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Abstract
We consider the problem of estimating (diagonally
dominant) M-matrices as precision matrices in
Gaussian graphical models. These models exhibit
intriguing properties, such as the existence of
the maximum likelihood estimator with merely
two observations for M-matrices (Lauritzen et al.,
2019; Slawski & Hein, 2015) and even one
observation for diagonally dominant M-matrices
(Truell et al., 2021). We propose an adaptive
multiple-stage estimation method that refines the
estimate by solving a weighted ℓ1-regularized
problem at each stage. Furthermore, we develop
a unified framework based on the gradient
projection method to solve the regularized prob-
lem, incorporating distinct projections to handle
the constraints of M-matrices and diagonally
dominant M-matrices. A theoretical analysis of
the estimation error is provided. The proposed
method outperforms state-of-the-art methods in
precision matrix estimation and graph edge
identification, as evidenced by synthetic and
financial time-series data sets.

1. Introduction

Total positivity, as a strong form of positive dependence,
has found its applications in various fields such as
factor analysis in psychometrics (Lauritzen et al., 2019),
taxonomic reasoning (Lake & Tenenbaum, 2010), graph
signal processing (Egilmez et al., 2017), and financial
markets (Agrawal et al., 2020). For instance, stock markets
exemplify total positivity, as stocks generally exhibit
positive dependence due to the influence of market factors
(Agrawal et al., 2020). A distribution that satisfies total
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positivity is also known as multivariate totally positive of
order two (MTP2). For a more in-depth understanding,
we refer the reader to (Fallat et al., 2017). In the
Gaussian context, the concept of MTP2 becomes more
straightforward: a Gaussian distribution is MTP2 if and
only if the precision matrix (i.e., inverse covariance matrix)
is an M-matrix (Karlin & Rinott, 1983). In this paper, our
focus lies on estimating (diagonally dominant) M-matrices
as precision matrices in Gaussian graphical models.

Estimation of precision matrices in general Gaussian
graphical models have been extensively studied in the
literature. A well-known method, known as graphical
lasso (Banerjee et al., 2008; d’Aspremont et al., 2008),
is formulated as an ℓ1-regularized Gaussian maximum
likelihood estimation. Numerous extensions of graphical
lasso have been explored (Friedman et al., 2008; Ravikumar
et al., 2011; Lam & Fan, 2009; Fan et al., 2014; Loh
& Wainwright, 2015; 2017; Sun et al., 2018; Hsieh
et al., 2014). Other notable, though not exhaustive,
works include graphical Dantzig (Yuan, 2010), CLIME
(Cai et al., 2011), and TIGER (Liu & Wang, 2017).
Recent research has illuminated the intriguing properties
of incorporating additional M-matrix constraint, which
proves to be advantageous in the realms of high-dimensional
statistics and signal processing on graphs.

Recent studies (Lauritzen et al., 2019; Slawski & Hein,
2015; Lauritzen et al., 2021) show that the M-matrix
constraint significantly reduces the sample size required
for the maximum likelihood estimator (MLE) to exist.
Specifically, Lauritzen et al. (2019); Slawski & Hein (2015)
established that the MLE under the M-matrix constraint
exists if the sample size n ≥ 2, regardless of the underlying
dimension p, substantially reducing the n ≥ p requirement
for general Gaussian distributions. Soloff et al. (2020)
revealed that the M-matrix constraint, serving as implicit
regularization, is vital for achieving the minimax rate of√

log p
n ; without this constraint, the rate cannot exceed√

p
n . Remarkably, Lauritzen et al. (2021) proved that under

the MTP2 constraint, the MLE in binary distributions may
exist with only n = p observations, in contrast to the 2p

observations required in the absence of this constraint.
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The diagonally dominant M-matrix constraint is increas-
ingly drawing interest in Gaussian models. In these
distributions, diagonally dominant M-matrices, as precision
matrices, exhibit a property called log-L♮-concave (LLC)
(Robeva et al., 2021) or strong MTP2 (Röttger et al.,
2021). This property is essential for analyzing positive
dependence in multivariate Pareto distributions. A recent
study (Truell et al., 2021) revealed that Gaussian models
under LLC/strong MTP2 act as a convex relaxation for
Brownian motion tree models—a class of Gaussian models
on trees—and showed that its MLE exists almost surely
when n = 1. This finding was established by connecting
Laplacian constrained Gaussian Markov random fields
(LGMRF) (Ying et al., 2020b; Cardoso et al., 2021; 2022;
Kumar et al., 2020) and leveraging results on MLE existence
in LGMRF with a single observation (Ying et al., 2021a).

The estimation of MTP2 graphical models has become a
growing area of interest in the field of signal processing on
graphs (Shuman et al., 2013; Ortega et al., 2018; Dong et al.,
2019), which focuses on handling data defined on irregular
graph domains. Precision matrices in MTP2 graphical
models belong to the class of generalized Laplacian matrices
(Biyikoglu et al., 2007), each of which is a symmetric matrix
with non-positive off-diagonal entries that are associated
with a graph. The eigenvectors of a generalized Laplacian
define a graph Fourier transform (Shuman et al., 2013),
supported by the discrete nodal domain theorem (Davies
et al., 2001) that an eigenvector corresponding to a larger
eigenvalue is associated with a higher frequency. We note
that such a spectral property does not hold for general
positive definite matrices.

One approach to estimating MTP2 graphical models is
MLE (Lauritzen et al., 2019; Slawski & Hein, 2015), which
implicitly promotes sparsity using the M-matrix constraint.
However, it cannot adjust sparsity levels to specific values,
a feature often desired in practice. The ℓ1-norm regularized
MLE (Egilmez et al., 2017; Pavez & Ortega, 2016; Cai
et al., 2021; Deng & So, 2020) offers improved sparsity
control and can be solved using techniques like block
coordinate descent (Egilmez et al., 2017; Pavez & Ortega,
2016), proximal point algorithm (Deng & So, 2020), and
projected Newton-like methods (Cai et al., 2021). Notably,
Pavez et al. (2018) found that some zero patterns in
estimated matrix and graph components can be determined
through thresholded sample covariance matrices. Estimating
diagonally dominant M-matrices as precision matrices is
explored in (Egilmez et al., 2017). Additionally, Wang et al.
(2020) proposed a graph structure learning algorithm based
on conditional independence testing, eliminating the need
for adjustment of tuning parameters.

This paper focuses on estimating (diagonally dominant) M-
matrices as precision matrices in MTP2 Gaussian graphical
models. The main contributions of this paper are threefold:

• We propose an adaptive multiple-stage estimation
method that refines the estimate by solving a weighted
ℓ1-regularized problem at each stage. Then we develop
a unified framework based on the gradient projection
method to solve the regularized problem, equipped
with distinct projections to handle the constraints of
M-matrices and diagonally dominant M-matrices.

• We provide a thorough theoretical analysis of the
estimation error for our method, which comprises
two components: optimization error and statistical
error. The optimization error decays at a linear rate,
highlighting the progressive refinement of the estimate
across iterative stages, whereas the statistical error
captures the intrinsic statistical rate.

• Experiments on synthetic and financial time-series data
demonstrate that our method outperforms state-of-the-
art methods, concurrently achieving lower precision
matrix estimation error and higher graph edge selection
accuracy. Additionally, we observe that incorporating
M-matrix constraint enhances the robustness regarding
the selection of the regularization parameter.

Lower and upper case bold letters denote vectors and
matrices, respectively. [p] denotes the set {1, . . . , p}.
∥x∥max = maxi |xi|. Sp++ denotes the set of p × p

positive definite matrices. λmax(X) and λmin(X) denote
the maximum and minimum eigenvalues of X , respectively.
For matrix X and set S, XS denotes a vector with
dimension |S|, containing the entries of X indexed by S.

2. Preliminaries and Problem Formulation
We first introduce preliminaries about MTP2 Gaussian
graphical models, then present the problem formulation.

2.1. MTP2 Gaussian Graphical Models

Let G = (V, E) be an undirected graph with the set of nodes
V and the set of edges E . Associating a random vector
x ∼ N (0,Σ⋆) with graph G forms a Gaussian graphical
model that satisfies the following properties:

Θ⋆
ij ̸= 0 ⇐⇒ {i, j} ∈ E ∀ i ̸= j,

Θ⋆
ij = 0 ⇐⇒ xi ⊥⊥ xj | x[p]\{i,j},

where xi ⊥⊥ xj | x[p]\{i,j} indicates that xi is conditionally
independent of xj given the other random variables.
Consequently, graph G characterizes the sparsity pattern
of the precision matrix Θ⋆, where missing edges represent
conditional independence between random variables.
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We concentrate on estimating precision matrices for random
variables following an MTP2 Gaussian distribution. A
multivariate Gaussian distribution with a positive definite
covariance matrix Σ⋆ is MTP2 if and only if its precision
matrix Θ⋆ is a symmetric M-matrix (Karlin & Rinott, 1983),
i.e., Θ⋆

ij ≤ 0 for all i ̸= j. This is equivalent to stating that
all partial correlations are nonnegative, where the partial
correlation between any two variables xi and xj conditioned
on all other variables equals −Θ⋆

ij/
√
Θ⋆

iiΘ
⋆
jj .

