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ABSTRACT

Symbols (or more broadly, non-natural language representations) such as numerical
sequences, molecular formulas, and table delimiters widely exist, playing important
roles in various tasks such as abstract reasoning, chemical property prediction, and
table question answering. Despite the impressive natural language comprehension
capabilities of large language models (LLMs), their reasoning abilities for symbols
remain inadequate, which could attributed to the difference between symbol repre-
sentations and general natural languages. We propose symbol-to-language (S2L),
a tuning-free method that enables large language models to solve symbol-related
problems with information expressed in natural language. Specifically, S2L first
converts the symbols involved to language-based representations, which can be
implemented by prompting LLMs or leveraging external tools, then these language-
based representations are integrated into the original problem via direct substitution
or concatenation, serving as useful input information for LLMs. We evaluate the
S2L method using both API-based (GPT-4, ChatGPT) and open-source (OpenChat)
models over eight symbol-related tasks, ranging from symbol-only abstract rea-
soning to sentiment analysis in social media. Experimental results show that S2L
consistently leads to superior performance. For example, by employing S2L for
GPT-4, there can be average significant improvements of +21.9% and +9.5% for
subtasks in 1D-ARC and Dyck language, respectively. Codes and data are available
at https://github.com/THUNLP-MT/symbol2language.
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Figure 1: Top: We show a symbol-related problem (move 1 pixel forward) from the 1D-ARC
benchmark, comparing the responses of large language models using both conventional symbol-based
and our language-based representations with symbol-to-language (S2L) conversion. Bottom: The
S2L conversion has broad applicability across various scenarios involving diverse types of symbols.
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1 INTRODUCTION

Symbols, or more broadly, non-natural language representations such as brackets, digits, molecular
formulas, emojis, table delimiters, and abbreviations are ubiquitously encountered in the real world.
They are of significant relevance in our daily lives, convey distinct meanings, and play important
roles in a variety of tasks. These symbol-related tasks include abstract reasoning (Moskvichev et al.,
2023; Xu et al., 2023c), chemical property prediction (Ross et al., 2022; Guo et al., 2023), and
tabular question-answering (Chen et al., 2020; Chen, 2023), as exemplified in Table 1. Consequently,
the understanding and reasoning abilities of symbols are of paramount importance for artificial
intelligence (Chollet, 2019).

Nowadays, large language models (LLMs; Brown et al., 2020; Ouyang et al., 2022; OpenAI, 2022;
2023b; Jiang et al., 2023; Google et al., 2023) have demonstrated impressive abilities in compre-
hending and generating natural language. GPT-3 (Brown et al., 2020) has showcased capabilities of
zero-shot inference that solve problems directly without demonstrations. Kojima et al. (2022) further
propose zero-shot-CoT through additional prompting like “Let’s think step by step” to enhance the
zero-shot reasoning capability. However, the understanding and reasoning capability of symbols for
LLMs still fall behind compared to general natural language. For example, Mitchell et al. (2023)
reveal that GPT-4 (OpenAI, 2023b) and GPT-4V (OpenAI, 2023a) only achieve an accuracy of 65%
and 25% on minimal abstract reasoning tasks (Moskvichev et al., 2023) requiring inductive reasoning
through a series of regular numbers or pixels, which is significantly lower than the human accuracy
of 95%. Gendron et al. (2023) further demonstrate that existing LLMs exhibit limited performance
for symbol-related problems in contrast with other natural language tasks.

The inadequate symbol-related reasoning capability of LLMs can be attributed to two primary
factors. First, symbols are significantly underrepresented in the training corpus compared to natural
language (Ohsuga, 2007), leading to an understanding gap between low-frequency symbols and
LLMs (Kandpal et al., 2023; Tang et al., 2023a). Thus, recent studies have explored the collection
of symbolic data (e.g., first-order logic, biomolecule, SQL) for continuous training of LLMs (Yang
et al., 2023; Fang et al., 2023; Xu et al., 2023a), which demands massive human annotations and
computational resources. Second, the reasoning capability of LLMs is compromised when dealing
with symbolic-related problems due to the subpar understanding of symbol-based representations.
Previous studies (Xu et al., 2023a; Gendron et al., 2023; Wang et al., 2023b) directly use these
symbol-based representations as inputs for reasoning, while language-based rationales (Wang et al.,
2022; Kojima et al., 2022; Wei et al., 2022) would further induce error propagation due to suboptimal
understanding capability of the involved symbols.

Considering the gap between symbol-based representations and LLMs, our intuition is converting
symbols into corresponding language-based expressions. This conversion serves as a bridge, providing
LLMs with more friendly and comprehensible information. In this paper, we propose symbol-to-
language (S2L), a tuning-free method that leverages LLMs to better solve symbol-related problems.
The S2L method is both simple and feasible, with its core focus on uncovering language-based
expressions that are equivalent or approximate to symbols. In particular, S2L first converts the
symbols involved in the problems into their language-based representations, which can either be
implemented by prompting the LLMs themselves or by leveraging external cost-friendly tools, such
as rules, translators, dictionaries, etc. Then these language-based representations are integrated into
the original questions through direct substitution or concatenation, providing valuable contextual
information to assist LLMs in solving symbol-related problems.

