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Abstract

Recent studies have shown that many nonconvex machine learning problems meet
generalized-smooth condition that extends beyond traditional smooth nonconvex optimiza-
tion. However, the existing algorithms cannot fully adapt to generalized-smooth nonconvex
geometry and encounter significant technical limitations on convergence analysis. In this
work, we first justify the advantage of using adaptive gradient normalization. We ana-
lyze the overall effects of adaptive normalization and function geometry on convergence
rate. Our results provide a comprehensive understanding of the interplay between adap-
tive gradient normalization and function geometry. For stochastic generalized-smooth non-
convex optimization, we propose Independent-Adaptively Normalized Stochastic Gradient
Descent algorithm, which leverages adaptive gradient normalization, independent sampling,
and gradient clipping to achieve an O(e~*) sample complexity under relaxed assumptions.
Experiments on large-scale nonconvex generalized-smooth problems demonstrate the fast
convergence of our algorithm.

1 Introduction

In modern machine learning, the convergence of gradient-based optimization algorithms has been well studied
in the standard smooth nonconvex setting. However, it has been shown recently that L-smoothness fails to
characterize the global geometry of many nonconvex machine learning problems, including distributionally-
robust optimization (DRO)(Levy et al., [2020; Jin et al., [2021]), meta-learning (Nichol et al.; 2018} |Chayti &
Jaggi, 2024) and language models (Liu et al.| 2023} |Zhang et al., |2019)). Instead, these problems have been
shown to satisfy a so-called generalized-smooth condition, in which the smoothness parameter can scale with
the gradient norm in the optimization process (Zhang et al.l 2019)).

In the existing literature, various works have proposed different algorithms for solving generalized-smooth
nonconvex optimization problems. Specifically, various works have demonstrated that deterministic first-
order algorithms such as gradient descent, normalized gradient descent and clipped gradient descent can
achieve O(e~?) iteration complexity under mild assumptions (Li et al., 2024; [Zhang et al.l 2019 Chen et al.,
2023}, |Gorbunov et al.l 2024 Vankov et al., 2024b; Reisizadeh et al., |2023)). These complexity results match
the lower bound obtained by classical first-order methods. In particular, |(Chen et al| (2023) empirically
demonstrated that proper usage of adaptive gradient normalization can substantially accelerate convergence
in practice. However, the formal theoretical justification and understanding of adaptive gradient normaliza-
tion is still lacking for first-order algorithms in generalized-smooth optimization.

On the other hand, some other works studied first-order stochastic algorithms in generalized-smooth non-
convex optimization (Li et al., [2024; |Zhang et al. 2019; 2020). Specifically, one line of work focused on the
classic stochastic gradient descent (SGD) algorithm (Li et al. 2024)). However, in the generalized-smooth
setting, the convergence analysis of SGD either relies on adopting very large batch size or involves large
constants (Arjevani et al., |2023|). Moreover, the empirical performance of SGD is often unstable due to the
ill-conditioned smoothness parameter when the gradient is large (Chen et al.,|2023)). Another line of work fo-
cused on clipped SGD, which leverages gradient normalization and clipping to handle the generalized-smooth
geometry (Zhang et al.l 2019} [2020; Reisizadeh et al., |2023)). Although clipped SGD has demonstrated su-
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perior performance in solving large-scale problems, its existing theoretical analysis has several limitations.
First, in order to establish convergence guarantee, the existing studies highly rely on the strong assumption
that the stochastic approximation error is bounded almost surely. Second, the existing designs of clipped
SGD adopt the standard stochastic gradient normalization scheme, which is not fully adapted to the function
geometry characterized by the generalized-smooth condition.

Having observed the algorithmic and theoretical limitations discussed above, we aim to advance the algorithm
design and analysis for generalized-smooth optimization through investigating the following two fundamental
and complementary questions.

e Q1: In deterministic generalized-smooth optimization, how does adaptive gradient normalization affect
the convergence rate of first-order algorithm, e.g., under Polyak-L.ojasiewicz-type conditions ?

e Q2: In stochastic generalized-smooth optimization, can we develop a movel algorithm with convergence
guarantee under relaxed noise assumptions?

In this work, we provide comprehensive answers to both questions by developing new algorithms and conver-
gence analysis in generalized-smooth nonconvex optimization. We summarize our contributions as follows.

1.1 Our Contributions

To understand the advantage of using adaptive gradient normalization, we first study the convergence rate of
adaptive normalized gradient descent (ANGD) in deterministic generalized-smooth optimization under the
generalized Polyak-Lojasiewicz (PL) condition over a board spectrum of gradient normalization parameters.
Our results reveal the interplay among learning rate, gradient normalization parameter and function geometry
parameter, and characterize their impact on the type of convergence rate. In particular, our results reveal
the advantage of using adaptive gradient normalization and provide theoretical guidance on choosing proper
gradient normalization parameter to improve convergence rate.

We further propose a novel Independent-Adaptively Normalized Stochastic Gradient Descent (IAN-SGD) al-
gorithm tailored for stochastic generalized-smooth nonconvex optimization. Specifically, IAN-SGD leverages
normalized gradient updates with independent sampling and gradient clipping to reduce bias and enhance
algorithm stability. Consequently, we are able to establish convergence of IAN-SGD with O(e~*) sample
complexity under a relaxed assumption on the approximation error of stochastic gradient and constant-level
batch size. This makes the algorithm well-suited for solving large-scale problems.

We compare the numerical performance of our TAN-SGD algorithm with other state-of-the-art stochastic
algorithms in applications of nonconvex phase retrieval, nonconvex distributionally-robust optimization and
training deep neural networks, all of which are generalized-smooth nonconvex problems. Our results demon-
strate the efficiency of TAN-SGD in solving generalized-smooth nonconvex problems.

2 Related Work

Generalized-Smoothness. The concept of generalized-smoothness was introduced by [Zhang et al.| (2019)
with the (Lg, L1)-smooth condition, which allows a function to either have an affine-bounded hessian norm
or be locally L-smooth within a specific region. This definition was extended by |Chen et al. (2023), who
proposed the £, (o) and L}, (a) conditions, controlling gradient changes globally with both a constant
term and a gradient-dependent term associated with power «, thus applying more broadly. Later, |Li et al.
(2024) introduced ¢-smoothness, which use a non-decreasing sub-quadratic polynomial to control gradient
differences. |[Mishkin et al.| (2024) proposed directional smoothness, which preserves L-smoothness along

specific directions.

Algorithms for Generalized-Smooth Optimization. Motivated by achieving comparable lower bounds
presented in |Arjevani et al.| (2023) under standard assumptions, algorithms for solving generalized-smooth
problems can be categorized into two main series. The first series focus on SGD methods with constant
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learning rate. Reisizadeh et al.| (2023); LLi et al.| (2024) proved that SGD converges with sample complex-
ity O(e~*) under generalized-smoothness. To ensure convergence, Reisizadeh et al.| (2023) adopted a large
batch size of O(e~2), while relaxed this requirement but introduces additional variables
of size O(e~!). The second series focus on adaptive methods. In nonconvex deterministic settings,
et al| (2019; 2020) showed that clipped GD can achieve a rate of O(e~2?) under mild assumptions. Later,
Chen et al.| (2023) proposed 3-GD achieving O(e2) iteration complexity. [Vankov et al.| (2024b) studies clip
and normalized gradient descent under mild-conditions, where they retrieve best-known convergence rate
under each separate cases, including strong convex, convex settings etc. |Gorbunov et al.| (2024) varies the
learning rate to study smoothed gradient clipping, gradient descent with Polyak step-sizes, triangles Method
under convex (Lo, L1)-smooth conditions, where they also achieve standard convergence rate under convex
case. In stochastic settings, when the approximation error of the stochastic gradient estimator is bounded,
Zhang et al.| (2019; 2020) proved clipped SGD achieves O(e~*) sample complexity. Wang et al| (2023);
Faw et al| (2023); Hong & Lin| (2024) studied AdaGrad Duchi et al.| (2011b) under generalized-smooth and
relaxed variance assumption with different learning rate schemes. They all attains O(1/v/T) convergence
rate under mild conditions. Xie et al|(2024a)) studied trust-region methods convergence under generalized-
smoothness. Several works also studied stochastic acceleration methods under the generalized-smoothness
condition. [Zhang et al| (2020) proposed a general clipping framework with momentum updates; Jin et al|
studied normalized SGD with momentum |Cutkosky & Mehta] (2020) under parameter-dependent
achieves O(e~*) sample complexity; |Hiibler et al.| (2024) studied normalized SGD with momentum
(2020) associated with parameter-agnostic learning rates, which establishes O(¢~*) convergence
rate and corresponding lower bound. By adjusting batch size, (Chen et al. (2023); [Reisizadeh et al.| (2023)
demonstrated that the SPIDER algorithm (Fang et al.| M can reach the optimal O(e~%) sample complex-
ity. Furthermore, [Zhang et al. (2024b); Wang et al.| (2024azb); [Li et al| (2023)) explored the convergence of
RMSprop (Hinton et al.,|2012)) and Adam (Kingma, |2014) under generalized-smoothness. Jiang et al.| (2024)
studied variance-reduced sign-SGD convergence under generalized-smoothness.

