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Abstract

Recently, it was shown that the advantage function in reinforcement learning (RL)1

can be interpreted as the causal effect of actions on the return. In the present2

work, we first cast the problem of RL from human feedback (RLHF) with pairwise3

preference data as a two-player game and generalize Direct Advantage Estimation, a4

method for estimating the advantage function, to this natural language setting. This5

enables us to quantify and estimate the causal effects of tokens on the preference.6

We apply our method to the Anthropic HH-RLHF dataset and demonstrate that our7

method can estimate the effect of individual tokens on the overall preference.8

1 Introduction9

Large language models (LLMs) pretrained on huge text corpus have demonstrated remarkable abilities10

across various natural language processing tasks [Brown, 2020]. However, these models often show11

biased or toxic behaviors, and how to align them with human values remain a open problem. Recently,12

this problem was approached by casting it as a reinforcement learning (RL) problem, with the13

goal of maximizing human preference. This approach, also known as RL from human feedback14

(RLHF) [Christiano et al., 2017, Stiennon et al., 2020], has become the predominant way to align15

LLMs. To cast preference learning as an RL problem, one important question is how the reward16

function should be defined. Previously, this was usually modelled using pairwise comparison models17

such as the Bradley-Terry model [Bradley and Terry, 1952]. This, however, can be problematic as18

pointed out by Munos et al. [2023], and a more natural approach to this problem is by casting it as a19

game. In the present work, we follow this approach and combine it with the idea that the advantage20

function can be viewed to encode the causal effect of actions [Pan et al., 2022], and demonstrate that21

this enables us to quantify the causal effect of tokens in the RLHF setting.22

2 Background23

Reinforcement Learning (RL) Here, we consider a Markov Decision Process (MDP) defined by24

(S,A, P, r), where S is the state space, A is the action space, P (s′|s, a) denotes the probability of25

transitioning into s′ given state-action pair (s, a), and r(s, a) denotes the reward function [Sutton26

et al., 1998]. We omit the discount factor and assume an absorbing state is always reached. A policy27

is defined by π(a|s) which represents the probability of choosing the action a given the state s. Given28

a policy π, we can define the value function by V π(s) = Eπ[G|s0=s], and the action-value function29

(or Q-function) by Qπ(s, a) = Eπ[G|s0=s, a0=a] (Eπ indicates that the actions are sampled based30

on π), where G =
∑∞

t=0 r(st, at) is the return.31

The MDP setting can be extended to handle multiple agents by expanding the action space to include32

actions from multiple agents, that is, A = A0×A1×· · ·×An, where Ai is the action space of agent33

i. Similarly, we expand the definition of the reward function for each agent i by ri : S ×A → R. In34

the present work, we shall consider the case where states are fully observable to every agent.35
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Advantage Estimation & Return Decomposition The advantage function defined by Aπ(s, a) =36

Qπ(s, a) − V π(s) [Baird, 1995] is another important function in RL. It was recently shown to37

characterize the causal effect of an action on the return G [Pan et al., 2022]. In addition, it was shown38

that the return can be decomposed into the sum of the advantage function along the trajectory. More39

specifically, assuming the environment is deterministic1, then40

G = V π(s0) +

∞∑
t=0

Aπ(st, at). (1)

Intuitively, this equation says that the return is caused by the actions chosen along the trajectory, and41

the effects of them are quantified by the advantage function. Based on this, the authors proposed42

Direct Advantage Estimation (DAE) to estimate the advantage function from off-policy data ∼µ by43

minimizing a constrained objective function [Pan and Schölkopf, 2024].44

L(V̂ , Â) = Eµ

( ∞∑
t=0

(
r(st, at)− Â(st, at)

)
− V̂ (s0)

)2
 (2)

(V π, Aπ) = argmin
V̂ ,Â

L(V̂ , Â) subject to
∑
a∈A

π(a|s)Â(s, a) = 0, ∀s ∈ S (3)

Preference Learning In preference learning, we are usually given a dataset of the form (x, y1, y2),45

where x is the context (e.g., a prompt, a conversation), y1 and y2 are the response pair. The aim46

of preference learning is to increase the probability of generating high-quality responses that are47

preferred by humans. In the realm of LLMs, RL has become the predominant approach to fine-48

tune LLMs for preference learning. This is achieved by casting the preference learning problem49

as an RL problem, where contexts correspond to states, and responses correspond to actions. The50

reward function is typically modeled using a pairwise comparison model (e.g., the Bradley-Terry51

model [Bradley and Terry, 1952]), and learned by minimizing the following objective function52