We conduct experiments across eight symbol-related problems, encompassing inductive abstract
reasoning over numerical sequences, Dyck language involving strings of brackets, chemical prop-
erty predictions based on molecular formulas, emotion analysis of emojis, question answering
on structured tabular data, and stance and sentiment analysis in social media. We employ both
API-based and open-source LLMs including GPT-4 (OpenAI, 2023b), ChatGPT (OpenAI, 2022),
and OpenChat (Wang et al., 2023a) to validate the generalization of S2L method. Experimental
results demonstrate that the S2L leads to significant and consistent improvements under zero-shot
or zero-shot-CoT settings, ranging from symbol-only reasoning to conventional natural language
processing tasks involving symbols. These results underscore the effectiveness of leveraging language-
based representations in better addressing symbol-related problems, thereby expanding the potential
applicability of LLMs in a broader range of scenarios.
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Symbol Instance Task Example
Sequence of Numbers 1,0,0 Abstract Reasoning (§ 4.1) 1,0,0→ 0,0,1; 5,0,0→ ?

String of Brackets [ ( ) ] Dyck Language (§ 4.2) ([]→ ); {(<>)→ }; {}[→ ?

Molecular Formula CCCO Property Prediction (§ 4.3) CCCO (Toxicity: Yes or No?)

Emoji (Unicode) (U+1F62D) Emotion Analysis (§ 4.4) (Anger? Fear? Joy? Sadness?)

Table Delimiter |,\n Question Answering (§ 4.5) rank|name|wins\n1|jack|3\n
Fact Verification (§ 4.5) (Statement: True or False?)

Abbreviation LMAO
Stance Detection (§ 4.6) Imagine being that bold LMAO
Sentiment Classification (§ 4.6) (Text: Positive or Negative?)

Table 1: Symbols, instances, and examples across eight different types of tasks in our experiments,
varying from symbol-only inductive abstract reasoning to sentiment classification in social media.

2 RELATED WORK

Reasoning on Symbol-Related Problems. Various studies have explored the capabilities of LLMs
in symbol-based understanding and reasoning. Wang et al. (2023b) suggest that LLMs can improve
the resolution of abstract reasoning tasks based on the strong ability to generate executable codes.
Qiu et al. (2023) assess LLMs on symbol-based inductive reasoning tasks, uncovering a range of
counter-intuitive behaviors. Gendron et al. (2023) demonstrate that LLMs possess a constrained
capacity for abstract reasoning compared with other natural language tasks. These works indicate that
there is still room for improvement in the reasoning ability of LLMs for symbol-related problems. Our
method tries to bridge the gap between symbol understanding and language models by replenishing
language-based representation, eliciting the LLMs’ capability of solving symbol-related problems
without affecting their general abilities.

Reasoning by Chain-of-Thought Prompting. Chain-of-Thought style prompting (Wei et al., 2022;
Kojima et al., 2022; Chen et al., 2022; Besta et al., 2023; Yao et al., 2023; Zhang et al., 2023b) have
become integral in augmenting the reasoning capabilities of LLMs. Cheng et al. (2023) and Tang
et al. (2023b) propose to generate readable explanations for solving commonsense and program
translation problems, respectively. Deng et al. (2023) introduce rephrase-and-respond to tackle
potentially ambiguous questions by using self-rephrased questions, which shares similarities with our
symbol-to-language method in rephrasing. However, we aim to address symbol-related problems,
rephrasing symbols into their natural language equivalents to allow LLMs to engage with more
accessible language-based information for reasoning.

Reasoning with Symbolic Methods. There is a series of studies on the integration of symbolic
methods to solve general reasoning tasks. Wei et al. (2023) propose symbol-tuning to fine-tune LLMs
using substituted labels, aiming to bolster their in-context learning abilities. Hu et al. (2023) propose
chain-of-symbol to solve planning-based tasks. Wang et al. (2023c) introduce meta-reasoning as a
means to construct generic symbolic representations for reasoning tasks. Fang et al. (2024) design
symbolic module in LLM agent for solving text-based games. Trinh et al. (2024) combine LLMs and
symbolic engines to solve geometry problems. As a comparison, our work focuses on symbol-related
tasks and proposes eliciting the powerful comprehension and reasoning abilities of LLMs at the
language level to help solve the problems.

3 SYMBOL-TO-LANGUAGE

We consider a range of symbol-related problems depicted in Table 1, in which the interpretation
of symbol meanings is crucial for accomplishing the associated tasks. We formalize this type of
problem as a question qs that incorporates a set of symbols s = {s1, s2, ..., sm} and try using current
LLMs to solve qs. Vanilla zero-shot (Brown et al., 2020) and zero-shot-CoT (Kojima et al., 2022)
method directly solve the original problem and the responses of these two methods by LLM M can
be written as:

Rzs = M(qs); Rzsc = M(qs ⊕ p), (1)

where zs and zsc indicate zero-shot and zero-shot-CoT, respectively. p is a prompt like “Let’s think
step by step”, and ⊕ is the concatenation operation.
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The above methods directly tackle the problem with symbol-based representations. Instead of
designing external prompt p, we focus on the question qs and propose utilizing language-based
representation to better leverage the LLMs’ strong capabilities of natural language for solving symbol-
related problems. Specifically, the S2L framework first converts the symbols si (i = 1, ...,m) to its
corresponding plain text li with a conversion operation f , which can be implemented by either LLMs
themselves or external tools. Then the S2L framework incorporates the converted language-based
representation li into two alternative questions ql or qs⊕l as the input for LLMs to generate answers.
The details are discussed as follows.

3.1 SYMBOL-TO-LANGUAGE CONVERSION

Conversion with LLMs. We first employ the LLMs M to convert symbols si to their corresponding
natural language descriptions lLLMi via zero-shot prompting, as expressed by:

lLLMi = fLLM ◦ si = M(ps2l ⊕ si), (2)

where fLLM ◦ si denotes converting si using the LLM M, ps2l is the task-specific prompt facilitating
the S2L conversion. For instance, when the symbol-related question qs is about property prediction
and si is a molecular formula, ps2l could be “What does the following molecular formula represent?”.

