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Abstract

To understand a story with multiple events,001
it is important to capture the proper relations002
across these events. However, existing event003
relation extraction (ERE) framework regards it004
as a multi-class classification task and do not005
guarantee any coherence between different re-006
lation types, such as anti-symmetry. If a phone007
line died after storm, then it is obvious that008

the storm happened before the died. Current009
framework of event relation extraction do not010
guarantee this coherence and thus enforces it011
via constraint loss function (Wang et al., 2020).012
In this work, we propose to modify the un-013
derlying ERE model to guarantee coherence014
by representing each event as a box represen-015
tation (BERE) without applying explicit con-016
straints. From our experiments, BERE also017
shows stronger conjunctive constraint satisfac-018
tion while performing on par or better in F1019
compared to previous models with constraint020
injection.021

1 Introduction022

A piece of text can contain several events. In order023

to truly understand this text, it is vital to understand024

the subevent and temporal relationships between025

these events.(Mani et al., 2006a; Chambers and Ju-026

rafsky, 2008; Yang and Mitchell, 2016; Araki et al.,027

2014). Both temporal as well as subevent relation-028

ships between events satisfy transitivity constraints.029

For instance, “There was a storm in Atlanta in the030

night. All the phone lines were dead the next morn-031

ing. I was not able to call for help.”, the event032

marked by dead occurs after storm and the event033

call occurs after dead. Hence, by transitivity, a sen-034

sible model should predict that storm occurs before035

call. In general, predicting the relationships be-036

tween different events in the same document, such037

that these predictions hold coherent structure, is a038

challenging task (Xiang and Wang, 2019).039

While previous work utilizing neural methods040

provide competitive performances, these works em-041

ploy multi-class classification per event-pair inde- 042

pendently and are not capable of preserving logical 043

constraints among relations, such as asymmetry 044

and transitivity, during training time (Ning et al., 045

2019; Han et al., 2019a). To address this problem 046

Wang et al. (2020) introduced a constrained learn- 047

ing framework, wherein they enforce logical co- 048

herence amongst the predicted event types through 049

extra loss terms. However, since the coherence is 050

enforced in a soft manner using extra loss terms, 051

there is still room for incoherent predictions. In 052

this work, we show that it is possible to induce co- 053

herence in a much stronger manner by representing 054

each event using a box (Dasgupta et al., 2020). 055

We propose a Box Event Relation Extraction 056

(BERE) model that represents each event as a prob- 057

abilistic box. Box embeddings (Vilnis et al., 2018) 058

were first introduced to embed nodes of hierarchi- 059

cal graphs in to into euclidean space using hyper- 060

rectangles, which were later extended to jointly 061

embed multi-relational graphs and perform logical 062

queries (Patel et al., 2020; Abboud et al., 2020). In 063

this paper, we represent an event complex using 064

boxes–one box for each event. Such a model en- 065

forces logical constraints by design (see Section 066

3.2). Consider the example in Figure 1. Event dead 067

(e2) follows event storm (e1), indicating e2 is child 068

of e1. Boxes can represent these two events as sep- 069

arate representations and by making e1 to contain 070

the box e2, which not only preserve their seman- 071

tics, but also can infer its antisymmetric relation 072

that event e3 is a parent of event e1. However, the 073

previous models based on pairwise-event vector 074

representations have no real relation between repre- 075

sentations (e1, e2) and (e2, e1) that can guarantee 076

the logical coherence. 077

Experimental results over three datasets, HiEve, 078

MATRES, and Event StoryLine (ESL), show that 079

our method improves the baseline (Wang et al., 080

2020) by 6.8 and 4.2 F1 points on single task and 081

by 0.95 and 3.29 F1 points on joint task over sym- 082
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metrical dataset. Furthermore, our approach with-083

out using constrained learning clearly decreases084

conjunctive constraints by 4.36% and 3.29% on085

single task and by 0.4% and 1.14% on joint task086

over asymmetrical and symmetrical datasets, re-087

spectively. We show that handling antisymmetric088

constraints, that exist among different relations,089

can satisfy the interwined conjunctive constraints090

and encourage the model towards a coherent output091

across temporal and subevent tasks.092

2 Background093

Task description Given a document consisting094

of multiple events e1, e2, . . . , en, we wish to pre-095

dict the relationship between each event pair096

(ei, ej). We denote by Rei,ej the relation be-097

tween event pair (ei, ej). It value in the label098

space { PARENT-CHILD, CHILD-PARENT, COREF,099

NOREL} for subevent relationship (HiEve) and100

{BEFORE, AFTER, EQUAL, VAGUE} for temporal101

relationship (MATRES).1 Both subevent and tem-102

poral relationships have four similar-category rela-103

tionship labels where the first two labels, (PARENT-104

CHILD,CHILD-PARENT) and (BEFORE, AFTER)105

hold reciprocal relationship, the third label (COREF106

and EQUAL) occurs when it is hard to tell which of107

the first two labels that event pair should be classi-108

fied to. Lastly, the last label NOREL and VAGUE109

represents a case when an event pair is not related110

at all.111

Logical constraints Symmetry constraint indi-112

cate the event pair (e1, e2) with relation Re1,e2113

(BEFORE) flipping orders will have the reversed114

relation R̄e2,e1 (AFTER), i.e. Rei,ej ↔ R̄ei,ej .115

Conjunctive constraints refer to the constraints that116

exist in the relations among any event triplet. Given117

three event pairs, (ei, ej), (ej , ek), and (ei, ek),118

then the relation of Rei,ek has to fall into the con-119

junction set D(Rei,ej , Rej ,ek) specified based on120

relations of (ei, ej) and (ej , ek) (see Appendix G121

for more details).122

Box embeddings A box b =
∏d

i=1 [bm,i, bM,i]123

such that b ⊆ Rd is characterized by its min and124

max endpoints bm, bM ∈ Rd, with bm,i < bM,i ∀i.125

In the probabilistic gumbel box, these min and max126

points are taken to be independent gumbel-max127

and gumbel-min random variables, respectively.128

As shown in Dasgupta et al. (2020), if b and c129

1See Appendix C for the detailed information of HiEve
and Matres.