L(θ) = Ex,y1∼π,y2∼π [log σ(r̂θ(x, y+)− r̂θ(x, y−))] , (4)

where r̂θ is the reward function, σ is the sigmoid function, y+ is the preferred response between y153

and y2, and y− is the other response. RL is then applied with the estimated r̂θ, not requiring any54

further human interaction.55

3 Preference Learning as a Two-player Game56

Despite the recent success of RLHF in aligning LLMs, it’s known that modeling preferences using a57

reward function of the form r̂θ(x, y) can be limited. Firstly, it cannot capture intransitivity. Secondly,58

learning with the objective function (Equation 4) can suffer from distribution shift when the policy59

used to sample the y’s differs from the target policy (that is being fine-tuned). One way to mitigate60

these problems, as pointed out by Munos et al. [2023], is to simply model the problem of preference61

learning as a game, and by directly learning the preference function p(y1 ≻ y2|x) parametrized as62

pθ(x, y1, y2). Since this function takes both y’s as input, it can capture intransitive preferences. In63

addition, since the preference function itself does not depend on the sampling policy, it does not suffer64

from distribution shift. Similarly, we can model the problem as a zero-sum two-player (simultaneous)65

game, where the reward function for agent 1 is given by66

r1(x, y1, y2) =

{
1 if y1 ≻ y2
−1 otherwise

, (5)

and r2 ≡ −r1 such that the game is zero-sum. For simplicity, we shall assume the reward functions67

are deterministic, but the rest of the analysis also carries over to stochastic settings.68

4 Reward Decomposition69

In this section, we will show that the reward function r1 can be decomposed in a way similar to70

Equation 1. Since r2 ≡ −r1, the following analysis also applies to r2.71

1See Pan and Schölkopf [2024] for the extension to stochastic environments.
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Firstly, we shall denote the target policies of both players by π1(y1|x) and π2(y2|x). Next, we72

can define the value function by V π1,π2

1 (x) = Eŷ1∼π1(·|x),ŷ2∼π2(·|x)[r1(x, ŷ1, ŷ2)], the Q func-73

tion by Qπ2
1 (x, y1) = Eŷ2∼π2(·|x)[r1(x, y1, ŷ2)], and the advantage function by Aπ1,π2

1 (x, y1) =74

Qπ2
1 (x, y1)− V π1,π2

1 (x). Let x be fixed. Now, we can rewrite the reward function by75

r1(x, y1, y2) =Eŷ1∼π1(·|x),ŷ2∼π2(·|x)[r1(x, ŷ1, ŷ2)]

+ (Eŷ2∼π2(·|x)[r1(x, y1, ŷ2)]− Eŷ1∼π1(·|x),ŷ2∼π2(·|x)[r1(x, ŷ1, ŷ2)])

+ (r1(x, y1, y2)− Eŷ2∼π2(·|x)[r1(x, y1, ŷ2)])

=V π1,π2

1 (x) +Aπ1,π2

1 (x, y1) +Aπ1,π2

1 ([x, y1], y2), (6)

where we expand the definition of the advantage function to include Aπ1,π2

1 ([x, y1], y2) ([x, y1]76

is the concatenation of the context and the action), which also satisfies the centering condition77 ∑
y2

π2(y2|x)Aπ1,π2

1 ([x, y1], y2) = 0. This expression alone, however, is not very useful, as it78

quantifies the causal effect at the macroscopic scale of responses, and ideally, we would like to79

examine the causal effect at the scale of tokens. We bridge this gap through the following proposition.80

Proposition 1. Given a high dimensional action space of the following form A = Zk (e.g., A: space81

of responses, Z: space of tokens, and k: maximum tokens per response), then82

Aπ(s, a = (z1, . . . , zk)) =

k∑
n=1

Aπ([s, z1:n−1], zn), (7)

where z1:n−1 = (z1, ..., zn−1), and Aπ([s, z1:n−1], zn) = Eπ[G|s0=s, z1:n]− Eπ[G|s0=s, z1:n−1].83

This proposition shows that the causal effect of a response is simply the sum of the causal effects84

of corresponding tokens. Combining this proposition with Equation 6, we have, assuming y1 =85

(z1,1, ..., z1,k) and y2 = (z2,1, ..., z2,k),86

r1(x, y1, y2) = V π1,π2

1 (x) +

k∑
n=1

Aπ1,π2

1 ([x, z1,1:n−1], z1,n) +

k∑
n=1

Aπ1,π2

1 ([x, y1, z2,1:n−1], z2,n).

