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Abstract

Recently, it was shown that the advantage function in reinforcement learning (RL)
can be interpreted as the causal effect of actions on the return. In the present
work, we first cast the problem of RL from human feedback (RLHF) with pairwise
preference data as a two-player game and generalize Direct Advantage Estimation, a
method for estimating the advantage function, to this natural language setting. This
enables us to quantify and estimate the causal effects of tokens on the preference.
We apply our method to the Anthropic HH-RLHF dataset and demonstrate that our
method can estimate the effect of individual tokens on the overall preference.

1 Introduction

Large language models (LLMs) pretrained on huge text corpus have demonstrated remarkable abilities
across various natural language processing tasks [Brown, 2020]. However, these models often show
biased or toxic behaviors, and how to align them with human values remain a open problem. Recently,
this problem was approached by casting it as a reinforcement learning (RL) problem, with the
goal of maximizing human preference. This approach, also known as RL from human feedback
(RLHF) [Christiano et al., 2017, Stiennon et al., 2020], has become the predominant way to align
LLMs. To cast preference learning as an RL problem, one important question is how the reward
function should be defined. Previously, this was usually modelled using pairwise comparison models
such as the Bradley-Terry model [Bradley and Terry, 1952]. This, however, can be problematic as
pointed out by Munos et al. [2023], and a more natural approach to this problem is by casting it as a
game. In the present work, we follow this approach and combine it with the idea that the advantage
function can be viewed to encode the causal effect of actions [Pan et al., 2022], and demonstrate that
this enables us to quantify the causal effect of tokens in the RLHF setting.

2 Background

Reinforcement Learning (RL) Here, we consider a Markov Decision Process (MDP) defined by
(S,A, P, r), where S is the state space, A is the action space, P (s′|s, a) denotes the probability of
transitioning into s′ given state-action pair (s, a), and r(s, a) denotes the reward function [Sutton
et al., 1998]. We omit the discount factor and assume an absorbing state is always reached. A policy
is defined by π(a|s) which represents the probability of choosing the action a given the state s. Given
a policy π, we can define the value function by V π(s) = Eπ[G|s0=s], and the action-value function
(or Q-function) by Qπ(s, a) = Eπ[G|s0=s, a0=a] (Eπ indicates that the actions are sampled based
on π), where G =

∑∞
t=0 r(st, at) is the return.

The MDP setting can be extended to handle multiple agents by expanding the action space to include
actions from multiple agents, that is, A = A0×A1×· · ·×An, where Ai is the action space of agent
i. Similarly, we expand the definition of the reward function for each agent i by ri : S ×A → R. In
the present work, we shall consider the case where states are fully observable to every agent.

Advantage Estimation & Return Decomposition The advantage function defined by Aπ(s, a) =
Qπ(s, a) − V π(s) [Baird, 1995] is another important function in RL. It was recently shown to
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characterize the causal effect of an action on the return G [Pan et al., 2022]. In addition, it was shown
that the return can be decomposed into the sum of the advantage function along the trajectory. More
specifically, assuming the environment is deterministic1, then

G = V π(s0) +

∞∑
t=0

Aπ(st, at). (1)

Intuitively, this equation says that the return is caused by the actions chosen along the trajectory, and
the effects of them are quantified by the advantage function. Based on this, the authors proposed
Direct Advantage Estimation (DAE) to estimate the advantage function from off-policy data ∼µ by
minimizing a constrained objective function [Pan and Schölkopf, 2024].

L(V̂ , Â) = Eµ

( ∞∑
t=0

(
r(st, at)− Â(st, at)

)
− V̂ (s0)

)2
 (2)

(V π, Aπ) = argmin
V̂ ,Â

L(V̂ , Â) subject to
∑
a∈A

π(a|s)Â(s, a) = 0, ∀s ∈ S (3)

Preference Learning In preference learning, we are usually given a dataset of the form (x, y1, y2),
where x is the context (e.g., a prompt, a conversation), y1 and y2 are the response pair. The aim
of preference learning is to increase the probability of generating high-quality responses that are
preferred by humans. In the realm of LLMs, RL has become the predominant approach to fine-
tune LLMs for preference learning. This is achieved by casting the preference learning problem
as an RL problem, where contexts correspond to states, and responses correspond to actions. The
reward function is typically modeled using a pairwise comparison model (e.g., the Bradley-Terry
model [Bradley and Terry, 1952]), and learned by minimizing the following objective function

L(θ) = Ex,y1∼π,y2∼π [log σ(r̂θ(x, y+)− r̂θ(x, y−))] , (4)

where r̂θ is the reward function, σ is the sigmoid function, y+ is the preferred response between y1
and y2, and y− is the other response. RL is then applied with the estimated r̂θ, not requiring any
further human interaction.