are two such gumbel boxes then their volume and 130

intersection is given as: 131

Vol(b) =
d∏
i=1

log
(
1 + exp (

bM,i − bm,i
β

− 2γ)
)

b ∩ c =
d∏
i=1

[
l(bm,i, cm,i;β), l(bM,i, cM,i;−β)

]
,

132

where l(x, y;β) = β log(e
x
β + e

y
β ), β is the tem- 133

perature, which is a hyperparameter, and γ is the 134

Euler-Mascheroni constant.2 135

3 BERE model 136

In this section, we present the proposed box model 137

BERE for event-event relation extraction. As de- 138

picted in Figure 1, the proposed model encodes 139

each event ei as a box bi in Rd based on ei’s 140

contextualized vector representation hi. As de- 141

scribed in §3.1, the relation between (ei, ej) is 142

then predicted using conditional probability scores 143

P (bi|bj) = Vol(bi ∩ bj)/Vol(bj), P (bj |bi) = 144

Vol(bi ∩ bj)/Vol(bi) defined on box space. Lastly, 145

§3.2 describes loss function used to learn the pa- 146

rameters of the model. 147

3.1 Inference rule on conditional probability 148

Notice that given two boxes bi and bj , a higher 149

value of P (bi|bj) (resp. P (bj |bi)) implies that 150

box bj is contained in bi (resp. bi contained in 151

bj). Moreover, other than complete containment 152

in either direction, there are other two prominent 153

configurations possible, i.e. one where bi, bj 154

overlap but none contains the other, and the one 155

where bi, bj do not overlap. It is possible to cap- 156

ture all four configurations by comparing the val- 157

ues of P (bi|bj) and P (bj |bi) with a threshold δ. 158

Figure 1(B) states our classification rule formu- 159

lated based on this observation. With this formu- 160

lation we have the desired symmetry constraint, 161

i.e., Rei,ej = PARENT-CHILD ⇐⇒ Rej ,ei = 162

CHILD-PARENT, satisfied by design. 163

3.2 Loss functions for training 164

BCE loss As we require two dimensions of scalar 165

P (bi|bj) and P (bj |bi) to classify Rei,ej , and for 166

ease of notation, we define our label space with 167

2-dimensional binary variable y(i,j) as shown in 168

Figure1(b). Where y(i,j)0 = I(P (bi|bj) ≥ δ) and 169

y
(i,j)
1 = I(P (bj |bi) ≥ δ) where I(·) stands for 170

2https://en.wikipedia.org/wiki/Euler%
27s_constant
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There was a storm . . .
e1

All the phone lines were dead . . .
e2

. . . not able to call for help
e3

b1: storm

b3: call b2: dead

(B)

(A) 



e1 and e3 are PC
∥∥ e1 is Before e3

e1 and e2 are PC
∥∥ e1 is Before e2

e2 and e3 are CP
∥∥ e2 is After e3

(C)

Vector(e2 , e3) Vector(e3 , e2)

6⇔

⇔

e2 e3

HierRel 0.1 0.2 0.0 0.7 0.4 0.3 0.0 0.3

Parent-Child (e2, e3) Child-Parent (e3, e2)

BERE(e2 , e3) BERE(e3 , e2)

Parent-Child (e2, e3) Child-Parent (e3, e2)

b2

b3
b2∩b3

bi

bj

bi

bj

bj

bi

bi

bj

Parent-Child10(
P (bi|bj)≥δ &P (bj |bi)<δ

) Child-Parent01 CoRef11 NoRel00(
P (bi|bj)<δ &P (bj |bi)≥δ

) (
P (bi|bj)≥δ &P (bj |bi)≥δ

) (
P (bi|bj)<δ &P (bj |bi)<δ

)

Softmax Softmax

Figure 1: (A) BOX model architecture. (B) Mapping from box positions to event relations with classification rule below. (C) An
example shows the fundamental difference between VECTOR and BOX model: BOX model will map events into consistent box
representations regardless of the order; VECTOR model treats both cases separately and may not persist logical consistency.

indicator function. Now given batch B, BCE loss171

(L1) is defined as:172

−
∑

(i,j)∈B

(
y
(i,j)
0 logP (bi|bj) + (1− y(i,j)0 ) log (1− P (bi|bj))

+ y
(i,j)
1 logP (bj |bi) + (1− y(i,j)1 ) log (1− P (bj |bi))

)
.

