
Stabilizing GNN for Fairness via Lipschitz Bounds

Yaning Jia 1 Chunhui Zhang 2

Abstract
The Lipschitz bound, a technique from robust
statistics, limits the maximum changes in output
with respect to the input, considering associated ir-
relevant biased factors. It provides an efficient and
provable method for examining the output stabil-
ity of machine learning models without incurring
additional computation costs. However, there has
been no previous research investigating the Lips-
chitz bounds for Graph Neural Networks (GNNs),
especially in the context of non-Euclidean data
with inherent biases. This poses a challenge for
constraining GNN output perturbations induced
by input biases and ensuring fairness during train-
ing. This paper addresses this gap by formulat-
ing a Lipschitz bound for GNNs operating on
attributed graphs, and analyzing how the Lips-
chitz constant can constrain output perturbations
induced by biases for fairness training. The effec-
tiveness of the Lipschitz bound is experimentally
validated in limiting model output biases. Addi-
tionally, from a training dynamics perspective, we
demonstrate how the theoretical Lipschitz bound
can effectively guide GNN training to balance
accuracy and fairness.

1. Introduction
Graphs, as non-Euclidean data, are widely used in vari-
ous real-world applications, such as recommender systems
(Shalaby et al., 2017; Huang et al., 2021; Li et al., 2021),
drug discovery (Takigawa & Mamitsuka, 2013; Li et al.,
2017), and knowledge engineering (Rizun, 2019; Wang
et al., 2018). Learning on non-Euclidean data has led to
the development of Graph Neural Networks (GNNs) com-
bined with deep learning (Gori et al., 2005; Scarselli et al.,
2005; Li et al., 2016; Hamilton et al., 2017; Xu et al., 2019).
Graph Convolutional Networks (GCNs) (Kipf & Welling,

*Equal contribution 1Huazhong University of Science and Tech-
nology 2Brandeis University. Correspondence to: Chunhui Zhang
<chunhuizhang@brandeis.edu>.

2nd AdvML Frontiers workshop at 40 th International Conference
on Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 2023.
Copyright 2023 by the author(s).

2017; Zhang & Chen, 2018; Fan et al., 2019) are the most
referenced GNN architecture, utilizing convolutional layers
and message-passing mechanisms for graph learning.

In parallel with the successful applications of GNNs in
various scenarios, there is an increasing societal concern
regarding the interpretability of GNN models and their inter-
actions with graph data during training (Dong et al., 2021;
Lahoti et al., 2019b; Kang et al., 2020; Mujkanovic et al.,
2022). Existing works often lack a clear understanding of
how biases learned from the input affect output stability
and fairness considerations (Dong et al., 2021; Kang et al.,
2020; Liao et al., 2021; Li et al., 2021). In the light of this,
we aim to constrain the unwanted changes in GNN output,
particularly when the training graph data contains hidden
biases. Consequently, our fundamental research question is:

Without extra computations, how can we constrain the un-
wanted changes in GNN output, particularly when the graph
training data has hidden learnable biases?

This question is motivated by the need to control the model’s
sensitivity to unfair correlations caused by irrelevant factors
in the training process. By constraining output perturbations
during training, we can improve GNN generalization, miti-
gate unfair biases induced by data, and enhance the model’s
resilience against perturbations.

To answer this question, we propose the use of Lipschitz
bounds, which are commonly used in robust statistics to
study the maximum possible changes in output due to irrel-
evant factors in the input. We introduce Lipschitz bounds
to GNN training, providing an interpretable solution to en-
sure fairness. Specifically, we derive the Lipschitz bound
for general GNNs and analyze the GNN’s predictions in
relation to input biases, focusing on individual fairness from
a ranking perspective. By constraining unfair changes, we
stabilize GNN outputs. Furthermore, we facilitate the calcu-
lation of Lipschitz bounds by deriving the Jacobian matrix
of the model, allowing for practical training approximations.
Our theoretical analysis of Lipschitz bounds guides the im-
plementation of GNN fairness training, which is validated
through experiments on diverse datasets and various graph
tasks. In summary, our contributions are as follows:

• We derive the Lipschitz bound for general GNNs and use
it to constrain unfair changes in predictions induced by

1

Stabilizing GNN for Fairness via Lipschitz Bounds

input biases, particularly for individual fairness from a
ranking perspective.

• We facilitate the calculation of Lipschitz bounds by deriv-
ing the Jacobian matrix of the model, enabling practical
training approximations.

• We demonstrate through experiments that our theoretical
analysis of Lipschitz bounds effectively guides GNN fair-
ness training. Our solution is plug-and-play, compatible
with different existing methods, and applicable to diverse
datasets and graph tasks.

2. Preliminaries
Lipschitz Constant Let us start by reviewing some defi-
nitions related to Lipschitz functions. A function f : Rn →
Rm is established to be Lipschitz continuous on an input set
X ⊆ Rn if there exists a constant K ≥ 0 such that for all
x,y ∈ X , f satisfies the following inequality:

∥f(x)− f(y)∥ ≤ K ∥x− y∥ ,∀x,y ∈ X . (1)

The smallest possible K in Equation (1) is the Lipschitz
constant of f , denoted as Lip(f):

Lip(f) = sup
x,y∈X ,x̸=y

∥f(x)− f(y)∥
∥x− y∥

, (2)

and we say that f is a K-Lipschitz function. The Lipschitz
constant of a function is essentially the largest possible
change of the output corresponding to a perturbation of the
input of unit norm. This makes the Lipschitz constant of a
neural network an important measure of its stability with
respect to the input features. However, finding the exact
constant can be challenging, so obtaining an upper bound is
often the approach taken. Such an upper bound is called a
Lipschitz bound.

Graph Neural Networks We assume a given graph G =
G(V,E), where V denotes the set of nodes and E denotes
the set of edges. We will use X = {x1,x2, · · · ,xN} ⊂
RF to denote the N node features in RF , as the input of
any layer of a GNN. By abuse of notation, when there is
no confusion, we also follow GNN literature and consider
X as the RN×F matrix whose i-th row is given by x⊤

i ,
i = 1, · · · , N , though it unnecessarily imposes an ordering
of the graph nodes.

GNNs are functions that operate on the adjacency matrix
A ∈ RN×N of a graph G. Specifically, an L-layer GNN
can be defined as a function f : RN×F in → RN×F out

that
depends on A. Formally, we adopt the following definition:
Definition 1. An L-layer GNN is a function f that can be
expressed as a composition of L message-passing layers hl

and L− 1 activation functions ρl, as follows:

f = hL ◦ ρL−1 ◦ · · · ◦ ρ1 ◦ h1, (3)

where hl : RF l−1 → RF l

is the l-th message-passing layer,
ρl : RF l → RF l

is the non-linear activation function in
the l-th layer, and F l−1 and F l denote the input and output
feature dimensions for the l-th message-passing layer hl ,
respectively. In addition, we set l = 1, · · · , L.

Rank-based Individual Fairness of GNNs Rank-based
Individual Fairness on GNNs (Dong et al., 2021) focuses on
the relative ordering of instances rather than their absolute
predictions. It ensures that similar instances, as measured by
the similarity measure S(·, ·), receive consistent rankings or
predictions. The criterion requires that if instance i is more
similar to instance j than to instance k, then the predicted
ranking of j should be higher than that of k, consistently.
This can be expressed as:

if S(xi,xj) > S(xi,xk), then Yij > Yik, (4)

where Yij and Yik denote the predicted rankings or predic-
tions for instances xj and xk, respectively, based on the
input instance xi. The criterion ensures that the predicted
rankings or predictions align with the relative similarities
between instances, promoting fairness and preventing dis-
criminatory predictions based on irrelevant factors.

3. Estimating Lipschitz Bounds for GNNs with
Fairness Considerations

In this section, we focus on estimating the upper bounds
of the Lipschitz constants for GNNs, which are crucial for
analyzing output perturbations induced by input biases. We
begin by establishing Lipschitz bounds for GNNs, providing
closed-form formulas for these bounds. Then, we derive
the Jacobian matrix of the GNN model to facilitate the
calculation of Lipschitz bounds in practice. Finally, we
demonstrate how Lipschitz bounds can be used to promote
individual fairness, ensuring output consistency according
to the rank-based individual fairness definition.

3.1. Stability of Model Output

A GNN is a function that transforms graph features from
the input space to the output space. Formally, a GNN can be
represented as f : X ∈ RN×F in → Y ∈ RN×F out

, where
X is the input feature matrix, Y is the output feature matrix,
and N is the number of nodes in the graph.

To analyze the stability of the model’s output, we examine
the Lipschitz bound of the Jacobian matrix of the GNN
model. For this purpose, we introduce the following lemma,
which establishes an inequality relation:

Lemma 1. For any vectors x and y in a Euclidean space,
let g(x) and g(y) be vector-valued functions of x and y,
respectively, and let gi be the i-th component function of g.

