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A B S T R A C T

In knowledge distillation (KD), a lightweight student model yields enhanced test accuracy by mimicking
the behavior of a pre-trained large model (teacher). However, the cumbersome teacher model often makes
over-confident responses, resulting in poor generalization when presented with unseen data. Consequently, a
student trained by such a teacher also inherits this problem. To mitigate this issue, in this paper, we present
a new framework of KD dubbed coded knowledge distillation (CKD) in which the student is trained to mimic
instead the behavior of a coded teacher. Compared to the teacher in KD, the coded teacher in CKD has an
additional adaptive encoding layer in the front, which adaptively encodes an input image into a compressed
version (using JPEG encoding for instance) and then feeds the compressed input image to the pre-trained
teacher. Comprehensive experimental results show the effectiveness of CKD over KD. In addition, we extend
the deployment of a coded teacher to other knowledge transfer methods, showcasing its ability to enhance test
accuracy across these methods.
1. Introduction

Recent advances in many computer vision tasks have been mainly
obtained by deep neural networks (DNNs) that are large in size, and
therefore require high computation and memory during inference [1,2].
Consequently, there has been a surge of research endeavors focused
on developing techniques to reduce the size of DNNs, enabling their
practical implementation on devices with limited resources.

One promising approach to creating smaller and more efficient
DNNs is knowledge distillation (KD). In KD, a small DNN (student) is
trained to mimic the behavior of a pre-trained large DNN (teacher)
so that the trained student can generalize in a way similar to the
teacher [1]. Followed by [1], many researchers tried to understand
why distillation works [3–5], and proposed to distill different forms of
knowledge from the teacher model. These forms include, for example,
(i) the output probability vector response [1,6–8], (ii) feature maps [9–
15], and (iii) relationships between different layers [16,17].

Despite achieving significant success, we notice that due to its
typically large size, the teacher is often susceptible to overfitting the
training set [18–20]. In other words, for most training samples, the
teacher’s output probability vector closely resembles a one-hot vector,
where the sole non-zero entry corresponds to the correct class label.
This characteristic impedes the teacher model’s ability to generalize
effectively for unseen samples, thereby diminishing its capacity to
support the student in achieving good generalization.

∗ Corresponding author.
E-mail addresses: ahamsalamah@uwaterloo.ca (A.H. Salamah), smohajer@uwaterloo.ca (S.M. Hamidi), ehyang@uwaterloo.ca (E.-H. Yang).

This paper aims to tackle the aforementioned issue without resorting
to retraining the teacher model. Instead, our approach focuses on
inputting nonlinearly processed samples into the pre-trained teacher
model to obtain improved and more generalizable output probability
vectors. These vectors are then passed to the student model during the
distillation process. To fulfill this goal, each training sample is first
adaptively compressed and then fed into the pre-trained teacher model
so that the following two conditions are satisfied:

• Condition (I): If the teacher correctly classifies the original sample,
the adaptively compressed sample is also correctly classified.

• Condition (II): The output probability vector in response to the
adaptively compressed sample is not as close to the one-hot
probability vector as the output probability vector in response to
the original sample.

During the distillation process, instead of passing the output proba-
bility vector of the teacher in response to the original sample, we pass
the output probability vector of the teacher in response to the adap-
tively compressed sample to the student. Since generating a compressed
sample involves an encoding process, we refer to such a modified KD
framework as coded knowledge distillation (CKD), and the correspond-
ing modified teacher as a coded teacher. In other words, compared to
the teacher in KD, the coded teacher in CKD has an additional adaptive
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encoding layer in the front which encodes adaptively an input image
into a compressed version and then feeds the compressed image into the
teacher. In CKD, the student is trained to mimic instead the behavior
of a coded teacher.

How would each original input image 𝐼 be adaptively encoded by
the coded teacher? In this paper, we shall apply JPEG. As a popular
lossy compression technique, JPEG in its primitive form uses the quality
factor (QF) parameter 𝑞 ∈  to establish a trade-off between human-
perceived quality and compression ratio (CR) [21]. Different QF values
𝑞 result in different compressed images 𝐼 . The coded teacher then
adaptively selects a suitable 𝑞 for each input image 𝐼 , which is optimal
in some sense, and then uses JPEG to encode 𝐼 . The contributions of
the paper are summarized as follows:

• We present a new KD framework, dubbed as CKD, in which
an additional adaptive encoding layer is introduced before the
teacher, resulting in a coded teacher, for the purpose of generating
better, more generalizable output probability vectors to be passed
to the student model during the distillation process.

• Within our proposed CKD framework, an adaptive encoding metho
in conjunction with JPEG is presented and justified.

• We show by experiments that in comparison with KD, CKD along
with the proposed coded teacher can achieve better performance.
This improvement is particularly evident when tested on the
ImageNet and fine-grain image classification datasets. Notably,
on the CUB200-2011 and Stanford Dog datasets, we observed a
significant percentage gain of 3.7% and 12.08%, respectively.