Conversion with Tools. Considering there exist some constructed “symbol-language” pairs, we
further propose using external tools for conversion, which can take on several forms. Rule-based
codes, for example, can convert si = “rank|nation\n1|SWE” into lrulei = “rank: 1; nation:
SWE” according to the table delimiters “|” and “\n”. Translators can transform molecular formulas
into their formal names, such as converting si = “CCCO” into ltranslatori = “Propionylo”. Unicode
dictionaries can provide descriptions of emojis, like converting si = “U+1F62D” into ldicti = “crying
face”. Despite having some limitations in terms of usage scenarios, conversion with tools offers two
primary advantages: 1) it circumvents the costs associated with using LLMs; 2) it provides verified
language-based information, which can help reduce potential errors in descriptions generated by
LLMs.

3.2 UTILIZING LANGUAGE-BASED REPRESENTATIONS

We propose two alternative ways that incorporate the language-based representation li into the final
input.

Direct Substitution. The first way of utilization is to directly substitute the symbol-based rep-
resentation si with language-based representation li. To some extent, li can be regarded as the
language-based equivalent of si. Thus we can use them to replace the symbol-based representations
for both the question and ground-truth label. The response by using S2L can be written as:

Rs2l = M(ql), ql = qf◦s = qf◦{s1,...,sm} = qf◦s1,...,f◦sm . (3)

Concatenation. However, in some other tasks, the generated li by LLMs may not always be a
perfect substitution or convey complete information of si. This can occur for two reasons: 1) li
might be incorrect due to the undesired output formats, misleading content, or noisy context; and
2) li could lose some information during S2L conversion. For instance, the ground truth might be a
span-based abbreviation for table understanding (e.g., the “SWE” in table “rank|nation\n1|SWE”
), meaning that the converted li as a full name (e.g., “Sweden”) may not exactly match the final
answer. Therefore, the second method uses both the original symbol-based representation si and
the language-based representation li as the combined input. This approach allows the LLMs M to
reason on questions that include rich contextual information from two distinct perspectives:

Rs2l = M(qs⊕l), qs⊕l = qs1⊕l1,...,sm⊕lm = qs1⊕{f◦s1},...,sm⊕{f◦sm}. (4)

4 EXPERIMENTS

To assess the performance of the S2L framework, we conduct six categories of symbol-related
problems with eight specific tasks as shown in Table 1, varying from symbol-only inductive abstract
reasoning to traditional sentiment analysis in social media. As for LLMs, we evaluate both API-
based and open-source models, including GPT-4 (OpenAI, 2023b), ChatGPT (OpenAI, 2022), and
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Model
Move-1p Move-2p Move-3p

AVG.
n = 3 n = 4 n = 3 n = 4 n = 3 n = 4

(Zero-Shot)
gpt-4 93.3 90.0 48.3 46.7 35.0 45.0 59.7
+S2L w/ model 90.0 (−3.3) 91.7 (+1.7) 48.3 (−) 56.7 (+10.0) 38.3 (+3.3) 48.3 (+3.3) 62.2 (+2.5)
+S2L w/ rule 96.7 (+3.4) 100.0 (+10.0) 88.3 (+40.0) 96.7 (+50.0) 48.3 (+13.3) 60.0 (+15.0) 81.6 (+21.9)

gpt-3.5-turbo 68.3 71.7 11.7 25.0 23.3 26.7 37.8
+S2L w/ model 80.0 (+11.7) 75.0 (+3.3) 31.6 (+19.9) 26.6 (+1.6) 33.3 (+10.0) 31.7 (+5.0) 46.4 (+8.6)
+S2L w/ rule 71.6 (+3.3) 88.3 (+16.6) 25.0 (+13.3) 31.7 (+6.7) 25.0 (+1.7) 26.7 (−) 44.7 (+6.9)

openchat-3.5-7b 61.7 71.7 15.0 21.6 11.7 11.7 32.2
+S2L w/ model 68.3 (+6.6) 78.3 (+6.6) 23.3 (+8.3) 25.0 (+3.4) 25.0 (+13.3) 21.7 (+10.0) 40.3 (+8.1)
+S2L w/ rule 63.3 (+1.6) 75.0 (+3.3) 16.6 (+1.6) 18.3 (−3.3) 15.0 (+3.3) 11.7 (−) 33.3 (+1.1)

Table 2: Results for three subtasks on 1D-ARC. n indicates the number of given input-output pairs
for finding the patterns. The values in parentheses indicate the difference between the baseline and
our results. w/ model denotes conversion with LLMs, and w/ rule denotes conversion with manually
designed rules using codes.

OpenChat-7b (Wang et al., 2023a). To ensure the reproducibility of the responses generated by LLMs,
we set the decoding temperature as 0. For each task, we show the case of S2L conversion in the
appendix B.

4.1 ABSTRACT REASONING

Abstract reasoning (Webb et al., 2023; Gendron et al., 2023; Wang et al., 2023b) is a type of task
that involves summarizing patterns from limited observations. We conduct experiments on subtasks
from the 1D-ARC benchmark proposed by Xu et al. (2023c), which is a simplified version of the
abstract reasoning corpus proposed by Chollet (2019). The 1D-ARC comprises various 1D object-
based visual problems, as depicted in Figure 2(a). To enable LLMs to process these problems,
visual information is transformed into a symbol-based representation with sequences of numbers, as
illustrated in Figure 2(b).