2

Stabilizing GNN for Fairness via Lipschitz Bounds

Then, the following inequality holds:

∥g(x)− g(y)∥
∥x− y∥

⩽

∥∥∥∥[gi(x)− gi(y)

∥x− y∥

]n
i=1

∥∥∥∥ , (5)

where ∥ · ∥ represents the norm of a vector.

Lemma 1 provides an inequality that relates the norm of the
difference between two vector-valued functions, g(x) and
g(y), to the norm of a vector composed of the component-
wise differences of the functions evaluated at x and y. Based
on Lemma 1, we can now present the following theorem:
Theorem 1. Let Y be the output of an L-layer GNN rep-
resented by f(·) with X as the input. Assuming that the
activation function, represented by ρ(·), is ReLU with a Lip-
schitz constant of Lip(ρ) = 1, the global Lipschitz constant
of the GNN, denoted as Lip(f), satisfies:

Lip(f) ⩽ max
j

L∏
l=1

∥∥∥F l′
∥∥∥∥∥∥[J (hl)

]
j

∥∥∥
∞

, (6)

where F l′ represents the output dimension of
the l-th message-passing layer, j is the index of
the node (e.g., j-th), and the vector

[
J (hl)

]
=[∥∥J1(h

l)
∥∥ ,∥∥J2(h

l)
∥∥ , · · · ,∥∥JF l′(hl)

∥∥]. Notably,
Ji(h

l) denotes the i-th row of the Jacobian matrix of the
l-th layer’s input and output, and

[
J (hl)

]
j

is the vector
corresponding to the j-th node in the l-th layer hl(·).

Proof Sketch:1 We initiate with investigating the Lipschitz
property of GNNs, considering 1-Lipschitz activation func-
tions (e.g., the widely-used ReLU (Nair & Hinton, 2010).
The hidden states of node features x1 and x2 are repre-
sented as z1 and z2 respectively. The Lipschitz constant
between these hidden states is calculated as ∥z1−z2∥

∥x1−x2∥ =
∥(h(x1)−h(x2))∥

∥x1−x2∥ . Using the triangle inequality, this equation

is further bounded by ∥z1−z2∥
∥x1−x2∥ ⩽

∥∥∥∥[h(x1)i−h(x2)i
∥x1−x2∥

]F ′

i=1

∥∥∥∥ .
The Lipschitz constant of individual elements is also ana-
lyzed, again using the triangle inequality. The proof then
proceeds to analyze the Lipschitz constant of the individual
elements using the operation of the l-th layer in f(·). Fi-
nally, the Lipschitz constant for the GNN is established as
Lip(f) = maxj

∏L
l=1

∥∥∥F l′
∥∥∥∥∥∥[J (hl)

]
j

∥∥∥
∞

. It establishes
that the difference in the output Y is controlled by the Lip-
schitz constant of the GNN, Lip(f), and the difference in
the input X . The above analysis is crucial for assessing
the model output stability with respect to irrelevant biases
learned layer-by-layer from the input, during the forward.

The aforementioned Theorem 1 bounds the global Lipschitz
constant of the GNN based on the layer outputs and the

1Please refer to the Appendix B for the complete proof due to
space constraints.

corresponding Jacobian matrices. It establishes that the
Lipschitz constant of a GNN regulates the magnitude of
changes in the output induced by input biases, consequently
guaranteeing the model output stability and fairness against
irrelevant factors.

3.2. Simplifying Bounds Calculation by Jacobian Matrix

The approach presented in Theorem 1 for estimating the
Lipschitz constants Lip(f) across different layers of the
GNN f(·) requires explicit expressions for each component,
making the process somewhat challenging. However, this
difficulty can be mitigated by computing the corresponding
Jacobian matrices, as shown in Equation (4) of the paper.
By leveraging the values of each component in the Jaco-
bian matrix, we can approximate the Lipschitz constants
in a straightforward manner. Additionally, the expression∏L

l=1 ∥F l′∥∥J (hl)j∥∞ provides valuable insights into the
factors that influence the Lipschitz bounds, such as the di-
mensions of the output layer and the depth of the GNN.

However, considering the potential presence of multiple
hierarchical layers in the network, their cumulative effect
could lead to a significant deviation from the original bounds.
Therefore, it is beneficial to consider the entire network as
a single layer and directly derive the Lipschitz bound from
the input to the output. To achieve this, we introduce the
Jacobian matrix in detail. Let Ji denote the Jacobian matrix
of the i-th node, which can be calculated as:

Ji =

∂Yi1

∂Xi1

∂Yi1

∂Xi2
· · · ∂Yi1

∂XiF in
∂Yi2

∂Xi1

∂Yi2

∂Xi2
· · · ∂Yi2

∂XiF in

...
...

. . .
...

∂YiF out

∂Xi1

∂YiF out

∂Xi2
· · · ∂YiF out

∂XiF in

F out×F in

. (7)

We can define Ji =
[
J⊤
i1 ,J

⊤
i2 , . . . ,J

⊤
iF out

]⊤
, where

Jij =
[

∂Yij

∂Xi1
,
∂Yij

∂Xi2
, . . . ,

∂Yij

∂XiF in

]⊤
. Then, we de-

fine Ji = [∥Ji1∥, ∥Ji2∥, . . . , ∥JiF out∥]⊤ and J =[
J⊤
1 ,J⊤

2 , . . . ,J⊤
N

]⊤
. To analyze the Lipschitz bounds

of the Jacobian matrices of all output features for N nodes,
we define LB(J) as follows:

LB(J) =

J⊤
1

J⊤
2
...

J⊤
N

 =

J11 J12 · · · J1F out

J21 J22 · · · J2F out

...
...

. . .
...

JN1 JN2 · · · JNF out

N×F out

,

(8)
where Jij = ∥Jij∥. Based on the definition of LB(J), we
can establish the Lipschitz bound of the entire GNN model
during training in the next subsection. To measure the scale
of LB(J) of GNN f(·), we define Lip(f) as follows:

Lip(f) = ∥LB(J)∥∞,2, (9)

3

Stabilizing GNN for Fairness via Lipschitz Bounds

where ∥·∥∞,2 denotes the element-wise l2-norm of the rows
of LB(J) and then takes the maximum norm among all
rows. This calculation involves taking the l2-norm for each
row of LB(J) and then taking the maximum norm among
all rows. Therefore, we have proposed an easy solution to
approximate

∏L
l=1 ∥F l′∥∥J (hl)j∥ for practical training.

3.3. Promoting GNN Fairness in Practice

By regularizing GNN training with input-output rank con-
sistency, especially in the context of rank-based individ-
ual fairness, we can leverage Lipschitz bounds to allevi-
ate biases inherent in training data and promote individ-
ual fairness. The Lipschitz bounds, denoted as Lip(f) =
maxj

∏L
l=1 ∥F l′∥∥J (hl)j∥∞, ensure that the output pre-

dictions of the model remain consistent with the ranking
lists based on the similarity of each node in the input graph
to other nodes in the oracle pairwise similarity matrix SG

and the similarity matrix of the predicted outcome space SY ,
as defined in the rank-based individual fairness of GNNs.

To facilitate the integration of Lipschitz bounds into existing
fairness-oriented GNN training processes, we introduce a
plug-and-play solution called JacoLip. Algorithm 1 in the
Appendix displays a detailed PyTorch-style pseudocode of
this solution. It involves training the GNN model with
Lipschitz bounds for a predetermined number of epochs.
Throughout the training phase, the Lipschitz constant for
the model’s output is computed using the gradients and
norms of the input features. This Lipschitz bound serves as
a regularization term within the loss function, ensuring that
the model’s output stays within defined constraints.

4. Experiments
In this section, we conducted two major experiments to
examine the Lipschitz bound we analyzed in the previous
section: (1) we utilize Lipschitz constants to bound GNN
output consistency for increasing rank-based individual fair-
ness on node classification and link prediction tasks; (2) we
then validate the constraint effects of Lipschitz bounds on
GNN gradients/weights with regards to biases induced by
data from training dynamics perspective.

4.1. Setup

Datasets. We evaluate the Lipschitz bound’s effectiveness
in promoting individual fairness in GNNs on real-world
datasets, including citation networks (ACM), co-authorship
networks (Co-author-CS and Co-author-Phy), and social
networks (BlogCatalog, Flickr, and Facebook).

Backbones. We employ two widely-used GNN architec-
tures as backbone models for each downstream learning task
in our experiments. Specifically, for the node classification

task, we adopt Graph Convolutional Network (GCN) (Kipf
& Welling, 2017) and Simplifying Graph Convolutional
Network (SGC) (Wu et al., 2019). For the link prediction
task, we use GCN and Variational Graph Auto-Encoders
(GAE) (Kipf & Welling, 2016). A detailed model card that
records configurations of hyperparameters is provided in the
Appendix C.