• In addition, further experiments on CIFAR-100 illustrate that the
proposed coded teacher can also be used in conjunction with
many other existing knowledge transfer methods–including Fit-
Net [9], FSP [11], FT [12], CC [17], SP [14], AB [13], and
RKD [16]–to improve validation accuracy. We show that the gain
of such a combination can be up to 5% over the underlying
knowledge transfer method compared to TALD [22].

. Related work

Knowledge distillation. KD aims to distill the knowledge learned
y a complex teacher model into a smaller student model, allowing
he student model to achieve performance comparable to that of the
eacher model while being computationally more efficient. To achieve
his, the student loss function typically comprises a conventional cross-
ntropy term combined with an additional component representing the
nowledge distilled from the teacher model throughout the training
rocess. In its original form, KD involves minimizing the KL-divergence
etween the output probability vector of the teacher and that of the
tudent model, where the output probability vector of the teacher
s the knowledge passed to the student. Since the seminal paper by
inton [1], many different forms of knowledge from the teacher have
een investigated and passed to the student. Below, we briefly discuss
ome of them, with a specific focus on those that we later compare our
ethod to in our experiments.
Intermediate-level distillation. The intuition behind intermediate-

evel KD is to exploit the rich representations learned by the teacher
odel at different layers of its architecture. A pioneering work in this

ealm is FitNets [9], where the authors suggested using the responses
rom multiple intermediate hidden layers of the teacher, referred to as
ints, to distill knowledge into the student model. Inspired by this work,
n attention transfer (AT) [10], the attention maps generated by the
eacher model guide the student to learn similar attention patterns. On
he other hand, factor transfer (FT) [12] presents a different approach
here transportable features are extracted using convolutional opera-

ions to paraphrase the teacher’s knowledge. In another approach, Heo
t al. [13] focus on transferring knowledge by matching the activation
oundaries (AB) formed by hidden neurons between a teacher and
student model. The activation boundaries refer to the regions in
 c

2 
he input space where the teacher model’s activations change for the
euron’s response (active or not), yielding different predictions.

Moreover, intermediate feature distributions can also play a crucial
ole in KD. Flow-based KD [11], known as FSP, aims to match the
istributions of intermediate features of the student model with those
f the teacher. The matching is typically achieved by minimizing the
L divergence or the maximum mean discrepancy, between the feature
istributions of the teacher and student models. In a similar vein,
imilarity-preserving (SP) knowledge distillation [14] is a KD method
ased on the fact that inputs with similar semantics tend to generate
imilar activation patterns. Hence, SP focuses on preserving pairwise
imilarities within the teacher’s feature map by transforming it into
matrix. This matrix encoding retains the similarity information of

ctivations at the teacher layer. However, this transformation process
ay result in some information loss.

Another line of methodology to leverage intermediate layers in
D, involves harnessing the relationship between samples to improve
nowledge transfer. Contrastive representative distillation (CRD) [15]
ncourages representations of similar samples to be closer in the em-
edding space, while simultaneously pushing apart those of different
amples, from different classes. To this aim, this method exploits the
orrelations and higher-order output dependencies. Relational knowl-
dge distillation (RKD) captures the pairwise relationships between the
ata points [16]. This can be achieved through various techniques, such
s penalizing the structure difference with distance-wise and angle-
ise distillation loss between the data points and encouraging the

tudent model to reproduce similar relationships as the teacher model.
n correlation congruence for knowledge distillation (CC) [17], the
oal is to ensure that the student model’s predictions exhibit similar
orrelation patterns to those of the teacher model. In addition to using
orrelation loss, the benefits of deploying other loss functions such as
ovariance loss or higher-order statistical moments are also discussed
n [17].

Nevertheless, intermediate-level KD adds complexity to the distilla-
ion process compared to the logit-based KD. This, in turn, increases the
omputational cost and training time of intermediate-level KD methods.
KD using input perturbation. In the conventional KD, both the

eacher and student models are fed with the same input samples (raw
mages) during the distillation process. Yet, these raw images might
ot be able to explore the properties of the teacher model properly.
hus, Heo et al. [6] propose a KD method in which a teacher pre-
rained by clean (raw) images is fed with adversarial examples during
he KD process. Particularly, an attack scheme is modified to explore
he properties of the teacher model by searching an adversarial sample
upporting a decision boundary, referred to as boundary supporting
ample (BSS). However, the current BSS attack method has limitations
n fully exploring the complete range of potential perturbations that
he teacher model can exhibit, as it is restricted to generating a single
dversarial example. To tackle this issue, TALD [22] addresses the
nsufficiency of a single adversarial example by examining a broader
pectrum of possible teacher model perturbations through the gener-
tion of multiple adversarial examples for the same original sample.
ALD generates diverse adversarial examples using a multiple particle-
ased search technique known as Stein Variational Gradient Descent
SVGD). The authors of [22] execute SVGD for a specified number
f iterations, denoted as 𝐿, to generate each sample sequentially,
mploying 𝐾 particles sampled from the teacher conditional adver-
arial local distribution, with each iteration involving forward and
ackward propagation. Additionally, in [23], the authors propose a
ramework that incorporates an adversarial phase utilizing GANs to
enerate diverse examples. Afterward, a co-distillation phase involving
ultiple classifiers is employed to leverage the divergent examples

or enhancing the distillation performance which is computationally
xpensive.