Symbol-to-Language. As for the conversion methods, we apply both LLMs and rule-based codes to
transform the sequence of numbers into natural language descriptions. We find that LLMs describe
the sequence similarly to humans coincidentally, which employs merging or counting when describing
number sequences. Thus, for the conversion with rules, we implement code as a rule for merging
and counting numbers in a sequence. The specific prompts for LLMs and the rule-based codes are
presented in Figure 2 (c.1) and Figure 2 (d.1). Due to the potential loss of information in the generated
description lLLMi , we attach the language-based representation to each original sequence of numbers
to generate answers, as shown in Figure 2 (c.2). On the contrary, the outputs by rule-based codes
lrulei are equal to the original sequence of numbers, thus we directly replace them to get responses, as
shown in Figure 2 (d.2).

Settings and Results. We use the Move-1p, Move-2p, and Move-3p tasks (move 1, 2, and 3 pixels
forward, respectively) from 1D-ARC, where each task contains 50 problems that involve fixed n = 3
input-output pairs. We collect and combine the given input-output pairs for each task, resulting in 60
problems for each task with n = 3 or n = 4 input-output pairs. The experimental results are presented
in Table 2. GPT-4 achieves an accuracy above 90.0% on the Move-1p task. However, the performance
drops rapidly to 30∼50% in the Move-2p and Move-3p tasks, demonstrating that the model struggles
to reason on sequences with slightly more complex patterns. This phenomenon is even more evident
in ChatGPT and OpenChat, where the overall accuracy is much lower. Upon employing conversion
with LLMs (i.e., S2L w/ model), the results improve by 2.5∼8.6%, suggesting the positive impact
of additional language-based information. By using conversion with rule-based codes, GPT-4 gets
100% accuracy given n = 4 input-output pairs, and the performance on Move-2p and Move-3p
improves substantially, with 96.7% and 60.0% accuracy, respectively. Moreover, we observe varying
degrees of improvement across models, indicating their differing abilities to understand the additional
language-based representation.
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Model
Dyck Language

AVG.
n = 1 n = 2 n = 3 n = 4 n = 5

(Zero-Shot)
gpt-4 60.0 82.2 86.6 91.4 92.2 82.5
+S2L w/ model 77.6 (+17.6) 90.0 (+7.8) 95.6 (+9.0) 98.2 (+6.8) 98.6 (+6.4) 92.0 (+9.5)

gpt-3.5-turbo 65.0 77.0 78.0 80.8 78.2 75.8
+S2L w/ model 69.6 (+4.6) 82.8 (+5.8) 88.2 (+10.2) 93.2 (+12.4) 94.0 (+15.8) 85.6 (+9.8)

openchat-3.5-7b 8.6 3.6 4.2 2.2 7.8 5.3
+S2L w/ model 21.6 (+13.0) 22.0 (+18.4) 32.0 (+27.8) 43.8 (+41.6) 59.0 (+51.2) 35.7 (+30.4)

Table 3: Results for Dyck language task. n indicates the number of given input-output pairs for
finding the patterns. w/ model denotes conversion with LLMs.

4.2 DYCK LANGUAGE

Dyck language is a subtask in BigBench (Srivastava et al., 2022), aiming to predict the closing
parentheses of a given sequence. To evaluate the inductive reasoning ability over symbols, we do not
prompt LLMs to “complete parentheses” (i.e., prompting LLMs to output the remaining parentheses).
Instead, following the settings of the ARC benchmark, we only give n input-output pairs and let
LLMs to deduce the output according to the patterns, as shown in Figure 3(a).

Symbol-to-Language. The symbols in this task include totally eight different brackets
(“[]{}()<>”). We consider converting each symbol si to natural language description lLLMi
via prompting. Thus we can translate the problem in language-based representations, as shown in
Figure 3(c).

Remark. The responses during S2L conversion may not be the same among different LLMs. An
interesting phenomenon is that GPT-4 recognizes the symbols “<” and “>” as “less than” and “great
than”, instead of “open angle bracket” and “close angle bracket”. However, we do not consider this to
be a mistake and do not intend to modify the prompts to “correct” the results (e.g., provide some cues
indicating these are different types of parentheses). In contrast, we let the LLMs convert the symbols
according to their understanding and deduce the final answer through the generated representations
by themselves.

Settings and Results. We first set the number of examples as n = 5 and randomly choose six
input-output pairs (five of them as the examples and the rest as the target) from the entire dataset, we
repeat 500 times and evaluate the overall accuracy among these 500 questions. Then we gradually
remove the last input-output pair to test the ability with fewer examples (i.e., n = 4, 3, 2, 1).

The results are shown in Table 3. For GPT-4 and ChatGPT, the performance ranges from 60.0∼92.2%
and 65.0∼78.2%, respectively. The accuracy further improves with +9.5% and +9.8% by using
S2L. For OpenChat, the performance is extremely low with below 10% accuracy and S2L improves
the performance by a large margin with +30.4% on average.

4.3 PROPERTY PREDICTION

We use ChemLLMBench (Guo et al., 2023) to predict the chemical property given a molecule’s
SMILES (simplified molecular-input line-entry system) string. Three datasets are used, including
BACE (bindings results for a set of inhibitors of human beta-secretase), BBBP (penetration/non-
penetration to the brain-blood barrier), and Tox21 (toxicity of compounds).