Baselines. In the previous work on rank-based individual
fairness (Dong et al., 2021), existing group fairness graph
embedding methods, such as (Bose & Hamilton, 2019; Rah-
man et al., 2019a), are unsuitable for comparison as they
promote fairness for subgroups determined by specific pro-
tected attributes, whereas our focus is on individual fair-
ness without such attributes. To evaluate our proposed
method, we compare it with three important baselines for
rank-based individual fairness: Redress (Dong et al., 2021),
InFoRM (Kang et al., 2020), and PFR (Lahoti et al., 2019b).
Details about these baselines can be found in the Appendix.

Evaluation Metrics We use accuracy (Acc.) for node
classification, area under the ROC curve (AUC) for link pre-
diction, and NDCG@10 for individual fairness evaluation.

Implementation Details Experiments are implemented
in PyTorch using released implementations of GNN back-
bones. The learning rate is set to 0.01, and model-specific
hyperparameters are provided in the Appendix. We opti-
mize models using the Adam optimizer, and dataset splitting
details are included in the Appendix.

4.2. Effect of Lipschitz Bound to Fairness on Graphs

The experiments conducted on real-world graphs demon-
strate the effectiveness of the Lipschitz bound in promoting
individual fairness in GNNs from a ranking perspective. The
results are summarized in Tables 1 for node classification.

Overall, in Table 1, our JacoLip shows promising results
in achieving a better trade-off between accuracy and fair-
ness compared to the baselines: (i) when applied to Vanilla
models (GCN or SGC), JacoLip improves the fairness per-
formance (NDCG@10) while maintaining comparable ac-
curacy. This demonstrates that optimizing common GNN
backbones with the plug-and-play Lipschitz bounds regular-
ization successfully constrains bias during training and pro-
motes a better trade-off between accuracy and fairness; (ii)
furthermore, when applied to the existing fairness-oriented
algorithm Redress, a competitive rank-based individual fair-
ness method, JacoLip with Lipschitz bounds regularization
helps to constrain irrelevant biased factors during training
and marginally improves the trade-off between accuracy and
fairness across different datasets and backbones.

4

Stabilizing GNN for Fairness via Lipschitz Bounds

Table 1: Evaluation on node classification task: comparing under accuracy and NDCG. Higher performance in both metrics
indicates better trade-off. Results are in percentages, and averaged values and standard deviations are computed from five
runs. The improvement is within brackets.

Data Model Fair Alg. Feature Similarity Structural Similarity
utility: Acc.↑ fairness: NDCG@10↑ utility: Acc.↑ fairness: NDCG@10↑

ACM

GCN

Vanilla (Kipf & Welling, 2017) 72.49±0.6 47.33±1.0 72.49±0.6 25.42±0.6
InFoRM (Kang et al., 2020) 68.03±0.3(−6.15%) 39.79±0.3(−15.9%) 69.13±0.5(−4.64%) 12.02±0.4(−52.7%)
PFR (Lahoti et al., 2019b) 67.88±1.1(−6.36%) 31.20±0.2(−34.1%) 69.00±0.7(−4.81%) 23.85±1.3(−6.18%)

Redress (Dong et al., 2021) 71.75±0.4(−1.02%) 49.13±0.4(+3.80%) 72.03±0.9(−0.63%) 29.09±0.4(+14.4%)
JacoLip (on Vanilla) 72.37±0.3(−0.16%) 49.80±0.3(+5.26%) 71.97±0.3(−0.71%) 27.91±0.7(+9.79%)
JacoLip (on Redress) 71.92±0.2(−0.78%) 53.62±0.6(+13.3%) 72.05±0.5(−0.60%) 31.80±0.4(+25.1%)

SGC

Vanilla (Wu et al., 2019) 68.40±1.0 55.75±1.1 68.40±1.0 37.18±0.6
InFoRM (Kang et al., 2020) 68.81±0.5(+0.60%) 48.25±0.5(−13.5%) 66.71±0.6(−2.47%) 28.33±0.6(−23.8%)
PFR (Lahoti et al., 2019b) 67.97±0.7(−0.62%) 34.71±0.1(−37.7%) 67.78±0.1(−0.91%) 37.15±0.6(−0.08%)

Redress (Dong et al., 2021) 67.16±0.2(−1.81%) 58.64±0.4(+5.18%) 67.77±0.4(−0.92%) 38.95±0.1(+4.76%)
JacoLip (on Vanilla) 73.84±0.2(+7.95%) 62.00±0.2(+11.21%) 69.28±0.3(+1.29%) 38.36±0.4(+3.17%)
JacoLip (on Redress) 72.36±0.4(+5.79%) 69.22±0.5(+24.16%) 72.52±0.5(+6.02%) 41.07±0.3(+10.5%)

CS

GCN

Vanilla (Kipf & Welling, 2017) 90.59±0.3 50.84±1.2 90.59±0.3 18.29±0.8
InFoRM (Kang et al., 2020) 88.66±1.1(−2.13%) 53.38±1.6(+5.00%) 87.55±0.9(−3.36%) 19.18±0.9(+4.87%)
PFR (Lahoti et al., 2019b) 87.51±0.7(−3.40%) 37.12±0.9(−27.0%) 86.16±0.2(−4.89%) 11.98±1.3(−34.5%)

Redress (Dong et al., 2021) 90.70±0.2(+0.12%) 55.01±1.9(+8.20%) 89.16±0.3(−1.58%) 21.28±0.3(+16.4%)
JacoLip (on Vanilla) 90.68±0.3(+0.90%) 55.35±0.2(+8.87%) 89.23±0.5(−1.50%) 21.82±0.2(+19.3%)
JacoLip (on Redress) 90.63±0.3(+0.40%) 68.20±0.4(+34.2%) 89.21±0.1(−1.52%) 31.82±0.4(+74.1%)

SGC

Vanilla (Wu et al., 2019) 87.48±0.8 74.00±0.1 87.48±0.8 32.36±0.3
InFoRM (Kang et al., 2020) 88.07±0.1(+0.67%) 74.29±0.1(+0.39%) 88.65±0.4(+1.34%) 32.37±0.4(+0.03%)
PFR (Lahoti et al., 2019b) 88.31±0.1(+0.94%) 48.40±0.1(−34.6%) 84.34±0.3(−3.59%) 28.87±0.9(−10.8%)

Redress (Dong et al., 2021) 90.01±0.2(+2.89%) 76.60±0.1(+3.51%) 89.35±0.1(+2.14%) 34.24±0.2(+5.81%)
JacoLip (on Vanilla) 90.23±0.2(+3.14%) 74.63±0.2(+0.85%) 89.53±0.6(+2.34%) 32.83±0.3(+1.45%)
JacoLip (on Redress) 90.12±0.3(+3.02%) 77.01±0.1(+4.07%) 89.80±0.2(+2.65%) 34.89±0.5(+7.82%)

Phy

GCN

Vanilla (Kipf & Welling, 2017) 94.81±0.2 34.83±1.1 94.81±0.2 1.57±0.1
InFoRM (Kang et al., 2020) 89.33±0.8(−5.78%) 31.25±0.0(−10.3%) 94.46±0.2(−0.37%) 1.77±0.0(+12.7%)
PFR (Lahoti et al., 2019b) 89.74±0.5(−5.35%) 24.16±0.4(−30.6%) 87.26±0.2(−7.96%) 1.20±0.1(−23.6%)

Redress (Dong et al., 2021) 94.63±0.7(−0.19%) 43.64±0.5(+25.3%) 93.94±0.3(−0.92%) 1.93±0.1(+22.9%)
JacoLip (on Vanilla) 94.60±0.2(−0.22%) 37.33±0.5(+7.18%) 93.99±0.4(−0.86%) 1.87±0.2(+19.1%)
JacoLip (on Redress) 94.50±0.2(−0.32%) 49.37±0.3(+4.17%) 93.86±0.9(−1.00%) 2.72±0.1(+73.3%)

SGC

Vanilla (Wu et al., 2019) 94.45±0.2 49.63±0.1 94.45±0.2 3.61±0.1
InFoRM (Kang et al., 2020) 92.01±0.1(−2.58%) 43.87±0.2(−11.6%) 94.27±0.3(−0.19%) 3.64±0.0(+0.83%)
PFR (Lahoti et al., 2019b) 89.74±0.3(−4.99%) 28.54±0.1(−42.5%) 89.73±0.3(−5.00%) 2.62±0.1(−27.4%)