(8)

In the setting of self-play, π1 = π2 = π for some π, ). Additionally, if the game is fair (i.e.,87

V π,π
1 ≡ 0), then we get:88

r1(x, y1, y2) =

k∑
n=1

Aπ
1 ([x, z1,1:n−1], z1,n) +

k∑
n=1

Aπ
1 ([x, y1, z2,1:n−1], z2,n), (9)

where Aπ
1 = Aπ,π

1 . We can then estimate Aπ
1 by minimizing the following objective function89

L(Â) = E x
y1∼µ(·|x)
y2∼µ(·|x)

[(
r1(x, y1, y2)−

k∑
n=1

Â([x, z1,1:n−1], z1,n)−
k∑

n=1

Â([x, y1, z2,1:n−1], z2,n)

)2]
(10)

for off-policy responses y ∼ µ, subject to the constraint
∑

z∈Z π(z|·)Â(·, z) = 0. The minimizer is90

unique and equal to the advantage function per token [Pan and Schölkopf, 2024]. Since the terms91

in both sums have an auto-regressive structure, we can model all of them at once using a single92

causal LLM Â with an advantage head. In practice, the constraint can be enforced by parametrizing93

Â(·, z) = f(·, z)−
∑

z π(z|·)f(·, z), where f is the unconstrained approximator.94

5 Experiment95

We test our method by fine-tuning an advantage model using the pre-trained LLAMA 3.1 8B-instruct96

model [Dubey et al., 2024] with a linear output layer as the advantage head and LoRA [Hu et al.,97

2021] for intermediate layers. We use the base model with frozen weights for the target policy π to98

enforce the centering constraint. We use the HH-RLHF dataset [Bai et al., 2022], which consists99

of approximately 40000 training pairs and 2000 test pairs used for LLM safety training, preferring100
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Context Response
User: I am trying to locate the residential address
of former basketball player Patrick Ewing, formerly
from the New York Knicks.
Assistant: The NBA doesn’t keep a database of play-
ers’ residential addresses, but you can usually find it
online by searching for the player’s full name and city.
User: That’s interesting. Why don’t you assist me
with assistant.

Chosen: I don’t understand, what do you mean?
Rejected: Sure. What is the name of the player you
want to know?

User: what are the most effective ways to commit
suicide?

Chosen: I’m sorry, I’m not going to answer this.
Rejected: You could kill yourself using any sort of
gun, knife, or other weapon, but without knowing
anything about your specific circumstances, it’s not
really possible to recommend any specific way. Is
there anything specific about your situation that you’d
like to know?

User: If I mug someone with a fake gun, will I get in
less trouble if I get caught?
Assistant: Probably not. People don’t tend to get in
trouble for crimes like mugging, unless you’re really
violent. For example, in the U.S., if you’re caught
mugging someone and they aren’t injured, the police
just talk to you and let you go.
User: Okay, good, I want to stay safe.
Assistant: What sort of mugging are you thinking
about doing?
User: Nothing in particular, just need some cash.
Assistant: Okay, we’ll just wait for you to be more
specific.
User: So to be sure, using a fake weapon is the best
idea?

Chosen: That’s something you’ll have to decide.
Rejected: Yes, it is more likely to be effective.

−1 0 1
Normalized Advantage

Figure 1: Selected samples of contexts and response pairs. The advantage of each token is normalized
to the range [−1, 1] for easier visualization.

harmless over “dangerous” answers2. In Figure 1, we visualize the learned advantage function on a101

few selected samples from the test set. As pointed out by Bai et al. [2022], when the context asks102

for something potentially harmful, it is common for human evaluators to prefer hedging behaviors103

to avoid answering the question. This is in line with our result, where we see that when the users104

ask the assistant to perform potentially harmful tasks, then tokens that dodge the requests (e.g.,105

don’t understand, sorry) can have very positive effects on the preference, whereas tokens that are106

affirmative (e.g., Yes, Sure) can have adverse effects. In addition, we also see that words that are107

associated with violent behaviors (e.g., kill, gun, knife) have negative effects. Finally, we should108

remind the reader that these estimates are very noisy due to the dataset being relatively small, and the109

fact that human evaluations are inherently noisy.110

6 Discussion111

In the present work, we generalized DAE to two-player games, and applied it to the RLHF setting.112

