead of being completely randomly initialized, supported by the robust cluster
assumption. This is evident in Table 6, where PseudoCal maintains its competence even with low
accuracy pseudo-labels (about 30%).
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Table 9: ECE (%) of ablation experiments on pseudo-target synthesis.

Method MCD BNM CDAN SHOT PADA DINE
D→A W→A Cl→Pr Pr→Re R→C I→S Ar→Cl Re→Ar P→R

No Calib. 16.39 17.03 22.09 15.72 9.83 34.71 20.35 8.31 12.39
MocoV2Aug (Chen et al., 2020) 16.85 17.21 20.51 14.98 15.49 28.63 25.81 15.17 11.12
RandAug (Cubuk et al., 2020) 12.87 11.53 19.24 11.37 13.33 29.28 18.47 10.32 12.62
CutMix (Yun et al., 2019) 8.20 6.39 14.82 10.60 7.60 23.18 15.96 6.04 6.93
ManifoldMix (Verma et al., 2019) 19.49 19.27 23.29 16.94 27.00 50.54 36.04 21.29 16.88
Mixup-Beta (Zhang et al., 2018) 14.96 13.11 15.65 11.24 15.84 26.74 23.85 11.46 9.72
Pseudo-Label (Lee et al., 2013) 32.47 33.35 26.31 19.65 47.02 65.70 56.18 36.27 19.31
Filtered-PL (Sohn et al., 2020) 31.74 32.73 26.14 19.46 45.35 64.29 54.83 35.10 19.05
PseudoCal-same 19.31 20.54 22.50 15.63 25.43 45.54 30.30 18.46 15.56
PseudoCal (ours) 4.38 4.06 6.31 4.76 1.51 8.42 2.95 3.71 5.29
Oracle 2.31 1.90 3.14 1.10 1.28 4.39 2.16 2.87 1.29
Accuracy (%) 67.52 66.63 73.69 80.35 52.98 34.29 43.82 63.73 80.69

Comparison with training-stage mixup. Most approaches incorporate mixup (Zhang et al., 2018)
during the model training stage as an objective to enhance model generalization, and among them,
Thulasidasan et al. (2019) further utilizes mixup as a training-stage calibration method. However, our
use of mixup in PseudoCal differs significantly from previous mixup-based works in three key aspects.
(i) Different stages: All of these works apply mixup in training, while our mixup operation occurs in
the inference stage to synthesize a labeled set. (ii) Different mix ratios: PseudoCal leverages mixup
for cross-cluster sample interpolation and performs effectively with a fixed mix ratio λ ∈ (0.6, 0.7)
but is considerably less effective with λ values close to 1.0. In contrast, previous methods typically
work best with λ ∈ Beta(α, α) where α ∈ [0.1, 0.4], essentially favoring λ values that are close to 1.0.
However, they are ineffective with λ values close to 0.5 (like our adopted values) due to the manifold
intrusion problem (Thulasidasan et al., 2019; Guo et al., 2019). (iii) Different performance: We
observed that UDA models trained with training-time calibration methods still suffer from significant
miscalibration, while our PseudoCal can further substantially reduce ECE errors for these models.
For example, as shown in Table 6, SHOT employs label smoothing(Müller et al., 2019; Liu et al.,
2022) during training, and DINE is trained with mixup(Thulasidasan et al., 2019; Verma et al., 2022).

Ablation study on pseudo-target synthesis. Pseudo-target synthesis plays a critical role in our
PseudoCal framework. In this step, we employ input-level mixup with a fixed mix ratio (λ) to
generate a pseudo-target sample by combining two real samples with different pseudo-labels. We
conduct a comprehensive ablation study on this synthesis strategy by extensively comparing it with
alternative approaches, including: (i) Applying mixup between samples with the same pseudo-label
(referred to as PseudoCal-same). (ii) Using instance-based augmentations of target samples, such as
RandAugment (Cubuk et al., 2020), and strong augmentations commonly used in self-supervised
learning (Chen et al., 2020). (iii) Employing mixup at different levels, such as the patch-level (Yun
et al., 2019) and the feature-level (Verma et al., 2019). (iv) Applying common training-stage mixup
using λ ∈ Beta(0.3, 0.3) (Zhang et al., 2018). (v) Directly utilizing original or filtered pseudo-labeled
real target samples (Lee et al., 2013; Sohn et al., 2020) without mixup (by setting the mix ratio λ to
1.0). We present an extensive comparison of all these strategies in Table 9. The results consistently
demonstrate that our inference-stage input-level mixup outperforms the alternative options.

5 CONCLUSION

In conclusion, we introduce PseudoCal, a novel and versatile post-hoc framework for calibrating
predictive uncertainty in unsupervised domain adaptation (UDA). By focusing on the unlabeled
target domain, PseudoCal distinguishes itself from mainstream calibration methods that are based on
covariate shift and eliminates their associated limitations. To elaborate, PseudoCal employs a novel
inference-stage mixup strategy to synthesize a labeled pseudo-target set that mimics the correct-wrong
statistics in real target samples. In this way, PseudoCal successfully transforms the challenging
unsupervised calibration problem involving unlabeled real samples into a supervised one using
labeled pseudo-target data, which can be readily addressed through temperature scaling. Throughout
our extensive evaluations spanning diverse UDA settings beyond covariate shift, including source-free
UDA settings and domain adaptive semantic segmentation, PseudoCal consistently showcases its
advantages of simplicity, versatility, and effectiveness in enhancing calibration in UDA. In future
work, we aim to extend PseudoCal to address calibration problems in more practical UDA scenarios,
including open-set UDA and UDA for object detection.
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REPRODUCIBILITY STATEMENT

Our PseudoCal approach is simple and does not require any model training or hyperparameter tuning
(with a fixed hyperparameter). We have provided detailed information in the implementation section.
Importantly, we have included a comprehensive PyTorch-style pseudocode in Appendix A, covering
every algorithm detail and step necessary for implementing our approach. Furthermore, we plan to
release a full implementation upon acceptance.
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A ALGORITHM

The PyTorch-style pseudocode for our calibration method PseudoCal is provided in Algorithm 1.

Algorithm 1 PyTorch-style pseudocode for PseudoCal.