Redress (Dong et al., 2021) 94.30±0.1(−0.16%) 53.40±0.1(+7.60%) 93.94±0.2(−0.54%) 4.03±0.0(+11.6%)
JacoLip (on Vanilla) 94.20±0.3(−0.26%) 50.70±0.4(+2.16%) 93.58±0.2(−0.92%) 3.80±0.6(+5.26%)
JacoLip (on Redress) 93.28±0.1(−1.24%) 59.20±0.6(+19.3%) 93.99±1.1(−0.49%) 4.30±0.5(+19.1%)

4.3. Impact of Lipschitz Bounds on Training Dynamics

We further analyze the impact of Lipschitz bounds through
the optimization process and explore the its interactions with
weight parameters, gradient, fairness, and accuracy during
training in Figure 1:
For the nonlinear GCN model, our proposed JacoLip demon-
strates positive regularizations on gradients. Particularly,
at the initial epochs, JacoLip effectively stabilizes gradient
magnitudes, leading to higher accuracy (e.g., ∼20% on fea-
ture similarity and ∼40% on structural similarity) compared
to the baseline Redress. Additionally, during these initial
epochs, JacoLip maintains higher fairness metrics NDCG
(e.g., ∼0.15 on feature similarity) compared to the baseline
Redress on GCN; For the linear SGC model, JacoLip also

achieves a favorable trade-off between fairness and accuracy
compared to the baseline Redress approach. At the start of
training, JacoLip on SGC exhibits better fairness (e.g., ∼0.2
NDCG on feature similarity) than the baseline Redress on
SGC, with only a slight decrease in accuracy. Furthermore,
as the number of epochs increases, the accuracy of JacoLip
on SGC tends to converge to or even surpass the baseline
Redress on SGC.
In summary, the observed accuracy-fairness trade-off during
training can be attributed to the constraint effect of Lipschitz
bounds on gradient optimization: The higher expressivity
of the nonlinear GCN makes it more prone to losing consis-
tency in the input-output similarity rank, which is crucial
for fairness. In contrast, the simplicity of the linear model
preserves consistency more easily, and our JacoLip prior-

5

Stabilizing GNN for Fairness via Lipschitz Bounds

Fe
at
ur
e
si
m
ila
rit
y

St
ru
ct
ur
al
si
m
ila
rit
y

Figure 1: Study of the Lipschitz bounds’ impact on model training for rank-based individual fairness. We perform
experiments on the co-author-Physics dataset using both nonlinear (GCN) and linear (SGC) models. The training dynamics
are assessed by monitoring the NDCG, accuracy, weight norm, and weight gradient as the number of epochs increases.
Upper two rows: Metrics under feature similarity; Lower two rows: Metrics under structural similarity.

itizes accuracy in this case. These findings offer valuable
insights into the dynamic behavior of model training under
Lipschitz bounds and highlight the advantages of JacoLip in
promoting fairness while maintaining competitive accuracy.

5. Conclusions
We have investigated the use of Lipschitz bounds to promote
individual fairness in GNNs from a ranking perspective. We
conduct a thorough analysis of the theoretical properties
of Lipschitz bounds and their relationship to rank-based
individual fairness. Building upon this analysis, we propose
JacoLip, a Lipschitz-based fairness solution that incorpo-
rates Lipschitz bound regularization into the training process
of GNNs. To evaluate the effectiveness of JacoLip, exten-
sive experiments are conducted on real-world datasets for

node classification and link prediction. The results consis-
tently demonstrate that JacoLip effectively constrains biased
factors during training, leading to improved fairness perfor-
mance while maintaining accuracy.

In addition to the findings presented in the main paper, we
provide further details in the appendix: Appendix A con-
tains related work about graph learning, as well as Lipschitz
bounds in deep models. In Appendix B, we include the
complete proof of Lemma 1 and Theorem 1. Additionally,
Appendix C and Appendix D provide detailed descriptions
of our model, datasets, and implementations. Furthermore,
in Appendix E, we include additional exploration experi-
ments conducted on various datasets and GNN architectures
to analyze the training dynamics of JacoLip. Overall, the
appendix complements the main paper by providing supple-
mentary information and experimental results.

6

Stabilizing GNN for Fairness via Lipschitz Bounds

References
Araujo, A., Negrevergne, B., Chevaleyre, Y., and Atif, J.

On Lipschitz regularization of convolutional layers using
toeplitz matrix theory. In AAAI Conference on Artificial
Intelligence, 2021. 9

Bose, A. and Hamilton, W. Compositional fairness con-
straints for graph embeddings. In International Confer-
ence on Machine Learning, 2019. 4, 9, 11

Buyl, M. and De Bie, T. Debayes: a bayesian method for
debiasing network embeddings. In International Confer-
ence on Machine Learning, 2020. 9

Chen, Z., Li, P., Liu, H., and Hong, P. Characterizing the
influence of graph elements. In International Conference
on Learning Representations, 2023. 9

Dai, E. and Wang, S. Say no to the discrimination: Learning
fair graph neural networks with limited sensitive attribute
information. In ACM International Conference on Web
Search and Data Mining, 2021. 9

Dasoulas, G., Scaman, K., and Virmaux, A. Lipschitz nor-
malization for self-attention layers with application to
graph neural networks. In International Conference on
Machine Learning, 2021. 9

Dong, Y., Kang, J., Tong, H., and Li, J. Individual fairness
for graph neural networks: A ranking based approach. In
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2021. 1, 2, 4, 5, 9, 11, 12,
13, 14

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., and Yin,
D. Graph neural networks for social recommendation. In
International World Wide Web Conference, 2019. 1

Gama, F. and Sojoudi, S. Distributed linear-quadratic con-
trol with graph neural networks. Signal Processing, 196:
108506, 2022. 9

Gori, M., Monfardini, G., and Scarselli, F. A new model for
learning in graph domains. In IEEE International Joint
Conference on Neural Networks, 2005. 1

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems, 2017. 1

Hardt, M., Price, E., Price, E., and Srebro, N. Equality of
opportunity in supervised learning. In Lee, D., Sugiyama,
M., Luxburg, U., Guyon, I., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems, 2016.
11

Huang, C., Chen, J., Xia, L., Xu, Y., Dai, P., Chen, Y., Bo,
L., Zhao, J., and Huang, J. X. Graph-enhanced multi-task
learning of multi-level transition dynamics for session-
based recommendation. In AAAI Conference on Artificial
Intelligence, 2021. 1

Huang, Q., Yamada, M., Tian, Y., Singh, D., and Chang, Y.
Graphlime: Local interpretable model explanations for
graph neural networks. IEEE Transactions on Knowledge
and Data Engineering, 2022. 9

Huang, X., Li, J., and Hu, X. Label informed attributed
network embedding. In ACM International Conference
on Web Search and Data Mining, 2017. 11

Järvelin, K. and Kekäläinen, J. Cumulated gain-based evalu-
ation of ir techniques. ACM Transactions on Information
Systems, 20(4):422–446, 2002. 11

Kang, J., He, J., Maciejewski, R., and Tong, H. Inform:
Individual fairness on graph mining. In ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2020. 1, 4, 5, 11, 13, 14

Kim, H., Papamakarios, G., and Mnih, A. The Lipschitz
constant of self-attention. In International Conference on
Machine Learning, 2021. 9

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
In NIPS Workshop on Bayesian Deep Learning, 2016. 4,
11, 14

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In International Con-
ference on Learning Representations, 2017. 1, 4, 5, 11,
13, 14

Lahoti, P., Gummadi, K. P., and Weikum, G. ifair: Learn-
ing individually fair data representations for algorithmic
decision making. In International Conference on Data
Engineering, 2019a. 11

Lahoti, P., Gummadi, K. P., and Weikum, G. Operationaliz-
ing individual fairness with pairwise fair representations.
In VLDB Endowment, 2019b. 1, 4, 5, 11, 13, 14

Leskovec, J. and Mcauley, J. Learning to discover social cir-
cles in ego networks. In Advances in Neural Information
Processing Systems, 2012. 11

Li, J., Cai, D., and He, X. Learning graph-level representa-
tion for drug discovery. arXiv preprint arXiv:1709.03741,
2017. 1

Li, P., Wang, Y., Zhao, H., Hong, P., and Liu, H. On
dyadic fairness: Exploring and mitigating bias in graph
connections. In International Conference on Learning
Representations, 2021. 1

7

Stabilizing GNN for Fairness via Lipschitz Bounds

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated
graph sequence neural networks. International Confer-
ence on Learning Representations, 2016. 1

Liao, P., Zhao, H., Xu, K., Jaakkola, T., Gordon, G. J.,
Jegelka, S., and Salakhutdinov, R. Information obfusca-
tion of graph neural networks. In International Confer-
ence on Machine Learning, 2021. 1, 9

Mujkanovic, F., Geisler, S., Günnemann, S., and Bojchevski,
A. Are defenses for graph neural networks robust? In Ad-
vances in Neural Information Processing Systems, 2022.
1