173

Pairwise loss Motivated from previous papers174

using pairwise features to characterize relations,175

we also incorporate a pairwise box into our learn-176

ing objective, and only in learning time, to en-177

courage relevant boxes to be concentrated together.178

For the event-pair representation, two contextu-179

alized event embeddings (hi, hj) are combined180

as [hi, hj , hi � hj ] where � represents element-181

wise multiplication. Then, a multi-layer perceptron182

(MLP) is used to transform pairwise vectors to183

box representations bij . The pairwise features we184

use here are similar to (Zhou et al., 2020) except185

that we do not use subtraction in order to preserve186

symmetry between pairwise features of (ei, ej) and187

(ej , ei), i.e. bij = bji. For two related events, we188

enforce the intersection of corresponding boxes189

bi ∩ bj to be inside the pairwise box. For irrelevant190

event pairs such as having NOREL or VAGUE, their191

intersection and pairwise boxes are forced to be192

disjoint. The pairwise loss L2 is defined as:193

−
∑

i,j∈R+

logP (bi ∩ bj |bij)−
∑

i,j∈R−
log
(
1− P (bi ∩ bj |bij)

)
194

where R− for irrelevant relations, such as NOREL195

and VAGUE, and R+ stands for complement set of196

R−, i.e. all the set of relations that indicates two197

events have some relation.198

In the remainder of the paper, BERE refers to a199

model trained with loss L1 and BERE-p refers to200

a model trained with two losses L1,L2 combined.201

Table 1: F1 scores of BERE and BERE-p

Model F1 Score
HiEve MATRES

BERE 0.4483 0.7069
BERE-p 0.4771 0.7105

4 Experiments 202

In this section, we describe datasets, baseline meth- 203

ods, and evaluation metrics. Lastly, we provide 204

experimental results and a detailed analysis of logi- 205

cal consistency. 206

4.1 Experimental Setup 207

Datasets Experiments are conducted over three 208

asymmetrical event relation extraction corpus, 209

HiEve (Glavaš and Šnajder, 2014), MATRES 210

(Ning et al., 2018), and Event StoryLine (ESL) 211

(Caselli and Vossen, 2017). Since knowing 212

Re1,e2 (PARENT-CHILD or BEFORE) implies 213

Re2,e1 (CHILD-PARENT or AFTER), we expand 214

our test set to be symmetrical for these reciprocal 215

relations PARENT-CHILD, CHILD-PARENT, BE- 216

FORE and AFTER. See Appendix C for the dataset 217

details. 218

Baseline We compare our BERE, BERE-p 219

against the state-of-the-art event-event relation ex- 220

traction model proposed by (Wang et al., 2020). 221

This model utilizes RoBERTa with frozen parame- 222

ters and further trains BiLSTM to represent text in- 223

puts into vector hi (for ei) and then further utilizes 224

MLP to represent pairwise representation vij for 225

(ei, ej). Given vij , vector model (Vector) simply 226

computes softmax over projected logits to produce 227

probability for every possible relations. On top of 228
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Table 2: F1 scores with symmetric and conjunctive constraint violation results over original and symmetrical
datasets. symm const. and conj const. denote symmetric and conjunctive constraint violations (%), respectively; H,
M, and ESL are HiEve, MATRES, Event StoryLine datasets, respectively; single task(top) and joint task(bottom)

Model
F1 Score symmetry const. conjunctive const.

Original data Symmetric evaluation
H M ESL H M ESL H M ESL H M ESL

Vector 0.4437 0.7274 0.2660 0.5385 0.7288 0.4444 22.49 35.81 60.9 4.91 2.53 6.1
BERE-p 0.4771 0.7105 0.3214 0.6064 0.7714 0.5379 0 0 0 0.71 0.30 0

Joint H+M H+M
Vector 0.4727 0.7291

n/a
0.5517 0.7405

n/a
86.77

n/a
6.17

n/aVector-c 0.5262 0.7068 0.6166 0.7106 46.03 2.98
BERE-p 0.5053 0.7125 0.6261 0.7734 0 1.84