Although compressed images generated by a coded teacher in CKD
an also be regarded as perturbed input images for the teacher, they
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serve a completely different purpose. In fact, these compressed images
are generated and employed in CKD to prevent the over-confident
responses of the teacher from being passed to the student during
the distillation process. Later, we will show through experiments that
indeed CKD holds a greater promise compared to these methods with
perturbed raw images as adversarial examples.

3. Preliminaries and motivation

3.1. Preliminaries

3.1.1. Knowledge distillation formulation
As previously discussed, Hinton et al. [1] introduced response-based

knowledge, represented by the output probability vector of the teacher,
which is incorporated into the training process through the KD loss
function. The KD loss function comprises two essential components: (i)
the traditional cross-entropy loss function (⋅, ⋅), and (ii) a regulariza-
tion term accounting for the teacher supervision. Specifically, the loss
function in KD could be written as

𝐾𝐷 = (1 − 𝛼)𝐄𝐼∼𝑃(�̂�, 𝑝𝑠) + 𝛼𝜏2𝐄𝐼∼𝑃𝑠𝑜𝑓𝑡
(

𝑝𝑡𝜏 , 𝑝
𝑠
𝜏
)

, (1)

where 𝑃 is the empirical distribution of the original training sample
image 𝐼 , �̂� is the one-hot probability vector corresponding to the ground
truth label, 𝑝𝑠 is the output probability vector of the student in response
to the input 𝐼 , and 𝛼 ∈ [0, 1] is a factor to balance the two loss terms.
In Eq. (1), 𝑝𝑡𝜏 = 𝑝𝜏 (𝐼 ;θ𝑡) and 𝑝𝑠𝜏 = 𝑝𝜏 (𝐼 ;ω𝑠) stand for the teacher’s
and student’s output probability vectors after softening the logits with a
temperature 𝜏, respectively, and 𝑠𝑜𝑓𝑡 is the response-based knowledge
loss defined as follows

𝑠𝑜𝑓𝑡 = 
(

𝑝𝑡𝜏
‖

‖

‖

𝑝𝑠𝜏
)

, (2)

where (⋅ ∥ ⋅) represents KL divergence, and θ𝑡 and ω𝑠 are the
teacher and student models’ parameters, respectively. Note that in the
traditional KD, both the teacher and student accept the same original
sample image 𝐼 as their respective inputs during the KD process.

3.1.2. JPEG compression
JPEG [21] is widely used for lossy compression in digital image

processing while maintaining visual quality. The JPEG encoding pro-
cess includes three fundamental phases: discrete cosine transformation
(DCT), quantization, and entropy encoding. It begins with the parti-
tioning of the input image into 8 × 8 blocks, systematically processed
in a raster scan order. Each block undergoes a transformation from the
pixel domain to the DCT domain via an 8 × 8 DCT. The resulting DCT
coefficients are subsequently subjected to uniform quantization using
an 8 × 8 quantization table, with its entries specifying the quantiza-
tion step sizes for each frequency bin, thereby representing the only
lossy step, i.e. non-linear. This quantization table for JPEG encoding
is designed in alignment with the assigned quality factor (QF). The
DCT indices resulting from quantization are further encoded through
a combination of run-length coding and Huffman coding, yielding the
final bitstream. The trade-off between compression ratio (CR) and
compression quality is mainly impacted by the designed quantization
step controlled by the chosen QF value; that is, a higher QF yields a
lower CR and better compression quality. The level of compression can
be adjusted by selecting a QF value from 1 to 100.

3.1.3. Overfitting
Overfitting occurs when a DNN becomes excessively tailored to a

finite number of training samples, resulting in overconfidence, which
leads to a diminished ability to generalize well to unseen data [24,25].
This phenomenon arises when the network learns intricate details and
noise present in the training set, rather than capturing the underlying
patterns and relationships that are more relevant for making accurate
predictions on unseen data. As a result, the network’s performance
tends to degrade when it is fed with new examples that differ from
the training data, thereby compromising its overall effectiveness. In
particular, this phenomenon is commonly observed in large models that

possess a significant number of parameters.

3 
Fig. 1. The simplex of output probability vector for a classification task with three
classes. Our goal is to alter the original samples with peaky output probabilities (the
blue dots) in order to obtain samples whose output probabilities are more uniform (the
red dots). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

3.2. Motivation

In the context of KD, when the teacher model suffers from over-
fitting, it is unable to effectively impart generalized knowledge to the
student. Thus, our motivation in this work is to prevent the overconfi-
dent responses of the teacher from being passed to the student during
the distillation process. To this end, during the distillation we feed the
pre-trained teacher model with a compressed version of the input image
such that the teacher’s output probability vector for the compressed
sample is more toward the uniform distribution.

To clarify our objective, consider a classification task with three
classes, namely {𝑐1, 𝑐2, 𝑐3}. In this case, the teacher’s output probability
ector 𝑝𝑡 has three entries denoted by {𝑝𝑡[1], 𝑝𝑡[2], 𝑝𝑡[3]}, where 𝑝𝑡[𝑖]
orresponds to the output probability for 𝑐𝑖, for 𝑖 ∈ {1, 2, 3}. Fig. 1
hows the simplex of output probability vectors of a pre-trained teacher
s depicted when its inputs are samples from class 𝑐1. The teacher would
orrectly classify those samples 𝐼 ∈ 𝑐1 for which the teacher’s output
robability vector lies on the surface of the polyhedron defined by
𝑡[1] > 𝑝𝑡[2] and 𝑝𝑡[1] > 𝑝𝑡[3].