Nair, V. and Hinton, G. E. Rectified linear units improve re-
stricted boltzmann machines. In International Conference
on Machine Learning, 2010. 3

Palowitch, J. J. and Perozzi, B. Debiasing graph embeddings
with metadata-orthogonal training. In Advances in Social
Network Analysis and Mining, 2020. 9

Rahman, T., Surma, B., Backes, M., and Zhang, Y. Fairwalk:
Towards fair graph embedding. In International Joint
Conference on Artificial Intelligence, pp. 3289–3295,
2019a. 4, 11

Rahman, T., Surma, B., Backes, M., and Zhang, Y. Fairwalk:
Towards fair graph embedding. In International Joint
Conference on Artificial Intelligence, 2019b. 9

Rizun, M. Knowledge graph application in education: a
literature review. Acta Universitatis Lodziensis. Folia
Oeconomica, 2019. 1

Scarselli, F., Yong, S. L., Gori, M., Hagenbuchner, M.,
Tsoi, A. C., and Maggini, M. Graph neural networks
for ranking web pages. In IEEE/WIC/ACM International
Conference on Web Intelligence, 2005. 1

Shalaby, W., AlAila, B., Korayem, M., Pournajaf, L., Al-
Jadda, K., Quinn, S., and Zadrozny, W. Help me find a
job: A graph-based approach for job recommendation at
scale. In IEEE International Conference on Big Data,
2017. 1

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. In Re-
lational Representation Learning Workshop, NeurIPS,
2018. 11

Takigawa, I. and Mamitsuka, H. Graph mining: procedure,
application to drug discovery and recent advances. Drug
Discovery Today, 2013. 1

Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., and Su, Z.
Arnetminer: extraction and mining of academic social
networks. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2008. 11

Tang, L. and Liu, H. Relational learning via latent social
dimensions. In ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2009. 11

Terris, M., Repetti, A., Pesquet, J.-C., and Wiaux, Y. Build-
ing firmly nonexpansive convolutional neural networks.
In IEEE International Conference on Acoustics, Speech
and Signal Processing, 2020. 9

Wang, R., Yan, Y., Wang, J., Jia, Y., Zhang, Y., Zhang, W.,
and Wang, X. Acekg: A large-scale knowledge graph for
academic data mining. In ACM International Conference
on Information and Knowledge Management, 2018. 1

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
International Conference on Machine Learning, 2019. 4,
5, 11, 13

Wu, L., Chen, L., Shao, P., Hong, R., Wang, X., and Wang,
M. Learning fair representations for recommendation:
A graph-based perspective. In International World Wide
Web Conference, 2021. 9

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019. 1

Ying, Z., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J.
Gnnexplainer: Generating explanations for graph neural
networks. In Advances in Neural Information Processing
Systems, 2019. 9

Yuan, H., Yu, H., Wang, J., Li, K., and Ji, S. On explainabil-
ity of graph neural networks via subgraph explorations.
In International Conference on Machine Learning, 2021.
9

Zemel, R., Wu, Y., Swersky, K., Pitassi, T., and Dwork, C.
Learning fair representations. In International Confer-
ence on Machine Learning, 2013. 11

Zhang, M. and Chen, Y. Link prediction based on graph
neural networks. In Advances in Neural Information
Processing Systems, 2018. 1

Zou, D., Balan, R., and Singh, M. On Lipschitz bounds
of general convolutional neural networks. IEEE Trans-
actions on Information Theory, 66(3):1738–1759, 2019.
9

8

Stabilizing GNN for Fairness via Lipschitz Bounds

A. Related Works
Lipschitz Bounds in Deep Models. Prior research on
Lipschitz constants has primarily focused on specific types
of neural networks incorporating convolutional or attention
layers (Zou et al., 2019; Terris et al., 2020; Kim et al., 2021;
Araujo et al., 2021). In the context of GNNs, (Dasoulas
et al., 2021) introduced a Lipschitz normalization method
for self-attention layers in GATs. More recently, (Gama &
Sojoudi, 2022) estimated the filter Lipschitz constant using
the infinite norm of a matrix. In contrast, the Lipschitz
matrix in our study follows a distinct definition and employs
different choices of norm types. Additionally, our objective
is to enhance the stability of GNNs against unfair biases,
which is not clearly addressed in the aforementioned works.

Fair Graph Learning. Fair graph learning is a relatively
open domain (Wu et al., 2021; Dai & Wang, 2021; Buyl &
De Bie, 2020). Some existing approaches address fairness
concerns through techniques such as fairness-aware aug-
mentations or adversarial training. For instance, Fairwalk
(Rahman et al., 2019b) is a random walk-based algorithm
that aims to mitigate fairness issues in graph node embed-
dings. Adversarial training is employed in approaches like
Compositional Fairness (Bose & Hamilton, 2019) to disen-
tangle learned embeddings from sensitive features. Informa-
tion Regularization (Liao et al., 2021) utilizes adversarial
training to minimize the marginal difference between vertex
representations. In addition, (Palowitch & Perozzi, 2020)
improves group fairness by ensuring that node embeddings
lie on a hyperplane orthogonal to sensitive features. How-
ever, there remains ample room for further exploration in
rank-based individual fairness (Dong et al., 2021), which is
the focus of our work.

Understanding Learning on Graphs. Various ap-
proaches have emerged to understand the underlying pat-
terns in graph data and its components. Explanatory models
for learning on graphs (Ying et al., 2019; Huang et al., 2022;
Yuan et al., 2021; Chen et al., 2023) provide insights into
the relationship between a model’s predictions and elements
in graphs. These works shed light on how local elements or
node characteristics influence the decision-making process
of GNNs. However, our work differs in that we investi-
gate the impact of Lipschitz constants on practical training
dynamics, rather than focusing on trained/fixed-parameter
model inference or the influence of local features on GNN
decision-making processes.

B. Proofs
B.1. Notations

We use the following notations throughout the paper. Sets
are denoted by {} and vectors by (). For n ∈ N, we

denote [n] = {1, · · · , n}. Scalars are denoted by regu-
lar letters, lowercase bold letters denote vectors, and up-
percase bold letters denote matrices. For instance, x =
(x1, · · · , xn)

⊤ ∈ Rn and X = [Xik]i∈[n],k∈[m] ∈ Rn×m.
For any vector x ∈ Rn, we use ∥x∥ to denote its ℓ2-
norm: ∥x∥ =

(∑n
i=1 x

2
i

)1/2
. For any matrix X ∈ Rn×m,

we use Xi,: to denote its i-th row and X:,k to denote
its k-th column. The (∞, 2)-norm of X is denoted by
∥X∥∞,2 = maxi∈[n] ∥Xi,:∥. Given a graph G = G(V,E)
with ordered nodes, we denote its adjacency matrix by A
such that Aij = 1 if {i, j} ∈ E and Aij = 0 otherwise.
When it is clear from the context, we use X ∈ RN×F to
denote a feature matrix whose i-th row corresponds to the
features of the i-th node, and the j-th column represents the
features across all nodes for the j-th attribute. We denote the
output of the GNN as Y ∈ RN×C , where N is the number
of nodes and C is the number of output classes.

B.2. Proof of Lemma 1 in Section 3.1

Lemma 1. For any vectors x and y in a Euclidean space,
let g(x) and g(y) be vector-valued functions of x and y
respectively, and let gi be the i-th component function
of g. Then, we have the following inequality:

∥g(x)− g(y)∥
∥x− y∥

⩽

∥∥∥∥[gi(x)− gi(y)

∥x− y∥

]n
i=1

∥∥∥∥ , (10)

Lemma 1 provides an inequality that relates the norm of the
difference between two vector-valued functions, g(x) and
g(y), to the norm of a vector composed of the component-
wise differences of the functions evaluated at x and y. Based
on Lemma 1, we can now present the following theorem:

Proof. We begin by observing that

∥g(x)− g(y)∥
∥x− y∥

=
∥[gi(x)− gi(y)]

n
i=1∥

∥x− y∥

=

∥∥∥∥[|gi(x)− gi(y)|
∥x− y∥

]n
i=1

∥∥∥∥ . (11)

Furthermore, for each i ∈ [n],
|gi(x)− gi(y)|

∥x− y∥
≤ Lip(gi).

Therefore, we can write

Lip(g) = sup
x ̸=y

∥g(x)− g(y)∥
∥x− y∥

= sup
x ̸=y

∥∥∥∥[|gi(x)− gi(y)|
∥x− y∥

]n
i=1

∥∥∥∥
≤ sup

x ̸=y
∥[Lip(gi)]ni=1∥ = ∥[Lip(gi)]ni=1∥ ,

(12)

this completes the proof.