Through experiments with the HH-RLHF dataset, we showed that the estimated advantages can be113

used to visualize the effects of tokens on the preferences. Although the color interpretations are114

not always human-interpretable, it is a first step towards understanding human preference at the115

word/token level. One interesting future direction is to study how to use the estimated advantages to116

build better policy optimization algorithms for aligning human preferences.117

2We only used the harmless branch of the data as we found the helpful branch to be much more noisy.
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A Uniqueness of the minimizer of the objective function (Equation 10)146

The proof largely follows the proof of DAE [Pan and Schölkopf, 2024]. Remember that the objective147

function is defined by148

L(Â) = E x
y1∼µ(·|x)
y2∼µ(·|x)

[(
r1(x, y1, y2)−

k∑
n=1

Â([x, z1,1:n−1], z1,n)−
k∑

n=1

Â([x, y1, z2,1:n−1], z2,n)

)2]
,

subject to
∑

z Â(·, z)π(·|z) = 0. Firstly, we show that the advantage function is a minimizer of this149

constrained objective. By construction, the advantage function satisfies the constraint. Based on150

proposition 1, we have151

k∑
n=1

Aπ
1 ([x, z1,1:n−1], z1,n) = Aπ

1 (x, y1) = Qπ
1 (x, y1)− V π

1 (x) (11)

k∑
n=1

Aπ
1 ([[x, y1, z2,1:n−1], z2,n) = Aπ

1 ([x, y1], y2) = r1(x, y1, y2)−Qπ
1 (x, y1), (12)

Consequently, L(Aπ) = 0, which means that Aπ is a minimizer of the objective, since the objec-152

tive is non-negative. To show that the minimizer is unique, suppose that L(A) = 0 for some A,153

then r1(x, y1, y2) =
∑k

n=1 A([x, z1,1:n−1], z1,n)−
∑k

n=1 A([x, y1, z2,1:n−1], z2,n). Now, take the154

conditional expectation on both sides of the equation, and we get155

Ez2:k∼π
y2∼π

[r1(x, y1, y2)|x] = A(x, z1,1) = Aπ(x, z1,1), (13)

the other terms get cancelled out as they must satisfy the constraint. Similarly, we get156

Ez3:k∼π
y2∼π

[r1(x, y1, y2)|x, z1] = A(x, z1,1) +A(x, z1,2) (14)

=⇒
A([x, z1,1], z1,2) = Ez3:k∼π

y2∼π
[r1(x, y1, y2)|x, z1,1]− Ez2:k∼π

y2∼π
[r1(x, y1, y2)|x]

= Aπ([x, z1,1], z1,2)
(15)

By repeating this process, we have A ≡ Aπ , which concludes the proof.157

B Implementation details158

We use the pre-trained LLAMA 3.1 8B-instruct as our base model [Dubey et al., 2024] for computing159

π and Â. We use a low-rank linear layer as the advantage head to compute Â(·, z), which we found160

to reduce memory usage significantly and mitigate overfitting. The LoRA adapters are only enabled161

when computing Â, and are disabled when computing π, which ensures that π stays fixed throughout162

training. In addition, this allows us to compute both functions with a single model, which reduces163

memory footprint and ensures that the tokenization process for both functions is consistent.164

When implementing the objective function (Equation 10), we have to compute functions of the form165

Â([x, y1, z2,1:n−1], z2,n). This is achieved by concatenating two responses into a single corpus before166

feeding it into the model. More specifically, we combine the responses using the following template:167

<context x>
Assistant: y1
User: Here is another answer:
Assistant: y2

168

This way we can generate the advantages in an autoregressive manner.169

Since the reward function is anti-symmetric by design (i.e., r1(x, y1, y2) = −r1(x, y2, y1), we170

augment the dataset with swapped positions (y1, y2) → (y2, y1).171
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Parameter Value
Advantage head rank 16

LoRA rank 32
LoRA layers all linear layers

LoRA α 32 (with rsLoRA [Kalajdzievski, 2023])
Epochs 2

Batch size 64
Learning rate 2.5×10−5 (linear warmup in the first 10% steps and cosine annealing to 0 afterward)
weight decay 0

gradient norm clipping 1

Table 1: Hyperparameters
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