# x: A batch of real target images with shuffled order.
# lam: The mix ratio, a fixed scalar value between 0.5 and 1.0.
# net: A trained UDA model in the evaluation mode.

# Perform pseudo-target synthesis for a mini-batch.
def pseudo_target_synthesis(x, lam, net):

# Use the random index within the data batch
# to obtain a pair of real samples for mixup.
rand_idx = torch.randperm(x.shape[0])
inputs_a = x
inputs_b = x[rand_idx]

# Obtain model predictions and pseudo labels (pl).
pred_a = net(inputs_a)
pl_a = pred_a.max(dim=1)[1]
pl_b = pl_a[rand_idx]

# Select the samples with distinct labels for the mixup.
diff_idx = (pl_a != pl_b).nonzero(as_tuple=True)[0]

# Mixup with images and labels.
pseudo_target_x = lam * inputs_a + (1 - lam) * inputs_b

# If the user is not aware that lam is between 0.5 and 1.0,
# the following if-else code can avoid bugs.
if lam > 0.5:

pseudo_target_y = pl_a
else:

pseudo_target_y = pl_b

return pseudo_target_x[diff_idx], pseudo_target_y[diff_idx]

# Perform supervised calibration using pseudo-target data.
def pseudoCal(x, lam, net):

# Synthesize a mini-batch of pseudo-target samples and labels.
pseudo_x, pseudo_y = pseudo_target_synthesis(x, lam, net)

# Infer the logits for the pseudo-target samples.
pseudo_logit = net(pseudo_x)

# Apply temperature scaling to estimate the
# pseudo-target temperature as the real temperature.
calib_method = TempScaling()
pseudo_temp = calib_method(pseudo_logit, pseudo_y)

return pseudo_temp

B ADDITIONAL CALIBRATION METRICS

In addition to the Expected Calibration Error (ECE) (Guo et al., 2017) discussed in the main text,
we also consider two other calibration metrics as follows. Let yi represent the one-hot ground truth
encoding for input sample xi, and p̂i denote the predicted probability vector output by the model ϕ.
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Negative Log-Likelihood (NLL) (Goodfellow et al., 2016) is also known as the cross-entropy loss.
The NLL loss for a single sample xi is given by:

LNLL = −
C∑

c=1

yc
i log p̂

c
i

Brier Score (BS) (Brier et al., 1950) can be defined as the squared error between the predicted
probability vector and the one-hot label vector. The Brier Score for a single sample xi is given by:

LBS =
1

C

C∑
c=1

(p̂c
i − yc

i )
2

In addition to the ViT results presented in the main text, we have observed consistent advantages of
our PseudoCal method over existing calibration methods across all three calibration metrics: ECE,
NLL, and BS. We choose to report the ECE results for most of the experiments as ECE (Guo et al.,
2017) is a widely used calibration metric.

C SEMANTIC SEGMENTATION CALIBRATION DETAILS

For our calibration experiments on semantic segmentation, we calibrate the models trained solely
on the source domain (GTA5 (Richter et al., 2016) or SYNTHIA (Ros et al., 2016)) without any
target adaptation. We treat each pixel as an individual sample in classification tasks for both mixup
and temperature scaling. To address the computational complexity, we adopt the evaluation strategy
suggested in previous studies (de Jorge et al., 2023) and randomly sample 20,000 pixels from each
image (with resolutions such as 1920*720) for calibration.

D ANALYSIS OF SAMPLE-LEVEL CORRESPONDENCE IN PSEUDOCAL

In the Analysis part of Section 3.2 in the main text, we offer an intuitive analysis of the sample-
level correspondence between pseudo-target data and real target samples. Figure 1(b) qualitatively
illustrates the striking similarity in the correct-wrong statistics between the real target and pseudo
target. To further enhance the understanding of this correspondence, we aim for a quantitative sample-
level analysis. Consider a pair of real samples xi

t with pseudo-label ŷit inferred by the UDA model ϕ,
and xj

t with pseudo-label ŷjt . We employ the mixup operation to generate a mixed sample xi
pt with

the mixed label yipt using Equation 3. For simplicity, we assume that all labels are one-hot hard labels
and λ is in the range of (0.5, 1.0). This implies that xi

t functions as the primary real sample, directly
determining the mixed label yipt, i.e., yipt == ŷit. We apply the mixup operation nt times during
the model inference stage using unlabeled target data. This results in a labeled pseudo-target set
{(xi

pt, y
i
pt)}

nt
i=1 and the original pseudo-labeled real target set {(xi

t, ŷ
i
t)}

nt
i=1. Using the same UDA

model ϕ, we infer predictions ŷipt for the mixed sample xi
pt and traverse through all mixed samples.

For the mixed pseudo-target samples, we obtain predictions {ŷipt}
nt
i=1 and corresponding labels

{yipt}
nt
i=1. Regarding real target samples, the predictions are the available pseudo-labels {ŷit}

nt
i=1,

while the labels are ground truth labels {yit}
nt
i=1 which are used to assess the UDA model accuracy.

CRcorrect =

∑nt

i (ŷipt == yipt) · (ŷit == yit)∑nt

i (ŷit == yit)
(4)

CRwrong =

∑nt

i (ŷipt ̸= yipt) · (ŷit ̸= yit)∑nt

i (ŷit ̸= yit)
(5)

CRarithmetic =

∑nt

i (ŷipt == yipt) · (ŷit == yit) +
∑nt

i (ŷipt ̸= yipt) · (ŷit ̸= yit)

nt
(6)

CRharmonic =
2 · CRcorrect · CRwrong

CRcorrect +CRwrong
(7)