this, as (Wang et al., 2020) showed that constraint229

injection improves performance, we also compare230

with the constraint-injected model (Vector-c).231

For a fair comparison, we utilize the same232

RoBERTa + BiLSTM + MLP architecture for pro-233

jecting event to box representation.234

Metrics Following the same evaluation setting in235

previous works, we report the micro-F1 score of236

all pairs, except VAGUE pairs, on MATRES (Han237

et al., 2019b; Wang et al., 2020). On HiEve and238

ESL, the micro-F1 score of PARENT-CHILD and239

CHILD-PARENT pairs is reported (Glavaš and Šna-240

jder, 2014; Wang et al., 2020).241

4.2 Results and Discussion242

Impact of pairwise box, Table 1 We first show243

the results of the BERE and BERE-pwith and with-244

out pairwise loss. The model with pairwise loss245

shows about 2.8 F1 point improvement on HiEve246

and 1 F1 point improvement on MATRES. It in-247

dicates that promoting the relevant event pairs to248

mingle together in the geometrical space is helpful249

and it is particularly useful when most of the rela-250

tion extraction model encodes individual sentences251

independently.252

Vector-based vs. Box-based, Table 2 Table 2253

shows a comparison of our box approach to the254

baseline with the ratio of symmetric and conjunc-255

tive constraint violations. Our approach clearly256

outperforms the baseline methods on symmetric257

evaluation with a gain of 6.79, 4.26, and 9.34 F1258

points on the single task over HiEve, MATRES,259

and ESL datasets, respectively and with a gain of260

0.95 and 3.29 F1 points on the joint task over HiEve261

and MATRES. The performance gains from asym-262

metrical to symmetrical datasets with BERE-p are263

much larger compared to the increase of Vectors.264

This demonstrates the BERE-p successfully cap-265

ture symmetrical relations, while previous vec-266

tor models do not. In addition, it is noteworthy 267

that our method without constrained learning ex- 268

cels Vector-c, which is trained with constrained 269

learning. This suggests that the inherent ability to 270

model symmetrical relations helps satisfy the in- 271

tertwined conjunctive constraints, thus producing 272

more coherent results from a model. See Appendix 273

F for constraint violation statistics for asymmetric 274

dataset. 275

Constraint Violation Analysis, Table 7 (Ap- 276

pendix) We analyze constraint violations for 277

each label from both HiEve and MATRES. For 278

label pairs from the same dataset, our approach 279

excels in almost every cases. For label pairs across 280

datasets, our approach also shows fewer or similar 281

levels of violation. This further indicates, with- 282

out explicitly injecting constraints into objectives, 283

our model can persist logical consistency among 284

different relations. 285

5 Conclusion 286

We propose a novel event relation extraction 287

method that utilizes box representation. The pro- 288

posed method projects each event to a box represen- 289

tation which can model asymmetric relationships 290

between entities. Utilizing this box representation, 291

we design our relation extraction model to han- 292

dle antisymmetry between events of (ei, ej) and 293

(ej , ei) which previous vector models were not ca- 294

pable of. Thorough experiment on three datasets, 295

we show that the proposed method not only free of 296

antisymmetric constraint violations but also have 297

drastically lower conjunctive constraint violations 298

while maintaining similar or better performance 299

in F1. Our model shows that box representation 300

can provide coherent classification across multi- 301

ple event relations and opens up future research 302

for box representations in event-to-event relation 303

classification. 304
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Ralph Abboud, İsmail İlkan Ceylan, Thomas306
Lukasiewicz, and Tommaso Salvatori. 2020.307
Boxe: A box embedding model for knowledge base308
completion. In Proceedings of the Thirty-Fourth An-309
nual Conference on Advances in Neural Information310
Processing Systems (NeurIPS).311

Anonymous. 2022. Modeling label space interactions312
in multi-label classification using box embeddings.313
In Submitted to The Tenth International Conference314
on Learning Representations. Under review.315

Jun Araki, Zhengzhong Liu, Eduard Hovy, and Teruko316
Mitamura. 2014. Detecting subevent structure for317
event coreference resolution. In Proceedings of318
the Ninth International Conference on Language319
Resources and Evaluation (LREC’14), Reykjavik,320
Iceland. European Language Resources Association321
(ELRA).322

Lukas Biewald. 2020. Experiment tracking with323
weights and biases. Software available from324
wandb.com.325

Tommaso Caselli and Piek Vossen. 2017. The event326
StoryLine corpus: A new benchmark for causal and327
temporal relation extraction. In Proceedings of the328
Events and Stories in the News Workshop, pages 77–329
86, Vancouver, Canada. Association for Computa-330
tional Linguistics.331

Nathanael Chambers and Daniel Jurafsky. 2008.332
Jointly combining implicit constraints improves tem-333
poral ordering. In Proceedings of the 2008 Con-334
ference on Empirical Methods in Natural Language335
Processing, pages 698–706, Honolulu, Hawaii. As-336
sociation for Computational Linguistics.337

Tejas Chheda, Purujit Goyal, Trang Tran, Dhruvesh Pa-338
tel, Michael Boratko, Shib Sankar Dasgupta, and339
Andrew McCallum. 2021. Box embeddings: An340
open-source library for representation learning using341
geometric structures. In Proceedings of the 2021342
Conference on Empirical Methods in Natural Lan-343
guage Processing: System Demonstrations, pages344
203–211, Online and Punta Cana, Dominican Re-345
public. Association for Computational Linguistics.346

Shib Sankar Dasgupta, Michael Boratko, Dongxu347
Zhang, Luke Vilnis, Xiang Lorraine Li, and Andrew348
McCallum. 2020. Improving local identifiability in349
probabilistic box embeddings. In NeurIPS.350

Dmitriy Dligach, Timothy Miller, Chen Lin, Steven351
Bethard, and Guergana Savova. 2017. Neural tem-352
poral relation extraction. In Proceedings of the 15th353
Conference of the European Chapter of the Associa-354
tion for Computational Linguistics: Volume 2, Short355
Papers, pages 746–751, Valencia, Spain. Associa-356
tion for Computational Linguistics.357

Goran Glavaš and Jan Šnajder. 2014. Constructing co-358
herent event hierarchies from news stories. In Pro-359
ceedings of TextGraphs-9: the workshop on Graph-360
based Methods for Natural Language Processing,361

pages 34–38, Doha, Qatar. Association for Compu- 362
tational Linguistics. 363

Rujun Han, Qiang Ning, and Nanyun Peng. 2019a. 364
Joint event and temporal relation extraction with 365
shared representations and structured prediction. In 366
2019 Conference on Empirical Methods in Natural 367
Language Processing (EMNLP). 368

Rujun Han, Qiang Ning, and Nanyun Peng. 2019b. 369
Joint event and temporal relation extraction with 370
shared representations and structured prediction. 371
CoRR, abs/1909.05360. 372