2.2. Problem Formulation

Consider a zero-mean random vector x = (x1, . . . , xp)

following a Gaussian distribution x ∼ N (0,Σ⋆). Our goal
is to estimate the precision matrix Θ⋆ := (Σ⋆)−1, which is
a (diagonally dominant) M-matrix, given n independent and
identically distributed observations x(1), . . . ,x(n) ∈ Rp.

To estimate the precision matrix under MTP2 Gaussian
distributions, we can solve the penalized Gaussian
maximum likelihood estimation problem as follows:

minimize
Θ∈S

− log det(Θ)+ tr
(
ΘΣ̂

)
+
∑
i ̸=j

hλ (|Θij |) , (1)

where hλ is a sparsity penalty function, such as the
ℓ1-norm considered in (Egilmez et al., 2017), Σ̂ =
1
n

∑n
i=1 x

(i)(x(i))⊤ is the sample covariance matrix, and
S is a feasible set. We consider two cases for S:

Mp =
{
Θ ∈ Sp++ |Θij = Θji ≤ 0,∀i ̸= j

}
, (2)

and

Mp
D=

{
Θ ∈ Sp++|Θij = Θji ≤ 0,∀i ̸= j,Θ1 ≥ 0

}
, (3)

where Mp represents the set of all symmetric positive
definite M-matrices, and Mp

D adds constraint Θ1 ≥ 0

compared toMp, leading Θ to be a diagonally dominant
M-matrix. We propose an adaptive method for estimating
M-matrices and diagonally dominant M-matrices.

3. Proposed Method
We first propose an adaptive multiple-stage method, then
develop a unified framework for solving each stage.

3.1. Adaptive Estimation

Our method comprises multiple stages, where each stage
refines the previous stage’s estimate by solving a weighted
ℓ1-regularized problem. Specifically, at the k-th stage, we
obtain the estimate Θ̂(k) by solving the following problem:

minimize
Θ∈S

− log det(Θ) + tr
(
ΘΣ̂

)
+
∑
i̸=j

λ
(k)
ij |Θij | , (4)

where λ
(k)
ij = pλ(|Θ̂(k−1)

ij |) with pλ the weight-updating
function, and Θ̂(k−1) is obtained at the (k − 1)-th stage.

Algorithm 1 Solve Problem (5)

1: Input: Sample covariance matrix Σ̂,Λ(k), σ, α, β.

2: for t = 0, 1, 2, . . . do
3: Compute∇f(Θt) = −Θ−1

t + Σ̂−Λ(k);
4: m← 0;
5: repeat
6: Update Θt+1 = PSd

(Θt − σβm∇f(Θt));
7: m← m+ 1;
8: until Θt+1 ∈ Sp++ and
9: f(Θt+1) ≤ f(Θt)− ασβm∥G 1

ηt
(Θt)∥2F;

10: end for
11: Output: Θ̂(k).

When the estimate Θ̂(k−1) from the previous stage exhibits
a large coefficient for its (i, j) entry, it is reasonable to
assign a small λ(k)

ij in Problem (4). Therefore, pλ should
be monotonically non-increasing. In the initial stage, we
set each λ

(1)
ij = λ, reducing Problem (4) to the well-

studied ℓ1-regularized estimation (Egilmez et al., 2017; Ying
et al., 2021b). Our method refines the ℓ1-norm estimate
in subsequent stages, offering an improvement over the
standard ℓ1-norm approach.

By choosing pλ as the derivative of the sparsity penalty
function hλ in Problem (1), the sequence

{
Θ̂(k)

}
k≥1

converges to a stationary point of Problem (1) with a
nonconvex penalty. In this context, our method aligns
with the local linear approximation method (Zou & Li,
2008) and the broader framework of multi-stage convex
relaxation (Zhang, 2010b). Nonconvex approaches may
encounter issues with sensitivity to the regularization
parameter selection, as illustrated in Figure 6. However,
we demonstrate that incorporating the M-matrix constraint
considerably enhances the robustness regarding the selection
of regularization parameter.

3.2. Gradient Projection Method

For each Θ ∈ S, where S = Mp or Mp
D, all off-

diagonal entries are nonpositive, leading to the following
representation of Problem (4):

minimize
Θ∈S

− log det(Θ) + tr
(
ΘΣ̂

)
−
∑
i ̸=j

λ
(k)
ij Θij . (5)

We design a gradient projection method to solve Problem (5).
Initially, we perform a gradient descent step, Θt −
ηt∇f(Θt), with ∇f representing the gradient of the
objective function f . As this step may exceed the
constraint set S, we subsequently project it back onto S.
However, such projection onto S does not exist due to its
nonclosedness, resulting from the nonclosedness of Sp++.
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Instead, we express the set S as the intersection of a closed
set Sd and the open set Sp++:

S = Sd ∩ Sp++. (6)

We handle the constraints of Sd and Sp++ separately. The
closed set Sd constraint is manageable through projection,
leading to the following projected gradient descent:

Θt+1 = PSd

(
Θt − ηt∇f(Θt)

)
, (7)

where PSd
denotes the projection onto the set Sd with

respect to the Frobenius norm.

The constraint of S++ cannot be managed by projection
due to its nonclosedness. One efficient approach to enforce
positive definiteness is using a line search procedure (Hsieh
et al., 2014). Specifically, at the t-th iteration, we try the step
size ηt ∈ σ

{
β0, β1, β2, . . .

}
, with β ∈ (0, 1) and σ > 0,

until we find the smallest m ∈ N such that the iterate Θt+1

in (7), with ηt = σβm, ensures Θt+1 ∈ Sp++ and satisfies:

f(Θt+1) ≤ f(Θt)− αηt∥G 1
ηt
(Θt)∥2F, (8)

where α ∈ (0, 1), and G 1
ηt
(Θt) = 1

ηt
(Θt −Θt+1). We

present our algorithm in Algorithm 1, where Λ(k) contains
all weights λ(k)

ij , and diagonal entries are set to zero.

Theorem 3.1. The sequence
{
Θt

}
t≥0

established by Algo-
rithm 1 converges to the optimal solution of Problem (5).

The proof is provided in Appendix B.2. It is important to
note that the existence of the minimizer for Problem (5) is
assumed throughout this paper, which can be guaranteed
almost surely if the sample size n ≥ 2 for the case of
S = Mp (Lauritzen et al., 2019; Slawski & Hein, 2015)
and n ≥ 1 for the case of S =Mp

D (Truell et al., 2021).

Although our method needs to solve a sequence of log-
determinant programs (5), numerical results indicate a rapid
decrease in the number of iterations required for solving (5)
as k increases (see Figure 8). This accelerated convergence
can be attributed to the use of the estimate from the previous
stage as an initial point, thereby providing a warm start for
faster convergence.

We now present notable extensions of the proposed gradient
projection algorithm. First, the algorithm can be readily
extended to solve Problem (1) with a nonconvex penalty.
Second, the algorithm can be further adapted to solve the
following problem for the case of multivariate t-distribution:

minimize
Θ∈S

−log det(Θ)+
p+ ν

n

n∑
i=1

log
(
1+

1

ν
(x(i))⊤Θx(i)

)
,

where ν denotes the number of degrees of freedom, and each
x(i) is an observation. This formulation can be employed

to learn positive partial correlation graphs. Notably,
elliptical MTP2 distributions are highly restrictive, and the
total positivity property is not applicable to t-distributions
(Rossell & Zwiernik, 2021). It is worth mentioning that,
unlike block coordinate descent (Egilmez et al., 2017)
and projected Newton-like methods (Cai et al., 2021), the
proposed algorithm can handle these extensions, resulting
in a more flexible and versatile approach.

3.3. Computation of Projections

We present the computation of projectionPSd
in (7) for both

cases of estimating M-matrices and diagonally dominant
M-matrices, i.e., S =Mp andMp

D in Problem (5).

3.3.1. ESTIMATION OF M-MATRICES

For the case of estimating an M-matrix as the precision
matrix, the constraint set of Problem (5) is set as S =Mp,
defined in (2). The closed set Sd in (6) then becomes

Sd =
{
Θ ∈ Rp×p |Θij = Θji ≤ 0,∀i ̸= j

}
, (9)

which can be written as the intersection of two sets:

Sd = SA ∩ SB , (10)

where SA := {Θ ∈ Rp×p |Θij = Θji,∀i ̸= j} and SB :=

{Θ ∈ Rp×p |Θij ≤ 0,∀i ̸= j}. If Θt is symmetric, then
the update PSB

(
Θt − ηt∇f(Θt)

)
preserves symmetry.

Thus, we only need to project Θt−ηt∇f(Θt) onto SB . As
a result, the iterate (7) can be simplified to

Θt+1 = PSB

(
Θt − ηt∇f(Θt)

)
, (11)

where the projection PSB
can be computed as follows:

[PSB
(X)]ij =

{
min (Xij , 0) if i ̸= j,

Xij if i = j.
(12)

By initializing with a symmetric Θ0, every point in the
sequence {Θt}t≥0 generated by (11) maintains symmetry.