Symbol-to-Language. We use a unified prompt to transfer each SMILES to its language-based
representation lLLMi in all three datasets, as shown in Figure 4(a). Instead of using LLMs, we further
propose S2L with STOUT V2.0 (Rajan et al., 2021), a translator offering the IUPAC (A universally
accepted naming scheme established by the International Union of Pure and Applied Chemistry)
name ltranslatori of a given SMILES, as shown in Figure 4(b). Finally, we append the obtained
information to each SMILES notation as language-enhanced input for LLMs.

Settings and Results. Following Guo et al. (2023), we randomly sample 500 instances from the full
test set and report the averaged results over repeated five times, the results are shown in Table 4. The
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Model
Zero-Shot Zero-Shot-CoT

AVG.
BACE BBBP Tox21 BACE BBBP Tox21

gpt-4 48.2 40.2 47.2 50.4 36.8 37.4 43.4
+S2L w/ model 53.0 (+5.2) 53.0 (+12.8) 48.6 (+1.4) 55.6 (+5.2) 54.2 (+17.4) 44.0 (+6.6) 51.4 (+8.0)
+S2L w/ translator 48.4 (+0.2) 58.8 (+18.6) 49.0 (+1.8) 51.2 (+0.8) 64.0 (+27.2) 45.2 (+7.8) 52.8 (+9.4)

gpt-3.5-turbo 52.4 24.6 34.2 44.2 32.0 35.8 37.2
+S2L w/ model 53.0 (+0.6) 35.0 (+10.4) 34.8 (+0.6) 48.2 (+4.0) 35.8 (+3.8) 38.2 (+2.4) 40.8 (+3.6)
+S2L w/ translator 54.8 (+2.4) 53.8 (+29.2) 51.0 (+16.8) 48.6 (+4.4) 41.4 (+9.4) 41.8 (+6.0) 48.6 (+11.4)

openchat-3.5-7b 48.2 46.8 62.6 49.6 46.2 62.2 52.6
+S2L w/ model 48.8 (+0.6) 56.2 (+9.4) 65.0 (+2.4) 47.8 (−1.8) 48.4 (+2.2) 60.4 (−1.8) 54.4 (+1.8)
+S2L w/ translator 55.8 (+7.6) 59.2 (+12.4) 67.8 (+5.2) 52.2 (+2.6) 65.2 (+19.0) 61.4 (−0.8) 60.3 (+7.7)

Table 4: Results for three property prediction tasks on ChemLLMBench by using zero-shot inference,
zero-shot-CoT inference, and our symbol-to-language. w/ model denotes conversion with LLMs, and
w/ translator denotes conversion with an external translator.

Model
EmoTag1200 (Pearson correlation r)

AVG.
ANGER ANTICIPATE DISGUST FEAR JOY SADNESS SURPRISE TRUST

(Zero-Shot)
gpt-4 0.855 0.290 0.782 0.809 0.887 0.903 0.531 0.731 0.724
+S2L w/ model 0.878 0.308 0.792 0.819 0.897 0.922 0.562 0.766 0.743 (+0.019)
+S2L w/ dict 0.856 0.345 0.753 0.813 0.894 0.926 0.616 0.760 0.745 (+0.021)

gpt-3.5-turbo 0.710 0.214 0.334 0.589 0.695 0.790 0.192 0.560 0.510
+S2L w/ model 0.700 0.156 0.401 0.629 0.786 0.850 0.483 0.630 0.578 (+0.068)
+S2L w/ dict 0.757 0.269 0.487 0.696 0.796 0.854 0.285 0.700 0.605 (+0.095)

openchat-3.5-7b 0.413 0.030 0.438 0.264 0.161 0.232 0.221 −0.086 0.209
+S2L w/ model 0.465 0.066 0.535 0.639 0.355 0.583 0.010 −0.118 0.317 (+0.108)
+S2L w/ dict 0.572 0.002 0.587 0.648 0.377 0.587 0.023 −0.078 0.339 (+0.130)

(Zero-Shot-CoT)
gpt-4 0.854 0.205 0.723 0.810 0.889 0.917 0.507 0.744 0.706
+S2L w/ model 0.854 0.330 0.705 0.814 0.889 0.923 0.632 0.741 0.736 (+0.030)
+S2L w/ dict 0.865 0.337 0.661 0.825 0.889 0.930 0.627 0.730 0.733 (+0.027)

gpt-3.5-turbo 0.559 0.013 0.051 0.156 0.264 0.145 −0.084 0.060 0.146
+S2L w/ model 0.702 0.152 0.393 0.631 0.785 0.845 0.485 0.633 0.578 (+0.432)
+S2L w/ dict 0.734 0.206 0.505 0.664 0.799 0.853 0.354 0.543 0.582 (+0.436)

openchat-3.5-7b 0.455 −0.014 0.277 0.348 0.454 0.741 0.163 0.012 0.305
+S2L w/ model 0.632 0.172 0.438 0.532 0.669 0.692 0.344 0.098 0.447 (+0.142)
+S2L w/ dict 0.564 −0.050 0.381 0.613 0.684 0.581 0.194 0.064 0.380 (+0.075)

Table 5: Results for emotion analysis of emojis by using zero-shot inference, zero-shot-CoT inference,
and our symbol-to-language. The numbers indicate the Pearson correlation with ratings by humans.
w/ model denotes conversion with LLMs, and w/ rule denotes conversion with the Unicode dictionary.

overall zero-shot performance of GPT-4 and ChatGPT is relatively low, showing the difficulty for
LLMs to understand the molecular formula and their chemical property. Zero-shot-CoT does not lead
to stable improvement, showing that a single prompt “Let’s think step by step” is not helpful for these
types of problems. Our method generally improves the performance to varying degrees (except for
slight decreases using OpenChat and zero-shot-CoT settings). For example, the improvement is large
for the BBBP dataset (+9.4∼29.2% across models) while it becomes relatively low for the BACE
dataset (+0.2∼7.6% across models). Overall, the results show that S2L is effective by providing
language-based information that aids in chemical property prediction tasks.