Inderjeet Mani, Marc Verhagen, Ben Wellner, 373
Chong Min Lee, and James Pustejovsky. 2006a. 374
Machine learning of temporal relations. In Pro- 375
ceedings of the 21st International Conference on 376
Computational Linguistics and 44th Annual Meeting 377
of the Association for Computational Linguistics, 378
pages 753–760, Sydney, Australia. Association for 379
Computational Linguistics. 380

Inderjeet Mani, Marc Verhagen, Ben Wellner, 381
Chong Min Lee, and James Pustejovsky. 2006b. 382
Machine learning of temporal relations. In Pro- 383
ceedings of the 21st International Conference on 384
Computational Linguistics and the 44th Annual 385
Meeting of the Association for Computational Lin- 386
guistics, ACL-44, page 753–760, USA. Association 387
for Computational Linguistics. 388

Qiang Ning, Zhili Feng, and Dan Roth. 2017. A struc- 389
tured learning approach to temporal relation extrac- 390
tion. In Proceedings of the 2017 Conference on 391
Empirical Methods in Natural Language Processing, 392
pages 1027–1037, Copenhagen, Denmark. Associa- 393
tion for Computational Linguistics. 394

Qiang Ning, Sanjay Subramanian, and Dan Roth. 2019. 395
An improved neural baseline for temporal relation 396
extraction. In EMNLP. 397

Qiang Ning, Hao Wu, and Dan Roth. 2018. A multi- 398
axis annotation scheme for event temporal relations. 399
In Proceedings of the 56th Annual Meeting of the As- 400
sociation for Computational Linguistics (Volume 1: 401
Long Papers), pages 1318–1328, Melbourne, Aus- 402
tralia. Association for Computational Linguistics. 403

Yasumasa Onoe, Michael Boratko, Andrew McCallum, 404
and Greg Durrett. 2021. Modeling fine-grained en- 405
tity types with box embeddings. In Proceedings of 406
the 59th Annual Meeting of the Association for Com- 407
putational Linguistics and the 11th International 408
Joint Conference on Natural Language Processing 409
(Volume 1: Long Papers), pages 2051–2064, Online. 410
Association for Computational Linguistics. 411

Dhruvesh Patel, Shib Sankar Dasgupta, Michael Bo- 412
ratko, Xiang Li, Luke Vilnis, and Andrew McCal- 413
lum. 2020. Representing joint hierarchies with box 414
embeddings. In Automated Knowledge Base Con- 415
struction. 416

5

https://openreview.net/forum?id=tyTH9kOxcvh
https://openreview.net/forum?id=tyTH9kOxcvh
https://openreview.net/forum?id=tyTH9kOxcvh
http://www.lrec-conf.org/proceedings/lrec2014/pdf/963_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/963_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/963_Paper.pdf
https://www.wandb.com/
https://www.wandb.com/
https://www.wandb.com/
https://doi.org/10.18653/v1/W17-2711
https://doi.org/10.18653/v1/W17-2711
https://doi.org/10.18653/v1/W17-2711
https://doi.org/10.18653/v1/W17-2711
https://doi.org/10.18653/v1/W17-2711
https://aclanthology.org/D08-1073
https://aclanthology.org/D08-1073
https://aclanthology.org/D08-1073
https://aclanthology.org/2021.emnlp-demo.24
https://aclanthology.org/2021.emnlp-demo.24
https://aclanthology.org/2021.emnlp-demo.24
https://aclanthology.org/2021.emnlp-demo.24
https://aclanthology.org/2021.emnlp-demo.24
https://aclanthology.org/E17-2118
https://aclanthology.org/E17-2118
https://aclanthology.org/E17-2118
https://doi.org/10.3115/v1/W14-3705
https://doi.org/10.3115/v1/W14-3705
https://doi.org/10.3115/v1/W14-3705
http://arxiv.org/abs/1909.05360
http://arxiv.org/abs/1909.05360
http://arxiv.org/abs/1909.05360
https://doi.org/10.3115/1220175.1220270
https://doi.org/10.3115/1220175.1220270
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.18653/v1/2021.acl-long.160
https://doi.org/10.18653/v1/2021.acl-long.160
https://doi.org/10.18653/v1/2021.acl-long.160
https://openreview.net/forum?id=J246NSqR_l
https://openreview.net/forum?id=J246NSqR_l
https://openreview.net/forum?id=J246NSqR_l


Marc Verhagen, Robert Gaizauskas, Frank Schilder,417
Mark Hepple, Graham Katz, and James Pustejovsky.418
2007. Semeval-2007 task 15: Tempeval temporal419
relation identification. In Proceedings of the 4th In-420
ternational Workshop on Semantic Evaluations, Se-421
mEval ’07, page 75–80, USA. Association for Com-422
putational Linguistics.423

Marc Verhagen and James Pustejovsky. 2008. Tem-424
poral processing with the tarsqi toolkit. In 22nd425
International Conference on on Computational Lin-426
guistics: Demonstration Papers, COLING ’08, page427
189–192, USA. Association for Computational Lin-428
guistics.429

Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew Mc-430
Callum. 2018. Probabilistic embedding of knowl-431
edge graphs with box lattice measures. In ACL. As-432
sociation for Computational Linguistics.433

Haoyu Wang, Muhao Chen, Hongming Zhang, and434
Dan Roth. 2020. Joint constrained learning for435
event-event relation extraction. In Proceedings of436
the 2020 Conference on Empirical Methods in Nat-437
ural Language Processing, EMNLP 2020, Online,438
November 16-20, 2020, pages 696–706. Association439
for Computational Linguistics.440