3.3.2. ESTIMATION OF DIAGONALLY DOMINANT

M-MATRICES

For the case of estimating a diagonally dominant M-matrix
as the precision matrix, we set S =Mp

D in (5), withMp
D

defined in (3). The closed set Sd in (6) then becomes

Sd={Θ ∈ Rp×p|Θij = Θji ≤ 0,∀i ̸= j,Θ1 ≥ 0}, (13)

which can be written as the intersection of two sets:

Sd = SA ∩ SC , (14)

where SC := {Θ ∈ Rp×p |Θ1 ≥ 0,Θij ≤ 0,∀i ̸= j}.

4



Adaptive Estimation of Graphical Models under Total Positivity

The iterate (7) is then written as:

Θt+1 = PSA∩SC

(
Θt − ηt∇f(Θt)

)
. (15)

In contrast to (11), iterate (15) cannot be simplified, as
PSC

(
Θt − ηt∇f(Θt)

)
does not guarantee symmetry.

We now discuss computing the projection PSA∩SC
in (15),

defined as the minimizer of the following problem:

PSA∩SC
(Y ) := argmin

X∈SA∩SC

∥X − Y ∥2F . (16)

Problem (16) is a projection problem of a given point Y
onto the intersection of the sets SA and SC . To solve
Problem (16), we design an algorithm based on Dykstra’s
projection (Boyle & Dykstra, 1986), which aims to find
the nearest point projection onto the intersection of closed
convex sets. The algorithm is summarized in Algorithm 2,
with Qk denoting the increment associated with the set SC .
We do not need to introduce the increment associated with
SA for convergence, since SA is a subspace.

Theorem 3.2. The sequences {Ak} and {Ck} generated
by Algorithm 2 converge to the minimizer of Problem (16).

The convergence established in Theorem 3.2 is based on the
convergence results of Dykstra’s projection algorithm, as
presented in (Boyle & Dykstra, 1986).

Algorithm 2 Compute PSA∩SC
(Y )

1: Input: C0 = Y , Q0 = 0, ϵ;
2: k = 1;
3: repeat
4: Ak = PSA

(
Ck−1

)
;

5: Ck = PSC

(
Ak +Qk−1

)
;

6: Qk = Ak −Ck +Qk−1;
7: k = k + 1;
8: until ∥Ak −Ck∥F < ϵ

9: Output: PSA∩SC
(Y ) = Ak.

We now present the computation of PSA
and PSC

from
Algorithm 2. The computation of PSA

is straightforward:

PSA
(Y ) =

(
Y + Y ⊤)/2.

Projection PSC
is defined as follows:

PSC
(Y ) := argmin

X∈SC

1

2
∥X − Y ∥2F . (17)

To compute PSC
, we solve Problem (17) row by row. For

the r-th row, we address the following problem:

minimize
x∈Rp

1
2 ∥x− y∥2 ,

subject to x⊤1 ≥ 0, x\r ≤ 0,
(18)

where y ∈ Rp contains all entries of the r-th row of Y , and
x\r ∈ Rp−1 includes all entries of x except the r-th one.

Proposition 3.3 below, proven in Appendix B.3, provides
the optimal solution of Problem (18), which is a variant of
the projection onto the simplex (Condat, 2016).

Proposition 3.3. Let x̂ be the optimal solution of Problem
(18), which can be obtained as follows:

• If yr ≥ −
∑

i∈[p]\r min(yi, 0), then x̂r = yr, and
x̂i = min(yi, 0) for i ̸= r.

• If yr < −
∑

i∈[p]\r min(yi, 0), then x̂r = yr + ρ,
and x̂i = min(yi + ρ, 0) for i ̸= r, where ρ satisfies
ρ+

∑
i∈[p]\r min(yi + ρ, 0) + yr = 0.

Remark 3.4. Let g(ρ) := ρ+
∑

i∈[p]\r min(yi+ρ, 0)+yr.
Note that there exists a unique solution to the piecewise
linear equation g(ρ) = 0. On one hand, g(0) < 0, and
g(a) > 0 for any a > maxi |yi|. Therefore, there exits
at least one solution to g(ρ) = 0 since g(ρ) is continuous.
On the other hand, the solution is unique because g(ρ) is a
monotone function that is strictly increasing.

Let y\r ∈ Rp−1 represent the vector that contains all entries
of y except the r-th one. To solve the equation g(ρ) = 0,
we follow the procedures outlined in (Palomar & Fonollosa,
2005), which consists of three steps:

1. Sort y\r and obtain the sorted version ỹ\r, where
[ỹ\r]1 ≤ [ỹ\r]2 ≤ · · · ≤ [ỹ\r]p−1.

2. Find M := max
1≤m≤p−1

{
m
∣∣yr+

∑m
i=1[ỹ\r]i

m+1 > [ỹ\r]m

}
.

3. Compute ρ =
−yr−

∑M
m=1[ỹ\r]m

M+1 .

We note that sorting the vector y\r is the most
computationally demanding step in the above procedures,
typically necessitating O(p log p) operations.

4. Analysis of Estimation Error

In this section, we provide theoretical analysis of the
estimation error for the proposed method.

4.1. Theoretical Results

Let Σ⋆ and Θ⋆ denote the underlying covariance and
precision matrices, respectively, where Θ⋆ ∈ S ( S =Mp

or Mp
D). Define S⋆ as the support set of the underlying

precision matrix Θ⋆, excluding the diagonal entries, i.e.,

S⋆ :=
{
(i, j) ∈ [p]2 |Θ⋆

ij ̸= 0, i ̸= j
}
. (19)

We require some mild conditions for the weight-updating
function pλ in Assumption 4.1 and the underlying precision
matrix Θ⋆ in Assumption 4.2.
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Assumption 4.1. The function pλ : R+ → R+ satisfies the
following conditions:

1. pλ(x) is monotonically nonincreasing, and pλ(0) = λ;

2. There exists a γ > 0 such that pλ(x) = 0 for x ≥ γλ,
and pλ(c0λ) ≥

√
2
2 λ, where c0 = 12λ2

max(Θ
⋆) is a

constant.

Assumption 4.2. The underlying precision matrix Θ⋆ has
at most s nonzero entries, and the off-diagonal nonzero
entries satisfy min(i,j)∈S⋆ |Θ⋆

ij | ≥ (c0 + γ)λ, with c0 and
γ defined in Assumption 4.1. There exists a constant δ such
that 0 < δ ≤ λmin(Θ

⋆) ≤ λmax(Θ
⋆) ≤ 1/δ <∞.

Remark 4.3. Assumption 4.1 fundamentally covers folded
concave penalties, such as smooth clipped absolute
deviation (SCAD) (Fan & Li, 2001) and minimax concave
penalty (MCP) (Zhang, 2010a). In Assumption 4.2, the
conditions on the underlying precision matrix are relatively
mild, as the regularization parameter λ in our theorems
takes the order of

√
log p/n, which could be small when

the sample size n increases. The assumption regarding
minimal magnitude of signals is often utilized in nonconvex
optimization analysis (Wang et al., 2016; Ying et al., 2020a).

The following theorem, proven in Appendix B.4, provides a
non-asymptotic guarantee for estimation error.

Theorem 4.4. Under Assumptions 4.1 and 4.2, take the
regularization parameter λ =

√
c1τ log p/n with τ > 2.

If the sample size satisfies n ≥ 8c0c1τs log p, then the
sequence Θ̂(k) generated by the proposed method satisfies∥∥Θ̂(k)−Θ⋆

∥∥
F
≤4c0

∥∥(Σ⋆−Σ̂
)
S⋆∪Ip

∥∥︸ ︷︷ ︸
Statistical error

+ρk
∥∥Θ̂(0)−Θ⋆

∥∥
F︸ ︷︷ ︸

Optimization error

,

with probability at least 1 − 4/pτ−2, where ρ = 2+
√
2

4 ,

c0 = 12λ2
max(Θ

⋆), and c1 =
(
80maxi Σ

⋆
ii

)2
.

Theorem 4.4 establishes that the estimation error between
the estimated precision matrix and the underlying precision
matrix can be upper bounded by two terms: optimization
error and statistical error. The optimization error decreases
at a linear rate, indicating the progressive refinement of the
estimate across iterative stages. In contrast, the statistical
error remains independent of k and does not decrease
during iterations, capturing the intrinsic statistical rate.
Consequently, the estimation error is primarily dominated
by the statistical error.

We note that the statements in Theorem 4.4 are applicable
to estimate both M-matrices and diagonally dominant M-
matrices, i.e., S = Mp or Mp

D in Algorithm 1. The
parameter τ is user-defined; a larger τ increases the
probability of the claims being true but imposes a stricter
requirement on the sample size.

Corollary 4.5. Under the same assumptions and conditions
as stated in Theorem 4.4, the sequence Θ̂(k) generated by
the proposed method satisfies∥∥Θ̂(k) −Θ⋆

∥∥
F
≤ c

√
s log p/n︸ ︷︷ ︸

Statistical error

+ ρk
∥∥Θ̂(0) −Θ⋆

∥∥
F︸ ︷︷ ︸

Optimization error

,

with probability at least 1− 4/pτ−2, where c = 2c0
√
2c1τ .