Using these predictions and labels, we can systematically quantify the sample-level correspondence
between the pseudo and real target sets for a more in-depth understanding. We establish such
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correspondence when both the predictions of a mixed pseudo sample and its primary real sample
are either both correct or both wrong, as assessed by their respective labels. In other words, we
consider a correspondence when ŷipt == yipt and ŷit == yit, or when ŷipt ̸= yipt and ŷit ̸= yit. To
quantitatively measure this sample-level correspondence, we introduce four correspondence metrics.
The first metric, denoted as CRcorrect, represents the correspondence rate of correct real samples (see
Equation 4). It indicates how many correct real samples maintain correspondence with their mixed
counterparts. Similarly, our second metric, denoted as CRwrong, measures the correspondence rate of
wrong real samples (see Equation 5). For a more comprehensive perspective, we introduce the third
metric, CRarithmetic, which calculates the arithmetic mean of CRcorrect and CRwrong, assessing the
correspondence rate of all real samples (see Equation 6). However, it’s important to note that these
three metrics may be misleading in extreme situations where most of the correspondences are biased
toward either being correct or wrong. To address this issue, we propose our fourth metric, CRharmonic,
which takes the harmonic mean of CRcorrect and CRwrong, providing equal consideration to both
correct and wrong correspondences (see Equation 7). This metric is inspired by the success of the
H-Score solution in balanced accuracy measurement for known-unknown accuracy in open-set UDA,
as demonstrated by previous studies (Fu et al., 2020; Bucci et al., 2020).

Table 10: By tuning the mix ratio λ, we can synthesize the most ambiguous pseudo samples (λ = 0.51)
and the simplest ones (λ = 1.0), i.e., the pseudo-labeled real samples themselves. PseudoCal employs
a moderate value of λ = 0.65 for all the results. Under these three cases, we measure the sample-level
correspondence between the real samples and pseudo samples using four correspondence metrics.

Method MCD BNM CDAN SHOT PADA DINE
D→A W→A Cl→Pr Pr→Re R→C I→S Ar→Cl Re→Ar P→R

No Calib. ECE (%) 16.39 17.03 22.09 15.72 9.83 34.71 20.35 8.31 12.39
PseudoCal (λ=1.0) 32.47 33.35 26.31 19.65 47.02 65.70 56.18 36.27 19.31
PseudoCal (λ=0.65) 4.38 4.06 6.31 4.76 1.51 8.42 2.95 3.71 5.29
PseudoCal (λ=0.51) 13.77 11.69 11.85 14.13 15.15 11.08 11.03 23.07 14.50

Oracle ECE (%) 2.31 1.90 3.14 1.10 1.28 4.39 2.16 2.87 1.29
Accuracy (%) 67.52 66.63 73.69 80.35 52.98 34.29 43.82 63.73 80.69
# of correct real data 1826 1792 3183 3408 9650 17218 703 656 55757
# of wrong real data 872 894 1135 836 8548 32998 918 385 13342

CRharmonic (λ=1.0) (%) 0 0 0 0 0 0 0 0 0
CRharmonic (λ=0.65) (%) 63.45 63.45 59.89 59.27 60.56 56.28 60.21 62.04 61.73
CRharmonic (λ=0.51) (%) 52.08 54.42 53.13 52.87 45.33 35.18 50.94 46.03 56.26

CRarithmetic (λ=1.0) (%) 67.68 66.72 73.71 80.30 53.03 34.29 43.37 63.02 80.69
CRarithmetic (λ=0.65) (%) 62.36 62.75 61.72 63.08 61.58 65.58 63.92 61.00 70.73
CRarithmetic (λ=0.51) (%) 52.07 54.10 50.03 47.51 56.35 66.48 63.02 50.52 50.74

CRcorrect (λ=1.0) (%) 100 100 100 100 100 100 100 100 100
CRcorrect (λ=0.65) (%) 59.93 61.16 63.52 65.22 52.09 44.48 50.74 56.02 75.11
CRcorrect (λ=0.51) (%) 38.53 41.35 41.69 40.54 30.90 21.88 36.67 31.94 44.76

CRwrong (λ=1.0) (%) 0 0 0 0 0 0 0 0 0
CRwrong (λ=0.65) (%) 67.40 65.92 56.66 54.32 72.31 76.60 74.04 69.52 52.40
CRwrong (λ=0.51) (%) 80.32 79.57 73.2 75.99 85.04 89.75 83.38 82.39 75.73

For empirical illustration, we conduct experiments using PseudoCal with varied λ values of
{0.51, 0.65, 1.0}, among which 0.65 is our default value for all experiments in the main text. We
report all results, including the measurement results of the sample-level correspondence using the
four metrics described above, in Table 10. From the shown results, we can make three consistent
observations: (i) As expected, only the harmonic metric CRharmonic is reliable and aligns with the
actual calibration performance, while both the one-sided correct measure CRcorrect and the wrong
measure CRwrong can be extremely biased, which would further directly mislead the arithmetic mean
metric CRarithmetic. (ii) In line with the discussion on the impact of mix ratio (λ) in Section 4.3, our
observations reveal that λ values near 0.5 predominantly yield wrong predictions for pseudo-target
samples (mixed samples), while λ values of 1.0 result in entirely correct predictions. The role of λ in
controlling cross-cluster perturbation, determining the difficulty of mixed samples, is noteworthy.
A λ close to 0.5 generates ambiguous mixed samples with almost even contributions from two real
samples bearing different pseudo-labels. In such instances, the UDA model struggles to ascertain
the class label, resulting in predominantly wrong predictions when evaluated with mixed labels.
Conversely, a λ of 1.0 equates to not using mixup and directly leveraging pseudo-labeled real target
samples. This scenario constitutes the easiest mixed samples, as the UDA model outputs predictions
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identical to raw target predictions, leading to entirely correct predictions when assessed with target
pseudo-labels. From the cluster assumption perspective, extreme λ values render the relevant analysis
inconclusive. A λ value very close to 0.5 makes it challenging to determine the primary real sample.
Conversely, a λ value very close to 1.0 signifies the negligible cross-cluster perturbation, generating
a mixed sample nearly identical to the primary real sample, wherein the cluster assumption does not
apply. In general, extreme λ values, whether close to 0.5 or 1.0, exhibit significant bias towards either
wrong or correct predictions, which indicates correct-wrong statistics of the pseudo-target set become
skewed, deviating from real target samples. Hence, for a typical UDA model with both correct and
wrong target predictions, we recommend employing a moderate λ value, such as the 0.65 utilized
in our main text. (iii) Taking a closer look at the reliable measure of sample-level correspondence
by CRharmonic, we find that for various UDA models, there maintains a high correspondence with
a CRharmonic value of about 60%, even for a low-accuracy model with only 30% accuracy. This
strongly supports the robust existence of the cluster assumption and the robustness of our analysis
in Section 3.2. For a vivid illustration of the impact of λ values on sample-level correspondence,
Figure 4 presents the correct-wrong statistics of all UDA methods outlined in Table 10. We find that
extreme λ values result in a notable skewness in the correct-wrong statistics of the pseudo-target set
when compared to the real target set. For a clear visualization of mixed images, please see Figure 5.