However, the teacher makes over-confident decisions for the sam-
les whose output probabilities lie in the corner of the simplex, mean-
ng that the probability vectors generated by the teacher for these
amples are close to one-hot vectors. We refer to such probability
ectors as peaky ones hereafter. In this case, the model shows over-
onfident responses to these specific samples and, in turn, cannot
eneralize well when fed with new unseen data of a similar type [24,
5].

To prevent peaky probability vectors from being passed to the stu-
ent during the distillation process, it is desirable to alter the respective
nput images so that (i) the altered input images are still similar to the
riginal ones; and (ii) the output probability vectors of the teacher in
esponse to the altered input images are closer to a uniform distribution
hile remaining on the surface of the correct polyhedron, similar to the

ed samples in Fig. 1. One way to achieve this is through compression,
hich will be discussed in the next section.

. Coded knowledge distillation

As discussed in Section 3.2, we have to manipulate the training
amples so that the teacher’s output probabilities for the new samples
re more uniform. We aim to realize this by compressing the input
amples to the pre-trained teacher model during the distillation process.
pecifically, we deploy JPEG, the widely-used lossy compression tech-
ique. The key rationales behind utilizing JPEG are (i) its popularity
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as a lossy compression technique, and (ii) its potential for improving
accuracy as pointed out by Yang et al. [26].

It is widely recognized that naively compressing all the input images
to a DNN using the same QF by JPEG will generally lead to a degrada-
tion in the classification accuracy [26–28]. However, Yang et al. [26]
demonstrated that if QF can be adaptively selected on a per image
basis, then JPEG compression can significantly enhance classification.
Nevertheless, in their framework, the adaptive selection of QF depends
on the availability of the ground truth label of the original image,
which makes it unrealistic during the testing stage. Inspired by this,
we here employ an adaptive selection of QF during the distillation
process instead for the teacher’s input only, where a ground truth label
is available and can indeed be utilized. That is, we adaptively select
an image-dependent QF for JPEG to compress each image before it is
fed to the teacher during the distillation process. To achieve this, an
adaptive encoding layer is introduced in front of the teacher model. The
combination of this new adaptive encoding layer with the originally
pre-trained teacher forms what we refer to as a coded teacher. The
utput 𝐼𝑗∗ from the adaptive encoder layer generally depends on the
nput 𝐼 , the ground truth label 𝑐, and the teacher model itself. In
he subsequent subsection, we elaborate on the inner-working of the
tilized adaptive encoder layer.

.1. Optimal adaptive JPEG selection

To realize the proposed adaptive JPEG selection, for each sample
mage 𝐼 , we first generate a set of its compressed versions as explained
n Section 4.1.1; then, in Section 4.1.2, we propose a systematic method
o select one element from this set as the input to the teacher.

.1.1. The set of compressed versions
Consider a predetermined set of QFs:  = {𝑞𝑗 ∈ N ∣ 0 ⩽ 𝑞𝑗 ⩽ 100},

here 𝑞𝑗 = 𝛿×𝑗, and 𝛿 is used as a step-size between two successive QF
alues in . Denote by 𝐼𝑗 the compressed version of 𝐼 using QF equal to
𝑗 . Then, for each image 𝐼 in the training set, we construct the following
et 𝐼 = {𝐼𝑗 ∣ 𝑞𝑗 ∈ } ∪ {𝐼}. Specifically, 𝐼 contains the original
raining sample image 𝐼 and its different compressed versions obtained
sing different 𝑞𝑗 ∈ . Therefore, the size of the 𝐼 will depend on the
elected value of 𝛿, and obtained as |𝐼 | = ⌊

100
𝛿 ⌋ + 2.

4.1.2. Selection criterion
With the set 𝐼 created, this section focuses on presenting a system-

atic method to select an element from 𝐼 . This selection mechanism
should ensure that both Conditions (I) & (II)–introduced in Section 1–
are satisfied. As such, we first satisfy Conditions (I) by finding a subset
of 𝐼 whose elements are correctly classified by the teacher; that is, we
find the set  𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝐼
1 as follows

 𝐶𝑜𝑟𝑟𝑒𝑐𝑡
𝐼 = {𝐼𝑗 ∈ 𝐼 ∣ argmax

𝑧∈
𝑝(𝑧|𝐼𝑗 ;θ𝑡) = 𝑐}, (3)

where  represents the set of classes. Afterward, we aim to satisfy
Condition (II) on top of Conditions (I). To achieve this objective, given
that the teacher’s output probability for the original sample 𝑝(𝐼 ;θ𝑡) is
typically peaky, we select 𝐼𝑗 ∈  𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝐼 whose output probability vector
𝑝(𝐼𝑗 ;θ𝑡) has the maximum distance to 𝑝(𝐼 ;θ𝑡). For this purpose, among
the possible distance metrics for the probability vectors, we utilize KL
divergence. We refer to such selection mechanism as high KL (HKL)
divergence selector. Henceforth, we find 𝐼𝑗∗ as

𝐼𝑗∗ = argmax
𝐼𝑗∈ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡

𝐼


(

𝑝(𝐼 ;θ𝑡) ‖‖
‖

𝑝(𝐼𝑗 ;θ𝑡)
)

. (4)

Using this methodology, in the coded teacher, for every original training
sample image 𝐼 , we select 𝐼𝑗∗ given in Eq. (4) as the teacher’s input
during the distillation process. The CKD framework along with its
adaptive JPEG encoding layer are depicted in Fig. 2.