Corollary 4.5 reveals that the statistical error follows
the order of

√
s log p/n, aligning with the minimax rate

achieved in unconstrained graphical models (Ravikumar
et al., 2011; Loh & Wainwright, 2015). However, the
impact of the M-matrix constraint on the minimax rate for
estimating sparse precision matrices remains uncertain. We
highlight a recent study (Soloff et al., 2020) that investigated
estimating precision matrices under the nonpositivity
constraint without sparsity regularization. The minimax
optimal rate under symmetrized Stein loss is established to
be
√
log p/n, while removing the nonpositivity constraint

results in a reduced rate of
√
p/n. This finding suggests

that the nonpositivity constraint affects the minimax rate,
particularly in non-sparse situations.

5. Experimental Results
We conduct experiments on synthetic and financial time-
series data. The code of our method is publicly available at
https://github.com/jxying/ddmtp2.

State-of-the-art methods for comparison include GLASSO
(Friedman et al., 2008), CLIME (Cai et al., 2011), GSCAD
(Loh & Wainwright, 2015), GGL (Egilmez et al., 2017),
DDGL (Egilmez et al., 2017), SLTP (Wang et al., 2020),
and GOLAZO (Lauritzen & Zwiernik, 2022). GLASSO,
CLIME and GSCAD focus on estimating precision matrices
for general graphical models. The first two employ the
ℓ1-penalty, while the latter utilizes the SCAD penalty. In
contrast, GGL, DDGL, and SLTP are specifically designed
for MTP2 graphical models. Both GGL and DDGL
use the ℓ1-norm regularization, aiming for estimating M-
matrices and diagonally dominant M-matrices, respectively.
Meanwhile, SLTP concentrates on learning graph structures
rather than estimating precision matrices. Lastly, GOLAZO
is tailored for estimating positive graphical models.

(a) (b) (c) (d)

Figure 1: Illustration of graph structures: (a) grid, (b) line,
(c) Barabasi-Albert model, and (d) stochastic block model.
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Figure 2: Estimation errors and true positive rates versus
false positive rates on the grid graph with Θ⋆ ∈Mp. The
number of nodes p = 100, and the sample size n = 100.
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Figure 3: Estimation errors and true positive rates versus
false positive rates on the line graph with Θ⋆ ∈ Mp. The
number of nodes p = 100, and the sample size n = 40.

5.1. Synthetic Data

We examine four prevalent graph structures in synthetic
experiments: grid, line, Barabasi-Albert model (Barabási
& Albert, 1999), and stochastic block model (Holland
et al., 1983), as depicted in Figure 1. Estimating
these graph structures is essential in various applications,
including social network analysis, image segmentation, and
community detection. The graph structures are generated
randomly, with each edge assigned a random weight. To
assess the performance of precision matrix estimation, we
employ estimation error as a metric. For evaluating graph
edge selection accuracy, we utilize true/false positive rate
and F-score. Further details about experimental settings,
including performance measure definitions and synthetic
data generation, can be found in Appendix A.

Figure 2 presents estimation errors and true positive rates
of various methods as a function of false positive rates on a
grid graph, given the number of nodes (p = 100), sample
size (n = 100), and underlying precision matrix Θ⋆ ∈
Mp. The curve depicting true positive rates against false
positive rates in Figure 2 is known as Receiver Operating
Characteristic (ROC) curve, which is generated by setting
a range of regularization parameter values from 10−3 to
1 for each method, except for SLTP. Instead, SLTP uses
a parameter γ to control the sparsity of the learned graph,
with values ranging from 0.75 to 0.98. The curves in both
Figures 2 and 3 are averaged over 50 realizations.
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Figure 4: Estimation errors and true positive rates versus
false positive rates for various methods on Barabasi-Albert
model with Θ⋆ ∈Mp

D, where p = 100 and n = 100.
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Figure 5: Estimation errors and true positive rates versus
false positive rates for different methods on the stochastic
block model with Θ⋆ ∈Mp

D, where p = 100 and n = 100.

Figure 2 shows that the proposed method attains a low
estimation error and a high true positive rate simultaneously
while maintaining a small false positive rate. In comparison,
GLASSO and CLIME exhibit the best performance in
estimation error and true positive rate within a region of high
false positive rates. A higher true positive rate coupled with
a lower false positive rate signifies better performance in
identifying underlying graph edges. Our method surpasses
GSCAD in achieving a smaller estimation error and a higher
true positive rate, as we incorporate more prior knowledge
of the constraint setMp. Although GGL also employsMp,
our method achieves a better performance because it refines
the GGL estimate in subsequent stages. The comparison
with SLTP regarding estimation errors is excluded. It is
noteworthy that GGL, SLTP, and our method all possess an
upper bound on false positive rates.

Figure 3 displays the estimation errors and true positive
rates of different methods as a function of false positive
rates on a line graph. Our proposed method consistently
achieves smaller estimation errors and higher true positive
rates compared to state-of-the-art methods in the region of
low false positive rates. This region is of primary interest, as
an ideal estimate should exhibit low estimation error while
maintaining high true positive rate and low false positive
rate. Consequently, our method is capable of simultaneously
achieving a reduced precision matrix estimation error and
enhanced graph edge selection accuracy.
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Figure 6: Estimation errors and F-scores as a function of
varying regularization parameter values on a line graph.

Figure 4 presents comparisons on the Barabasi-Albert
model with the underlying precision matrix Θ⋆ ∈ Mp

D.
Our method consistently achieves lower estimation errors
and higher true positive rates compared to state-of-the-
art methods, highlighting its superior performance in both
precision matrix estimation and graph edge identification.
SLTP attains a higher true positive rate than all other
methods when the false positive rate is below 0.05; however,
its highest true positive rate is still lower than that of our
method. Similar observations can be made for the stochastic
block model, as displayed in Figure 5. The curves in
Figures 4 and 5 are averaged over 50 realizations.

Figure 6 illustrates the robustness of GSCAD and our
method regarding regularization parameter choices in terms
of estimation error and F-score. Experiments are conducted
on a line graph with p = 100 and n = 40. Figure 6 reveals
that both estimation errors and F-scores of our method
are more stable across varying regularization parameter
values than those of GSCAD. Notably, the estimation error
of GSCAD grows rapidly as the regularization parameter
decreases, while that of our method remains steady. Thus,
our method exhibits less sensitivity to the regularization
parameter selection than GSCAD.

The key difference between our method and GSCAD is the
former imposes an additional M-matrix constraint, while
the latter does not. Thus, our method searches for a solution
within a smaller space than GSCAD, excluding some
stationary points that yield large estimation errors. This is
why our method is more robust to regularization parameter
selection. In fact, an extremely small regularization
parameter can render the optimization problem for GSCAD
ill-defined, meaning the minimum is not finite.

Table 1 displays the estimation errors for various methods
under varying sample size ratios n/p, maintaining a low
false positive rate (FPR < 0.05). The proposed method
consistently achieves lower estimation errors compared to
state-of-the-art methods across a range of sample size ratios.
Notably, the superior performance of our method becomes
more evident in cases with smaller sample size ratios, which
are indicative of high-dimensional scenarios.

n/p GLASSO CLIME GSCAD GGL Proposed

1 0.421 0.472 0.328 0.403 0.267
2 0.366 0.423 0.212 0.344 0.171
5 0.358 0.242 0.110 0.297 0.100

Table 1: Estimation errors for various methods across
varying sample size ratios, with a consistently low false
positive rate (FPR < 0.05).

5.2. Financial Time-series Data

In this subsection, we present comparisons of various
methods on the financial time-series data, where the MTP2

assumption has been well-justified due to the market factor
causing positive dependence among stocks (Agrawal et al.,
2020; Cardoso et al., 2020). We collect data from 204
stocks composing the S&P 500 index for the period between
January 5th, 2004, and December 30th, 2006, resulting in
503 observations per stock (i.e., p = 204 and n = 503). We
construct the log-returns data matrix X ∈ Rn×p as follows:

Xi,j = logPi,j − logPi−1,j , (20)

where Pi,j represents the closing price of the j-th stock
on the i-th day. We then use the sample correlation
matrix as input for each method. The 204 stocks are
categorized into five sectors according to the Global
Industry Classification Standard (GICS) system: Consumer
Staples, Consumer Discretionary, Industrials, Energy, and
Information Technology. We compare the proposed method
with GLASSO, GSCAD, GGL, and GOLAZO on this
financial time-series data.

In contrast to synthetic data, we cannot evaluate estimation
error for each method, as the underlying precision matrix
is unavailable. However, we expect stocks within the same
sector to be somewhat interconnected. Consequently, we
use the modularity (Newman, 2006) to assess the estimation
performance. Define a graph G = (V, E ,A), where V is the
vertex set, E is the edge set, and A is the adjacency matrix.
The modularity of graph G is given by:

Q :=
1

2|E|
∑

i,j∈|V|

(
Aij −

didj
2|E|

)
δ(ci, cj),

where di represents the degree of the i-th node, ci denotes
the type of the i-th node, and δ(·, ·) is the Kronecker
delta function with δ(a, b) = 1 if a = b and 0

otherwise. A stock graph with high modularity exhibits
dense connections between stocks within the same sector
and sparse connections between stocks from different
sectors. Therefore, a higher modularity value indicates a
better representation of the actual stock network.
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(a) GLASSO (b) GSCAD (c) GGL (d) GOLAZO (e) Proposed

Figure 7: Stock graphs characterized by the precision matrices estimated via (a) GLASSO, (b) GSCAD, (c) GGL, (d)
GOLAZO, and (e) the proposed method. The modularity values for GLASSO, GSCAD, GGL, GOLAZO, and our method
are 0.3534, 0.3433, 0.3530, 0.3578, and 0.4978, respectively. We fine-tune the regularization parameter for each method
based on the modularity value while allowing only a few isolated nodes.