E LIMITATIONS AND BROADER IMPACTS

PseudoCal has the following limitations and potential negative societal impacts: (i) Like other
calibration methods compared, PseudoCal may occasionally increase ECE when the initial ECE is
already small (see →D in Table 3), which raises risks for safety-critical decision-making systems. (ii)
PseudoCal may face challenges in extreme cases with very few available unlabeled target samples,
such as only a small batch of samples or even a single target sample. (iii) PseudoCal is partly
dependent on the cluster assumption, and it may fail if the target pseudo label is extremely poor, i.e.,
performing similarly to random trials.

Table 11: ECE (%) of calibration results when combining PseudoCal with different supervised
calibration methods, including MatrixScal (Guo et al., 2017), VectorScal (Guo et al., 2017), and
TempScal (Guo et al., 2017) (our default choice).

Method MCD BNM CDAN SHOT PADA DINE
D→A W→A Cl→Pr Pr→Re R→C I→S Ar→Cl Re→Ar P→R

No Calib. 16.39 17.03 22.09 15.72 9.83 34.71 20.35 8.31 12.39
MatrixScal-src 17.86 20.28 25.73 15.98 22.11 - 36.55 20.45 -
VectorScal-src 17.75 20.52 16.40 12.36 12.88 - 20.53 9.07 -
TempScal-src 32.09 18.65 15.10 11.64 9.27 - 15.15 6.34 -
PseudoCal(Matrix.) 11.61 13.20 16.07 11.83 15.09 42.86 35.85 27.07 7.65
PseudoCal(Vector.) 11.00 9.32 9.31 6.05 6.37 23.90 5.90 4.19 6.23
PseudoCal(Temp.) 4.38 4.06 6.31 4.76 1.51 8.42 2.95 3.71 5.29
Oracle 2.31 1.90 3.14 1.10 1.28 4.39 2.16 2.87 1.29
Accuracy (%) 67.52 66.63 73.69 80.35 52.98 34.29 43.82 63.73 80.69

F FULL CALIBRATION RESULTS

Due to space constraints in the main text, we have presented the average results for tasks with the same
target domain. For example, in the case of Office-Home, UDA tasks including ‘Cl→Ar’, ‘Pr→Ar’,
and ‘Re→Ar’ share the common target domain ‘Ar’. Consequently, we have averaged the results of
these three UDA tasks and reported the averaged value in the tables within our main text under the
row labeled ‘→ Ar’. Additionally, note that the ‘avg’ row represents the averaged results within each
UDA method’s rows to the left of the ‘avg’ row. Differently, the ‘AVG’ row signifies the averaged
results across all ‘avg’ rows associated with different UDA methods. Consequently, the ‘AVG’ row
can be considered more reliable and representative for drawing conclusions.

Additionally, as matrix scaling (MatrixScal), vector scaling (VectorScal), and temperature scaling
(TempScal) are similar, all proposed by Guo et al. (2017), and the authors have demonstrated
that temperature scaling (TempScal) is the superior solution. Therefore, as for the source-domain
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Figure 4: The correct-wrong statistics are computed for both the pseudo-target and real target sets.
We partition confidence values into 50 bins and present the count of correct and wrong predictions
in each bin. Correctness for real target data is determined by comparing predictions of real target
samples with ground truths. For pseudo-target data, correctness is assessed by comparing predictions
of the mixed samples with mixed labels.
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Figure 5: Visualization of input-level mixup for various UDA benchmarks with varied λ values.

calibration baseline (using a labeled source validation set for calibration), we have only reported the
results of TempScal-src in the tables in the main text. Here, we present the results of MatrixScal-src
and VectorScal-src for additional reference, without impacting any of the conclusions drawn in the
main text. While our PseudoCal is inspired by the factorized NLL of TempScal and naturally employs
TempScal as the default supervised calibration method for our synthesized labeled pseudo-target set,
we investigate the compatibility of PseudoCal with alternative supervised calibration methods, such
as MatrixScal and VectorScal. The corresponding results are detailed in Table 11. Our findings reveal
two key observations: (i) If a supervised calibration method exhibits stability and effectiveness with
the source labeled data, combining it with PseudoCal tends to yield reduced ECE error compared
to the no calibration baseline. (ii) Due to the similarity in correct-wrong statistics between the
pseudo-target set and real target data, PseudoCal demonstrates compatibility with both MatrixScal
and VectorScal. However, it consistently achieves the best calibration performance when paired with
TempScal, aligning with the conclusion in (Guo et al., 2017) that TempScal generally outperforms
MatrixScal and VectorScal. For detailed calibration results for each task, please refer to Table 12
through Table 30.
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Table 12: ECE (%) of a closed-set UDA method ATDOC (Liang et al., 2021) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 22.83 10.57 6.31 10.77 8.88 6.38 10.39 22.61 5.49 9.06 21.61 6.38 11.77
MatrixScal-src 35.03 20.72 18.28 27.54 24.73 23.40 22.51 32.85 13.66 20.25 32.89 12.90 23.73
VectorScal-src 22.05 10.09 5.85 11.51 7.74 6.01 15.12 26.85 7.81 7.94 21.10 5.03 12.26
TempScal-src 14.69 5.55 2.60 4.27 3.17 1.45 9.67 22.55 5.04 4.63 15.37 3.21 7.68
CPCS 8.37 9.32 6.44 12.94 14.94 11.41 12.28 6.00 4.13 17.18 29.88 8.80 11.81
TransCal 4.95 13.85 16.58 17.29 17.34 18.76 18.77 7.48 19.54 18.20 7.13 16.90 14.73
Ensemble 18.40 7.47 4.51 7.82 4.76 4.24 8.36 17.96 3.92 5.96 17.68 4.29 8.78
PseudoCal 3.07 4.23 5.28 1.96 6.27 5.70 2.52 4.05 4.22 2.79 1.68 7.03 4.07
Oracle 2.38 3.14 2.34 1.44 1.92 1.36 1.98 1.92 1.37 1.71 1.43 1.80 1.90
Accuracy (%) 52.07 74.48 79.27 64.24 73.85 75.42 64.65 50.65 78.54 70.37 54.46 81.48 68.29