1 If  𝐶𝑜𝑟𝑟𝑒𝑐𝑡 is empty, we use the original sample.
𝐼 r

4 
4.2. Analyzing the proposed adaptive JPEG selection

In this subsection, we provide justifications for the proposed adap-
tive selection mechanism by presenting compelling experimental re-
sults. For this purpose, we use the following two values to evaluate
whether a probability vector is peaky:

• The magnitude of ground truth probability, in the sense that a
smaller magnitude tends to result in a smoother and less peaked
probability distribution.

• The uniformity of the vector; that is, a more uniform vector is
less peaked. Among the various existing metrics for measuring
the uniformity of a vector, we specifically use entropy in our
experiments. As such, a probability vector with higher entropy
is more uniform.

By using these two metrics, we can assess the effectiveness of the
adaptive selection method in promoting a more uniform distribution
of output probabilities. Now, consider the following three experiments.
Experiment one: Using randomly picked samples from CIFAR100’s
training set, we want to observe the elements in the set we constructed
in Section 4.1.1 to assess their level of peakiness or uniformity. To
illustrate this, we utilize a pre-trained Resnet56 model, serving as the
teacher, trained on the CIFAR100 dataset. We then randomly select
two images, Img1 and Img2, belonging to different classes that are
correctly and wrongly classified by the teacher, respectively. Then, we
construct the sets Img1 and Img2 for these two samples (as explained
ection 4.1.1). A caricature of decision boundary for the samples in
Img1 and Img2 are depicted in Fig. 3 in which we use the following
otation: (i) ‘KL’ represents 

(

𝑝(𝐼 ;θ𝑡) ‖‖
‖

𝑝(𝐼𝑗 ;θ𝑡)
)

, (ii) ‘H’ is the en-
ropy of 𝑝(𝐼𝑗 ;θ𝑡), and (iii) ‘P’ is the magnitude of the ground truth (GT)
robability. The ‘KL’ value is written on top of the arrows connecting
he original sample 𝐼 to its compressed versions 𝐼𝑗 . In addition, for each
ompressed sample, the values for QF, ‘H’, and ‘P’ are written in a box
eside that sample.

For Img1, (the left figure in Fig. 3), we observe that only seven ele-
ents in Img1 with respective QF={60, 75, 80, 90, 95, 100} are correctly

lassified. Among these samples, the compression version with QF=60
ill be chosen using the adaptive JPEG selector, as it has the highest

KL’ value. The selected compressed version by the HKL selector has
he lowest ‘P’ and largest ‘H’ among all correctly classified samples.
his demonstrates that the proposed selection method can successfully
hoose the least peaked sample from the set  𝑐𝑜𝑟𝑟𝑒𝑐𝑡

Img1 .
Now, consider Img2, which is originally misclassified by the model.

s seen in Fig. 3 (the right figure), there exist some elements in
Img2 which are correctly classified by the model. Again, the selected
ompressed version by HKL selector still gives rise to good values of ‘P’
nd ‘H’. Note that among all training samples, samples like Img2 are
are, as shown in the upper part of Table 1.
xperiment two: In this experiment, we aim to analyze the behavior of
he coded teacher over all the training samples (unlike the Experiment
ne where we only considered two specific samples), and compare it
ith that of the original uncoded teacher. In fact, we want to demon-

trate that the adoption of such an adaptive selection method assists
he teacher model in avoiding the generation of peaky probabilities.
o this end, we report the following two values for the teacher model:
he average (and standard deviation) of (i) the entropy of the output
robability vectors, and (ii) the GT probability, where the average and
tandard deviation are computed over all training samples.

Again, we use CIFAR100 dataset. The average entropy and GT
robability are computed for both the coded teacher and the original
ncoded teacher. They are shown in Table 1 for various model archi-
ectures to illustrate the generality of the proposed method. As seen
n Table 1, compared to the original teacher, the coded teacher gives

ise to higher average entropy and smaller ground truth probability
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Fig. 2. Illustration of CKD: (a) the CKD framework with an adaptive JPEG encoding based coded teacher; and (b) the inner-working of adaptive JPEG encoding mechanism.
Fig. 3. The decision boundary plots for Resnet56 pre-trained on CIFAR100 dataset, when the inputs are the elements from the sets: (left) Img1, and (right) Img2. Green and Red
dots show the correctly and wrongly classified samples, respectively. Note that the raw images Img1 and Img2 are correctly and wrongly classified, respectively.
Table 1
The average (and standard deviation) of (i) the entropy of 𝑝𝐼 and 𝑝𝐼 , and (ii) the GT probability in 𝑝𝐼 and 𝑝𝐼 from both the Coded
teacher and original teacher, respectively, over CIFAR100 dataset, where 𝑝𝐼 and 𝑝𝐼 are generated using 𝜏 = 1. The pre-trained teacher
models are also used in [7,15,22,29–32].
Teacher models Coded teacher Original teacher