Machine Learning Applications. generalized-smoothness has been studied under various machine learn-
ing framework. |Levy et al|(2020); [Jin et al.| (2021) studied the dual formulation of regularized DRO prob-
lems, where the loss function objective satisfies generalized-smoothness. |Chayti & Jaggil (2024) identified
their meta-learning objective’s smoothness constant increases with the norm of the meta-gradient.
let al| (2024b); Hao et al| (2024); Gong et al| (2024a); Liu et al| (2022b) explored algorithms for bi-level
optimization and federated learning within the context of generalized-smoothness. |Zhang et al.| (2024a))
developed algorithms for multi-task learning problem where the objective is generalized-smooth. [Xie et al.
(2024b) studied online mirror descent when the objective is generalized-smooth. Xian et al| (2024) studied
min-max optimization algorithms’ convergence behavior under generalized-smooth condition. There is a
concurrent work (Vankov et al. [2024a) using independent sampling with clipped SGD framework to solve
variation inequality problem (SVI). Based on this idea, they also propose stochastic Korpelevich method for
clipped SGD. Under generalized-smooth condition, they proved almost-sure convergence in terms of distance
to solution set tailored for solving stochastic SVI problems.

3 Generalized-Smooth nonconvex Optimization

We first introduce generalized-smooth optimization problems. Consider the following optimization problem.

min f(w), (1)

weRd

where f : R? — R denotes a nonconvex and differentiable function and w corresponds to the model
parameters. We assume that function f satisfies the following generalized-smooth condition.

Assumption 1 (Generalized-smooth) The objective function f satisfies the following conditions.
1. f is differentiable and bounded below, i.e., f* :=inf cra f(z) > —o0;
2. There exists constants Lo, Ly > 0 and o € [0, 1] such that for any w, w' € R4, it holds that
IV f(w) = V()] < (Lo + La[[V f () [[*) [ — w[] (2)
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The generalized-smooth condition in Assumption [I] is a generalization of the standard smooth condition,
which corresponds to the special case of L1 = 0. It allows the smoothness parameter to scale with the
gradient norm polynomially, and therefore Assumption[I]can model functions with highly irregular nonconvex
geometry. Moreover, following the standard proof, it is easy to show that generalized-smooth functions satisfy
the following descent lemma.

Lemma 1 Under Assumption function f satisfies, for any w,w’ € R4,

Flw) < Fu) + (V@) w =) + 5 (Lo + L] 7@ — | (3)

We note that there are several variants of generalized-smooth conditions proposed by the previous works
(Zhang et all 2019} Jin et al., 2021; |Chen et al., 2023). Below, we briefly discuss the relationship between
the generalized-smooth condition in Assumption [I]and these existing notions.

Remark 1 ((Lg, L1)-generalized-smooth condition) The (Lg, L1)-generalized-smooth condition pro-
posed in (Zhang et al), |2019) is a special case of equation@ with o = 1. The corresponding descent lemma
s given as

1
Fw) < f') + (V') w = w') + 5 (4Lo + 5L |V f (W) w — w'|]?,
which is the same as Lemma [1| with « = 1 up to differences in the constant coefficients.

Remark 2 (Symmetric generalized-smooth condition) |Chen et al| (2023) introduced a symmetric
version of generalized-smooth condition, by replacing ||V f(w')||* in equation [ with max., ||f(we)||*, where
wy = 0w’ + (1—0)w. We notice that the asymmetric generalized-smooth condition adopted in our Assumption
slightly generalizes such a symmetric generalized-smooth condition, since it directly implies the following
stronger symmetric generalized-smooth condition.

19 700) = ¥ )] < (2o + 2 (LLOAITIOI n

The following propositions show that various nonconvex machine learning problems such as phase retrieval
and distributionally robust optimization (DRO) satisfy our generalized-smooth condition.

Proposition 1 The nonconver phase retrieval objective function (see equation in the appendiz) satisfies
equation |4 with o = %
Proposition 2 The distributionally robust optimization (DRO) objective function (see equation in ex-
periment section) satisfies equatz’on with o = 1.

Thus, throughout this work, we consider the generalized-smooth condition in Assumption[I} which generalizes
the existing notions and simplifies arithmetic of the proof.

In the following sections, we first consider deterministic generalized-smooth optimization and study the
impact of adaptive gradient normalization on the convergence rate of gradient methods. Then, we consider
stochastic generalized-smooth optimization and propose a novel independent sampling scheme for improving
the convergence guarantee of stochastic gradient methods.

4 Adaptive Gradient Normalization for Deterministic Generalized-Smooth
Optimization

In deterministic generalized-smooth optimization, many previous works have empirically demonstrated the
faster convergence of normalized gradient descent-type algorithms (e.g., clipped-GD) over the standard
gradient descent algorithm in various machine learning applications (Jin et al., |2021; |Zhang et al., |2019).
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On the other hand, theoretically, these algorithms were only shown to achieve the same iteration complexity
O(e?2) as the gradient descent algorithm in generalized-smooth optimization. In this section, to further
advance the theoretical understanding and explain the inconsistency between theory and practice, we explore
the advantage of adapting gradient normalization to the special Polyak-Lojasiewicz-type (PL) geometry in
generalized-smooth optimization. We aim to show that gradient normalization, when properly adapted to
the underlying PY. geometry, can help accelerate the convergence rate in generalized-smooth optimization.

Specifically, we consider the class of generalized-smooth problems that satisfy the following generalized PL.
geometry.

Assumption 2 (Generalized Polyak-Yojasiewicz Geometry) There exists constants > 0 and p > 0
such that f(-) satisfies, for all w € R,

[Vf()||” = 2p(f(w) = £%). (5)

The above generalized PL condition is inspired by the Kurdyka Lojasiewicz (KL.)-exponent condition pro-
posed in (Li & Pong, [2018). When p > 1, equation [5| reduces to the Kk-exponent condition. When p = 2,
equation [5| reduces to the standard PY. condition. Moreover, some recent works have shown that PE-type
geometries widely exist in the loss landscape of over-parametrized deep neural networks (Liu et al.| |2022a;
Scaman et al.; 2022)), and we hope that our analysis based on assumption [5| will allow researchers to rethink
the relationship between optimization algorithms and loss function geometry.

Here, we consider the adaptively normalized gradient descent (AN-GD) algorithm proposed by |Chen et al.
(2023) for generalized-smooth nonconvex optimization. The algorithm normalizes the gradient update as
follows

o I
(AN_GD) Wi41 = Wt Y ||Vf(’LUf) ||5 ) (6)

where v > 0 denotes the learning rate and [ is a normalization scaling parameter that allows us to adapt the
normalization scale of the gradient norm to the underlying function geometry. Intuitively, when the gradient
norm is large, a smaller § would make the normalized gradient update more aggressive; when the gradient
norm is small, normalization can slow down gradient vanishing and improve numerical stability.

Chen et al.| (2023)) studied AN-GD in generalized-smooth nonconvex optimization, showing that it achieves
the standard O(e2) iteration complexity lower bound. In the following theorem, we obtain the convergence
rate of under the generalized PY. condition.

Theorem 1 (Convergence Rate of AN-GD) Let Assumptions [1] and[q hold. Denote A, := f(w;) — f*

8/
as the function value gap. Choose learning rate v = % where € denotes the target accuracy, and

choose 8 € [a,1]. Then, the following statements hold.

o If B <2 —p, then we have

A, :O((m)ﬁ) (7)

8
Furthermore, in order to achieve Ay < €, the total number of iteration satisfies T = Q((%)F) if2—-28<
2—p—8

p<2-—0, andT:Q((%) o )if0<p§2—26.

o If B =2—p and choose € such that v < %, then we have

Ac=o((1-1)"). 8)

In order to achieve Ay < €, the total number of iteration satisfies T = Q(( L )% log %)

€
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e If1> 8 >2—p, then there exists Ty € N such that for all t > Ty, we have

Atz(')(( Ar, )ﬁ

PR
"yﬂ+/‘3*2

t—Ty

) . 9)

In order to achieve AA; < €, the total number of iterations after Ty satisfies T = Q(log((%)ﬁ)).

Theorem [1| characterizes the convergence rates of AN-GD under different choices of p and 8. In particular,
when a = 8 = 0 and p = 2, Theorem [1| reduces to the linear convergence rate achieved by gradient descent
under the standard PL condition. Theorem [I] also guides the choice of gradient normalization parameter /3
under different geometric conditions. For example, if there exists § € [«, 1] such that p+ 8 > 2, AN-GD can
boost its convergence rate from polynomial to linear convergence. When p+ 3 < 2, the iteration complexities
derived from equation [7] and equation [8| depend on the specific values of p and 3. For example, when p = 1
and consider two different choices of gradient normalization parameters 5; = %, B2 = 1, AN-GD achieves the
iteration complexities O( (%)%) and O(% log(1)), respectively. This result matches the empirical observation
made in (Chen et al., [2023) that choosing a smaller 8 € [«, 1] can improve the convergence rate.