Table 13: ECE (%) of a closed-set UDA method BNM (Cui et al., 2020) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 38.64 22.49 16.21 30.89 22.09 18.25 34.90 42.46 15.72 27.11 38.44 14.52 26.81
MatrixScal-src 39.37 23.31 19.01 30.30 25.73 22.24 31.37 41.37 15.98 24.06 37.39 14.77 27.07
VectorScal-src 30.83 17.66 9.97 21.91 16.40 11.46 27.76 37.27 12.36 18.91 29.06 10.03 20.30
TempScal-src 27.22 16.34 8.91 20.39 15.10 10.21 28.82 35.60 11.64 20.12 28.15 9.67 19.35
CPCS 33.80 18.08 8.12 17.24 19.77 7.90 28.68 17.28 10.39 28.36 23.97 6.86 18.37
TransCal 25.75 12.11 5.87 15.73 10.51 5.51 21.41 29.66 5.02 15.17 26.25 4.80 14.82
Ensemble 29.52 16.03 12.00 22.77 15.55 14.06 25.17 32.06 11.53 19.55 30.46 11.56 20.02
PseudoCal 14.27 8.74 4.60 15.46 6.31 4.69 20.90 18.35 4.76 15.66 15.47 3.55 11.06
Oracle 3.16 2.18 1.76 2.00 3.14 1.95 2.92 1.78 1.10 1.68 2.64 1.77 2.17
Accuracy (%) 54.39 73.49 79.78 64.52 73.69 76.82 61.68 51.13 80.35 70.05 55.56 82.36 68.65

Table 14: ECE (%) of a closed-set UDA method MCC (Jin et al., 2020) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 23.74 14.31 10.89 12.70 13.15 11.72 14.36 23.18 8.98 12.69 22.40 9.54 14.81
MatrixScal-src 37.39 23.28 19.95 31.00 27.75 25.27 26.13 35.70 16.27 21.56 35.20 14.95 26.20
VectorScal-src 21.05 12.79 7.87 10.96 11.18 8.20 16.87 28.29 9.64 7.58 21.40 6.15 13.50
TempScal-src 12.23 6.43 3.61 4.06 4.69 2.85 11.38 22.91 5.83 4.79 13.60 4.11 8.04
CPCS 25.11 15.31 3.60 19.41 14.36 4.49 13.83 35.66 8.56 24.08 24.99 14.27 16.97
TransCal 3.04 6.31 5.98 12.75 7.42 8.60 11.95 4.59 9.90 10.48 3.95 6.37 7.61
Ensemble 19.20 11.30 8.05 10.01 9.69 8.51 10.11 18.98 7.13 9.15 19.42 7.44 11.58
PseudoCal 2.71 5.04 3.81 3.17 4.64 3.06 2.66 1.54 3.85 2.73 2.51 5.86 3.47
Oracle 2.41 2.57 2.31 2.67 1.73 1.62 1.58 0.84 1.80 2.51 1.66 2.35 2.00
Accuracy (%) 47.26 69.29 75.90 59.91 68.33 70.16 56.32 44.49 76.04 66.87 50.65 79.48 63.73

Table 15: ECE (%) of a closed-set UDA method CDAN (Long et al., 2018) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 24.88 14.66 10.39 14.71 13.05 11.25 13.24 22.54 8.37 12.19 21.41 8.74 14.62
MatrixScal-src 35.03 22.64 19.14 28.14 26.14 22.96 24.20 33.34 15.03 20.32 30.69 13.78 24.28
VectorScal-src 18.81 10.46 7.24 8.92 9.81 6.73 15.31 26.51 9.18 7.51 16.70 5.76 11.91
TempScal-src 12.48 5.82 3.40 5.57 5.14 3.06 9.78 21.29 6.12 5.31 12.55 4.06 7.88
CPCS 31.45 13.21 2.36 25.84 24.68 17.24 13.44 27.86 10.09 15.85 41.38 7.98 19.28
TransCal 2.65 11.04 11.67 14.44 13.41 14.01 16.34 6.04 15.50 13.51 5.46 11.77 11.32
Ensemble 18.64 11.85 7.23 10.87 9.04 7.94 9.45 19.12 6.52 9.90 17.97 6.56 11.26
PseudoCal 3.52 4.33 2.32 5.67 4.81 2.82 6.36 3.78 2.05 3.28 3.85 5.00 3.98
Oracle 1.83 2.96 1.94 3.88 1.74 2.20 4.46 3.22 1.68 2.50 3.48 2.08 2.66
Accuracy (%) 48.00 67.00 75.07 59.83 66.88 69.98 58.59 48.64 76.31 68.36 53.33 79.68 64.31