4.4 EMOTION ANALYSIS OF EMOJIS

We use EmoTag1200 (Shoeb & de Melo, 2020) for emotion analysis of the emojis. Specifically, 150
most frequently used emojis are selected and the task is to score each of them from 0∼1 based on
eight basic emotions, including anger, anticipation, disgust, fear, joy, sadness, surprise, and trust.

Symbol-to-Language. To understand emojis with language-based information, we get the description
lLLMi by prompting LLMs or directly obtaining the names ldicti from the Unicode dictionary, as shown
in Figure 5.

Settings and Results. We use the Pearson correlation coefficient between the predictions and ratings
by humans for evaluation, and the results are shown in Table 5. GPT-4 gives a relatively high
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Model
Zero-Shot Zero-Shot-CoT

AVG.TableQA TableQA TabFact TableQA TableQA TabFact
(F1) (EM) (Acc.) (F1) (EM) (Acc.)

gpt-4 82.0 79.8 93.6 80.7 76.8 93.2 84.4
+S2L w/ model 84.6 (+2.6) 82.0 (+2.2) 95.6 (+2.0) 82.9 (+2.2) 80.2 (+3.4) 94.6 (+1.4) 86.7 (+2.3)
+S2L w/ rule 86.5 (+4.5) 84.2 (+4.4) 95.8 (+2.2) 84.2 (+3.5) 80.6 (+3.8) 96.4 (+3.2) 88.0 (+3.6)

gpt-3.5-turbo 66.4 63.0 82.0 73.4 69.8 77.0 71.9
+S2L w/ model 69.0 (+2.6) 66.0 (+3.0) 84.6 (+2.6) 73.6 (+0.2) 71.2 (+1.4) 83.0 (+6.0) 74.6 (+2.7)
+S2L w/ rule 68.5 (+2.1) 64.8 (+1.8) 86.2 (+4.2) 77.0 (+3.6) 72.8 (+3.0) 83.0 (+6.0) 75.4 (+3.5)

openchat-3.5-7b 61.7 58.2 79.0 60.8 57.0 83.8 66.8
+S2L w/ model 64.1 (+2.4) 59.0 (+0.8) 81.0 (+2.0) 64.2 (+3.4) 60.4 (+3.4) 83.2 (−0.6) 68.6 (+1.8)
+S2L w/ rule 62.1 (+0.4) 58.8 (+0.6) 83.0 (+4.0) 66.1 (+5.3) 63.0 (+6.0) 84.6 (+0.8) 69.6 (+2.8)

Table 6: Results for table question answering and table fact verification tasks using zero-shot inference,
zero-shot-CoT inference, and our symbol-to-language. w/ model denotes conversion with LLMs, and
w/ rule denotes conversion with manually designed rules by codes for aligning contents from tables.

Model
Zero-Shot Zero-Shot-CoT

AVG.P-Stance P-Stance Sentiment P-Stance P-Stance Sentiment
(Acc.) (F1) (Acc.) (Acc.) (F1) (Acc.)

gpt-4 86.2 86.7 89.4 83.8 84.0 86.1 86.0
+S2L w/ model 87.1 (+0.9) 88.2 (+1.5) 90.3 (+0.9) 86.6 (+2.8) 87.5 (+3.5) 87.2 (+1.1) 87.8 (+1.8)

gpt-3.5-turbo 65.3 68.6 83.7 61.5 60.8 76.5 69.4
+S2L w/ model 71.0 (+5.7) 71.5 (+2.9) 89.9 (+6.2) 64.7 (+3.2) 63.5 (+2.7) 78.4 (+1.9) 73.2 (+3.8)

openchat-3.5-7b 70.9 66.7 89.1 72.2 69.1 84.8 75.5
+S2L w/ model 71.4 (+0.5) 67.5 (+0.8) 89.0 (−0.1) 77.1 (+4.9) 75.8 (+6.7) 82.1 (−2.7) 77.2 (+1.7)

Table 7: Results for stance detection and sentiment classification in social media using zero-shot
inference, zero-shot-CoT inference, and our symbol-to-language.

correlation coefficient of 0.724. However, ChatGPT and OpenChat perform badly with only 0.510
and 0.209 correlation coefficients, respectively. By using zero-shot-CoT, the performance even drops
for GPT-4 and ChatGPT, showing the limitations in LLMs’ emoji understanding ability. When using
S2L with either model or dictionary, the performance improves to different degrees, showing that the
language information can also help understand emoji-based symbols.

4.5 TABLE UNDERSTANDING

For structured data, we follow Chen (2023) to evaluate the capability of LLMs on table reason-
ing. Specifically, we use WikiTableQuestions (Pasupat & Liang, 2015) for evaluating table-based
question answering, which consists of complex questions based on Wikipedia tables. We also use
TabFact (Chen et al., 2020) for fact verification, which consists of claims annotated by the crowd
workers based on tables.

Symbol-to-Language. As shown in Figure 6, S2L describes every table in plain text lLLMi by
prompting. Alternatively, we can get the representation lrulei by using simple rule-based codes to align
the content with the table header according to the delimiters “|” row by row. Then we append the
external natural language information to the original symbol-based representation for each question.