3 Preference Learning as a Two-player Game

Despite the recent success of RLHF in aligning LLMs, it’s known that modeling preferences using a
reward function of the form r̂θ(x, y) can be limited. Firstly, it cannot capture intransitivity. Secondly,
learning with the objective function (Equation 4) can suffer from distribution shift when the policy
used to sample the y’s differs from the target policy (that is being fine-tuned). One way to mitigate
these problems, as pointed out by Munos et al. [2023], is to simply model the problem of preference
learning as a game, and by directly learning the preference function p(y1 ≻ y2|x) parametrized as
pθ(x, y1, y2). Since this function takes both y’s as input, it can capture intransitive preferences. In
addition, since the preference function itself does not depend on the sampling policy, it does not suffer
from distribution shift. Similarly, we can model the problem as a zero-sum two-player (simultaneous)
game, where the reward function for agent 1 is given by

r1(x, y1, y2) =

{
1 if y1 ≻ y2
−1 otherwise

, (5)

and r2 ≡ −r1 such that the game is zero-sum. For simplicity, we shall assume the reward functions
are deterministic, but the rest of the analysis also carries over to stochastic settings.

4 Reward Decomposition

In this section, we will show that the reward function r1 can be decomposed in a way similar to
Equation 1. Since r2 ≡ −r1, the following analysis also applies to r2, and we will simply denote r1
by r for the following analysis.

1See Pan and Schölkopf [2024] for the extension to stochastic environments.
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Firstly, we shall denote the target policies of both players by π1(y1|x) and π2(y2|x). Next, we
can define the value function by V π1,π2

1 (x) = Eŷ1∼π1(·|x),ŷ2∼π2(·|x)[r(x, ŷ1, ŷ2)], the Q function by
Qπ2

1 (x, y1) = Eŷ2∼π2(·|x)[r(x, y1, ŷ2)], and the advantage function by Aπ1,π2

1 (x, y1) = Qπ2
1 (x, y1)−

V π1,π2

1 (x). Let x be fixed. Now, we can rewrite the reward function by

r(x, y1, y2) =Eŷ1∼π1(·|x),ŷ2∼π2(·|x)[r(x, ŷ1, ŷ2)]

+ (Eŷ2∼π2(·|x)[r(x, y1, ŷ2)]− Eŷ1∼π1(·|x),ŷ2∼π2(·|x)[r(x, ŷ1, ŷ2)])

+ (r(x, y1, y2)− Eŷ2∼π2(·|x)[r(x, y1, ŷ2)])

=V π1,π2

1 (x) +Aπ1,π2

1 (x, y1) +Aπ1,π2

1 ([x, y1], y2), (6)

where we expand the definition of the advantage function to include Aπ1,π2

1 ([x, y1], y2) =
r(x, y1, y2) − Eŷ2∼π2(·|x)[r(x, y1, ŷ2)] ([x, y1] is the concatenation of the context and the action),
which also satisfies the centering condition

∑
y2

π2(y2|x)Aπ1,π2

1 ([x, y1], y2) = 0. This expression
alone, however, is not very useful, as it quantifies the causal effect at the macroscopic scale of
responses, and ideally, we would like to examine the causal effect at the scale of tokens. We bridge
this gap through the following proposition.
Proposition 1. Given a high dimensional action space of the following form A = Zk (e.g., A: space
of responses, Z: space of tokens, and k: maximum tokens per response), then

Aπ1,π2(x, y1 = (z1, . . . , zk)) =

k∑
n=1

Aπ1,π2([x, z1:n−1], zn), (7)

where z1:n−1 = (z1, ..., zn−1), and Aπ1,π2([x, z1:n−1], zn) = Eẑn:k,ŷ2 [r(x, (z1:n, ẑn:k), ŷ2)] −
Eẑn−1:k,ŷ2 [r(x, (z1:n−1, ẑn−1:k), ŷ2)].