Table 2: Modularity values of S&P 500 stock graphs learned via various methods using a rolling-window approach, covering
the period from January 3rd, 2014, to October 31st, 2017.

Methods Jan. 2016 Apr. 2016 Jul. 2016 Oct. 2016 Jan. 2017 Apr. 2017 Jul. 2017 Oct. 2017

GLASSO 0.4038 0.4072 0.4115 0.3956 0.3982 0.3910 0.3911 0.4184
GSCAD 0.3880 0.3850 0.3935 0.3803 0.3848 0.3771 0.3822 0.3860
GGL 0.4088 0.4118 0.4193 0.3991 0.3927 0.3896 0.3845 0.4156
GOLAZO 0.4068 0.4098 0.4173 0.4007 0.4029 0.3945 0.3953 0.4199
Proposed 0.5441 0.5289 0.5298 0.5139 0.5138 0.5118 0.5219 0.5019

Figure 7 shows stock graphs based on precision matrices
estimated using various methods. It is observed that the
performance of the proposed method stands out, as most
connections are between nodes within the same sector, and
only a few connections (gray-colored edges) are between
nodes from distinct sectors, which are often spurious from
a practical perspective. We further compare the modularity
value for each method. The modularity values for GLASSO,
GSCAD, GGL, GOLAZO, and our method are 0.3534,
0.3433, 0.3530, 0.3578, and 0.4978, respectively, indicating
that our method outperforms state-of-the-art methods in
representing the stock network.

In the subsequent experiment, we collect data from 82
stocks in the S&P 500 index, representing three sectors:
Communication Services, Utilities, and Real Estate. The
data spans a timeframe from January 3rd, 2014, to October
31st, 2017, resulting in 945 observations.

Table 2 presents modularity values of graphs learned using a
rolling-window approach. We select a window length of 504
days (roughly two years of stock market days) and shift it by
63 days (approximately three months of stock market days).
Higher modularity signifies a more accurate representation
of the actual stock network. Table 2 demonstrates that the
proposed method consistently attains the highest modularity
values throughout the entire period.

6. Conclusions

In this paper, we have proposed an adaptive multiple-
stage method to estimate both M-matrices and diagonally
dominant M-matrices as precision matrices in MTP2

Gaussian graphical models. The proposed method starts
with an initial estimate obtained via an ℓ1-regularized
maximum likelihood estimation and refines it in subsequent
stages by solving a sequence of adaptive ℓ1-regularized
problems. We have provided theoretical analysis for
estimation error. Experiments on both synthetic and real-
world data have shown that our method outperforms state-
of-the-art methods in estimating precision matrices and
identifying graph edges. We have also demonstrated that
incorporating the M-matrix constraint improves robustness
regarding regularization parameter selection.
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A. Experimental Settings and Additional Results

We first provide a more in-depth description of experimental settings in Appendix A.1. Next, we present additional
experimental results in Appendix A.2.

A.1. Experimental Settings

To generate synthetic data, we first construct a graph structure randomly, then associate each edge with a weight that is
uniformly sampled from U(2, 5). Then we obtain a weighted adjacency matrix A, where Aij denotes the graph weight
between node i and node j.

To generate an underlying precision matrix Θ⋆ ∈Mp, we adopt the procedures used in (Slawski & Hein, 2015; Wang et al.,
2020). We first set

Θ = δI −A, with δ = 1.05λmax

(
A
)
, (21)

where λmax

(
A
)

denotes the largest eigenvalue of A. We set Θ⋆ = EΘE, where E is a diagonal matrix chosen such
that the covariance matrix (Θ⋆)−1 has unit diagonal elements. The matrix Θ⋆ as generated above must be an M-matrix,
but usually not diagonally dominant. Given a precision matrix Θ⋆, we generate n independent and identically distributed
observations x(1), . . . ,x(n) ∼ N (0, (Θ⋆)−1). The sample covariance matrix is constructed by Σ̂ = 1

n

∑n
i=1 x

(i)(x(i))⊤.

We also conduct experiments for estimating diagonally dominant M-matrices. To generate an underlying precision matrix
Θ⋆ ∈Mp

D, we construct Θ⋆ = D −A+ V , where D and V are diagonal matrices with each Dii =
∑p

j=1 Aij and each
Vii uniformly sampled from U(0, 1).

To evaluate the estimation performance across different methods, we compute the estimation error as
∥∥Θ̂−Θ⋆

∥∥
F
/
∥∥Θ⋆

∥∥
F

,
where Θ̂ and Θ⋆ denote the estimated and underlying precision matrices, respectively. The true positive rate (TPR) and
false positive rate (FPR) are defined as

TPR =
TP

TP + FN
, and FPR =

FP

FP + TN
,

where TP, FP, TN and FN denote the number of true positives, false positives, true negatives, and false negatives,
respectively. The true positive rate denotes the proportion of correctly identified edges in the graph, and the false positive
rate denotes the proportion of incorrectly identified edges in the graph. An estimate with a higher true positive rate and a
lower false positive rate indicates a better performance of identifying the underlying graph edges.

The F-score of a graph is defined as

F-score :=
2TP

2TP + FP + FN
. (22)

The F-score takes values in [0, 1], and 1 indicates perfect structure recovery. Our method uses the weight-updating function
corresponding to the SCAD penalty.

A.2. Additional Experimental Results

We perform experiments to demonstrate the empirical convergence of the proposed gradient projection algorithm, as
illustrated in Figure 8. We observe that the number of iterations required for convergence descends rapidly with increasing
stage k, and empirically the algorithm enjoys a linear convergence rate.

When estimating diagonally dominant M-matrices, our proposed algorithm involves double loops of iterations to solve the
subproblem at each stage, potentially leading to computational inefficiency due to the use of Dykstra’s algorithm for handling
the diagonally dominant M-matrix (DDM-matrix) constraint. Table 3 displays the running time of each algorithm for the
case of estimating DDM-matrices. We observe that our algorithm is less computationally efficient in this scenario, primarily
due to managing multiple constraints to ensure a DDM-matrix solution. To enhance our algorithm’s efficiency, we could
compute an approximate solution when addressing subproblems in earlier stages, a technique employed in previous studies
(Xiao & Zhang, 2013; Fan et al., 2018). Investigating the development of numerical algorithms for handling diagonally
dominant M -matrix constraints more efficiently would be a valuable future research direction.
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Figure 8: An empirical convergence result of the gradient projection algorithm at different stages. At the k-th stage with
k = 1, 2, . . . , 8, we plot the relative error

∥∥Θt − Θ̂(k)
∥∥
F
/
∥∥Θ̂(k)

∥∥
F

as a function of the iteration t, where {Θt}t≥1 is

established by the gradient projection algorithm, and Θ̂(k) is the optimal solution at the k-th stage.

Table 3: Comparison of running times for methods in the case of estimating diagonally dominant M-matrices.

Methods SLTP GLASSO CLIME GSCAD DDGL Proposed

Running time (s) 9.48 0.05 4.06 0.14 1.17 7.85

It is essential to emphasize that our proposed algorithm is the sole method effectively addressing the Gaussian maximum
likelihood estimation problem under the DDM-matrix constraints. In contrast, GLASSO, CLIME, and GSCAD tackle
unconstrained problems and cannot guarantee a DDM-matrix solution. Such a solution provides desirable spectral
properties for performing the graph Fourier transform and is crucial for analyzing positive dependence in multivariate Pareto
distributions. Furthermore, the popular Block Coordinate Descent (BCD) algorithm cannot ensure convergence to the global
minimizer, as demonstrated in Table 4.

We compare the optimality gap for solutions obtained by the BCD algorithm and our proposed algorithm. The optimality
gap is evaluated using two approaches:

∆Θ = ∥Θ̂−Θ∗∥F/∥Θ∗∥F, and ∆f = f̂ − f∗,

where Θ̂ is the output from BCD or our algorithm, Θ∗ is the global minimizer obtained through CVX, and f̂ and f∗

represent the objective function values at Θ̂ and Θ∗, respectively. Experiments are conducted on the Barabasi-Albert model
with 50 nodes (p = 50) and the number of samples n ranging from 50 to 5000. For both algorithms, the stopping criterion is
met when successive iterations satisfy the condition ∥Θt+1 −Θt∥F/∥Θt∥F < 10−12.

Table 4: Optimality gap comparison for algorithms in the case of estimating diagonally dominant M-matrices.