4.1 Comparison between AN-GD and GD.

The following Proposition [3| further obtains the convergence rate of gradient descent (GD) under the same
Assumptions [T] and [2]

Proposition 3 (Convergence of GD) Let Assumptions (1| and @ hold. Assume there exists a positive
constant G such that ||V f(xz:)|| < GVt € T, When p = 1 and setting « = 8 = 1, by selecting v <
min{%o, ﬁ}, gradient descent converges to an e-stationary point within T = Q(%) iterations.

From Theorem [1} under the same setting of a = 5 =1, p = 1, AN-GD converges to an e-stationary point
after (’5(%) iterations. As a comparison, although GD can converge after O(%) iterations, this convergence
is established under additional assumption that the gradient norm is upper bounded by a constant G. Such
constant normally takes a large numerical value in generalized-smooth optimization and is hard to estimate
in general. Consequently, it restricts the learning rate to be very small. Similar observation is also made
in (Li et al., [2024), where the convergence guarantee is established based on some constants related to the
upper bound of gradient norm.

5 Independently-and-Adaptively Normalized SGD for Stochastic
Generalized-Smooth Optimization

In this section, we study stochastic generalized-smooth optimization problems, where we denote f¢ as the
loss function associated with the data sample &£, and we assume that the following expected loss function
F(-) satisfies the generalized-smooth condition in Assumption
min F(w) = E¢o w)|. 10
min F(w) = Eer [fe(w)] (10)
Having discussed the superior theoretical performance of AN-GD in the previous section, we aim to leverage

adaptive gradient normalization to further develop an adaptively normalized algorithm tailored for stochastic
generalized-smooth optimization.

5.1 Normalized SGD and Its Limitations

To solve the stochastic generalized-smooth problem in equation one straightforward approach is to replace
the full batch gradient in the AN-GD update rule, equation@with the stochastic gradient V fe(w;), resulting
in the following adaptively normalized SGD (AN-SGD) algorithm.

V fe (we)

(AN—SGD) W41 = Wy — ’YW (11)
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Figure 1: Comparison between normalized full gradient (blue) and expected normalized stochastic gradient
(red). Here, & and &, are sampled uniformly at random.

AN-SGD-type algorithms have attracted a lot of attention recently for solving stochastic generalized-smooth
problems (Zhang et al.l |2019; |2020; |Liu et al., [2022b). In particular, previous works have shown that, when
choosing = 1 and using gradient clipping or momentum acceleration, AN-SGD’s variations (e.g., NSGD,
NSGD with momentum |Cutkosky & Mehtal (2020)), clipped SGD |[Zhang et al.| (2019; [2020)) can achieve a
sample complexity of O(¢~*). This result matches that of the standard SGD for solving classic stochastic
smooth problems (Ghadimi & Lan} 2013). However, AN-SGD has several limitations as summarized below.

e Biased gradient estimator: The normalized stochastic gradient used in equation is biased, i.e.,

E[vaf‘zit(sjit)ﬂﬁ] + HVVIfwl?)Hﬂ This is due to the dependence between V f,(w;) and ||V fe, (w;)]|®. In

particular, the bias can be huge if the stochastic gradients are diverse, as illustrated in Figure [T}

e Strong assumption: To control the estimation bias and establish theoretical convergence guarantee for
ANSGD-type algorithms in generalized-smooth nonconvex optimization, the existing studies need to
adopt strong assumptions. For example, |Zhang et al.| (2019;2020) and |Liu et al.| (2022b)) assume that the
stochastic approximation error ||V f¢(w) — VF(w)|| is bounded by a constant almost surely. In practical
applications, this constant can be a large numerical number if certain sample £ happen to be an outlier.

5.2 Independently-and-Adaptively Normalized SGD

To overcome the aforementioned limitations, we propose the following independently-and-adaptively nor-
malized stochastic gradient (IAN-SG) estimator

Vfe(w)
IV fer (w)[|#”

where £ and & are samples draw independently from the underlying data distribution. Intuitively, the
independence between £ and &' decorrelates the denominator from the numerator, making it an unbiased
stochastic gradient estimator (up to a scaling factor). Specifically, we formally have that

View) 1 _ o [Be[Ve(w)]
Fee [nwg/(ww] =P vaf/(w”ﬁ

Moreover, as we show later under mild assumptions, the scaling factor E[HV fg/(w)”*ﬁ} can be roughly
bounded by the full gradient norm and hence resembling the full-batch AN-GD update. Based on this idea,
we formally propose the following independently-and-adaptively normalized SGD (IAN-SGD) algorithm,
where V fe, (w;) corresponds to the mini-batch stochastic gradient associated with a batch of samples B,
and B’ denotes another independent batch.

(IAN-SG estimator) (12)

] x VF(w). (13)

(IAN—SGD) Wiy1 = Wg — ’Yv‘fghBiﬂ(,wt),
where h; = max{ (4L17)" 5 (QHVng, wy)|| + 5)} (14)
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The above IAN-SGD algorithm adopts a clipping strategy for the normalization term h;. This is to impose
a constant lower bound on h;, which helps develop the theoretical convergence analysis and avoid numerical
instability in practice. We note that TAN-SGD requires estimating the value of § and querying two batches
of samples in every iteration. However, as we show in the ablation study presented in the appendix, the
convergence of IAN-SGD is robust with regard to the choice of ¢, and the batch size |B’| can be chosen far
smaller than |B|.

5.3 Convergence Analysis of IAN-SGD
We adopt the following standard assumptions on the stochastic gradient.

Assumption 3 (Unbiased stochastic gradient) The stochastic gradient V fe(w) is unbiased, i.e.,
Eep [V fe(w)] = VF(w) for allw € R%.

Assumption 4 (Approximation error ) There exists 71,72 > 0 such that for any w € R%, one has

|V fe(w) — VE(w)|| < 71| VF(w)|| + 72 a.s. VE~P. (15)

We note that the above Assumption [4] is much weaker than the bounded approximation error assumption
(i.e., 71 = 0) adopted in (Zhang et al.l2019;2020; Liu et al.l 2022b). Specifically, it allows the approximation
error to scale with the full gradient norm and only assumes bounded error at the stationary points. With
these assumptions, we can lower bound the stochastic gradient norm with the full gradient norm as follows.

Lemma 2 Let Assumptions@ and hold. Consider the mini-batch stochastic gradient V fe, with batch size
B = 167¢, then for all w € R* we have

1 T
IV fer ()| 2 5 VE@)] - 2721 (16)

Lemma[2] shows that with a constant-level batch size, the stochastic gradient norm can be lower bounded the
full gradient norm up to a constant. This result is very useful in our convergence analysis to effectively bound
the mini-batch stochastic gradient norm used in the normalized stochastic gradient update. We obtain the
following convergence result of IAN-SGD.

Theorem 2 (Convergence of TAN- SGD) Let Assumptions [1, [4 and [4] hold. For the IAN-SGD algo-

rithm, choose learning rate v = min{— o 4}41 » T W} batch sizes B = 277, B' = 1677 and § = 2.

Denote A := F(wy) — F* + (Lo + L1)(1 + 73 /7)%. Then, with probability at least %, IAN-SGD pmduces a
sequence satisfying ming<r HVF(wt)H < e if the total number of iteration T satisfies

256A 640L; 64(Lo+ L1) + 128L;(372/71)P } a7

TzAmaX{ a0 2B 2
The choices of B, B’ = O(1#) are mainly to simplify the symbolic operation during the proof. By deploying
normalizing during data pre-processing, the value of 71 can be approximately controlled as O(1) in practice.
Thus, Theoremindicates that TAN-SGD achieves a sample complexity in the order of O(e~*) with constant-
level batch sizes in generalized-smooth optimization. Compared to the existing studies on normalized /clipped
SGD, this convergence result neither requires using extremely large batch sizes nor depending on the bounded
approximation error assumption. Through numerical experiments in Section [6]and ablation study [A-1.1]later,
we show that it suffices to query a small number of independent samples for IAN-SGD in practice.