Entropy GT probability Entropy GT probability

Resnet56 1.4941 (±0.6634) 0.5184 (±0.1992) 0.24531 (±0.3816) 0.9275 (±0.1476)
Resnet110 1.3312 (±0.6513) 0.5607 (±0.2032) 0.10879 (±0.2195) 0.9730 (±0.0781)
VGG13 1.6524 (±0.8211) 0.5344 (±0.2205) 0.03797 (±0.0883) 0.9937 (±0.0265)
WRN-40–2 1.5653 (±0.7578) 0.5244 (±0.2121) 0.07115 (±0.1584) 0.9859 (±0.0458)
ResNet50 1.4399 (±0.7689) 0.5662 (±0.2207) 0.02423 (±0.0648) 0.9960 (±0.0200)
Resnet32 × 4 1.8490 (±0.9192) 0.5004 (±0.2289) 0.02731 (±0.0656) 0.9962 (±0.0173)
for all the tested models, confirming that the coded teacher produces
probability vectors more towards the uniform distribution.
Experiment three: Here, we aim to show that CKD enhances the
generalization of the student more significantly compared to other KD
variants. For this purpose, we have conducted the following experi-
ment: for three teacher–student pairs, we have reported the average
(and standard deviation) of (i) the entropy of the student’s output
probability vectors, and (ii) the student’s GT probability for a student
trained via some KD variants (see Table 2). As depicted in Table 2,
most of the KD variants result in improvement for the generalization of
the student. However, the CKD method exhibits notably a significantly
greater improvement and demonstrates orthogonality to temperature
scaling in conventional KD. As we will discuss in the following section,
it is the heightened level of uniformity passed from the coded teacher
to the trained student that enables the latter to achieve higher accu-
racy compared to its baseline distiller. Nevertheless, while training a
teacher model with label smoothing increases the degree of uniformity,
it can negatively impact the student’s accuracy by erasing informa-
tion contained in intra-class relationships among individual training
samples [33]. For more additional analysis, refer to the Appendix A.
5 
5. Experiment results

To evaluate the performance of CKD, we conduct various experi-
ments. In this section, we report our experimental results and compare
them with the state-of-the-art alternatives in the literature. In par-
ticular, we have carried out experiments on four datasets, namely
ImageNet [34] in Section 5.1, and CIFAR-100 [35] in Section 5.2,
and two different datasets for the fine-grained classification in Sec-
tion 5.3. For each of these datasets, both teacher and student models
are mentioned, and the training setup is also elaborated. Additionally,
we highlight the adaptability of using coded teachers by integrating
them into other well-established knowledge transfer methods found in
the literature. This integration results in an improvement in the test
accuracy for each respective approach. All experiments were conducted
using PyTorch [36].

5.1. ImageNet dataset

∙ Dataset: We use ImageNet ILSVRC 2012 dataset that contains 1.2M
training images and 50K for testing images [34] with an average size of
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Table 2
The average (and standard deviation) of (i) the entropy of 𝑝𝐼 , and (ii) the GT probability in 𝑝𝐼 from students trained by CKD with the Coded teacher and other knowledge transfer
methods with the original teacher on the CIFAR-100 dataset, where 𝑝𝐼 is generated using 𝜏 = 1.

Methods Resnet56 → Resnet20 Resnet32 × 4 → Resnet8 × 4 VGG13 → MobileNetV2

Entropy GT probability Entropy GT probability Entropy GT probability

KD 0.6423 (±0.7002) 0.7623 (±0.2972) 0.5386 (±0.6714) 0.8457 (±0.2283) 0.3751 (±0.5116) 0.8763 (±0.2117)
FitNet 0.7307 (±0.7434) 0.7488 (±0.2937) 0.6253 (±0.6817) 0.8125 (±0.2410) 0.4605 (±0.5389) 0.8600 (±0.2074)
CC 0.7308 (±0.7393) 0.7497 (±0.2923) 0.5574 (±0.6540) 0.8337 (±0.2304) 0.6194 (±0.6498) 0.7958 (±0.2616)
FT 0.8552 (±0.8050) 0.7010 (±0.3155) 0.7492 (±0.7834) 0.7672 (±0.2770) 1.1749 (±0.8641) 0.5945 (±0.3372)
AB 0.7427 (±0.7466) 0.7464 (±0.2931) 0.5111 (±0.6207) 0.8526 (±0.2116) 0.4044 (±0.5054) 0.8768 (±0.1966)
SP 0.8247 (±0.7827) 0.7099 (±0.3129) 0.7595 (±0.8167) 0.7642 (±0.2858) 0.5675 (±0.7730) 0.7215 (±0.3225)
RKD 0.7547 (±0.7266) 0.7333 (±0.3014) 0.6333 (±0.6655) 0.8143 (±0.2366) 0.5104 (±0.5692) 0.8415 (±0.2224)
FSP 0.8118 (±0.7905) 0.7188 (±0.3096) 0.5587 (±0.6525) 0.8314 (±0.2327) n/a n/a