Wei Xiang and Bang Wang. 2019. A survey of event ex-441
traction from text. IEEE Access, 7:173111–173137.442

Bishan Yang and Tom M. Mitchell. 2016. Joint extrac-443
tion of events and entities within a document context.444
In Proceedings of the 2016 Conference of the North445
American Chapter of the Association for Computa-446
tional Linguistics: Human Language Technologies,447
pages 289–299, San Diego, California. Association448
for Computational Linguistics.449

Guangyu Zhou, Muhao Chen, Chelsea J T Ju, Zheng450
Wang, Jyun-Yu Jiang, and Wei Wang. 2020. Muta-451
tion effect estimation on protein–protein interactions452
using deep contextualized representation learning.453
NAR Genomics and Bioinformatics, 2(2). Lqaa015.454

6

https://doi.org/10.18653/v1/2020.emnlp-main.51
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://doi.org/10.1109/ACCESS.2019.2956831
https://doi.org/10.1109/ACCESS.2019.2956831
https://doi.org/10.1109/ACCESS.2019.2956831
https://doi.org/10.18653/v1/N16-1033
https://doi.org/10.18653/v1/N16-1033
https://doi.org/10.18653/v1/N16-1033
https://doi.org/10.1093/nargab/lqaa015
https://doi.org/10.1093/nargab/lqaa015
https://doi.org/10.1093/nargab/lqaa015
https://doi.org/10.1093/nargab/lqaa015
https://doi.org/10.1093/nargab/lqaa015


Table 3: An overview of dataset statistics.

HiEve MATRES ESL
# of Documents

Train 80 183 155
Dev - 72 51
Test 20 20 52

# of Pairs
Train 35001 6332 2238
Test 7093 827 619

Table 4: Mapped relation labels from ESL to HiEve

Original labels in ESL Mapped Labels
RISING_ACTION

PARENT-CHILD
CONTAINS
BEFORE
PRECONDITION
ENDED_ON
FALLING_ACTION

CHILD-PARENT
AFTER
BEGUN_ON
CAUSE
OVERLAP NOREL

A Hyperparameters455

We utilize 768 dimensional pretrained RoBERTa456

model to compute word embeddings for events.457

models are trained for 100 epochs with AMSGrad458

optimizer and the learning rate is set to be 0.001.459

On HiEve and ESL, we sample NOREL in trainset460

using downsample ratio, which is fixed to 0.015,461

and the downsample ratio for valid and testset is462

fixed to 0.4. This is to encourage the models to463

learn and evaluate all types of relations that exist464

in the datasets when NOREL overwhelmingly rep-465

resents the dataset. We use three weights, λ1, λ2,466

and λ3, to balance our three learning objectives L1,467

L2, and L3 (see Section 3.2 and Appendix B), in468

which the weights are selected between 0.1 and 1.469

A threshold δ for HiEve is selected between -0.4470

and -0.3 and a threshold for MATRES is chosen471

between -0.7 and -0.6. We use wandb (Biewald,472

2020) tool for efficient hyperparameter tuning.473

B Conjunctive Consistency Loss474

With consistency requirements on conjunctive475

relations over temporal and subevent datasets476

(as shown in Table 5), we incorporate the477

loss function introduced by (Wang et al., 2020)478

into our box model to handle conjunctive con-479

straints. Three events are grouped into three480

pairs, (e1, e2), (e2, e3) and (e1, e3), and the re-481

lation score for each class is calculated based on482

conditional probabilities and its binary logits. With483

the relation labels defined for each class (see Sec-484

tion 3.2), the relation score, r(e1, e2), is calculated 485

as: 486

ri = y
(i,j)
0 logP (bi|bj) + y

(i,j)
1 logP (bj |bi) (1) 487

where y(i,j)0 = I(P (bi|bj) ≥ δ) and y(i,j)1 = 488

I(P (bj |bi) ≥ δ) and y(i,j)0 and y(i,j)1 are the first 489

and second binary logits in relation label, respec- 490

tively. Using this relation score, we now define the 491

loss function for modeling conjunction constraints: 492

493

L3 =
∑
|Lt1|+

∑
|Lt2|, (2) 494

where the two transitivity losses are defined as 495

Lt1 = log r(e1,e2) + log r(e2,e3) + log r(e1,e3)

Lt2 = log r(e1,e2) + log r(e2,e3) + log(1− r(e1,e3)) 496

Table 6 presents the results of BERE-p com- 497

bined with the above learning objective, denoted as 498

BERE-c. Compared to the results from BERE-p, 499

BERE-c shows a significantly smaller ratio of 500

constraint violations than BERE-p, while sacri- 501

ficing F1 by ∼2 point from the performance with 502

BERE-p. 503

C Additional Details on the Data 504

Table 3 shows a brief summary of dataset statis- 505

tics. HiEve consists of 100 articles and the nar- 506

ratives in news stories are represented as event 507

hierarchies (Glavaš and Šnajder, 2014). The an- 508

notations include subevent and coreference rela- 509

tions. MATRES is a four-class temporal relation 510

dataset, which contains 275 news articles drawn 511

from a number of different sources (Ning et al., 512

2018). Event StoryLine (ESL) corpus is a dataset 513

that contains 258 news documents and includes 514

event temporal and subevent relations (Caselli and 515

Vossen, 2017). ESL labels are mapped to the rela- 516

tion types that exist in the HiEve dataset as shown 517

in Table 4. 518

For creating symmetrical dataset, we augment 519

PARENT-CHILD and CHILD-PARENT (BEFORE 520

and AFTER) pairs by their reversed relations 521

CHILD-PARENT and PARENT-CHILD (AFTER and 522

BEFORE), respectively. 523

D Vector model architecture 524

Refer to Figure 2 for architecture of previous vector 525

models. 526
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Table 5: The induction table for conjunctive constraints on temporal and subevent relations (Wang et al., 2020).
Given three events, e1, e2, and e3, the left-most column is r1(e1, e2) and the top row is r2(e2, e3).