Settings and Results. For each task, we evaluated 500 pairs of tables and questions and the results
are shown in Table 6. The overall performance for different models is relatively high compared with
previous symbol-only tasks, for example, GPT-4 gives around 79.8% exact match score and 93.6%
accuracy for question answering and fact verification, respectively. Nevertheless, S2L with model can
consistently bring +1.8∼2.3% improvements, showing that external natural language information
is effective. We find that S2L with rule further leads to +2.8∼3.6% improvements, indicating that
simple cues with aligned information between content and header for each row can already make a
positive impact on table understanding.
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4.6 TWEET ANALYSIS

We analyze the text in social media and use the TweetSentimentExtraction dataset from Massive Text
Embedding Benchmark (Muennighoff et al., 2023) for sentiment classification. Additionally, we
follow Zhang et al. (2023a) by using the P-Stance (Li et al., 2021) dataset for stance detection.

Symbol-to-Language. There is a plethora of non-natural language expressions on Tweet, including
abbreviations (e.g., LOL: “Laughing Out Loud”), slang (e.g., FTW: “For the Win”), hashtags (e.g.,
#Trump), emojis (e.g., ), etc. We convert the entire tweet to plain text lLLMi via prompting, as shown
in Figure 7, and then we use it as external input for each question.

Settings and Results. For sentiment classification, we predict sentiment polarity from either positive
or negative in a total of 2,104 tweets. For stance detection, we evaluate the attitude towards “Donald
Trump” from either favor or against in 777 test tweets. The results are shown in Table 7. Similarly,
the zero-shot-CoT method sometimes causes a decrease in accuracy. Specifically, we find that simply
adding the prompt “Let’s think step by step” leads to more neutral responses, even though there are
all texts with 2-way labels (i.e., positive/negative and favor/against). In general, our S2L can improve
the performance under both zero-shot and zero-shot-CoT settings for GPT-4 and ChatGPT models,
except that there is a slight decrease using the OpenChat model for sentiment classification.

5 DISCUSSIONS

From the experimental results, our proposed symbol-to-language shows a significant improvement in
tasks such as abstract reasoning, Dyck language, and chemical property prediction. It also achieves
slight gains in a range of NLP-related tasks. Additionally, compared to zero-shot-CoT, our approach
exhibits more stable and effective improvements in solving symbol-related problems.

We further analyze and discuss both the advantages (i.e., how does it take effect?) and limitations
(shown in the appendix C, i.e., in which scenarios does it still not have an impact?) of the proposed
symbol-to-language method.

Directly solving symbol-related problems can be difficult for LLMs due to various reasons. We show
that S2L can offer some distinct types of language-based information that are important for better
solving the mentioned tasks:

Precise Information. As shown in the 1D-ARC tasks, the language-based representations by using
rules can reflect the information of sequences precisely, which can compensate for the limitations of
language models such as counting numbers, thus enhancing their ability to summarize patterns and
deduce the results.

Co-occurrence Information. S2L conversion offers co-occurrence information between contexts
and task-level labels. For example, the descriptions of emojis (e.g., “angry face”) and emotional
dimensions (e.g., “anger”) for emoji analysis, and the plain text of abbreviations (e.g., “laughing my
ass off”) and sentiment polarities (e.g., “positive”) for sentiment classification. These language-level
co-occurrences can offer complementary information for symbol-based problems.

Alignment Information. Language-based representations can also offer aligned information, which is
difficult to extract directly from symbol-based representations. For example, the aligned relationship
between “open” and “close” brackets for the Dyck language task, and the alignment between table
contents and header. These explicitly aligned contexts can somewhat help LLMs reasoning on
complicated symbol-based tasks.

6 CONCLUSION

We propose symbol-to-language, a tuning-free method that converts symbol-based to language-
based representation for solving a series of symbol-related problems using large language models.
Experiments on GPT-4, ChatGPT, and OpenChat across eight tasks show that symbol-to-language
can significantly improve the performance on tasks such as abstract reasoning, Dyck language, and
chemical property prediction, etc. We hope to further harness the power of language, leverage the
advantages of language-based representations, and explore the untapped potential of large language
models to play roles in more scenarios.
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A DETAILS OF MODELS

We use the versions of gpt-4-0613 and gpt-3.5-turbo-1106 released by OpenAI, and
openchat 3.5 released in https://huggingface.co/openchat/openchat_3.5.

B APPLYING SYMBOL-TO-LANGUAGE CONVERSION TO DIFFERENT TASKS

(c.1) Conversion with LLM

(b) Symbol-Based Representation

(c.2) Language-Based Representation with LLM

(Prompt)
Describe the sequence of digits using language. 
0,0,1,1,0,0,0,0

(Response by LLM)
The sequence starts with two zeros,
followed by two ones, then four zeros.
 

(Answer: 0,0,0,0,2,2,2,2,0)
?

(Answer:                              )

(a) Underlying Visual Problem (Move-2p)
input 1: 0,0,1,1,0,0,0,0   output 1: 0,0,0,0,1,1,0,0
input 2: 0,6,6,6,6,0,0,0   output 2: 0,0,0,6,6,6,6,0
input 3: 0,0,2,2,2,0,0,0   output 3: 

(d.1) Conversion with Rule
(Input) 0,0,1,1,0,0,0,0

(Rules, a manually written python function)
def SeqTransition(Input):...return Output

(Output of SeqTransition)
Two 0, Two 1, Four 0.

input 1: 0,0,1,1,0,0,0,0 (The sequence starts
with two zeros, followed by two ones, then
four zeros.)   

input 2: 0,6,6,6,6,0,0,0 (The sequence ...) 

input 3: 0,0,2,2,2,0,0,0 (The sequence ...)
(Answer: 0,0,0,0,2,2,2,2,0 (...))

input 1: Two 0, Two 1, Four 0.
output 1: Four 0, Two 1, Two 0.

input 2: One 0, Four 6, Three 0. 
output 2: Three 0, Four 6, One 0.

input 3: Two 0, Three 2, Three 0.           
output 3: (Answer: Four 0, Three 2, One 0.)