TALD 0.5396 (±0.6543) 0.7430 (±0.3412) 0.4013 (±0.6306) 0.8448 (±0.2761) 0.3333 (±0.5350) 0.8070 (±0.3293)
CKD 0.9511 (±0.8326) 0.7001 (±0.3018) 0.9651 (±0.9541) 0.7764 (±0.2544) 0.6468 (±0.7211) 0.8367 (±0.2257)
Table 3
The student accuracy on ImageNet dataset given by different KD methods, where the best and second-best results are bold and underlined, respectively. The
experiment setup is the same as in [15]. ∗As we followed [37] for our experimental setups, the accuracy for the Resnet18 model differs from that reported in
[38].
Accuracy Teacher Student KD [1] AT [10] SP [14] CC [17] O-KD [39] CKD

Top-1 73.31% 69.76%∗ 70.66% 70.70% 70.62% 69.96% 70.55% 70.98%
Top-5 91.42% 89.08% 89.88% 90.00% 89.80% 89.17% 89.59% 90.04%
w

P
d
e
a

469 × 387 to allow us to verify distillation performance for large input
resolutions.
∙ Teacher and student models: We use pre-trained Resnet34 as the
teacher and Resnet18 as the student model [38]. Following the ex-
perimental setup in [7,15,29–32] , the pre-trained teacher model is
obtained from torchvision library [37].
∙ Training setup: The training is performed for 100 epochs with a
batch size of 256 using SGD with a momentum of 0.9 and weight
decay equal to 1 × 10−4 with an initial learning rate 𝛾 of 0.1 that is
divided by 10 at epochs 30, 60 and 90. Standard Inception-style pre-
processing [24] for augmentation settings is used in the training of
teacher models as well as students. For CKD, we set 𝛿 = 10 resulting
in |𝐼 | = 12 versions of the raw input.
∙ Results and analysis: The results are presented in Table 3, where the
performance of CKD is compared with some knowledge transfer bench-
marks. We note that we used O-KD to denote ‘‘Online KD’’ method [39].
Specifically, the results demonstrate that the coded teacher effectively
improves the performance of the conventional KD, surpassing the per-
formance of the AT distillation method. In addition, further exper-
iments on the subset of ImageNet, namely ImageNet-1K subset, are
presented in Appendix B.

5.2. CIFAR100 dataset

∙ Dataset: This dataset contains 50K training images with 0.5K images
per class and 10K test images [35].
∙ Teacher and student models: We use different pairs of teacher and
student models, considering both similar and different architectural
styles. Specifically, inspired from [7,15,29–32], the teacher models are
chosen among ResNet50, Resnet56, Resnet110, VGG13, WRN-40-2, and
Resnet32x4.
∙ Training setup: When training CIFAR-100, we start with an initial
learning rate of 0.01 or 0.05. After the first 150 epochs, we decrease
the learning rate by a factor of 0.1 every 30 epochs until reaching
the last 240 epochs. The initial learning rate is 0.01 for MobileNetV2,
ShuffleNetV1, and ShuffleNetV2, and 0.05 for the other models. For
CKD, we use 𝛿 = 5, yielding |𝐼 | = 22. The training setup follows the
commonly used approach introduced in [7,15,29–32].
∙ Results and analysis:We conduct three sets of experiments explained
below.

Set 1: We first compare the performance of CKD against conven-
tional KD methods. In addition, we compare CKD to other perturbation-
based KD methods, namely BSS [6] and TALD [22]. As discussed in
 i
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Table 4
Test accuracy (%) of students trained by different KD methods on CIFAR100, where
the best and second-best results are bold and underlined, respectively. The student
accuracy for TALD and BSS is obtained using the settings specified in [22].

Teacher
Student

Resnet56
Resnet20

Resnet32 × 4
Resnet8 × 4

VGG13
MobileNetV2

ResNet50
MobileNetV2

Student 69.06% 72.50% 64.6% 64.6%

KD [1] 70.66% 73.33% 67.37% 67.35%
AT [10] 70.55% 73.44% 59.40% 58.58%
VID [40] 70.38% 73.09% 65.56% 67.57%
PKT [41] 70.34% 73.64% 67.13% 66.52%
NST [42] 69.60% 73.30% 58.16% 64.96%

BSS [6] 70.70% 73.53% 67.43% 68.10%
TALD [22] 70.90% 73.73% 68.50% 68.70%
CKD 70.81% 74.42% 67.80% 68.41%

Section 2, these two methods are similar to CKD in the sense that
both effectively perturb the inputs to the pre-trained teacher model.
We use the same student–teacher pairs as those used in [22], where
both the same and different architectural styles were considered. The
comparison is reported in Table 4.