PC CP CR NR BF AF EQ VG
PC PC, 6 AF – PC, -AF -CP, -CR BF, -CP, -CR – BF, -CP, -CR –
CP – CP, -BF CP, -BF -PC, -CR – AF, -PC, -CR AF, -PC, -CR –
CR PC, -AF CP, -BF CR, EQ NR BF, -CP, -CR AF, -PC, -CR EQ VG
NR -CP, -CR -PC, -CR NR – – – – –
BF BF, -CP, -CR – BF, -CP, -CR – BF, -CP, -CR – BF, –CP, –CR -AF, -EQ
AF – AF, -PC, -CR AF, -PC, -CR – – AF, -PC, -CR AF, -PC, -CR -BF, -EQ
EQ -AF -BF EQ – BF, -CP, -CR AF, -PC, -CR EQ VG, -CR
VG – – VG, -CR – -AF, -EQ -BF, -EQ VG -

Table 6: F1 scores and the ratio of symmetric and conjunctive constraint violations of box model with constrained
learning over Eval-A and Eval-S; Eval-A and Eval-S denote asymmetrical and symmetrical evaluation
datasets, respectively. const. means constraint violations; results are on joint task.

Model
F1 Score symmetry const. (%) conjunctive const. (%)

Eval-A Eval-S
Eval-A Eval-S Eval-A Eval-SHiEve MATRES HiEve MATRES

BERE-p 0.5053 0.7125 0.6261 0.7734 0 0 3.12 1.84
BERE-c 0.5083 0.7021 0.6183 0.7562 0 0 0.39 0.19

The police went to arrest him
e1

Teresa is charged with murder

e2

Her husband killed the two girls
e3

0.7 0.1 0.1 0.1

0.6 0.2 0.1 0.1

0.1 0.5 0.3 0.1

0.2 0.4 0.1 0.3

0.1 0.8 0.0 0.1

0.1 0.2 0.0 0.7

(e1, e2) (e1, e3) (e2, e3)

TempRel

HierRel

Softmax

MLP

Pairwise Feature
f(A,B)

= [A,B,A − B,A × B]

BiLSTM

RoBERTa

Sentence

Vector Model

f
(

,

)
f
(

,

)
f
(

,

)

Figure 2: VECTOR model architecture.

E Detailed analysis on conjunctive527

constraint violation528

Constraint Violation Analysis, Table 7 We529

further break down constraint violations for each530

label on HiEve and MATRES. The comparison531

of constraint violations between the vector model532

with constrained learning (Vector-c) and the533

box model without constrained learning (BERE-p)534

is shown in Table 7. "n/a" refers to no predictions535

and this frequently appears on COREF and EQUAL536

due to their sparsity in the corpus. Our approach537

shows a smaller ratio of constraint violations in538

most of the categories, with only a few exceptions.539

2nd and 3rd quadrants (HiEve→MATRES and540

MATRES→HiEve) stand for cross-category,541

while 1st and 4th quadrants (HiEve→HiEve542

and MATRES→MATRES) stand for the same-543

category. Interestingly, our approach without any544

injected constraints shows a smaller or similar545

ratio to Vector-c in the cross-category as well546

as in the same-category. We calculated rc =547

Table 7: Constraint violation analysis over HiEve and
MATRES. See Appendix B for conjunctive consistency
requirements; PARENT-CHILD (PC), CHILD-PARENT
(CP), COREF (CR), NOREL (NR), BEFORE (BF),
AFTER (AF), EQUAL (EQ), VAGUE (VG); "-" means
no existing constraint violations; constraint injected
vector model (top), box model with using pairwise loss
(bottom).

Vector-c
PC CP CR NR BF AF EQ VG

PC 0.05 - 0.13 0.02 0.20 - 0.5 -
CP - 0.33 0.46 0.01 - 0.25 n/a -
CR 0.12 0.42 0.68 0.08 0.19 0.43 n/a 0.27
NR 0.01 0.03 0.13 - - - - -
BF 0.23 - 0.41 - 0.12 - 0.42 0.02
AF - 0.33 0.30 - - 0.01 0.13 0.05
EQ 0.00 0.50 n/a - 0.25 0.00 n/a 0.50
VG - - 0.34 - 0.03 0.02 n/a -