9

Stabilizing GNN for Fairness via Lipschitz Bounds

In the above proof of Lemma 1, we start by rewriting the
norm of the difference between g(x) and g(y) divided by
the norm of x − y as a norm of a vector containing the
component-wise differences of gi(x) and gi(y) divided by
the norm of x − y for each i. We then observe that for
each i, the absolute value of gi(x)− gi(y) divided by the
norm of x−y is bounded by the Lipschitz constant Lip(gi).
Hence, the Lipschitz constant of g is bounded by the norm
of the vector [Lip(gi)]

n
i=1. This establishes the inequality in

Lemma 1.

B.3. Proof of Theorem 1 in Section 3.1

Theorem 1. Let Y be the output of an L-layer GNN
(represented in f(·)) with X as the input. Assuming the
activation function (represented in ρ(·)) is ReLU with a
Lipschitz constant of Lip(ρ) = 1, then the global Lips-
chitz constant of the GNN, denoted as Lip(f), satisfies
the following inequality:

Lip(f) ⩽ max
j

L∏
l=1

∥∥∥F l′
∥∥∥∥∥∥[J (hl)

]
j

∥∥∥
∞

, (13)

where F l′ represents the output dimension of the
l-th message-passing layer, j is the index of the
node (e.g., j-th), and the vector

[
J (hl)

]
=[∥∥J1(h

l)
∥∥ ,∥∥J2(h

l)
∥∥ , · · · ,∥∥JF l′(hl)

∥∥]. Notably,
Ji(h

l) denotes the i-th row of the Jacobian matrix of the
l-th layer’s input and output, and

[
J (hl)

]
j

is the vector
corresponding to the j-th node in the l-th layer hl(·).

Theorem 1 provides an inequality that bounds the global
Lipschitz constant of the GNN based on the layer outputs
and Jacobian matrices. It is derived as follows:

Proof. We begin by examining the Lipschitz property of
the GNN. Let Y denote the output of an L-layer GNN with
input X . Assuming the commonly used ReLU activation
function as the non-linear layer ρ(·), we have Lip(ρ) = 1.
First, we consider the Lipschitz constant between the hidden
states of two nodes output by any message-passing layer h(·)
in f(·). Let z1 and z2 represent the hidden states of node
features x1 and x2, respectively. The Lipschitz constant
between these hidden states is given by:

∥z1 − z2∥
∥x1 − x2∥

=
∥ (h(x1)− h(x2)) ∥

∥x1 − x2∥
. (14)

By applying the triangle inequality, we obtain:

∥z1 − z2∥
∥x1 − x2∥

⩽

∥∥∥∥∥
[
h(x1)i − h(x2)i

∥x1 − x2∥

]F ′

i=1

∥∥∥∥∥ , (15)

Next, we consider the Lipschitz constant between individ-
ual elements of the hidden states. Let f(x1) and f(x2)

represent the hidden state matrices for inputs x1 and x2,
respectively. By again applying the triangle inequality, we
have:

∥z1 − z2∥
∥x1 − x2∥

⩽

∥∥∥∥F ′ ×max
i

h(x1)i − h(x2)i
∥x1 − x2∥

∥∥∥∥ , (16)

let’s focus on the Lipschitz constant of the individual ele-
ments, h(x1)i−h(x2)i

∥x1−x2∥ : Here, f(x)i denotes the i-th column
of the matrix f(x). We denote hl(·) as the operation of
the l-th message-passing layer in f(·), then by applying the
triangle inequality and leveraging the Lipschitz property of
the ReLU activation function, we have:

∥f(x1)j,1 − f(x2)j,2∥
∥xj,1 − xj,2∥

⩽
L∏

l=1

∥∥∥F l′
∥∥∥ ∥∥∥[J (hl)

]
j

∥∥∥
∞

, (17)

where xj,1 and xj,1 denote features of j-th node’s in x1 and
x2, respectively, and

[
J (hl)

]
j

represents the j-th node’s the
Jacobian matrix of the l-th message-passing layer. There-
fore, the Lipschitz constant for the GNN can be expressed
as:

Lip(f) = max
j

L∏
l=1

∥∥∥F l′
∥∥∥∥∥∥[J (hl)

]
j

∥∥∥
∞

. (18)

In summary, we have shown that for any two input samples
x1 and x2, the Lipschitz constant of the GNN, denoted as
Lip(f), satisfies:

∥Y1 − Y2∥ ⩽ Lip(f) ∥X1 −X2∥ , (19)

where Y denotes the output of the GNN for inputs X . This
inequality implies that the Lipschitz constant Lip(f) con-
trols the magnitude of changes in the output based on input
biases/perturbations. Therefore, we have established the
following result:

∥Y1 − Y2∥ ⩽
L∏

l=1

∥∥∥F l′
∥∥∥ ∥∥∥[J (hl)

]
j

∥∥∥
∞

∥X1 −X2∥ .

(20)
This inequality demonstrates that the Lipschitz constant of
the GNN, Lip(f), controls the magnitude of the difference
in the output Y based on the difference in the input X . It
allows us to analyze the stability of the model’s output with
respect to input perturbations.

C. Model Card
C.1. Implementations

Code and datasets will be publicly available. Algorithm 1 is
a PyTorch-style Pseudocode:

10

Stabilizing GNN for Fairness via Lipschitz Bounds

Algorithm 1 JacoLip: A simplified PyTorch-style Pseudocode
of our Lipschitz Bounds for fairness.

model: graph neural network model
Train model for N epochs
for X, A, target in dataloader_mlp:

pred = model(X, A)
ce_loss = CrossEntropyLoss(pred, target)

Compute Lipschitz constant for input
jacobian = Jaco(X, target)
model_lip = Lip(jacobian) # Eq.(8)
global_lip = norm(model_lip) # Eq.(9)

Optimize model with Lipschitz bound
loss = ce_loss + u * global_lip
loss.backward()
optimizer.step()

C.2. Hyperparameters Configurations

The hyper-parameters for our method across all datasets are
listed in Table 2. For fair comparisons, we follow the default
settings of Redress (Dong et al., 2021).

D. Detailed Setup
Datasets We evaluate the effectiveness of the Lips-
chitz bound in promoting individual fairness in GNNs
from a ranking perspective by conducting experiments on
three real-world datasets, each for a chosen downstream
task (node classification or link prediction). Specifically,
we use one citation network (ACM (Tang et al., 2008))
and two co-authorship networks (Co-author-CS and
Co-author-Phy (Shchur et al., 2018) from the KDD
Cup 2016 challenge) for the node classification task. For
the link prediction task, we use three social networks
(BlogCatalog (Tang & Liu, 2009), Flickr (Huang
et al., 2017), and Facebook (Leskovec & Mcauley, 2012).
We follow their public train/val/test splits provided by a prior
rank-based individual fairness work (Dong et al., 2021).
The datasets used in our work are referred to as CS and
Phy, which are abbreviations for the Co-author-CS and
Co-author-Phy datasets, respectively. A comprehensive
overview of the datasets, including their detailed statistics,
is presented in Table 3.

Backbones We employ two widely-used GNN architec-
tures as backbone models for each downstream learning task
in our experiments. Specifically, for the node classification
task, we adopt Graph Convolutional Network (GCN) (Kipf
& Welling, 2017) and Simplifying Graph Convolutional
Network (SGC) (Wu et al., 2019). For the link prediction
task, we use GCN and Variational Graph Auto-Encoders
(GAE) (Kipf & Welling, 2016).

Baselines In the previous work on rank-based individual
fairness (Dong et al., 2021), existing group fairness graph
embedding methods, such as (Bose & Hamilton, 2019; Rah-

man et al., 2019a), are unsuitable for comparison as they
promote fairness for subgroups determined by specific pro-
tected attributes, whereas our focus is on individual fairness
without such attributes. To evaluate our proposed method
against this notion of individual fairness, we compare it with
three important baselines for rank-based individual fairness:

• Redress (Dong et al., 2021): This method proposes a rank-
based framework to enhance the individual fairness of
GNNs. It integrates GNN model utility maximization
and rank-based individual fairness promotion in a joint
framework to enable end-to-end training.

• InFoRM (Kang et al., 2020): InFoRM is an individual
fairness framework for conventional graph mining tasks,
such as PageRank and Spectral Clustering, based on the
Lipschitz condition. We adapt InFoRM to different GNN
backbone models by combining its individual fairness
promotion loss and the unity loss of the GNN backbone
model, and optimizing the final loss in an end-to-end
manner.

• PFR (Lahoti et al., 2019b): PFR aims to learn fair repre-
sentations to achieve individual fairness. It outperforms
traditional approaches, such as (Hardt et al., 2016; Zemel
et al., 2013; Lahoti et al., 2019a), in terms of individual
fairness promotion. As PFR can be considered a pre-
processing strategy and is not tailored for graph data, we
use it on the input node features to generate a new fair
node feature representation.