Algorithms BCD Proposed

n = 50 ∆Θ = 0.5295, ∆f = 0.0738 ∆Θ = 2.81× 10−6, ∆f = 1.49× 10−12

n = 500 ∆Θ = 0.0765, ∆f = 0.0022 ∆Θ = 1.09× 10−5, ∆f = 2.68× 10−12

n = 5000 ∆Θ = 0.0166, ∆f = 0.0004 ∆Θ = 1.39× 10−5, ∆f = 2.77× 10−12

Table 4 reveals that the popular BCD algorithm exhibits a substantial optimality gap, indicating its failure to converge to
the global minimizer. In contrast, our proposed algorithm effectively converges to the minimizer. We note that the BCD
algorithm can perform well under the M-matrix constraint without diagonal dominance.
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B. Proofs

We first present two lemmas in Appendix B.1. Then we provide the proofs of Theorem3.1 in Appendix B.2, Proposition 3.3
in Appendix B.3, and Theorem 4.4 and Corollary 4.5 in Appendix B.4.

We begin by introducing the notations used in proofs. Define

Lα(Θ) :=
{
(i, j)

∣∣ |Θij | ≥ α, i ̸= j
}
, (23)

where α = c0λ with c0 defined in Assumption 4.1. Then we define the set Tα(Θ) as follows:

Tα(Θ) := Lα(Θ) ∪ S⋆, (24)

where S⋆ is defined in (19). Define

Gλ,Σ̂(Θ̃) := arg min
Θ∈Mp

− log det(Θ) + tr
(
ΘΣ̂

)
+
∑
i ̸=j

pλ(|Θ̃ij |) |Θij | .

For ease of presentation, by a slight abuse of notation, we write pλ
(
|ΘS⋆ |

)
for
(
pλ(|Θij |)

)
(i,j)∈S⋆ .

B.1. Lemmas

Lemma B.1. Let g(Θ) = − log det(Θ). Define a local region of Θ⋆ by

B (Θ⋆, r) =
{
Θ ∈Mp

∣∣ ∥Θ−Θ⋆∥F ≤ r
}
.

Then for any Θ1,Θ2 ∈ B (Θ⋆;λmax (Θ
⋆)), we have

⟨∇g (Θ1)−∇g (Θ2) ,Θ1 −Θ2⟩ ≥
1

4
λ−2
max (Θ

⋆) ∥Θ1 −Θ2∥2F .

Proof. For any Θ1, Θ2 ∈ B (Θ⋆;λmax (Θ
⋆)), by Mean Value Theorem, one obtains

g (Θ2) = g (Θ1) + ⟨∇g (Θ1) , Θ2 −Θ1⟩+
1

2
vec (Θ2 −Θ1)

⊤∇2g (Θt) vec (Θ2 −Θ1) ,

where Θt = tΘ2 + (1− t)Θ1 with t ∈ [0, 1]. Note that Θt ∈ B (Θ⋆; r). One has

λmin

(
∇2g (Θt)

)
= λmin

(
(Θt ⊗Θt)

−1 )
= λ−2

max (Θt) ,

where the second equality follows from the property that the eigenvalues of A ⊗ B are λiµj , where λ1, . . . , λp and
µ1, . . . , µp are the eigenvalues of A ∈ Rp×p and B ∈ Rp×p, respectively. Following from the Weyl’s inequality, one
obtains

λmax (Θt) ≤ λmax (Θt −Θ⋆) + λmax (Θ
⋆) ≤ r + λmax (Θ

⋆) .

Therefore, We have

g (Θ2) ≥ g (Θ1) + ⟨∇g (Θ1) ,Θ2 −Θ1⟩+
1

2
(r + λmax (Θ

⋆))
−2 ∥Θ2 −Θ1∥2F , (25)

and
g (Θ1) ≥ g (Θ2) + ⟨∇g (Θ2) ,Θ1 −Θ2⟩+

1

2
(r + λmax (Θ

⋆))
−2 ∥Θ2 −Θ1∥2F . (26)

Setting r = λmax (Θ
⋆) and combining (25) and (26), we obtain

⟨∇g (Θ1)−∇g (Θ2) ,Θ1 −Θ2⟩ ≥
1

4
λ−2
max (Θ

⋆) ∥Θ1 −Θ2∥2F .

completing the proof.
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Lemma B.2. Suppose the event
∥∥Σ⋆ − Σ̂

∥∥
max
≤

√
2
2 λ holds and the sample size satisfies n ≥ 8c0c1τs log p, and take

λ =
√

c1τ log p/n. Under Assumptions 4.1 and 4.2, if |Tα(Θ̃)| ≤ 2s− p holds for some Θ̃, then∥∥Gλ,Σ̂(Θ̃)−Θ⋆
∥∥
F
≤ c0

2

(∥∥pλ(∣∣Θ̃S⋆

∣∣)∥∥+ ∥∥(Σ⋆ − Σ̂
)
Tα(Θ̃)∪Ip

∥∥),
and ∣∣Tα(Gλ,Σ̂(Θ̃))

∣∣ ≤ 2s− p. (27)

Proof. Drawing inspiration from (Sun et al., 2018), our proof employs techniques that establish upper-bounded estimation
error in regularized maximum likelihood estimation problems using Karush–Kuhn–Tucker (KKT) conditions. Notably, our
formulation incorporates multiple constraints, contrasting the unconstrained problem in (Sun et al., 2018), which leads to
distinct KKT conditions and error-bounding techniques.

Due to the sign constraint, Gλ,Σ̂(Θ̃) can be expressed as the minimizer of the following problem:

minimize
Θ∈Mp

− log det(Θ) + tr
(
ΘΣ̂

)
−
∑
i ̸=j

WijΘij , (28)

where Wij = pλ
(∣∣Θ̃ij

∣∣) if i ̸= j, and zero otherwise. Define a local region

B (Θ⋆, λmax (Θ
⋆)) = {Θ ∈Mp | ∥Θ−Θ⋆∥F ≤ λmax(Θ

⋆}.

For ease of presentation, we denote Gλ,Σ̂(Θ̃) by Θ̂. We first prove that Θ̂ ∈ B (Θ⋆, λmax (Θ
⋆)) under event J defined in

(53). We construct an intermediate estimate:

Θt := Θ⋆ + t
(
Θ̂−Θ⋆

)
, (29)

where t is taken such that ∥Θt −Θ⋆∥F = λmax(Θ
⋆) if

∥∥Θ̂ − Θ⋆
∥∥
F

> λmax (Θ
⋆), and t = 1 otherwise. Hence

∥Θt −Θ⋆∥F ≤ λmax(Θ
⋆) holds for any t ∈ [0, 1]. Then we apply Lemma B.1 with Θ1 = Θt, Θ2 = Θ⋆, and get

c0
2
t
〈
(Θ⋆)−1 −Θ−1

t , Θ̂−Θ⋆
〉
≥ ∥Θt −Θ⋆∥2F . (30)

Construct a function q(t) := − log det
(
Θ⋆ + t(Θ̂−Θ⋆)

)
+ t⟨(Θ⋆)−1, Θ̂−Θ⋆⟩ and t ∈ [0, 1]. One has

q′(t) =
〈
(Θ⋆)

−1 −Θ−1
t , Θ̂−Θ⋆

〉
, (31)

Let A = Θ−1
t , and B = Θ̂−Θ⋆. Then one also has

q′′(t) = tr (ABAB) ,

Next, we show that q′′(t) ≥ 0. Let C = AB. Following from Theorem 1 in (Drazin & Haynsworth, 1962), all eigenvalues
of a matrix X are real if there exists a symmetric and positive definite matrix Y such that XY are symmetric. Since CA is
symmetric and A symmetric and positive definite, all eigenvalues of C are real. Suppose λ1, . . . , λp are the eigenvalues of
C. Then one obtains q′′(t) =

∑p
i=1 λ

2
i ≥ 0, implying that q′(t) is monotonically non-decreasing. Then one obtains〈

(Θ⋆)
−1 − Θ̂−1, Θ̂−Θ⋆

〉
≥ q′(t) ≥ 2

c0t
∥Θt −Θ⋆∥2F . (32)

where the first inequality follows from q′(1) ≥ q′(t) and t ≤ 1, and the second inequality follows from (30).

Following from (32), we have
∥Θt −Θ⋆∥2F ≤

c0
2
t
〈
(Θ⋆)

−1 − Θ̂−1, Θ̂−Θ⋆
〉
. (33)

We present the Lagrangian of the optimization (28) as follows:

L (Θ,Γ) = − log det(Θ) + tr
(
ΘΣ̂

)
−
∑
i̸=j

WijΘij + ⟨Γ,Θ⟩,
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where Γ is a KKT multiplier with Γii = 0 for i ∈ [p]. Let
(
Θ̂, Γ̂

)
be the primal and dual optimal point, which must satisfy

the KKT conditions as follows:

−Θ̂−1 + Σ̂−W + Γ̂ = 0; (34)

Θ̂ijΓ̂ij = 0, Θ̂ij ≤ 0, Γ̂ij ≥ 0, ∀ i ̸= j; (35)

Γ̂ii = 0, for i ∈ [p]; (36)

According to (34), one has 〈
− Θ̂−1 + Σ̂, Θ̂−Θ⋆

〉
=
〈
W − Γ̂, Θ̂−Θ⋆

〉
. (37)

Plugging (37) into (33) yields

∥Θt −Θ⋆∥2F =
c0
2
t
( 〈

Γ̂,Θ⋆ − Θ̂
〉︸ ︷︷ ︸

term I

+
〈
W , Θ̂−Θ⋆

〉︸ ︷︷ ︸
term II

+
〈
Σ⋆ − Σ̂, Θ̂−Θ⋆

〉︸ ︷︷ ︸
term III

)
. (38)

The term I in (38) can be bounded by 〈
Γ̂,Θ⋆ − Θ̂

〉
=
∑
i ̸=j

Γ̂ijΘ
⋆
ij ≤ 0.

where the equality follows from (35) and (36), and the inequality follows from Γ̂ij ≥ 0 in (35) and the fact that Θ⋆
ij ≤ 0 for

any i ̸= j.