5.3.1 Proof outline and novelty

The independent sampling strategy adopted by TAN-SGD naturally decouples stochastic gradient from gradi-
ent norm normalization, making it easier to achieve the desired optimization progress in generalized-smooth
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optimization under relaxed conditions. By the descent lemma, we have that

Eep [F(wig1) — F(w)]

@ A VE@)|” | > (Lo + La||VF(wi)]|")

= w wlll | ;}'Jfﬁ e, (9 se, )

@~ Lo+ L[| VF(w)||” 2 1 yLo+ Li||[VEF(w,)||" 2

< (h—f(—1+v e ))HVF(U)t)H +357 W7 7 (18)

where the expectation (conditioned on wy) in (i) is taken over £p only, and note that h; involves the
independent mini-batch samples £p/; (ii) leverages Assumption [4| to bound the second moment term
Ee, [V fer (we)||?] by 2|VF(w)||? + 73/78. Then, for the first term in equation we leverage the
clipping structure of hy to bound the coefficient (Lo + L1 ||V F(w)||*)/hY by 1. For the second term
in equation we again leverage the clipping structure of h; and consider two complementary cases:
when |[VF(w)|| < /1+73/72, this term can be upper bounded by 1v%*(Lo 4+ L1)(1 + 75/7%); when
[|[VF(we)|| > /14 73/72, this term can be upper bounded by hﬁ HVF(wt)H2 Summing them up gives

the desired bound. We refer to Lemma [0] in the appendix for more detaﬂs Substituting these bounds into
equation [18 and rearranging the terms yields that

1 2
V)| <Ee, [F(we) — Fweyr)] + 5 (Lo + L7 (1 + 2)2.
4ht 2 Ti

Furthermore, by leveraging the clipping structure of hﬁ and Assumption l the left hand side can be lower

bounded as M > min{y||VF(w;)]?, %} Finally, telescoping the above inequalities over ¢

and taking expectatlon leads to the desired bound in equation

As a comparison, in the prior work on clipped SGD (Zhang et al.l [2019; [2020), their stochastic gradient and
normalization term h; depend on the same mini-batch of samples, and therefore cannot be treated separately
in the analysis. For example, their analysis proposed the following decomposition.

Wt 2 2
e, L e, (1920 2+ 19 ey (1) = TF () + 2V F(00), 9 feg 1) = VF(w))) /1],

Hence their analysis need to assume a constant upper bound for the approximation error ||V fe (w;) —
VF(w)] in order to obtain a comparable bound to ours.

6 Experiments

We conduct numerical experiments to compare TAN-SGD with other state-of-the-art stochastic algorithms,
including the standard SGD (Ghadimi & Lan, [2013]), normalized SGD (NSGD), clipped SGD (Zhang et al.,
2019)(Clip SGD), SPIDER (Fang et al., 2018), normalized SGD with momentum (Cutkosky & Mehta,
2020)(NSGDm) etc. The problems we consider are nonconvex phase retrieval, nonconvex distributionally-
robust optimization and training deep neural networks.

6.1 Nonconvex Phase Retrieval

The phase retrieval problem arises in optics, signal processing, and quantum mechanics (Drenth| [2007). The
goal is to recover a signal from measurements where only the intensity is known, and the phase information
is missing or difficult to measure. Specially, denote the underlying object as € R?. Suppose we take m
intensity measurements y, = |aTT;r|2 + n, for r = 1---m, where a, denotes the measurement vector and n,
is the additive noise. We aim to reconstruct x by solving the following regression problem.

1 m
nggldf %Td —|ak z‘ (19)

e
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Such nonconvex function satisfies generalized-smooth with parameter o = % In this experiment, we generate
the initialization zo ~ N(1,6) and the underlying signal x ~ N(0,0.5) with dimension d = 100. We take
m = 3k measurements with a, ~ N(0,0.5) and n, ~ N (0,4?). We implement all the stochastic algorithms
in original form described in previous literatures. We set batch size |B| = 64, and for TAN-SGD, we choose a
small independent batch size |B’| = 4. We use fine-tuned learning rate for all algorithms, i.e., v = 5e — 5 for
SGD, v = 0.2 for NSGD and NSGD with momentum, v = 0.6 for clipped SGD, and v = 0.25 for SPIDER
and TAN-SGD. We set the maximal gradient clipping constant as 20, 6 = le — 3 for both clipped SGD and
TAN-SGD. And we set normalization parameter § = % Figure |2| (left) shows the comparison of objective
value versus sample complexity. It can be observed that IAN-SGD consistently converges faster than other

baseline algorithms.

109 Training loss curves for phase retrieval Training loss curves for DRO
SGD 12 SGD
— NSGD NSGD
10t —— NSGDm 10 —— NSGDm
—— Clip SGD Clip SGD
o — SPIDER s \ SPIDER
£ — IAN-SGD S IAN-SGD
102 6
10 4
0.0 05 10 15 2.0 25 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Sample Complexity le4 Sample Complexity le5

Figure 2: Experimental Results on Phase Retrieval and DRO

6.2 Distributionally-Robust Optimization

Distributionally-robust optimization (DRO) is a popular approach to enhance robustness against data dis-
tribution shift. We consider the regularized DRO problem minyey f(w) = supg {E¢~g[le(w)] — AU (P; Q) },
where Q, P represents the underlying distribution and the nominal distribution respectively. A\ denotes a
regularization hyper-parameter and ¥ denotes a divergence metric. Under mild technical assumptions, |Jin
et al.| (2021]) showed that such a problem has the following equivalent dual formulation

le(w) —n
in L(w, :)\EN\I!*<57) , 20
min L(w, 7) ¢e~P 3 +1 (20)
where U* denotes the conjugate function of ¥ and 7 is a dual variable. In particular, such dual objective
function is generalized-smooth with parameter a = 1 (Jin et al., [2021; |Chen et al.,[2023). In this experiment,
we use the life expectancy data (Arshi, 2017).

We set A = 0.01 and select U*(t) = i(t +2)2 — 1, i.e., the conjugate of x*-divergence. We adopt the
regularized loss f¢(w) = %(yg — xﬁTw)2 +0.1 Z?il In(1 + |w@|).

For moving average parameter used for acceleration method, we set it as 0.1 and 0.25 for NSGD with
momentum and SPIDER respectively. For stochastic algorithms without usage of multiple mini-batches,
i.e., SGD, NSGD, NSGD with momentum and clipped SGD, we set their batch sizes as |B| = 128. For
SPIDER, we set |B| = 128 and |B’| = 2313, where the algorithm will conduct a full-gradient computation
after every 15 iterations. For IAN-SGD, we set the batch size for two batch samples as |B| = 128 and
|B’| = 8. We used fine-tuned learning rate for all algorithms, i.e., v = 4e — 5 for SGD, v = 5e — 3 for NSGD,
NSGD with momentum and SPIDER, v = 0.11 for clipped SGD and IAN-SGD. We set the § = le — 1,
maximal gradient clipping constant as 30, 25 for clipped SGD and TAN-SGD respectively. And we set
2

normalization parameter 3 = £. Figure [2| (Right) shows the comparison of objective value versus sample

10
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complexity. It can be observed that objective value optimized by TAN-SGD consistently converges faster
than other baselines algorithms.

6.3 Deep Neural Networks

Training Loss Curves for ResNet18 Training Loss Curves for ResNet50

. — SGD ; — SGD
Adam Adam
6 —— Adagrad 6 —— Adagrad
5l —— NSGD 5 —— NSGD
" —— NSGDm " —— NSGDm
g4 —— Clip_SGD g4 —— Clip_SGD
3 IANSGD 3 IANSGD
Ty
2 2
1 1
— . e
0 _—  —— 0 e T
0 10 20 30 40 50 60 0 10 20 30 40 50 60 70 80
Epochs Epochs

Figure 3: Experimental Result on training ResNet18, ResNet50.

According to [Zhang et al,| (2019)), generalized-smooth has been observed to hold in deep neural networks.
To further demonstrate the effectiveness of IAN-SGD algorithm, we conduct experiments for training deep
neural networks. Specially, we train ResNet18, ResNet50 on CIFAR10 Dataset
from scratch. We resize images as 32 x 32 and normalize images with standard derivation equals to 0.5
on each dimension. At the beginning of each algorithm, we fix random seed and initialize model parameters
using Kaiming initialization. We compare our algorithm with baseline methods, including SGD

& Monro, [1951)), Adam (Kingmal, [2014), Adagrad (Duchi et all [2011a), NSGD, NSGD with momentum
(Cutkosky & Mehtal, [2020) and clipped SGD (Zhang et al. [2019).

For SGD, Adam and Adagrad, we utilize pytorch built-in optimizer to implement training pipeline. We
implement training pipeline for NSGD, NSGD with momentum, clipped SGD and TAN-SGD. The normal-
ization constant is computed through all model parameters at each iteration. The detailed algorithm settings
are as following. For batch size, all algorithms use B = 128, and B’ = 32 for IAN-SGD. For moving average
parameter, we use 0.9, 0.99 for Adam, and 0.25 for normalized SGD with momentum. For clipping threshold
used in clipped SGD and TAN-SGD, we set them as 2 and § = le — 1. The normalization power used for
TAN-SGD is g = % We use fine-tuned learning rate for all algorithms, i.e., v = le — 3 for SGD, Adam and
Adagrad, v = le — 1 for NSGD and NSGD with momentum, v = 2e — 1 for clipped SGD and TAN-SGD.
We trained ResNet18, ResNet50 on CIFAR10 dataset for 30 epochs and plot the training loss in Figure [3
Figure (3| (left) shows the training loss of ResNet18, Figur (right) shows the training loss of ResNet50. As
we can see from these figures, the (pink) loss curve optimized by IAN-SGD indicates fast convergence rate
comparable with several baselines, including SGD, NSGD NSGDm, clipped SGD, which demonstrate the
effectiveness of IAN-SGD framework.