Evaluation Metrics To provide a comprehensive eval-
uation of rank-based individual fairness, we use two key
metrics: the classification accuracy Acc. for the node clas-
sification task, and the area under the receiver operating
characteristic curve AUC for the link prediction task. For
the individual fairness evaluation, we use a widely used
ranking metric following the previous work (Dong et al.,
2021): NDCG@k (Järvelin & Kekäläinen, 2002). This met-
ric allows us to measure the similarity between the rankings
generated from SY (result similarity matrix) and SG (Ora-
cle similarity matrix) for each node. We report the average
values of NDCG@k across all nodes and set k = 10 for
quantitative performance comparison.

E. Additional Experiments
E.1. Effectiveness on node classification tasks

According to Table 4, on node classification tasks, JacoLip
consistently shows a competitive or improved trade-off be-
tween accuracy and error compared to the baselines, high-
lighting the effectiveness of the Lipschitz bound in promot-
ing individual fairness on graphs.

11

Stabilizing GNN for Fairness via Lipschitz Bounds

Table 2: Hyperparameters used in our experiments.

Hyperparameters Node Classification Link Prediction

ACM Coauthor-CS Coauthor-Phy Blog Flickr Facebook

Hyperparameters w.r.t. the GCN model

Layers 2 2 2 2 2 2
Hidden Dimension [16, 9] [16, 15] [16, 5] [32, 16] [32, 16] [32, 16]
Activation ReLU used for all datasets
Dropout 0.03 0.03 0.03 0.00 0.00 0.00
Optimizer AdamW with 1e− 5 weight decay used for all datasets
Pretrain Steps 300 300 300 200 200 200
Training Steps 150 200 200 60 100 50
Learning Rate 0.01 0.01 0.01 0.01 0.01 0.01

Hyperparameters w.r.t. the SGC model

Layers 1 1 1 N.A. N.A. N.A.
Hidden Dimension N.A. N.A. N.A. N.A. N.A. N.A.
Dropout N.A. N.A. N.A. N.A. N.A. N.A.
Optimizer AdamW with 1e− 5 weight decay N.A. N.A. N.A.
Pretrain Steps 300 500 500 N.A. N.A. N.A.
Training Steps 15 40 30 N.A. N.A. N.A.
Learning Rate 0.01 0.01 0.01 N.A. N.A. N.A.

Hyperparameters w.r.t. the GAE model

Layers N.A. N.A. N.A. 2 2 2
Hidden Dimension N.A. N.A. N.A. [32, 16] [32, 16] [32, 16]
Activation N.A. N.A. N.A. N.A. N.A. N.A.
Dropout 0.0 0.0 0.0 0.0 0.0 0.0
Optimizer N.A. N.A. N.A. AdamW with 1e− 5 weight decay
Pretrain Steps N.A. N.A. N.A. 200 200 200
Training Steps N.A. N.A. N.A. 60 100 50
Learning Rate N.A. N.A. N.A. 0.01 0.01 0.01

Table 3: Detailed statistics of the datasets used for node
classification and link prediction. We follow the default
settings of Redress (Dong et al., 2021) fair comparisons.

Task Dataset # Nodes # Edges # Features # Classes

node cls.
ACM 16, 484 71, 980 8, 337 9
Coauthor-CS 18, 333 81, 894 6, 805 15
Coauthor-Phy 34, 493 247, 962 8, 415 5

link pred.
BlogCatalog 5, 196 171, 743 8, 189 N.A.
Flickr 7, 575 239, 738 12, 047 N.A.
Facebook 4, 039 88, 234 1, 406 N.A.

E.2. Effectiveness on link prediction tasks

Similar observations can be made for the link prediction
task from Table 5, where the performance of Vanilla (GCN
or GAE), InFoRM, PFR, Redress, and JacoLip methods is
evaluated using AUC for utility and NDCG@10 for fairness.
In both tasks, JacoLip consistently demonstrates compet-
itive or improved performance compared to the baselines,
highlighting the effectiveness of the Lipschitz bound in pro-
moting individual fairness on graphs.

12

Stabilizing GNN for Fairness via Lipschitz Bounds

Table 4: Evaluation on node classification tasks: comparing under accuracy and error.

Data Model Fair Alg. Feature Similarity Structural Similarity

utility: Acc.↑ fairness: Err.@10↑ utility: Acc.↑ fairness: Err.@10↑

ACM

GCN

Vanilla (Kipf & Welling, 2017) 72.49±0.6 75.70±0.6 72.49±0.6 37.55±0.4
InFoRM (Kang et al., 2020) 67.65±1.0(−6.68%) 73.49±0.5(−2.92%) 65.91±0.2(−9.07%) 19.96±0.6(−46.8%)
PFR (Lahoti et al., 2019b) 68.48±0.6(−5.53%) 76.28±0.1(0.77%) 70.22±0.7(−3.13%) 36.54±0.4(−2.69%)

Redress (Dong et al., 2021) 73.46±0.2(+1.34%) 82.27±0.1(+8.68%) 71.87±0.4(−0.86%) 43.74±0.0(+16.5%)
JacoLip (on Vanilla) 72.80±0.2(+4.27%) 82.88±0.1(+9.48%) 72.30±0.4(−0.26%) 39.28±0.2(+4.61%)
JacoLip (on Redress) 71.05±0.4(+2.00%) 82.21±0.3(+8.60%) 71.92±0.3(−0.79%) 46.13±0.3(+22.85%)

SGC

Vanilla (Wu et al., 2019) 68.40±1.0 80.06±0.1 68.40±1.0 45.95±0.3
InFoRM (Kang et al., 2020) 67.96±0.5(−0.64%) 75.63±0.5(−5.53%) 66.16±0.6(−3.27%) 39.79±0.1(−13.4%)
PFR (Lahoti et al., 2019b) 67.69±0.4(−1.04%) 76.80±0.1(−4.07%) 66.69±0.3(−2.50%) 46.99±0.5(+2.26%)

Redress (Dong et al., 2021) 66.51±0.3(−2.76%) 82.32±0.3(+2.82%) 67.10±0.7(−1.90%) 49.02±0.2(+4.76%)
JacoLip (on Vanilla) 74.04±0.2(+8.25%) 82.73±0.7(+5.18%) 72.91±0.9(+3.33%) 48.64±0.2(+5.85%)
JacoLip (on Redress) 69.91±0.1(+2.21%) 85.22±0.4(+6.45%) 71.27±0.3(+4.20%) 52.0±0.4(+13.23%)

CS

GCN

Vanilla (Kipf & Welling, 2017) 90.59±0.3 80.41±0.1 90.59±0.3 26.69±1.3
InFoRM (Kang et al., 2020) 88.37±0.9(−2.45%) 80.63±0.6(+0.27%) 87.10±0.9(−3.85%) 29.68±0.6(+11.2%)
PFR (Lahoti et al., 2019b) 87.62±0.2(−3.28%) 76.26±0.1(−5.16%) 85.66±0.7(−5.44%) 19.80±1.4(−25.8%)

Redress (Dong et al., 2021) 90.06±0.5(−0.59%) 83.24±0.2(+3.52%) 89.91±0.2(−0.86%) 32.42±1.6(+21.5%)
JacoLip (on Vanilla) 90.41±0.4(−0.20%) 82.57±0.1(+2.69%) 89.12±0.1(−1.62%) 32.8±0.6(+22.74%)
JacoLip (on Redress) 90.30±0.3(−0.32%) 88.11±0.3(+9.58%) 89.93±0.2(−0.73%) 42.5±0.4(+59.24%)

SGC

Vanilla (Wu et al., 2019) 87.48±0.8 90.58±0.1 87.48±0.8 43.28±0.2
InFoRM (Kang et al., 2020) 87.31±0.5(−0.19%) 90.64±0.1(+0.07%) 88.21±0.4(+0.83%) 44.37±0.1(+0.21%)
PFR (Lahoti et al., 2019b) 87.95±0.2(+0.54%) 79.85±0.2(−11.8%) 86.93±0.1(−0.63%) 38.83±0.8(−10.3%)

Redress (Dong et al., 2021) 90.48±0.2(+3.43%) 92.03±0.1(+1.60%) 90.39±0.1(+3.33%) 45.81±0.0(+5.85%)
JacoLip (on Vanilla) 90.71±0.3(+3.69%) 90.75±0.4(+0.19%) 90.34±1.0(+3.27%) 43.92±0.3(+1.48%)
JacoLip (on Redress) 92.22±0.2(+5.42%) 92.22±0.4(+1.81%) 90.54±0.3(+3.50%) 46.39±0.5(+7.19%)