Table 16: ECE (%) of a closed-set UDA method SAFN (Xu et al., 2019) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 28.25 15.29 12.40 16.62 14.10 12.45 18.17 29.68 10.94 14.92 25.77 10.08 17.39
MatrixScal-src 37.63 23.66 20.05 28.07 26.01 23.00 25.60 37.84 16.22 20.98 33.18 14.69 25.58
VectorScal-src 21.01 12.78 9.20 10.96 10.28 7.67 16.03 26.93 8.91 10.72 20.21 6.35 13.42
TempScal-src 12.33 5.56 3.17 4.62 4.22 3.40 9.99 21.72 5.64 6.36 14.33 3.89 7.94
CPCS 31.45 16.18 10.90 23.93 11.19 6.71 15.78 25.66 18.73 5.24 34.50 2.80 16.92
TransCal 7.50 4.23 2.80 4.11 3.63 4.89 3.14 7.47 4.76 3.26 5.65 3.46 4.57
Ensemble 25.00 13.33 9.91 15.20 11.62 10.14 16.12 26.14 9.54 13.15 23.56 8.55 15.19
PseudoCal 3.30 6.41 4.14 3.46 7.06 5.18 2.99 3.40 3.79 2.70 3.33 7.12 4.41
Oracle 3.10 3.78 1.94 2.06 1.85 2.18 2.65 1.66 1.11 1.16 2.68 1.92 2.17
Accuracy (%) 50.65 70.96 75.81 64.44 70.42 72.30 62.55 49.55 77.16 70.54 55.51 79.97 66.66
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Table 17: ECE (%) of a closed-set UDA method MCD (Saito et al., 2018) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 26.24 16.26 12.30 16.42 14.19 13.27 19.02 27.38 10.35 13.63 24.25 9.43 16.89
MatrixScal-src 41.44 28.57 22.89 34.21 27.91 26.19 28.46 39.91 18.20 22.91 36.82 16.58 28.67
VectorScal-src 21.79 12.62 8.36 11.89 7.19 7.75 17.75 27.43 8.99 10.10 20.83 5.72 13.37
TempScal-src 8.59 4.59 2.87 3.65 2.79 2.90 10.42 17.99 4.85 3.96 9.86 3.29 6.31
CPCS 20.66 11.43 21.72 27.95 11.22 11.03 24.03 12.63 10.13 23.42 48.48 7.86 19.21
TransCal 2.43 8.94 9.45 10.78 10.81 10.80 9.86 2.07 13.56 11.69 3.49 11.19 8.76
Ensemble 20.49 10.59 7.24 11.59 9.53 9.16 15.53 22.66 6.52 9.95 19.45 6.66 12.45
PseudoCal 2.52 4.93 3.93 3.39 6.57 3.70 5.05 2.68 3.52 3.76 3.39 7.28 4.23
Oracle 2.22 2.48 2.08 2.68 2.31 2.13 3.02 1.97 2.44 2.26 2.61 2.11 2.36
Accuracy (%) 46.55 63.75 73.01 57.44 64.86 67.45 53.81 42.77 73.72 65.88 51.07 77.63 61.49

Table 18: ECE (%) of a closed-set UDA method ATDOC (Liang et al., 2021) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 12.22 9.27 3.75 9.81 6.85 12.36 7.92 8.88
MatrixScal-src 34.30 27.58 15.58 23.23 18.37 28.05 27.44 24.94
VectorScal-src 16.19 11.45 3.97 15.11 10.19 19.26 9.52 12.24
TempScal-src 10.32 6.52 1.94 10.86 8.51 13.31 6.92 8.34
CPCS 12.87 13.31 4.46 8.25 5.11 13.90 4.34 8.89
TransCal 19.89 23.51 26.65 22.52 24.93 19.46 24.59 23.08
Ensemble 8.71 5.73 1.59 6.91 4.41 9.38 4.66 5.91
PseudoCal 1.68 1.98 2.51 1.66 1.21 1.71 1.61 1.77
Oracle 0.98 1.92 0.86 1.18 0.70 1.16 1.17 1.14
Accuracy (%) 53.74 56.51 74.95 55.59 61.65 50.41 59.64 58.93

Table 19: ECE (%) of a closed-set UDA method BNM (Cui et al., 2020) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 30.88 29.27 15.37 27.87 21.79 31.65 22.41 25.61
MatrixScal-src 37.91 31.17 18.31 26.82 22.33 32.31 28.64 28.21
VectorScal-src 23.10 20.02 9.88 21.80 14.83 26.68 14.18 18.64
TempScal-src 19.11 18.79 9.40 19.28 14.42 21.49 12.81 16.47
CPCS 14.45 13.75 7.98 2.72 4.35 4.14 11.50 8.41
TransCal 9.21 6.31 5.82 6.73 1.69 9.56 1.98 5.90
Ensemble 25.08 23.46 12.61 23.42 18.52 27.34 18.70 21.30
PseudoCal 5.08 12.43 6.18 8.10 5.20 6.64 6.82 7.21

Oracle 1.60 3.17 3.40 1.63 1.50 1.00 1.81 2.02
Accuracy (%) 52.90 55.52 74.30 57.71 63.95 51.61 62.30 59.76

Table 20: ECE (%) of a closed-set UDA method MCC (Jin et al., 2020) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 15.19 8.29 4.79 8.98 6.91 12.04 8.63 9.26
MatrixScal-src 36.95 28.60 15.99 23.92 18.95 29.54 28.72 26.10
VectorScal-src 18.52 11.63 4.49 15.98 10.72 20.86 10.71 13.27
TempScal-src 13.49 5.92 2.36 10.83 8.96 14.27 7.67 9.07
CPCS 29.26 15.02 3.44 3.03 6.00 5.15 2.66 9.22
TransCal 16.89 22.54 23.45 22.00 24.68 19.17 23.44 21.74
Ensemble 11.36 5.38 2.57 6.03 4.40 9.32 5.80 6.41
PseudoCal 2.72 1.45 2.38 1.25 1.64 3.48 2.13 2.15
Oracle 0.80 1.36 1.09 0.96 1.18 0.97 1.70 1.15
Accuracy (%) 47.65 51.27 71.62 50.51 59.02 45.14 56.46 54.52