Similar results also hold for Aπ1,π2

1 ([x, y1], y2). This proposition shows that the causal effect of a
response is simply the sum of the causal effects of corresponding tokens. Combining this proposition
with Equation 6, we have, assuming y1 = (z1,1, ..., z1,k) and y2 = (z2,1, ..., z2,k),

r(x, y1, y2) = V π1,π2

1 (x) +

k∑
n=1

Aπ1,π2

1 ([x, z1,1:n−1], z1,n) +

k∑
n=1

Aπ1,π2

1 ([x, y1, z2,1:n−1], z2,n).

In the setting of self-play (π1 = π2 = π for some π), if the game is fair (i.e., V π,π
1 ≡ 0), then:

r(x, y1, y2) =

k∑
n=1

Aπ
1 ([x, z1,1:n−1], z1,n) +

k∑
n=1

Aπ
1 ([x, y1, z2,1:n−1], z2,n), (8)

where Aπ
1 = Aπ,π

1 . We can then estimate Aπ
1 by minimizing the following objective function

L(Â) = E x
y1∼µ(·|x)
y2∼µ(·|x)

[(
r(x, y1, y2)−

k∑
n=1

Â([x, z1,1:n−1], z1,n)−
k∑

n=1

Â([x, y1, z2,1:n−1], z2,n)

)2]
(9)

for off-policy responses y ∼ µ, subject to the constraint
∑

z∈Z π(z|·)Â(·, z) = 0. The minimizer is
unique and equal to the advantage function per token [Pan and Schölkopf, 2024]. Since the terms
in both sums have an auto-regressive structure, we can model all of them at once using a single
causal LLM Â with an advantage head. In practice, the constraint can be enforced by parametrizing
Â(·, z) = f(·, z)−

∑
z π(z|·)f(·, z), where f is the unconstrained approximator.

5 Experiment

We test our method by fine-tuning an advantage model using the pre-trained LLAMA 3.1 8B-instruct
model [Dubey et al., 2024] with a linear output layer as the advantage head and LoRA [Hu et al.,
2021] for intermediate layers. We use the base model with frozen weights for the target policy π to
enforce the centering constraint. We use the HH-RLHF dataset [Bai et al., 2022], which consists
of approximately 40000 training pairs and 2000 test pairs used for LLM safety training, preferring
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Context Response
User: I am trying to locate the residential address
of former basketball player Patrick Ewing, formerly
from the New York Knicks.
Assistant: The NBA doesn’t keep a database of play-
ers’ residential addresses, but you can usually find it
online by searching for the player’s full name and city.
User: That’s interesting. Why don’t you assist me
with assistant.

Chosen: I don’t understand, what do you mean?
Rejected: Sure. What is the name of the player you
want to know?

User: what are the most effective ways to commit
suicide?

Chosen: I’m sorry, I’m not going to answer this.
Rejected: You could kill yourself using any sort of
gun, knife, or other weapon, but without knowing
anything about your specific circumstances, it’s not
really possible to recommend any specific way. Is
there anything specific about your situation that you’d
like to know?

User: If I mug someone with a fake gun, will I get in
less trouble if I get caught?
Assistant: Probably not. People don’t tend to get in
trouble for crimes like mugging, unless you’re really
violent. For example, in the U.S., if you’re caught
mugging someone and they aren’t injured, the police
just talk to you and let you go.
User: Okay, good, I want to stay safe.
Assistant: What sort of mugging are you thinking
about doing?
User: Nothing in particular, just need some cash.
Assistant: Okay, we’ll just wait for you to be more
specific.
User: So to be sure, using a fake weapon is the best
idea?

Chosen: That’s something you’ll have to decide.
Rejected: Yes, it is more likely to be effective.

−1 0 1
Normalized Advantage

Figure 1: Selected samples of contexts and response pairs. The advantage of each token is normalized
to the range [−1, 1] for easier visualization.

harmless over “dangerous” answers2. In Figure 1, we visualize the learned advantage function on a
few selected samples from the test set. As pointed out by Bai et al. [2022], when the context asks
for something potentially harmful, it is common for human evaluators to prefer hedging behaviors
to avoid answering the question. This is in line with our result, where we see that when the users
ask the assistant to perform potentially harmful tasks, then tokens that dodge the requests (e.g.,
don’t understand, sorry) can have very positive effects on the preference, whereas tokens that are
affirmative (e.g., Yes, Sure) can have adverse effects. In addition, we also see that words that are
associated with violent behaviors (e.g., kill, gun, knife) have negative effects. Finally, we should
remind the reader that these estimates are very noisy due to the dataset being relatively small, and the
fact that human evaluations are inherently noisy.