To bound term II, we separate the support of W off the diagonal into two parts, S⋆ and T ⋆ which is defined as follows:

T ⋆ =
{
(i, j) |Θ⋆

ij = 0, i ̸= j
}
.

Let Ip := {(i, i) | i ∈ [p]}. Define

T̄α(Θ̃) = Tα(Θ̃) ∪ Ip and T̄ c
α(Θ̃) = T c

α(Θ̃) \ Ip. (39)

Since |Tα(Θ̃)| ≤ 2s− p, |T̄α(Θ̃)| ≤ 2s. Then one has〈
W , Θ̂−Θ⋆

〉
=
〈
WS⋆ ,

(
Θ̂−Θ⋆

)
S⋆

〉
+
〈
WT⋆ , Θ̂T⋆

〉
≤ ∥WS⋆∥

∥∥(Θ̂−Θ⋆
)
S⋆

∥∥+ 〈WT̄ c
α(Θ̃), Θ̂T̄ c

α(Θ̃)

〉
,

where the inequality follows from the fact that Wij ≥ 0, Θ̂ij ≤ 0 for i ̸= j, and T̄ c
α(Θ̃) ⊆ T ⋆.

For term III, we separate the support of
(
Σ⋆ − Σ̂

)
into parts, T̄α(Θ̃) and T̄ c

α(Θ̃). Then one has〈
Σ⋆ − Σ̂, Θ̂−Θ⋆

〉
≤
〈(
Σ⋆ − Σ̂

)
T̄ c
α(Θ̃)

, Θ̂T̄ c
α(Θ̃)

〉
+
∥∥(Σ⋆ − Σ̂

)
T̄α(Θ̃)

∥∥∥∥(Θ̂−Θ⋆
)
T̄α(Θ̃)

∥∥.
We note that, for any (i, j) ∈ T̄ c

α(Θ̃), Θ̂ij ≤ 0 and Wij ≥
√
2
2 λ, following from the definition of Tα in (24) and

Assumption 4.1. Then under the event that
∥∥Σ⋆ − Σ̂

∥∥
max
≤

√
2
2 λ, we have〈(

Σ⋆ − Σ̂+W
)
T̄ c
α(Θ̃)

, Θ̂T̄ c
α(Θ̃)

〉
≤ 0. (40)

By bounding term I, term II, and term III in (38), together with (40), we obtain∥∥Θt −Θ⋆
∥∥2
F
≤ c0

2
t
(∥∥WS⋆

∥∥∥∥(Θ̂−Θ⋆
)
S⋆

∥∥+ ∥∥(Σ⋆ − Σ̂
)
T̄α(Θ̃)

∥∥∥∥(Θ̂−Θ⋆
)
T̄α(Θ̃)

∥∥). (41)

Through the definition of Θt in (29), one has ∥Θt −Θ⋆∥F = t
∥∥Θ̂−Θ⋆

∥∥
F

. Then (41) can be written as follows:

∥Θt −Θ⋆∥F ≤
c0
2

(∥∥WS⋆

∥∥+ ∥∥(Σ⋆ − Σ̂
)
T̄α(Θ̃)

∥∥). (42)
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Recall that Wij = pλ
(∣∣Θ̃ij

∣∣) ≤ λ for any i ̸= j according to Assumption 4.1, and |S⋆| ≤ s− p. Thus one has

∥WS⋆∥ ≤
√
sλ.

Under the event J , one can bound∥∥(Σ⋆ − Σ̂
)
T̄α(Θ̃)

∥∥ ≤ |T̄α(Θ̃)| 12
∥∥(Σ⋆ − Σ̂

)
T̄α(Θ̃)

∥∥
max
≤
√
sλ, (43)

where the second inequality follows from |T̄α(Θ̃)| ≤ 2s.

Plugging (42) and (43) into (41) yields

∥Θt −Θ⋆∥F ≤ c0
√
sλ ≤ λmax (Θ

⋆) ,

which indicates that t = 1 in (29), i.e., Θt = Θ̂. The last inequality is established by plugging λ =
√
c1τ log p/n with

n ≥ 8c0c1τs log p. Therefore, we obtain ∥∥Θ̂−Θ⋆
∥∥
F
≤ c0
√
sλ. (44)

Putting WS⋆ = pλ(|Θ̃S⋆ |) and Θt = Gλ,Σ̂(Θ̃) into (42) gets∥∥Gλ,Σ̂(Θ̃)−Θ⋆
∥∥
F
≤ c0

2

(∥∥pλ(∣∣Θ̃S⋆

∣∣)∥∥+ ∥∥(Σ⋆ − Σ̂
)
T̄α(Θ̃)

∥∥).
To establish

∣∣Tα(Θ̂)
∣∣ ≤ 2s− p, we separate the set Tα(Θ̂) into two parts, S⋆ and Lα(Θ̂)\S⋆. For any (i, j) ∈ Lα(Θ̂)\S⋆,

one has
∣∣Θ̂ij

∣∣ ≥ α, and further obtains

∣∣Lα(Θ̂)\S⋆
∣∣ ≤ ∥∥Θ̂Lα(Θ̂)\S⋆

∥∥2
α2

≤
∥∥Θ̂−Θ⋆

∥∥2
F

α2
≤ s,

where the last inequality follows from (44). Then we have∣∣Tα(Θ̂)
∣∣ = ∣∣S⋆ ∪ Lα(Θ̂)\S⋆

∣∣ = ∣∣S⋆
∣∣+ ∣∣Lα(Θ̂)\S⋆

∣∣ ≤ 2s− p,

completing the proof.

B.2. Proof of Theorem 3.1

Proof. Our convergence analysis largely builds upon standard techniques for the projected gradient descent, as provided in
(Beck, 2014). The main difference lies in the open constraint set in our formulation, which leads to an additional requirement
regarding the positive definiteness of the matrix during stepsize selection, extending beyond the backtracking condition.
Consequently, it is crucial to incorporate certain adaptations in comparison to the standard methods employed for analyzing
the convergence of projected gradient descent.

Given Θo ∈ S, define the lower level set of the objective f of Problem (5) as follows:

Lf := {Θ ∈ S | f(Θ) ≤ f(Θo)} . (45)

Following from (Cai et al., 2021, Lemma 3.5), there exists m > 0 such that Θ ⪰ mI holds for any Θ ∈ Lf . The gradient
of f is Lipschitz continuous with parameter L = m−2 over Lf , since the Hessian is Θ−1 ⊗Θ−1.

Suppose that the initial point of the sequence Θ0 ∈ Lf . To guarantee this, we may consider a Θo with f(Θo) sufficiently
large. Let Θt(η) = PSd

(
Θt − η∇f(Θt)

)
. At the t-th iteration, if Θt ∈ Lf , then there must exist γ > 0 such that for any

η ∈ (0, γ), Θt(η) satisfies that Θt(η) ∈ Sp++. This is because Θt is an interior point of Sp++, indicating that there exists
r > 0, such that for any Θ satisfying ∥Θ−Θt∥F < r, Θ ∈ Sp++. Taking η < r

∥∇f(Θt)∥F
, one has,

∥Θt(η)−Θt∥F = ∥PSd

(
Θt − η∇f(Θt)

)
− PSd

(
Θt

)
∥F ≤ η∥∇f(Θt)∥F < r,
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establishing that Θt(η) ∈ Sp++. The projection PSd
ensures Θt(η) ∈ Sd. Totally, Θt(η) ∈ S.

The line search condition (8) ensures that f(Θt(η)) ≤ f(Θt), implying that Θt(η) ∈ Lf . Then one has

f(Θt(η)) ≤ f(Θt) + ⟨∇f(Θt), Θt(η)−Θt⟩+
L

2
∥Θt(η)−Θt∥2F. (46)

Following from projection theorem (Beck, 2014, Theorem 9.8), one has

⟨Θt − η∇f(Θt)−Θt(η), Θt −Θt(η)⟩ . (47)

Together with (46), one has

f(Θt(η)) ≤ f(Θt)− η
(
1− ηL

2

)∥∥G 1
η
(Θt)

∥∥2
F
. (48)

Taking η ≤ 2(1−α)
L leads to 1 − ηL

2 ≥ α. Therefore, for any η ≤ min
( 2(1−α)

L , γ
)
, Θt(η) can simultaneously satisfy

Θt(η) ∈ S and the line search condition (8). Thus, the step size in line search has a lower bound ηt ≥ min
( 2(1−α)β

L , γ, σ
)
,

and Θt+1 ∈ Lf . By induction, Θt ∈ Lf for any t ≥ 0. Sequence {f(Θt)} is monotonically decreasing, and f(Θt+1) <

f(Θt) until G 1
ηt
(Θt) = 0, indicating that Θt is a stationary point (Beck, 2014, Theorem 9.10). Since Problem (5) is a

strictly convex problem, the stationary point is the unique minimizer. Therefore, the proposed algorithm converges to the
optimal solution.