7 Conclusions

In this work, we provide theoretical insights on how normalization interplays with function geometry, and
their overall effects on convergence. We then propose independent normalized stochastic gradient descent
for stochastic setting, achieving same sample complexity under relaxed assumptions. Our results extend the
existing boundary of first-order nonconvex optimization and may inspire new developments in this direction.
In the future, it is interesting to explore if the popular acceleration method such as stochastic momentum and
variance reduction can be combined with independent sampling and normalization to improve the sample
complexity.

11
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A Ablation Study

In order to have a comprehensive understanding of the performance of TAN-SGD in practical problems, in
this section, we conduct ablation study on Phase Retrieval and DRO regarding on important components of
TAN-SGD separately, i.e., adaptive normalization, batch size of independent samples and numerical stabilizer

J.

A.1 Effects of 3

To justify the advantage of using adaptive normalization in practice, we conduct the following two experi-
ments.

In first experiment, we unify the normalization parameter of all the normalized methods, i.e., NSGD, NSGD
with momentum, clipped SGD, SPIDER and TAN-SGD to 8 = % To guarantee convergence, we adjust the
learning rate accordingly, i.e., v = 0.03 for NSGD and NSGD with momentum, v = 0.05 for SPIDER, v =
0.17 for both clipped SGD and TAN-SGD. To make a fair comparison, we keep other parameters unchanged.
Figurel] (left) shows the comparison of objective value versus sample complexity for Phase Retrieval problem.
It can be observed that, by adjusting 5 = %, the objective value optimized by all algorithms decreases much
faster compared with Figure [2| this indicates adaptive normalization can accelerate convergence. Moreover,
compared with other normalization methods, even though IAN-SGD requires additional sampling at each

iteration, the training loss still decreases faster than NSGD SGD with momentum and SPIDER.

Similarly, for DRO, we unify the normalization parameter of all the normalized methods, i.e., NSGD, NSGD
with momentum, clipped SGD, SPIDER and IAN-SGD to have the same g = % To guarantee algorithm
convergence, we adjust learning rate correspondingly, for NSGD, NSGDm and SPIDER, we keep learning
rate unchanged, for clipped SGD, and TAN-SGD, we set v = 0.08. To make a fair comparison, we keep other
parameters unchanged. Figure |4| (Right) shows the comparison of objective value versus sample complexity.
It can be observed that, by setting g = %, the objective value optimized by all normalization methods
decreases faster than Figure 2] This verifies the effectiveness of adaptive normalization. Even though IAN-

SGD requires additional sampling, it converges faster than other normalized methods.

In summary, results in Figure [4] indicates independent sampling and adaptive normalization doesn’t increase
the sample complexity to find a stationary point, which justifies TAN-SGD framework’s effectiveness when
dealing with nonconvex geometry characterized by generalized-smooth condition.
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Figure 4: advantage of using adaptive normalization on normalized first-order algorithms

In second experiment, we vary 8 for ITAN-SGD and keep other parameters unchanged. Figure [5| shows the
convergence result with different 8 for Phase Retrieval and DRO. It can be observed that decreasing (

16



Under review as submission to TMLR

in general accelerate convergence. However, small 5 can make convergence unstable. In DRO experiment
showed in Figure 5| (Right), we observed when 3 = g, the objective value curves vibrates a lot. If 5 is further
reduced less than £, the algorithm fails to converge. This phenomena coincides with implications of theorem
where 8 must satisfy 8 € [a, 1] to guarantee convergence.
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Figure 5: Effects of adaptive normalization on convergence of IAN-SGD

A.1.1 Effects of Batch size

In this section, we justify the effects of batch size for independent samples used in TAN-SGD. For Phase
retrieval, we keep |B| = 64 and other parameters same as section and we vary independent batch sizes
to be |B'| = 4,8,16,32,64. Similarly, for DRO, we keep |B| = 128 and other parameters same as section
and we vary batch size of independent samples |B’| = 16, 32,64, 128.

The following figure [6] shows the convergence of IAN-SGD under different batch size choices for Phase
Retrieval (Left) and DRO (right). It can be observed for Phase retrieval and DRO problem, small batch
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Figure 6: Effects of independent samples’ batch size on convergence

size |B’| = 4,8 are enough to guarantee algorithm convergence, and increasing independent samples’ batch
size |B’| doesn’t increase sample complexity too much for finding a stationary point, which verifies the
effectiveness of independent sampling strategy.
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A.1.2 Effects of §

In Theorem 2 we set § = :2 based on assumptlon which assumes an affine bound for approximation error
[|V fe(w) — VF(w)||. This assumption relaxes strong assumptions used in (Zhang et al., [2019; Liu et al.|
2022b; Zhang et al.| [2020)), where they assume approximation error ||V f(w) — VF(w)|| is upper bounded by
a constant. The major weakness is when certain samples leads to gradient outlier, such assumption leads to
loose upper bound. Thus, to verify the effectiveness of assumption [ we expect convergence of IAN-SGD
under wide range of 4, especially for smaller §.

To justify the ¢ effects on convergence, we keep other parameters same as section [A:I] and only vary é.
For Phase Retrieval, we vary 6 = {le™% 1e73 1e7!,1,10} and figure m (Left) shows the corresponding
convergence result. For Distributionally Robust Optimization, we vary 6 = {le=% 1e73 1e71 1,10} and
figure [7] (Right) shows the convergence result. We observe that TAN-SGD convergence is robust to the
choice of §. But When § = le~3,1le”! demonstrate better convergence than others for Phase retrieval and
Distributionally Robust Optimization respectively. This result indicates small § is enough to guarantee
convergence, which verifies the effectiveness of assumption [f] and IAN-SGD when dealing with stochastic
nonconvex generalized-smooth geometry.
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Figure 7: Effects of § on convergence
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B Proof of Descent Lemma (1l

Lemma 1 Under Assumptz’on function f satisfies, for any w,w’ € R4,
1 « 2
Flw) < F@) 4 (T F@)w — ') + 5 (Lo + L[V F@)||*) oo —w]” 3)

Proof 1 Use fundamental theorem of calculus, we have

f(w') = fw) = (Vf(w),w —w)
_ / (V f(we), w — w)do —/ (V f(w), w — w)dd,
0 0

where wg = Ow’ + (1 — O)w. Since the integration integrates over wy, integrating second term doesn’t affect

the result. Now replacing above term by Ly, (a) condition, we have

f') = f(w) = (Vf(w),w' —w)
1 1

:/ (Vf(wg),w’fuﬁd@f/ (Vf(w),w —w)do
0 0

:/0 (V f(we) — Vf(w),w — w)do
< / V£ (wo) — V£ (w)|[ |’ — ]|
géa@vuuwﬂmmWwaWM

= (Lo + L[ 95w [’ — (21)

where the first inequality is due to Cauchy-schwarz inequality, the second inequality is due to Assumption ]

regarding on L’;sym(a) generalized-smooth. Reorganize above inequality gives us the desired result.

C Proof of Propositions 1, 2

C.1 Proof for nonconvex Phase Retrieval

Proposition 1 The nonconvex phase retrieval objective function (see equation in the appendiz) satisfies
2

equation 4| with o = 5.
The proof of generalized-smooth property for nonconvex Phase retrieval problem is similar as proof in |Chen
et al.| (2023)) with minor changes. We present the proof details here for completeness.

Proof 2 The objective function of phase retrieval problem can be rewritten in the stochastic form f(z) =
E¢ fe(2) where £ is obtained from {1,2....,m} uniformly at random and

fe(2) = 5 (e o #I)" (22)

To prove that f satisfies induced symmetric generalized-smooth equation[]} it suffices to prove that for every
2

§, fe satisfies inequality equation 4| with o = 5.
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For arbitrary z € R?, the gradient of fe(2) has the following lower bound

2 1 2
V77 = Sz ll(lad =1 - e) (acad )=

> 2jagof" - velog =] e
;} T2 T_|3 z
> 2 (lad 21 = lyellad 2[*)] [lae
(#1)

—
N2

> Sl ~ luel 1| (23)

where (z) uses mequalzty la —b|3 > |a|3 = |b|3 for any a,b € R; (iii) uses young’s inequality, where we have
3
|y5|3a3 < éaQ + 2 |y§|2 for any a > 0.