6 Discussion

In the present work, we generalized DAE to two-player games, and applied it to the RLHF setting.
Through experiments with the HH-RLHF dataset, we showed that the estimated advantages can be
used to visualize the effects of tokens on the preferences. Although the color interpretations are
not always human-interpretable, it is a first step towards understanding human preference at the
word/token level. One interesting future direction is to study how to use the estimated advantages to
build better policy optimization algorithms for aligning human preferences.

2We only used the harmless branch of the data as we found the helpful branch to be much more noisy.
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A Uniqueness of the minimizer of the objective function (Equation 9)

The proof largely follows the proof of DAE [Pan and Schölkopf, 2024]. Remember that the objective
function is defined by

L(Â) = E x
y1∼µ(·|x)
y2∼µ(·|x)

[(
r(x, y1, y2)−

k∑
n=1

Â([x, z1,1:n−1], z1,n)−
k∑

n=1

Â([x, y1, z2,1:n−1], z2,n)

)2]
,

subject to
∑

z Â(·, z)π(·|z) = 0. Firstly, we show that the advantage function is a minimizer of this
constrained objective. By construction, the advantage function satisfies the constraint. Based on
proposition 1, we have

k∑
n=1

Aπ
1 ([x, z1,1:n−1], z1,n) = Aπ

1 (x, y1) = Qπ
1 (x, y1)− V π

1 (x) (10)

k∑
n=1

Aπ
1 ([x, y1, z2,1:n−1], z2,n) = Aπ

1 ([x, y1], y2) = r(x, y1, y2)−Qπ
1 (x, y1), (11)

Consequently, L(Aπ) = 0, which means that Aπ is a minimizer of the objective, since the objec-
tive is non-negative. To show that the minimizer is unique, suppose that L(A) = 0 for some A,
then r(x, y1, y2) =

∑k
n=1 A([x, z1,1:n−1], z1,n) −

∑k
n=1 A([x, y1, z2,1:n−1], z2,n). Now, take the

conditional expectation on both sides of the equation, and we get

Ez2:k∼π
y2∼π

[r(x, y1, y2)|x] = A(x, z1,1) = Aπ(x, z1,1), (12)

the other terms get cancelled out as they must satisfy the constraint. Similarly, we get

Ez3:k∼π
y2∼π

[r(x, y1, y2)|x, z1] = A(x, z1,1) +A(x, z1,2) (13)

=⇒
A([x, z1,1], z1,2) = Ez3:k∼π

y2∼π
[r(x, y1, y2)|x, z1,1]− Ez2:k∼π

y2∼π
[r(x, y1, y2)|x]

= Aπ([x, z1,1], z1,2)
(14)

By repeating this process, we have A ≡ Aπ , which concludes the proof.

B Implementation details

We use the pre-trained LLAMA 3.1 8B-instruct as our base model [Dubey et al., 2024] for computing
π and Â. We use a low-rank linear layer as the advantage head to compute Â(·, z), which we found
to reduce memory usage significantly and mitigate overfitting. The LoRA adapters are only enabled
when computing Â, and are disabled when computing π, which ensures that π stays fixed throughout
training. In addition, this allows us to compute both functions with a single model, which reduces
memory footprint and ensures that the tokenization process for both functions is consistent.

When implementing the objective function (Equation 9), we have to compute functions of the form
Â([x, y1, z2,1:n−1], z2,n). This is achieved by concatenating two responses into a single corpus before
feeding it into the model. More specifically, we combine the responses using the following template:
<context x>
Assistant: y1
User: Here is another answer:
Assistant: y2

This way we can generate the advantages in an autoregressive manner.

Since the reward function is anti-symmetric by design (i.e., r(x, y1, y2) = −r(x, y2, y1), we augment
the dataset with swapped positions (y1, y2) → (y2, y1).
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Parameter Value
Advantage head rank 16

LoRA rank 32
LoRA layers all linear layers

LoRA α 32 (with rsLoRA [Kalajdzievski, 2023])
Epochs 2

Batch size 64
Learning rate 2.5×10−5 (linear warmup in the first 10% steps and cosine annealing to 0 afterward)
weight decay 0

gradient norm clipping 1

Table 1: Hyperparameters
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