B.3. Proof of Proposition 3.3

Proof. The Lagrangian of the optimization (18) is

L(x,µ) =
1

2
∥x− y∥2 − µrx

⊤1+ ⟨µ\r, x\r⟩,

where µ is a KKT multiplier. Let (x̂, µ̂) be the primal and dual optimal point. Then (x̂, µ̂) must satisfy the KKT system:

x̂i − yi − µ̂r + µ̂i = 0, µ̂ix̂i = 0, for i ̸= r; (49)

x̂i − yi − µ̂i = 0, µ̂ix̂
⊤1 = 0, for i = r; (50)

µ̂1, . . . , µ̂p ≥ 0; (51)

Therefore, for any i ̸= r, it holds that x̂i = yi + µ̂r − µ̂i, µ̂ix̂i = 0, µ̂i ≥ 0 and x̂i ≤ 0. As a result, we obtain the following
results:

• If yi + µ̂r ≤ 0, then µ̂i = 0, indicating that x̂i = yi + µ̂i.

• If yi + µ̂r > 0, then µ̂i = yi + µ̂r, indicating that x̂i = 0.

Overall, we obtain that
x̂i = min(yi + µ̂r, 0), ∀ i ̸= r. (52)

On the other hand, x̂r and µ̂r satisfy that x̂r = yr + µ̂r, µ̂rx̂
⊤1 = 0, µ̂r ≥ 0, and x̂⊤1 ≥ 0. Then we have the following

results:

• If yr ≥ −
∑

i∈[p]\r min(yi, 0), then µ̂r = 0, indicating that x̂r = yr. Following from (52), x̂i = min(yi, 0) for any
i ̸= r.

• If yr < −
∑

i∈[p]\r min(yi, 0), then µ̂r ̸= 0. This is because µ̂r = 0 will result in x̂⊤1 < 0, which does not fulfill
the KKT system. Together with the KKT condition that µ̂rx̂

⊤1 = 0, one has x̂⊤1 = 0. Therefore, one obtains that
x̂r = yr + µ̂r, where µ̂r satisfies µ̂r + yr +

∑
i∈[p]\r min(yi + µ̂r, 0) = 0.

Then the ρ in Proposition 3.3 is the dual optimal point µ̂r above.
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B.4. Proofs of Theorem 4.4 and Corollary 4.5

Proof. We prove the theorem under the case of estimating M-matrices, i.e., S =Mp. The proof can be directly applied to
the case of estimating diagonally dominant M-matrices, i.e., S =Mp

D, sinceMp
D is a subset ofMp. Provided that the

following event holds:

J :=
{∥∥Σ⋆ − Σ̂

∥∥
max
≤
√
2

2
λ
}
. (53)

Recall that Θ̂(k) = Gλ,Σ̂

(
Θ̂(k−1)

)
for k ≥ 2. According to Assumption 4.1 that pλ(0) = λ, we can rewrite Θ̂(1) as

Θ̂(1) = Gλ,Σ̂

(
Θ̂(0)

)
, where Θ̂

(0)
ij = 0 for any i ̸= j. Thus,

∣∣Tα

(
Θ̂(0)

)∣∣ ≤ 2s. Following from Lemma B.2, we can further

obtain that
∣∣Tα

(
Θ̂(1)

)∣∣ ≤ 2s. To simplify notation, we denote Tα

(
Θ̂(k)

)
by T k

α for short. By induction, we obtain that, for
any k ≥ 1, ∣∣Tα

(
Θ̂(k)

)∣∣ ≤ 2s, (54)

and ∥∥Θ̂(k) −Θ⋆
∥∥
F
≤ c0

2

(
δk−1
1 + δk−1

2

)
, (55)

where δk−1
1 =

∥∥pλ(∣∣Θ̂(k−1)
S⋆

∣∣)∥∥ and δk−1
2 =

∥∥(Σ⋆ − Σ̂
)
Tk−1
α ∪Ip

∥∥.

In what follows, we show that the term δk−1
1 in (55) can be bounded in terms of

∥∥Θ̂(k−1) −Θ⋆
∥∥. For any (i, j) ∈ S⋆ and

Θ ∈ Rp×p, if
∣∣Θ⋆

ij −Θij

∣∣ ≥ α, then one has

0 ≤ pλ (|Θij |) ≤ λ ≤ λ

α

∣∣Θ⋆
ij −Θij

∣∣ ,
where the first two inequalities follows from Assumption 4.1. If

∣∣Θ⋆
ij −Θij

∣∣ ≤ α, then one has

0 ≤ pλ (|Θij |) ≤ pλ
(∣∣Θ⋆

ij

∣∣− α
)
= 0, (56)

where the second inequality follows from Assumption 4.1 that pλ is monotonically non-increasing, and the equality is
established because min(i,j)∈S⋆

∣∣Θ⋆
ij

∣∣− α ≥ γλ and pλ(x) = 0 for any x ≥ γλ following from Assumptions 4.1 and 4.2.
As a result, one can obtain

δk−1
1 ≤ λ

α

∥∥(Θ̂(k−1) −Θ⋆
)
S⋆

∥∥ ≤ λ

α

∥∥Θ̂(k−1) −Θ⋆
∥∥
F
. (57)

To bound δk−1
2 , we separate the set T k−1

α into two parts, S⋆ and Lk−1
α \S⋆, where Lk

α denotes the set Lα

(
Θ̂(k)

)
. The term∥∥(Σ⋆ − Σ̂

)
Lk−1

α \S⋆

∥∥ can be bounded in terms of
∥∥Θ̂(k−1) −Θ⋆

∥∥
F

as follows:

∥∥(Σ⋆ − Σ̂
)
Lk−1

α \S⋆

∥∥ ≤√∣∣Lk−1
α \S⋆

∣∣∥∥(Σ⋆ − Σ̂
)
Lk−1

α \S⋆

∥∥
max
≤
√
2λ

2α

∥∥Θ̂(k−1) −Θ⋆
∥∥
F
,

where the last second equality follows from

√∣∣Lk−1
α \S⋆

∣∣ ≤
∥∥Θ̂(k−1)

Lk−1
α \S⋆

∥∥
α

≤
∥∥Θ̂(k−1) −Θ⋆

∥∥
F

α
, (58)

where the first inequality follows from the definition of Lk−1
α . Thus one has

δk−1
2 ≤

∥∥(Σ⋆ − Σ̂
)
S⋆∪Ip

∥∥+ √2λ
2α

∥∥Θ̂(k−1) −Θ⋆
∥∥
F
. (59)

Substituting (57) and (59) into (55) yields∥∥Θ̂(k) −Θ⋆
∥∥
F
≤ c0

2

∥∥(Σ⋆ − Σ̂
)
S⋆∪Ip

∥∥+ ρ
∥∥Θ̂(k−1) −Θ⋆

∥∥
F
,
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where ρ = 2+
√
2

4 . By induction, if dk ≤ a0 + ρdk−1 for any k ≥ 1 with ρ ∈ [0, 1), then

dk ≤
1− ρk

1− ρ
a0 + ρkd0. (60)

Applying (60) with a0 = c0
2

∥∥(Σ⋆ − Σ̂
)
S⋆∪Ip

∥∥, and dk =
∥∥Θ̂(k) −Θ⋆

∥∥
F

yields∥∥Θ̂(k) −Θ⋆
∥∥
F
≤ 4c0

∥∥(Σ⋆ − Σ̂
)
S⋆∪Ip

∥∥+ ρk
∥∥Θ̂(0) −Θ⋆

∥∥
F
.

Next, we establish Corollary 4.5. Under the event J , one has

∥∥(Σ⋆ − Σ̂
)
S⋆∪Ip

∥∥ ≤ √2
2

λ
√
s, (61)

where the inequality follows from |S⋆ ∪ Ip| ≤ s. As a result, we plug λ =
√
c1τ log p/n into (61) and obtain∥∥Θ̂(k) −Θ⋆

∥∥
F
≤ c
√

s log p/n+ ρk
∥∥Θ̂(0) −Θ⋆

∥∥
F
, (62)

where c = 2c0
√
2c1τ .

Finally, we calculate the probability that event J holds. We apply (Ravikumar et al., 2011, Lemma 1) and union sum bound,
and obtain

P
[∥∥ (Θ⋆)

−1 − Σ̂
∥∥
max
≥
√
2

2
λ
]
≤ 4p2 exp

(
− nλ2(

80maxi Σ⋆
ii

)2
)
.

Take λ =
√
c1τ log p/n with τ > 2 and c1 =

(
80maxi Σ

⋆
ii

)2
. By calculation, we obtain that

P
[∥∥ (Θ⋆)

−1 − Σ̂
∥∥
max
≤
√
2

2
λ
]
≥ 1− 4/pτ−2, (63)

completing the proof.
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