Then, for any z, 7 € R?, we have

[Vfe (=) = Vie(2)]|
1
= Sl (ad =" = ve) (acad )=’ = (Jad =|" ~ e) (acad )|
1
= 1l2(jad =" = ye) (acad )2 = 2(Jad =" — ye) (acad )=
+ (|ad #'|" = ) (acad )z = (|ad 2" — y) (acad )=
— (la¢ '|" — v) (aeag )= + (|a 2|” — y) (acad)='|
1
= 2 (ad ="~ ye) (aeag )=’ = (Jad ' — ) (acad )=
+ (lag Z| —y)(acag )2’ — (|%Z’2—y§)(a£a§)z
+ (|ad '|" = ye) (acad )" + (Jad #'|” = ) (aca )=
— (lag =" = y)(acad =" = (|ad 2|" = ve) (acad )2]|
:Z||(|afz| +[ag 2[* - 2y¢) (agag ) (' - 2)
+ (lag /" ~ ag =) (agad ) (' +2)
@ 1
ol (ad =" + lad =" +2lye )| 2|
+ZH%H (lad '] + ag =])*[|" = 2]
i) 1
< 212 = =lllael* (3lad " + 3lag =[* + 2]ye])
1
<7l — 2 lac]|* lac
'(3’a 7|’ +3\%Z\ — 3lye| — 3[ve| + 8[ve)

( 2
< e —ZH( adhas |V e ()|

9 2
+ za’maXvag Z)‘ 3 + Qymaxaxznax) (24)
where (i) uses triangular inequality, Hobga5 | = llagll®, lyel < 1 and inequality equation (25 E (i) uses
(lad '] + lag z[)* < 2|af 2']* + 2\(1E z|?; (iii) uses equation and denotesymax = Maxi<r<m |Yr| and
Umax = MAXi<r<m ||a7~|| Thus, in summary, nonconver Phase retrieval equation . satisfies induced
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4
generalized-smooth equation with o = %, Lo = 2ymaxafnax, and L, = %a&ax.

’

[lag 2'|" = [ad 2| = (|ag | + [ad 2[) (Ja¢ '] - lag 2])
(lag 2'[ + Ja¢ 2[)|a¢ (=" = 2)]]

<
< [la¢ [[(Jag '] + lag 2[)[|=" - =] (25)

C.2 Proof for DRO

Proposition 2 The distributionally robust optimization (DRO) objective function (see equatz’on in ex-
periment section) satisfies equation with o = 1.

The proof of generalized-smooth property for Distributionally Robust Optimization is exactly same as
let al.| (2021)); |Chen et al.|(2023). We refer readers to check Appendix D.2 in|Chen et al.| (2023)) for details. In
short, DRO problem satisfies asymmetric generalized-smooth [2]in assumption [I] thus it also satisfies induced
inequality [ with o = 1
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D Proof of Descent Lemma under Generalized Pt condition

Lemma 3 For any x >0, C € [0,1], A >0, and 0 < w < w’ such that A > w' — w, we have the following
inequality hold

Cz® < 2v + cx%. (26)

The proof details for this lemma can be found at |Chen et al.| (2023)), Lemma E.2 at Appendix.

Lemma 4 (Descent Lemma under Generalized PL condition) Let Assumption and hold. Apply
AN-GD, choose 8 € [a,1] or 8 € (a, 1], when a € (0,1] or « = 0 respectively. Set the target accuracy e

satisfy 0 < € < min {17 1/2u}. Define the step size v = %, Denote Ay = f(wy) — f*, then we have

descent lemma

Appr <Ay — D2 AT (27)

Proof 3 Start from descent lemma[l, we have
F(wer) = f(we)
(@) 1
291 ) (11— we) + & (Lo Lal| 97 ()| e — e

W |9 o) [T @Loy - [V () |
(4i7) _ _ 2 2_
< V@) P+ @IV ) [T+ (2207) T+ (20) )

(iv) _ 2 _
< _%va(wt)nz ﬁ‘f‘V%@Lo-i-QLl)’23 '

P oLy ||V F (wy) [T

(W) 2-8 (2,ue)% 124 24
< -2 + ()BT Y(8(Lo + Ly) + 1)
21V £ () | (a%+Lﬂ+”E4) (8(Lo + L1) +1)
@) 5 2 1(2pe)7 (2ue) 7
< =5 Ivreo 77+ 5 8(Lo+ L) +1
= 2|V () | + T (2ue) 5, (28)

where (i) follows from lemma [1; (i) follows from update rule of AN-GD, namely replacing th — w; by

%, (iii) follows from aggregates constant term by 6 and utilize technical lemma@ by letting w' = 2— 33,

A = B and applying it to 2LoY||V f(w)||>728, 2L17y||V f(ws)||>T*~28 twice gives the desired result; (iv)
follows from a™ +b™ < (a + b)™ holds for T = Q/ﬁ —1>1anda,b>0, (v) follows fmm the step size rule

v = (2u€)?/? /(8(Lo + L1) + 1), (vi) following from the fact 0 < § < 1, thus 1(2/5) < %. For function
satisfying generalized PL-condition proposed in definition[5, we have

o=

IV f(w)]| > )7 (f(w) — f*)

This is equivalent as

91" = @7 (fa) - 1) 7 (29)
Substitute equation[29 into equation [30, we have
Flwen) = fw) < =2 @)% () = )7 + T
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Subtract f* on both sides, it is equivalent as

2-8

2

* « 7 228 2-8
Fwern) = £ < Flwn) = £ = 2@ 7 (Fw) = £)7 + 1 (2ue) 7
Now, denote Ay = f(wy) — f*, we have the equivalent representation
V@) T =2y 2=
Appr <Ay — TAt "o+ 1(2,“6) ro. (30)

By Choosing the stopping criterion as

T =inf {1|A = flw) ~ £ < e}, where 0 < e < min{1, i}.

We conclude before algorithm terminates, Ay > € for allt < T, thus
Moreover, by definition of B, we have % > 0 and thus

A > e¥,
which is equivalent to claim
3 2-p _3
1e0) T A7 > 22097
4 4
Thus, equation [30] reduces to relazed descent inequality
()T | 22
th+1 f;[&t-— Agggigggflxtp .

E Proof of Theorem [1]

2-8

228 2-8
—W#At ? dominates J(2ue) 7 .

(31)

Theorem 1 (Convergence Rate of AN-GD) Let Assumptions []] and[q hold. Denote A, := f(w;) — f*

as the function value gap. Choose learning rate v = % where € denotes the target accuracy, and
choose 8 € [a,1]. Then, the following statements hold.
o If B <2—p, then we have
P =t
A =0((—o——) 7). 7
t ((Q—B—p)vt) 0

8
Furthermore, in order to achieve Ay < €, the total number of iteration satisfies T = Q((%)F) if2—-28<

2—p—8

p<2-—0, andT:Q((%) o )if0<p§2—26.

o If B =2—p and choose € such that v < %, then we have

A =o(1-19").

8
In order to achieve A < €, the total number of iteration satisfies T = Q((%)m log %)

o If1>p8>2—p, then there exists Ty € N such that for allt > Ty

s=o(( 2™

PR
70+572

t—Ty

In order to achieve Ay < €, the total number of iterations after Ty

23

).

, we have

satisfies T = Q(log((%)ﬁ)).



Under review as submission to TMLR

Proof 4 We divide the convergence proof of theorem[1] into three cases depending on the value of 3 and p.

Case I: When p<2—p
This is equivalent as % > 1. Now denote 0 = %. Since 8 > 1, we have following inequalities hold

Apyr < Ay
0 0
Al < A
0 9
A= Ar (32)
Now define an auziliary function ®(t) = 72t'=%. Its derivative can be computed via ®'(t) = —t=% We
now divide the last inequality at equation into two different cases for analysis. One is the case where
At_fl < 2A7?, Another is the case where AV 2077,

When A% < Atfl < 2A;%, we have

B(Apsr) — B(A;) = /At“ ' (t)dt = /At 04y

Ay Aigr

> (A — Ap)A?

Afa
> (Ar — Ap) t2+1

9

> ’Y(QM)GAG At+1
- 4 2
- v(2u) A0 AL )’
= t+1 9 - 8 .

The first inequality is using mean value theorem such that ®(Ayr1) — P(Ay) = |Apr1 — Ay]|P/(E)|, where
€ € [Ay, Apy1]. Since ®(Ary1) — ®(A4) > 0, taking absolute value has no effect. Since 6 > 0, |®'(t)| =t~
is monotone decreasing. Thus, we always have A[e <P < At—i—l for any & € [At, A¢iq]; The second

inequality uses the fact At+1 < 2A_9 The third inequality is due to the recursion Ay — Ayyq > %Af;
The last inequality uses the fact that Aa > At+1 for all 6 > 0.