Table 21: ECE (%) of a closed-set UDA method CDAN (Long et al., 2018) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 17.00 10.51 5.56 9.83 8.26 11.88 11.03 10.58
MatrixScal-src 35.28 27.82 15.80 22.11 18.34 27.24 27.76 24.91
VectorScal-src 17.44 10.88 4.37 12.88 9.45 17.90 9.81 11.82
TempScal-src 13.39 6.58 2.75 9.27 8.30 11.22 8.32 8.55
CPCS 2.40 17.27 5.57 4.24 6.75 11.42 1.81 7.07
TransCal 14.85 20.65 22.93 21.19 22.27 19.01 20.55 20.21
Ensemble 12.96 7.47 3.54 6.96 5.73 9.62 7.75 7.72
PseudoCal 3.48 1.65 1.86 1.51 1.70 1.85 2.08 2.02
Oracle 1.03 1.61 1.07 1.28 0.73 0.84 1.43 1.14
Accuracy (%) 49.07 53.25 71.82 52.98 60.75 49.11 57.51 56.36
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Table 22: ECE (%) of a closed-set UDA method SAFN (Xu et al., 2019) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 21.82 17.98 10.15 17.90 13.63 20.70 15.25 16.78
MatrixScal-src 33.45 22.54 11.16 21.05 15.53 26.33 21.85 21.70
VectorScal-src 19.61 14.11 4.73 17.45 10.40 21.04 10.49 13.98
TempScal-src 15.12 8.37 4.12 10.86 8.23 13.25 8.07 9.72
CPCS 21.96 14.58 8.22 7.26 7.52 23.23 4.31 12.44
TransCal 6.58 11.28 14.28 10.21 12.67 7.18 13.10 10.76
Ensemble 19.74 16.66 9.08 16.51 12.48 19.31 14.03 15.40
PseudoCal 3.40 4.44 1.50 2.23 0.81 2.12 1.79 2.33
Oracle 0.86 1.75 1.21 1.11 0.78 0.57 1.06 1.05
Accuracy (%) 48.14 48.65 66.40 50.54 59.89 47.18 56.17 53.85

Table 23: ECE (%) of a closed-set UDA method MCD (Saito et al., 2018) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 12.97 9.47 3.80 9.65 7.01 12.89 7.80 9.08
MatrixScal-src 31.47 19.56 10.05 20.32 14.30 24.98 18.45 19.88
VectorScal-src 19.63 12.59 5.75 16.53 10.21 20.95 10.27 13.70
TempScal-src 11.61 5.39 4.06 7.58 7.19 10.79 6.74 7.62
CPCS 19.75 6.09 1.96 7.94 3.92 23.82 3.10 9.51
TransCal 19.44 21.53 27.45 21.44 25.19 18.45 24.79 22.61
Ensemble 11.60 7.54 2.86 6.95 5.35 11.07 5.19 7.22
PseudoCal 1.66 3.60 1.01 0.93 1.11 1.73 1.21 1.61
Oracle 0.62 1.81 0.56 0.85 0.91 0.73 1.03 0.93
Accuracy (%) 49.09 48.21 65.32 49.49 59.58 46.81 56.40 53.56

Table 24: ECE (%) of closed-set UDA methods on Office-31.

Method ATDOC (Liang et al., 2021) BNM (Cui et al., 2020) MCC (Jin et al., 2020)
A → D A → W D → A W → A avg A → D A → W D → A W → A avg A → D A → W D → A W → A avg

No Calib. 4.59 6.66 11.43 12.91 8.90 11.12 8.27 24.60 22.22 16.55 6.18 7.80 18.60 19.97 13.14
MatrixScal-src 9.58 13.21 14.04 15.35 13.05 11.22 8.81 24.64 21.94 16.65 9.70 10.21 18.99 21.84 15.19
VectorScal-src 4.57 6.43 15.69 17.50 11.05 8.15 4.11 24.82 23.59 15.17 5.12 3.16 20.53 24.01 13.21
TempScal-src 3.39 4.18 24.37 20.41 13.09 9.23 4.98 26.15 21.55 15.48 3.79 3.00 22.07 20.70 12.39
CPCS 7.98 8.94 26.49 22.80 16.55 11.65 2.02 27.16 17.73 14.64 4.69 3.03 29.84 30.47 17.01
TransCal 14.21 14.64 13.27 11.02 13.29 5.22 2.70 16.00 13.72 9.41 3.77 3.91 5.57 7.49 5.19
Ensemble 3.60 4.09 9.04 10.53 6.82 6.92 4.63 19.99 19.56 12.78 3.07 4.88 17.18 17.78 10.73
PseudoCal 6.64 4.98 3.22 4.47 4.83 6.30 3.97 10.75 8.21 7.31 2.68 2.82 4.50 4.71 3.68
Oracle 2.49 3.15 1.90 2.35 2.47 2.65 1.40 2.63 2.41 2.27 2.36 2.67 2.42 2.05 2.38
Accuracy (%) 91.57 88.93 73.41 73.06 81.74 88.35 90.94 71.35 73.77 81.10 91.37 89.06 69.86 69.51 79.95

Table 25: ECE (%) of closed-set UDA methods on Office-31.

Method CDAN (Long et al., 2018) SAFN (Xu et al., 2019) MCD (Saito et al., 2018)
A → D A → W D → A W → A avg A → D A → W D → A W → A avg A → D A → W D → A W → A avg

No Calib. 9.34 7.96 16.66 17.39 12.84 6.17 6.68 20.34 22.33 13.88 9.49 8.88 16.39 17.03 12.95
MatrixScal-src 11.90 14.91 17.21 21.12 16.29 9.49 13.97 20.56 23.43 16.86 9.83 13.49 17.86 20.28 15.37
VectorScal-src 6.04 3.60 17.67 25.37 13.17 3.22 2.20 21.07 23.59 12.52 5.87 4.61 17.75 20.52 12.19
TempScal-src 5.70 3.41 16.10 20.97 11.55 3.21 2.83 24.48 23.41 13.48 3.44 2.36 32.09 18.65 14.14
CPCS 30.95 5.67 4.99 29.95 17.89 8.21 18.21 24.18 22.12 18.18 11.85 19.01 32.45 22.92 21.56
TransCal 7.44 6.84 5.51 4.18 5.99 3.04 2.81 6.43 9.86 5.54 5.65 4.76 5.86 4.39 5.17
Ensemble 4.98 3.29 7.41 14.43 7.53 3.81 5.75 17.58 20.20 11.84 6.25 5.49 13.53 15.60 10.22
PseudoCal 4.78 3.04 6.39 6.78 5.25 7.92 5.51 4.00 4.26 5.42 5.97 5.33 4.38 4.06 4.94
Oracle 3.26 2.17 2.94 3.47 2.96 2.90 1.75 2.14 2.27 2.27 3.55 1.76 2.31 1.90 2.38
Accuracy (%) 87.15 87.17 64.82 67.23 76.59 89.96 88.55 69.33 68.58 79.11 86.14 85.53 67.52 66.63 76.46