BERE-p
PC CP CR NR BF AF EQ VG

PC 0.13 - n/a 0.00 0.16 - 0.30 -
CP - 0.23 n/a 0 - 0.28 0.34 -
CR n/a n/a n/a n/a n/a n/a n/a n/a
NR 0.00 0.00 n/a - - - - -
BF 0.24 - n/a - 0.08 - 0.32 0.00
AF - 0.17 n/a - - 0.05 0.12 0.00
EQ 0.23 0.29 n/a - 0.15 0.18 n/a 0.00
VG - - n/a - 0.00 0.00 0.13 -

total # of cross-category constraint violations
total # of cross-category event triplets and 548

rs =
total # of same-category constraint violations

total # of same-category event triplets . 549

rc for Vector-c is 6.26% and for BERE-p 550

is 4.55% and rs for Vector-c is 0.05% and 551

for BERE-p is 0.017%. This confirms the 552

effectiveness of having boxes in handling logical 553

consistency among different relations. 554

F Symmetric and conjunctive constraint 555

violations over origianl data 556

Table 8 shows the F1 and symmetry and con- 557

junctive constraint violation results over original 558

dataset. The results of symmetry and conjunctive 559
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constraint violations confirm our expectation and560

exhibit a similar observation from Table 2.561

G Symmetry and Conjunction562

Consistency563

We define symmetry and conjunction constraints of564

relations. Symmetry constraints indicate the event565

pair with flipping orders will have the reversed re-566

lation. For example, if Rei,ej = PARENT-CHILD567

(BEFORE), then R̃ej ,ei = CHILD-PARENT (AF-568

TER). Given any two events, ei and ej , the symme-569

try consistency is defined as follows:570

∧

ei,ej∈E,r∈RS

R(ei,ej) ↔ R̄(ej ,ei) (3)571

where r is the relation between events, the E is the572

set of all possible events and the RS is the set of573

relations, in which symmetry constraints hold.574

Conjunctive constraints refer to the constraints575

that exist in the relations among any event triplet.576

The conjunctive constraints rules indicate that577

given any three event pairs, (ei, ej), (ej , ek), and578

(ei, ek), then the relation of (ei, ek) has to fall into579

the conjunction set specified based on (ei, ej) and580

(ej , ek) pairs (see Table 5). The conjunctive consis-581

tency can be defined as:582

∧
ei,ej ,ek∈E

R1,R2∈R,R3∈D(R1,R2)

R1(ei, ej) ∧ R2(ej , ek) → R3(ei, ek)

∧
ei,ej ,ek∈E

R1,R2∈R,R′3 /∈D(R1,R2)

R1(ei, ej) ∧ R2(ej , ek) → ¬R
′
3(ei, ek)

583

where the E is the set of all possible events, r1 and584

r2 are any possible relations exist in the set of all585

relationsR, r3 is the relation, which is specified by586

r1 and r2 based on conjunctive induction table, and587

D is the set of all possible relations, in which r1588

and r2 have no conflicts in between. The full expla-589

nation on symmetry and conjunction consistency590

can be found in Wang et al. (2020).591

H Related Work592

H.1 Event-Event Relation Extraction593

This task has been traditionally modeled as a pair-594

wise classification task with hand-engineered fea-595

tures and early attempts applied conventional ma-596

chine learning methods, such as logistic regressions597

and SVM (Mani et al., 2006b; Verhagen et al.,598

2007; Verhagen and Pustejovsky, 2008). Later599

works utilized a structured learning (Ning et al.,600

2017) and neural methods to characterize relations.601

The neural methods have been shown effective and 602

ensure logical consistency on relations through in- 603

ference step (Dligach et al., 2017; Ning et al., 2018, 604

2019; Han et al., 2019a). More recent works pro- 605

posed a constrained learning framework, which fa- 606

cilitates constraints during training time (Han et al., 607

2019b; Wang et al., 2020). Motivated by these 608

works, we propose a box model to automatically 609

handle inherent constraints without heavily relying 610

on constrained learning across two different tasks. 611

H.2 Box Embeddings 612

Box embeddings (Vilnis et al., 2018) were intro- 613

duced as a shallow model to embed nodes of hier- 614

archical graphs into euclidean space using hyper- 615

rectangles, which were later extended to jointly 616

embed multi-relational graphs and perform logical 617

queries (Patel et al., 2020; Abboud et al., 2020). 618

Recent works have successfully used box repre- 619

sentations in conjunction with neural networks 620

to represent input text for tasks like entity typ- 621

ing (Onoe et al., 2021), multi-label classification 622

(Anonymous, 2022), natural language entailment 623

(Chheda et al., 2021), etc. In all these works, the 624

input is represented using a single box by trans- 625

forming the output of the neural network into a 626

hyper-rectangle. In this paper, we take this a step 627

forward by representing the input event complex 628

using multiple boxes. Our single box model repre- 629

sents each even in an input paragraph using a box 630

and the pairwise box model adds on top of these, 631

one box each for every pair of events (see section 632

3.2). 633
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Table 8: F1 scores with symmetric and conjunctive constraint violation results over original datasets. symm const.
and conj const. denote symmetric and conjunctive constraint violations, respectively; H, M, and ESL are HiEve,
MATRES, Event StoryLine datasets, respectively; single task(top) and joint task(bottom)

Model
F1 Score symmetry const. (%) conjunctive const.(%)

Original data
H M ESL H M ESL H M ESL

Vector 0.4437 0.7274 0.2660 22.73 38.63 56.7 5.66 0.69 9.4
BERE-p 0.4771 0.7105 0.3214 0 0 0 0.75 0.46 0

Joint H+M H+M
Vector 0.4727 0.7291

n/a
23.04

n/a
10.85

n/aVector-c 0.5262 0.7068 23.83 3.52
BERE-p 0.5053 0.7125 0 3.12

10