When A[_fl > 2A7? it holds that A%_;f = (At_+1) S Al O Then, we have

B(Ari1) — B(A) = 7 (ALf - AL
1 0—1
> ——((2)7 —1)A?
> (@)~ 1)A]
> (@)% - 1Al
~ 61 o

where the first inequality is due to the recursion At+1 = (At__fl)% > Z%A%_e; the last inequality is due

to the fact the sequence {A}1_, is non-increasing. Now put the expression of 6 in and denote

2-8
o y(2u) P 2-8-p 22
C:mm{ 5 ’Q—ﬂ—p(Q =5 —1)A, }

We conclude for all t, we have

Thus, we have

s<(ga) ~\e=m=mi) (33)
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When C = 5 pfp(Q(Q_B_p)/@_ﬂ) — 1)A(()2757p)/p, in order to make A; < €, we have
p/(2—p—B)log ((2— B —p)Ct/p) =log (1/e),

which indicates T = O((% ) — B),

When C = CéP/p = O(e?/?), in order to make A, < e, taking logarithm we have
(2—B—p)Ce/rt

2-8—p

log ( ) ) =log ((1/e) 7).
Re-arrange above equality, we have T = (’)((%)2 - %) Thus, when 0 < p < 2 — 28, we have
T:O(%)2 7 ;when2—-28 < p<2—- [, we have T = O((%)g)

Case II: When p =2 — 3, It is equivalent to claim [, p satisfies % =1, descent inequality 6quat2’0n
reduces to

Apyr <Ay — %At (1- 7)At7
As long as p < %, the A; converges to 0.

A<= 2ya,=o(a- 1),

However, since the step-size rule of v includes target accuracy €. The convergence rate is not a standard
linear convergence. To obtain a e-stationary point, we have

t
A¢ < (1= 280 < exp(—5) A < (34)
which gives us iteration complexity
2 Ag 1.8 1
T=—1log(—)=0((=)7 log(-
—1oa(%%) = O((0)F o))
(2=8)/p
Case III: When p > 2 — $This case is equivalent to < 1. For simplicity, denote C' = % and
w = ﬁ, The sequence generated by recursion equation is guaranteed to converge to 0 when € | 0.

For simplicity, rewriting equation as Apypq < At—CWAi/w. Notice Ay > 0, C > 0, {A}; is non-increasing.
Now suppose the sequence {A}y converge to a positive constant, denoted as D. There must exists 0 < £ < D
such that Ay > € for all t. Then we have

Appr <A, — CyAF < A, — CHEs.

Re-organize above recursion, we have TCHEY/Y < ZtT;()l Ay — A1 < Ag, which is equivalent as T <
% < 00. This fact contradicts to A > & for arbitrary t. In conclusion, as long as equation holds, the
sequence {A} converges to 0 as € | 0.

Next, we determine the local convergence rate. When Ay is small enough, At+1 will dominate Ayyq order-
wisely since 1/w < 1. This leads to refined recursion
1 1 1
CyARy < Appr + CyAL ) < Appr + CyAy < Ag.

The first inequality is due to non-negativity of A¢y1, the second inequality is due to Ayy1 < Ay, the third
inequality is a re-organization of equation . Denote Ty = inf{t € N\At/(C’y)w/w_l < 1}, then we have

2 t—To t—Tg

Appr < (Cy) AY = (Cy) @7 7% A,

w(1-wt=70) wt=To

= ()" =T A,
R (e R LV
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Since (Cv)*/“~1 only effects order of convergence up to a constant. To simplify analysis, denote C =
/ A N

(%)“/“_1 and then we have (Cy)*/*~1 = CeP/P+F=2 < O, since 0 < e < min{1,1/2u}, we further

reduce the recursion to

w™t=To o t-To
Apir < (Cp)/e=H((Cy)*/e7Y) Ty

t—T

<o(on==)" ag™
—o((5m)" ). (36)

Taking logarithm and multiply negative sign on both sides of equation[36, We have

(C'Y)ﬁ )
A, '

N

1og(g) = w70 log (
€
Now, extract ?/(P+8=2) from (C~)*/“~'/Ag,. We have
log ((CV)@/A%) = log <(C’/AT(,) : e%)
< (O/ATO) '6%,
where the last inequality is due to the fact log(x) < z,Vx > 0. Taking logarithm again, we have

Ty = 9log (()7777)).

F Proof of Proposition 3]

Proposition 3 (Convergence of GD) Let Assumptions |1 and [ hold. Assume there exists a positive
constant G such that ||V f(x)|| < G,Vt € T, When p = 1 and setting « = = 1, by selecting v <
min{LiO, ﬁ}, gradient descent converges to an e-stationary point within T = Q(%) iterations.

Proof 5 When o = 1, putting the update rule of gradient descent w1 = wy —yV f(wy) into descent lemma
equation [1] yields

f(wiga)

< ) = AT+ Lo+ L[99 1)
= flw) = (v = 219 )+ B )

< ftwn) = 219 )| + Z2 )9 s

(4

)
< f(w) - 2| V@)

(37)
where (i) is due to descent lemma equation [1:(ii) and (iii) are due to the learning rate design v <

min{ﬁ,ﬁ}, which ensures —(y — LOTVQ) < -2 and L1272||Vf(wt)||3 < IV f(wp)|>. When applying
assumption | with p = 1 and denote f(wy) — f* as As, we have

A < A; — %Af (38)

The rest of proof is ezactly the same as proof for Theorem[1] Case I, we omit discussion here. As a result,
one can show equation E converges to a e-stationary point after O(%) iterations.
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G Proof of Theorem

Theorem 2 (Convergence of IAN- SGD) Let Assumptions [1, [4 and [4] hold. For the IAN-SGD algo-
rithm, choose learning rate v = min{ 11— o 4}“ s T m}, batch sizes B = 212, B' = 1672 and 6 = :—f
Denote A := F(wy) — F* + (Lo + L1)(1 + 73 /7)%. Then, with probability at least 3, IAN-SGD produces a
sequence satisfying ming<p ||VE (wy)|| < € if the total number of iteration T satisfies

956A 640L; 64(Lo + L1) + 12811 (372/m)"
el T 287 €2 }

T> Amax{ (17)

Proof 6 Start from descent lemma equation[3 and put the update rule of IAN-SGD, equation[I]) in, we have
F(U}t+1> — F(wt)
1 o
TP () (wisr —w) + (Lo -+ L[V () |) s — ]

T 2
VF Ve, 1 o ||V fes
- ) V) Lo gy oy [0l
t t

(39)

Since the update rule using IAN-SGD formulates a random trajectory in terms of wy, taking expectation over
&g and wy, using condition expectation rule, we have

o, [[Ee, [Fwipr) — F(wt>|wtﬂ
_'y]EgB H|VF(7.Ut) ||2|wt]
hy

H E&B[va&s Wi H |wt]}

<Eu,| o

V(Lo + L1 || VF (w;

When the expectation is conditioned on wy, we can simplify Ee, [[[VF(wy)|[*lwi] into ||[VF(w)||* since
VF(wy) is deterministic over £g. Additionally, by remarks induced by assumption |4}, when conditioned over
wy, randomness only comes from &g/, thus we have

7'2

272 2
Ee, [||V fen (wo)||Plwe] < (T + 1)[|VE(wy)||* + 22

B

See equation @

Let B = 27}, above inequality reduces to
B [V s w0 o] < 2P @)+ 5. (0

Put equation [0 into above descent lemma, we have

o, [Beyy [Fwisr) — F(w»lwt]]

|V F(w)|| e, [[|V fep (wr) || ]
ngt{—vT Y2 (Lo + L1 ||V F (w,) || ) =22 hﬁ;ﬁ ]
VF (wy) 2 VF(wy) +T 2 /78
Vet LR Ll s LR
:Ew,[(ﬁ—m s >) VE@)| + 3 )
By clipping structure and step size rule, from where we know % = min {1, 4L”(2va531/ @+ 2 )ﬁ} <1 and
v < 4L , we have
L 1
S5 <<y, (42)
1
YL ||[VE(w)]|* 1
hf < 1 (43)
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The last inequality in equation[{3 utilizes lemma[3, from where we know

(313) 1
> 3 (L3 2]V fey wo)] + )

(iv) 1 a
> VIV ey (w0)]| + )

© o

> L[| VF(wy)]|", (44)

where (i) utilizes the fact ht > 1 and 8 > «; (iii) utilize the fact that hY > 4L1'y(2HVng, (wt)H + %)ﬁ; (iv)
utilizes the fact that v < 4L , thus (4yLy) < (4yL1)*/8 since B € [a, 1]; (v) utilizes the fact stated fact in
Lemmal[3 Combining equatwn@ above descent lemma further reduces to

B [Ben [F(win) — F(wn)lw]]

v 1 o Lo+ Li||[VF(w,)||" 72
SEwt{—ﬁHVF(wt)W—&-ivg o+ L] ol —2]

hi” u

Term 1, See Lemma@

gl 1 & o
< Eu, { - WHVF(U&)W + 572(L0 + L)1+ 7?2)2 + MHVF(U%)HQ}

ol 2 1 72
=By, |- VPl + 57 T+ o1+ =7, (45)

where the last inequality utilize the inequality stated in Lemma[6, equation equation [53
Re-organize the inequality by putting the negative term to LHS, we have
2

E., [%fHVFWtW] < By, [Be, [F(w0) = Flwiir)|w] | + %(Lo + Ly (1+ %)2. Ve [T]  (46)

In order to express the LHS into a more tractable form, we want to express HVF}E% explicitly in a simpler
form. Using the fact W > min{ﬁ, ﬁ} We have 4
[V @l
Y hﬁ
1 ! }HVF(w )|

@ ey @ 7 f
(21) 1
> ymin {1, 5 HIVFw)|*

i GIvFeO )
(#4%) 1
> 4 min {1, 7 }||VF(wt)||2
ALyy 5HVF we)|[)? 4Ly (22)”

iv) { 1 1 } 2
=" min VF(w

LG E ) ey
v 1
® 1min {’y, }HVF(wt)H2

s GV o))’
(i) VE (w)|*°
> min {’yHVF t) 2,H2§}£1H}; (47)
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where (i) expands the expression of - e (ii) utilizes the equation to upper bounds ||V fe,, (ws)|| by

(11/V/ 1677 +1)||VF(wy)|| 4 m2//1677 by setting B' = 1677 ; (iii) utilizes the fact 3 > min{;-, 2b} where
a=32 ||VF Wy || b= 3:12 ; () puts 7y inside the minimum operator. From step size rule v < W’
we can directly delete the third term W’ which reduces expressions in (v); (vi) further replaces 5°

by 5 in demominator.