(d.2) Language-Based Representation with Rule

output 1: 0,0,0,0,1,1,0,0 (The sequence ...)

output 2: 0,0,0,6,6,6,6,0 (The sequence ...)

output 3: 

Figure 2: Example of applying symbol-to-language for 1D abstract reasoning task. We convert
every sequence to its textual representation by prompting LLMs or using simple rules implemented
in code, and then we transform the symbolized problem to language-enhanced or language-only
representations.

input 1:  [   (   ) 

(Answer: close angle bracket)
input 1: open square bracket; open parenthesis; close parenthesis

(b) Conversion with LLM

(c) Language-Based Representation

(Response by LLM)
open square bracket; open curly bracket; open parenthesis; open angle bracket;
close square bracket; close curly bracket; close parenthesis; close angle bracket
 

(Answer:  >)

input 2:  {   }   <   

output 2:

output 2:

(Prompt) Translate each symbol one by one using language and separate them with ';'
[  {  (  <  ]  }  )  >

(a) Symbol-Based Representation

input 2: open curly bracket; close curly bracket; open angle bracket 

output 1: close square bracket

output 1:  ]

Figure 3: Example of applying symbol-to-language for Dyck language task. We convert every symbol
(e.g., “[”) to its textual description (e.g., “open square bracket”) by prompting LLMs, and then
transform the symbolized problem into language-based representation for both the question and
ground truth.
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(a) Conversion with LLM (b) Conversion with Translator
(Prompt)
What does the following SMILES represent?
(Response by LLM) 

(Source)

(Target)

(SMILES-IUPAC Translator)
Source:SMILES→Target:IUPAC Names 

The SMILES C(C)Cl represents a molecule of
chloroethane, which is a simple alkyl halide. chloroethane

C(C)Cl
C(C)Cl

Figure 4: Example of applying symbol-to-language for property prediction. We convert each SMILES
to its textual representation by prompting LLMs or using a translator.

(a) Conversion with LLM (b) Conversion with Dict
(Prompt)

(Response by LLM) 

(Key)

(Value) enraged face

(Unicode Dict)

 angry face emoji

{1F621: “enraged face”},{1F622: “crying face”} ... Describe the emoji in plain text:

Figure 5: Example of applying symbol-to-language for emotional reranking of emojis. We convert
each emoji to its language-based representation by prompting LLMs or using the names from the
Unicode dictionary.

(a) Conversion with LLM

(Response by LLM)
Sweden is ranked first with 4 gold, 3 silver, and
0 bronze medals, making a total of 7 medals. 
The Netherlands is ranked second with a total of
4 medals, including 2 gold and 2 bronze.

(Prompt)
 
 

(b) Conversion with Rule
(Input)
 

(Rules, a manually written python function)
def TableTransition(Input):...return Output

(Output of TableTransition)
Rank: 1; Nation: Sweden (SWE); Gold: 4;
Silver: 3; Bronze: 0; Total: 7
Rank: 2; Nation: Netherlands (NED); Gold: 2;
Silver: 0; Bronze: 2; Total: 4

Rank|Nation|Gold|Silver|Bronze|Total\n1|Sweden
(SWE)|4|3|0|7\n|2|Netherlands (NED)|2|0|2|4

Describe the table in plain texts:  Rank|Nation|Gold|Silver|Bronze|Total\n1|Sweden
(SWE)|4|3|0|7\n|2|Netherlands (NED)|2|0|2|4

Figure 6: Example of applying symbol-to-language for table question answering. We convert each
table to its textual representation by prompting LLMs or using simple rules implemented in codes.

(Prompt) 
Transfer to plain text tweets: 
whenever we hang out, you always crack me up with your hilarious jokes. lmaooo all day everyday ‼️

(Response by LLM) 
whenever we hang out, you always crack me up with your hilarious jokes. laughing my ass off all day everyday!
I'm laughing so hard.

Figure 7: Example of applying symbol-to-language for sentiment classification of tweets. We convert
each tweet to plain text by prompting LLMs.

C LIMITATIONS

Although we verified S2L on different models across various tasks, there are still some limitations.
First, not all non-natural language representations can be easily converted into natural language. For
example, the original 2D visual problems from the ARC dataset (Chollet, 2019) are still difficult
to describe in language-based representations, though Xu et al. (2023b) try some “object-based”
representations for a tiny portion of the dataset. Second, for tasks that we can not rely on external tools
with sufficient prior knowledge, prompting LLMs may generate incorrect descriptions or explanations
of the symbols due to hallucinations, which may mislead the understanding of symbols that were
originally comprehensible directly.

14


	Introduction
	Related Work
	Symbol-to-Language
	Symbol-to-Language Conversion
	Utilizing Language-Based Representations

	Experiments
	Abstract Reasoning
	Dyck Language
	Property Prediction
	Emotion Analysis of Emojis
	Table Understanding
	Tweet Analysis

	Discussions
	Conclusion
	Details of Models
	Applying Symbol-to-Language Conversion to Different Tasks
	Limitations