Phy

GCN

Vanilla (Kipf & Welling, 2017) 94.81±0.2 73.25±0.3 94.81±0.2 2.58±0.1
InFoRM (Kang et al., 2020) 88.67±0.7(−6.48%) 73.80±0.6(+0.75%) 94.68±0.2(−0.14%) 2.45±0.1(−5.04%)
PFR (Lahoti et al., 2019b) 88.79±0.2(−6.35%) 73.22±0.4(+0.10%) 89.69±1.0(−5.40%) 1.67±0.1(−35.3%)

Redress (Dong et al., 2021) 93.71±0.1(−1.16%) 80.23±0.1(+9.53%) 93.91±0.4(−0.95%) 3.22±0.3(+22.9%)
JacoLip (on Vanilla) 93.71±0.2(−1.16%) 78.64±1.1(+7.36%) 94.75±0.3(−0.06%) 2.75±0.6(+6.80%)
JacoLip (on Redress) 93.79±0.8(−1.08%) 82.6±0.3(+12.70%) 93.98±0.3(−0.88%) 4.0±0.1(+55.43%)

SGC

Vanilla (Wu et al., 2019) 94.45±0.2 77.48±0.2 94.45±0.2 4.50±0.1
InFoRM (Kang et al., 2020) 92.06±0.2(−2.53%) 75.13±0.4(−3.03%) 94.27±0.1(−0.19%) 4.44±0.0(−1.33%)
PFR (Lahoti et al., 2019b) 87.39±1.2(−7.47%) 73.42±0.2(−5.24%) 89.16±0.3(−5.60%) 3.41±0.2(−24.2%)

Redress (Dong et al., 2021) 94.81±0.2(+0.38%) 79.57±0.2(+2.70%) 94.54±0.1(+0.10%) 4.98±0.1(+10.7%)
JacoLip (on Vanilla) 94.43±0.7(−0.02%) 78.82±0.8(+1.73%) 94.09±0.6(−0.38%) 4.75±0.2(+5.56%)
JacoLip (on Redress) 94.78±0.1(+0.35%) 82.21±0.2(+6.10%) 93.00±1.3(−1.54%) 5.45±0.1(+1.90%)

13

Stabilizing GNN for Fairness via Lipschitz Bounds

Table 5: Evaluation on link prediction tasks: comparing under AUC and NDCG.

Data Model Fair Alg. Feature Similarity Structural Similarity
utility: AUC↑ fairness: NDCG@10↑ utility: AUC↑ fairness: NDCG@10↑

Blog

GCN

Vanilla (Kipf & Welling, 2017) 85.87±0.1 16.73±0.1 85.87±0.1 32.47±0.5
InFoRM (Kang et al., 2020) 79.85±0.6(−7.01%) 15.57±0.2(−6.93%) 84.00±0.1(−2.18%) 26.18±0.3(−19.4%)
PFR (Lahoti et al., 2019b) 84.25±0.2(−1.89%) 16.37±0.0(−2.15%) 83.88±0.0(−2.32%) 29.60±0.4(−8.84%)

Redress (Dong et al., 2021) 86.49±0.8(+0.72%) 17.66±0.2(+5.56%) 86.25±0.3(+0.44%) 34.62±0.7(+6.62%)
JacoLip (on Vanilla) 86.51±0.2(+0.74%) 17.70±0.6(+5.79%) 86.90±0.5(+1.67%) 35.00±0.4(+7.79%)
JacoLip (on Redress) 85.91±0.2(+0.04%) 18.02±0.6(+7.71%) 86.84±0.5(+1.13%) 35.85±0.4(+10.4%)

GAE

Vanilla (Kipf & Welling, 2016) 85.72±0.1 17.13±0.1 85.72±0.1 41.99±0.4
InFoRM (Kang et al., 2020) 80.01±0.2(−6.66%) 16.12±0.2(−5.90%) 82.86±0.0(−3.34%) 27.29±0.3(−35.0%)
PFR (Lahoti et al., 2019b) 83.83±0.1(−2.20%) 16.64±0.0(−2.86%) 83.87±0.1(−2.16%) 35.91±0.4(−14.5%)

Redress (Dong et al., 2021) 84.67±0.9(−1.22%) 18.19±0.1(+6.19%) 86.36±1.5(+0.75%) 43.51±0.7(+3.62%)
JacoLip (on Vanilla) 85.75±0.4(+0.03%) 17.96±0.5(+4.85%) 85.86±0.5(+0.16%) 42.20±0.3(+0.50%)
JacoLip (on Redress) 85.70±0.4(−0.02%) 18.34±0.5(+7.06%) 86.31±0.5(+0.69%) 43.60±0.3(+3.83%)

Flickr

GCN

Vanilla (Kipf & Welling, 2016) 92.20±0.3 13.10±0.2 92.20±0.3 22.35±0.3
InFoRM (Kang et al., 2020) 91.39±0.0(−0.88%) 11.95±0.1(−8.78%) 91.73±0.1(−0.51%) 23.28±0.6(+4.16%)
PFR (Lahoti et al., 2019b) 91.91±0.1(−0.31%) 12.94±0.0(−1.22%) 91.86±0.2(−0.37%) 19.80±0.4(−11.4%)

Redress (Dong et al., 2021) 91.38±0.1(−0.89%) 13.58±0.3(+3.66%) 92.67±0.2(+0.51%) 28.45±0.5(+27.3%)
JacoLip (on Vanilla) 92.75±0.3(+0.59%) 13.74±0.4(+4.89%) 92.54±0.1(+0.37%) 26.61±0.4(+19.1%)
JacoLip (on Redress) 92.53±0.3(+0.35%) 14.37±0.4(+9.69%) 92.69±0.1(+0.53%) 28.65±0.4(+28.2%)

GAE

Vanilla (Kipf & Welling, 2016) 89.98±0.1 12.77±0.0 89.98±0.1 23.58±0.2
InFoRM (Kang et al., 2020) 88.76±0.7(−1.36%) 12.07±0.1(−5.48%) 91.51±0.2(+1.70%) 15.78±0.3(−33.1%)
PFR (Lahoti et al., 2019b) 90.30±0.1(+0.36%) 12.12±0.1(−5.09%) 90.10±0.1(+1.33%) 20.46±0.3(−13.2%)

Redress (Dong et al., 2021) 89.45±0.5(−0.59%) 14.24±0.1(+11.5%) 89.52±0.3(−0.51%) 29.83±0.2(+26.5%)
JacoLip (on Vanilla) 89.88±0.3(−0.11%) 14.37±0.1(+12.53%) 89.95±0.2(−0.03%) 28.74±0.5(+21.9%)
JacoLip (on Redress) 89.92±0.3(−0.06%) 14.85±0.1(+16.29%) 89.56±0.2(−0.46%) 30.04±0.5(+28.7%)

FB

GCN

Vanilla (Kipf & Welling, 2017) 95.60±1.7 23.07±0.2 95.60±1.7 16.55±1.1
InFoRM (Kang et al., 2020) 90.26±0.1(−5.59%) 23.23±0.3(+0.69%) 96.66±0.6(+1.11%) 15.18±0.7(−8.28%)
PFR (Lahoti et al., 2019b) 87.11±1.2(−8.88%) 21.83±0.2(−5.37%) 94.87±1.9(−0.76%) 19.53±0.5(+18.0%)

Redress (Dong et al., 2021) 96.49±1.6(+0.93%) 29.60±0.1(+28.3%) 92.66±0.4(−3.08%) 27.73±1.1(+67.5%)
JacoLip (on Vanilla) 96.21±0.2(+0.63%) 29.47±0.3(+27.7%) 95.46±0.9(−0.14%) 26.60±0.1(+60.7%)
JacoLip (on Redress) 96.11±0.2(+0.53%) 30.07±0.3(+30.3%) 92.76±0.9(−2.97%) 28.64±0.1(+73.1%)

GAE

Vanilla (Kipf & Welling, 2016) 98.54±0.0 26.75±0.1 98.54±0.0 27.03±0.1
InFoRM (Kang et al., 2020) 90.50±0.4(−8.16%) 22.77±0.2(−14.9%) 95.03±0.1(−3.56%) 15.38±0.2(−43.1%)
PFR (Lahoti et al., 2019b) 96.91±0.1(−1.65%) 23.52±0.1(−12.1%) 98.28±0.0(−0.26%) 22.89±0.3(−15.3%)

Redress (Dong et al., 2021) 95.98±1.5(−2.60%) 28.43±0.3(+6.28%) 94.07±1.7(−4.54%) 33.53±0.2(+24.0%)
JacoLip (on Vanilla) 97.40±0.1(−1.16%) 27.44±0.6(+2.58%) 97.02±1.1(−1.54%) 30.90±0.5(+14.3%)
JacoLip (on Redress) 96.10±0.1(−2.48%) 28.46±0.6(+6.39%) 94.22±1.1(−4.38%) 31.62±0.5(+17.1%)

14