Since now equation [{7 has no randomness induced from {g:. Summing the above descent lemma from 0 to
T — 1, we have

T-1 28
e 2 [VE(wo)]
;wa [mm{ZHVF(“’t)” 80, H
T—1 5 )
< Ey, |—=||VF
< 2B | lvFol]
d L 5 30
<> Eu [Bew [F(we) = Flwnn)lwn]] + T572(Lo + L)(1 + 2R
i=1 i
By step size rule, from where we know v < ﬁ, we have
! VE(w)|* "’ 1 2
> Eu, [min { [ VF ()|, ”S(OU’ZHH < Flwo) = F* + 5 (Lo+ L1)(1 + :—‘%)2.
t=0

Denote K = {t|t € [T] such that VHVF(U%)HQ < %} , then above descent lemma can be reduced to

2 . 722 2
ZE“”[ [V E(w) | } < F(wy) = F* + 5 (Lo + L)(1 + 5)?,
teK 1

and

forte™ N 2
t;(:cEwt [T} < F(wo) = F +§(L0+L1)( +Tz) .

Now denote RHS by A = F(wg) — F* + 3(Lo + L1)(1 + :—22)2, then we have
1

i [V F (o)

ngt[min{‘K| Z HVF Wy H |KC Z HVF Wy ||H

teK teKe

@ || LS

<5 [min | g 2 IV P00 (g 2 I9Pol7) )]

<
< max T T

where (i) comes from the concavity y% and yﬁ and inverse Jensen’s inequality for concave function, and
the last inequality follows from descent lemma as well as either K > % or K¢ > % This implies, in order
to find a point satisfies

Pr(min [[VF(w)|| = €) <
te[T]

l\D\H

By Markov inequality, we must have E,, [mingepp [|[VEF (wy)|[]] < § when T satisfies

256A 640L, 64(Lo + Ly1) + 128L, (372 /)"

T>AmaX{ S = }. (48)
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H Proof of Lemma

Before proving Lemma [2] let us proof the technical lemma to determine the upper bound of mini-batch
stochastic gradient estimators given assumption [4]

Lemma 5 For mini-batch stochastic gradient estimator satisfying assumption |4}, denote og(w) as the ap-
prozimation error §p(w) = & Zil V fi(w) — VF(w), we have the upper bound

o5 (w)]| < 771HVF I +72). (49)

3

Proof 7 The proof follows from applying Jensen’s inequality for L2 norm.

(=7]
N
—~
£
NN
N—
)=

(NI

IN

IN
|~
— —
=
E
O®
~—

= (TlHVF(w)H + 72).

where the first inequality uses Jensen’s inequality and convexity of squared L2-norm; the second inequality
uses the assumption equation @

This fact leads to

[V feo )]l < (T + V| VE@)|| + 7=

VB \/E

Similarly, for variance of dg(w), we have the remark stated as following.

Remark 3 (Variance bound for mini-batch dp(w)) For wvariance of §(w), following the same logic
above, we have

Var(H(SB(w)H) = EHéB(w)HQ
1 & 1&
= E(( Y8 (5 Y 6;(w))
1 Z; 2
_ EE[ZH@@)H ]

S 7'1HVF H+T2
<L i — @R |VFw)|| + 273),

where the first inequality is due to equation[I5. Thus, it is equivalent as

27'2

Ee, [[|V fes ()] < DIVE@)[*+ 5 (51)
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Lemma 2 Let Assumptions@ and hold. Consider the mini-batch stochastic gradient V fe, with batch size

B = 167¢, then for all w € R* we have
-5

1
[Vsea)] 2 3IVF@)] - 52

(16)

Proof 8 (Proof of Lemma |2 ' When ||VF H is large such that HVF )H 72, then equation indi-

cates
271 ||VE(w)||

oot < 272

In this case, if we choose B = 167, we have ||0p(w)|| < 1||VF(w)||. Since in this case, we assume,

||VF || 2> , we have

- 27’
1
1V fea ()| = [VF@)]| < 5l1PG)])
which is equivalent as
[V fes ()| = [|VE(w)]| = "||VF )
And this fact leads to
*||VF ) < 1V e )] < 1V feo ()] + 5=

Re-organize the term gives us

1 T
[Vfea )] = 5 VF@)] = 52
Similarly, when HVF H < T’;‘, for single stochastic sample, by assumptzonl we have H(5
equation[9, for mini-batch stochastic gradient estimator, we have
27’2
1) < —=.
H B(w)H ~ VB
By setting B = 1672, we have HéB(w)H < 3% . This fact leads to
19 /eo ()| = [VE@)]| < 2%
which is equivalent as
IV fe ()| = [[VE(w)|| = =5~
Thus, we have
*HVF ) < IVF@)]
_ 2 T2
= ||[VF(w)|| + 5 s
~
< || Vies ()| + ﬁ

which leads to
1 T
[Vfea (@l = 5 IV FG - 3=

Combine above, we conclude by choosing B = 1672, we always have

9 fewtw)]| 2 5[V P = 5o

31
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I Lemma [6] and proof

Lemma 6 For the "Term 1" defined in equation[[5, we have upper bound
1 5 (Lo+ L1||VF(wt)Ha) 722 <
h2P G

Lo+ L)+ 5+ LlIVE@OIl (53)

DO |
)

Proof 9 When ||VF(w,)| < /1+ 73/, we have ||VF(wt)Ha < (1 +712/13)% for any o > 0. Since
(1+73/7%) > 1 and (1 + 73 /7¢) > 73 /7%. These facts lead to

1 o (Lo + L||[VF(w)||") 73

2
27 28 72
1 2 T22 Q(LO+L1) 7'22
< — 1 B A A
S U e
1 T2 o T2
<SP (Lo+ L) (14 3)2(1+3)
2 Ti Ti
1, 722 2
< 37 (Lo + L1)(1+ p) ) (54)

where the first inequality comes from ||VF(w,)|| < \/1+72/72 and 1 + 73/7 > 1; the second inequality
comes from the fact that h% <1, so does h%ﬂ, and upper bound 73 /7% by (1+ 73 /72); the last inequality uses

t
the fact that 0 < o <1 and (14 73/73)' /2 < (1 4 73 /1%)2.

When ||VF(w)|| > /1 + 73 /72, we must have HVF(wt)H2 > (1+713/18) > 13/78 for any a > 0, Thus, we
conclude

2 L[ VEw)|" 73

RS g
T2 Y ot
2 L[ VE@)|" 75
2h7 hy &
() ~2 L1||VF ¢
¢ 2RI )
2hy hy
@ 42 Li|VF@w) IV F (o)

2h? (4L17) 2|V fe,, (wo)[[ + )P

[}

i) 42 Lp||VF(w,)|

< L VF(w)|
20 (4L17) ||V F (w,)||” | |
S
2hy ALy ||V F (w,) |
(iv) ,YQ Ll 9
< ﬁéleHVF(wt)H
~ 2

where (i) comes from the fact that ||VF(w)|| > +/1+73/7%; (ii) comes from the fact L <

hy
4L17(2||Vng,1(w1,)||+Tz/n)5" (iii) comes to the fact ||V F(wy)|| < 2||V fe,, (we)|| + 72/71; (i) comes from the
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fact that now ||[VF(w)|| > 1, thus W < 1. Similarly, when ||VF(wy)|| = /1+73/72, we can

2
upper bound $7?Lo7% by
1

1, 7'22
——~2Ly- 2
2P i

%VLOHVF(W)HQ
lfHVF w)|)?, (56)
where the first inequality uses the fact ||VF(wt)H > /(1 +73/7%) and hiﬁ < 1, second inequality uses the

fact vLg < i.
Combine equation[5]}, equation[53, equation [56 give us desired result.
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