Table 26: ECE (%) of a partial-set UDA method ATDOC (Liang et al., 2021) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 28.21 20.87 10.76 17.58 23.49 11.69 19.16 28.98 14.34 13.29 28.22 15.64 19.35
MatrixScal-src 35.85 19.37 13.42 29.69 30.20 21.94 21.96 37.00 14.83 19.36 34.96 16.94 24.63
VectorScal-src 25.87 15.83 7.46 18.37 20.96 11.63 19.96 33.03 12.36 11.16 26.57 11.61 17.90
TempScal-src 21.08 15.04 5.75 12.95 17.86 7.52 18.23 29.63 12.88 9.02 23.66 11.83 15.45
CPCS 28.34 27.40 19.28 14.37 6.27 10.86 32.51 39.04 13.75 11.28 21.84 7.92 19.41
TransCal 4.36 5.07 10.58 9.47 4.98 12.82 9.12 5.81 10.51 13.32 5.34 7.60 8.25
Ensemble 20.32 12.06 8.90 11.80 17.57 7.89 12.32 22.25 9.07 11.81 21.26 10.68 13.83
PseudoCal 9.15 7.08 3.21 7.59 7.53 4.84 11.80 12.79 6.45 4.21 10.75 4.10 7.46
Oracle 3.09 4.24 2.82 4.78 4.93 4.48 4.04 5.03 4.94 3.58 5.24 3.95 4.26
Accuracy (%) 51.46 64.99 77.19 61.89 61.34 73.44 59.50 49.01 70.51 67.68 51.64 71.43 63.34
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Table 27: ECE (%) of a partial-set UDA method MCC (Jin et al., 2020) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 22.91 11.67 8.45 14.42 14.34 10.29 12.63 21.14 8.22 11.09 22.46 10.63 14.02
MatrixScal-src 35.16 19.13 14.89 29.94 30.26 25.30 24.67 34.81 14.78 18.58 34.09 15.73 24.78
VectorScal-src 19.52 9.73 6.05 12.79 14.23 11.07 16.13 26.53 9.03 9.29 20.18 7.95 13.54
TempScal-src 13.14 5.37 3.05 5.96 6.62 4.21 10.00 20.08 5.79 5.39 14.70 6.12 8.37
CPCS 19.34 10.62 4.00 4.25 4.14 12.00 28.24 37.75 16.08 5.70 27.24 12.51 15.16
TransCal 2.74 6.19 5.25 8.09 5.92 8.40 11.03 6.01 7.29 9.20 4.06 4.13 6.53
Ensemble 18.27 9.86 6.49 9.68 11.37 7.27 8.76 18.05 6.57 9.21 19.31 9.10 11.16
PseudoCal 2.51 7.86 4.70 3.04 6.70 5.78 4.20 4.01 3.96 3.99 4.36 6.23 4.78
Oracle 2.29 3.75 2.04 2.67 3.07 3.11 2.69 3.26 1.97 3.06 3.47 2.35 2.81
Accuracy (%) 51.10 74.17 81.56 62.53 66.72 73.16 63.27 50.03 79.96 70.80 53.91 79.33 67.21

Table 28: ECE (%) of a partial-set UDA method PADA (Cao et al., 2018) on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 20.35 8.33 5.30 11.10 12.28 10.19 8.93 18.60 4.83 8.31 18.33 6.95 11.13
MatrixScal-src 36.55 24.04 16.23 34.97 33.22 28.87 27.26 37.58 16.54 20.45 35.41 16.45 27.30
VectorScal-src 20.53 7.22 4.71 12.28 13.91 13.44 22.41 31.95 9.35 9.07 19.86 8.57 14.44
TempScal-src 15.15 6.09 3.34 6.51 6.43 4.64 13.91 23.77 4.27 6.34 15.69 6.11 9.35
CPCS 24.22 30.26 24.81 9.80 7.37 43.23 28.84 39.45 14.97 34.57 4.55 14.27 23.03
TransCal 9.39 23.43 26.71 21.37 20.51 21.88 22.49 11.25 31.71 24.23 12.37 25.06 20.87
Ensemble 11.42 4.97 2.88 6.02 4.54 4.65 3.76 11.15 4.24 6.13 13.00 3.79 6.38
PseudoCal 2.95 12.31 7.51 4.68 10.14 5.38 5.77 4.13 7.19 3.71 3.28 9.85 6.41

Oracle 2.16 5.65 2.27 3.89 5.70 2.83 5.06 2.73 3.98 2.87 3.06 3.06 3.61
Accuracy (%) 43.82 59.83 72.45 51.70 52.32 58.14 51.52 40.66 69.02 63.73 47.70 71.54 56.87

Table 29: ECE (%) of a white-box source-free UDA method SHOT (Liang et al., 2020a) on Domain-
Net.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 21.57 16.14 10.03 18.18 20.86 24.71 21.52 19.00
MatrixScal-src 27.18 19.67 12.49 19.13 16.99 21.60 20.35 19.63
VectorScal-src 17.79 13.95 6.46 19.31 16.25 22.17 13.20 15.59
TempScal-src 13.91 11.32 4.81 16.76 16.47 18.99 10.63 13.27
CPCS 12.52 7.28 4.93 13.64 10.86 16.57 9.10 10.70
TransCal 16.39 23.80 25.37 24.23 18.18 15.87 14.81 19.81
Ensemble 17.57 13.24 7.81 15.24 18.14 21.40 17.73 15.88
PseudoCal 5.82 6.08 2.91 7.23 7.17 7.51 8.38 6.44
Oracle 2.03 3.69 1.37 2.85 2.25 2.33 2.78 2.47
Accuracy (%) 59.80 66.79 78.34 66.25 66.08 59.48 62.88 65.66

Table 30: ECE (%) of a black-box source-free UDA method DINE (Liang et al., 2022) on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 31.91 22.54 12.39 21.43 20.63 28.77 24.38 23.15
Ensemble 26.38 18.72 10.83 17.03 17.53 24.28 20.18 19.28
PseudoCal 17.86 15.12 5.30 13.71 11.14 14.44 14.75 13.19
Oracle 1.35 1.87 1.29 1.62 1.94 1.38 1.65 1.59
Accuracy (%) 54.26 63.00 80.69 64.52 67.13 56.75 63.81 64.31

23