Remarkably, CKD outperforms KD and its other four variants,
namely AT, VID, PKT and NST. In particular, CKD exhibits an average
gain of 0.67% compared to conventional KD. This superior performance
is also evident in comparisons with BSS. However, TALD generally
ranks as the best among the benchmark methods (except for one
teacher–student pair). It is worth noting that both BSS and TALD
have a higher level of complexity compared to CKD, as the former
methods involve input perturbation using gradients (see Section 2). To
ensure the accuracy and reproducibility of the results, we re-run the
implementation provided by the authors in [22] to produce the results
in Table 4. By utilizing their implementation,2 we confidently validated
and directly compared these methods with the performance reported in
their results, ensuring a reliable evaluation.

Set 2: In this set of experiments, we compare the coded teacher
ith TALD when both are applied on top of various knowledge transfer

2 The author-supplied TALD code for CIFAR100 in https://github.com/
otatoThanh/Adversarial-local-distribution-regularization-for-knowledge-
istillation. For ImageNet, we attempted to reproduce their results, but
ncountered significant computational complexity, as explicitly noted by the
uthors. In addition, their experimental setup also deviates from the standards

n the literature.

https://github.com/PotatoThanh/Adversarial-local-distribution-regularization-for-knowledge-distillation
https://github.com/PotatoThanh/Adversarial-local-distribution-regularization-for-knowledge-distillation
https://github.com/PotatoThanh/Adversarial-local-distribution-regularization-for-knowledge-distillation
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Fig. 4. Comparison between the coded teacher and TALD when they are applied on top of different underlying knowledge transfer methods. The teacher–student pairs are reported
n the caption of each figure.
ethods including FT, FitNet, CC, SP, and RKD (see Fig. 4). The cost
unction of these methods can be represented as  =  + 𝛽distill,3

where distill denotes the loss function associated with a specific form
of knowledge distilled into the student model. When applying the coded
teacher on top of these methods, we tune 𝛽 accordingly. From Figs. 4(a)
and 4(b), it is clear that the coded teacher delivers significant gains.
Specifically, with VGG13 as the teacher model, the coded teacher shows
notable gains of 5% and 2.12% when compared to TALD for FT and
FitNet, respectively. Similarly, when ResNet50 is used as the teacher
model, the coded teacher achieves gains of 4% and 1.3% compared to
TALD for FT and FitNet, respectively. These results demonstrate the
consistent improvement achieved by the coded teacher.

Set 3: In the third set of experiments, we want to show whether
the coded teacher, when applied on top of existing knowledge transfer
methods, can improve their accuracy performance of the latter. Partic-
ularly, we apply the coded teacher on top of the following knowledge
transfer methods in the literature: FitNet [9], FSP [11], FT [12],
CC [17], SP [14], AB [13], RKD [16]. In our experiments, FitNet and FT
were re-implemented based on the original papers; other methods were

3 In the TALD framework, KD loss is incorporated for all other distillation
ethods, plus the TALD loss, to enhance their performance. However, CKD

perates directly with other distillation methods without the addition of KD
oss.
 H

7 
implemented, using either author-supplied or author-verified source
codes. For a fair comparison, similarly to [7,15,22,29–32], we use the
same pre-trained teacher models for all the benchmarks as those used
in [15].4

Tables 5 and 6 illustrate the resulting accuracy results for student–
teacher pairs with the same architectural styles and for student–teacher
pairs with different architectural styles, respectively. From Tables 5
and 6, it is clear that the coded teacher can improve the accuracy
performance of the underlying distillation method in most cases. In
particular, when the student–teacher pair has different architectural
styles, the accuracy gain can be above 5%.

5.3. Fine-grained classification task

∙ Datasets: This task involves evaluating datasets to distinguish visu-
ally similar objects in the same category. The first dataset, CUB200
(Caltech-UCSD Birds-200-2011), has 11,788 images of 200 bird subcat-
egories divided into 5994 images for training, and each subcategory
in the training set contains roughly 30 images. The second dataset,
Stanford Dogs, has 20,580 images of 120 species, with 12K images for
training, each class having 180 images, and the rest for validation.

4 We used the implementation of other methods from https://github.com/
obbitLong/RepDistiller.

https://github.com/HobbitLong/RepDistiller
https://github.com/HobbitLong/RepDistiller
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Table 5
Test accuracy (%) of students on CIFAR100 dataset before and after the coded teacher is applied on top of the underlying distillation methods when the teacher and student
air has the same architectural style, where each underlying distillation method, when coupled with the coded teacher, is indicated by the bold prefix C and referred to as
he corresponding coded distillation method. The accuracy for the underlying distillation methods is reported from [15,29], and the pre-trained teacher models are also used in
7,15,22,29–32].
Teacher
Student

WRN-40-2
WRN-16-2

WRN-40-2
WRN-40-1

Resnet56
Resnet20

Resnet110
Resnet20

Resnet110
Resnet32

Resnet32 × 4
Resnet8 × 4

VGG13
VGG8

Teacher 75.61% 75.61% 72.34% 74.31% 74.31% 79.42% 74.64%
Student 73.26% 71.98% 69.06% 69.06% 71.14% 72.50% 70.36%

CC 73.56% 72.21% 69.63% 69.48% 71.48% 72.97% 70.71%
CCC 73.91% 72.32% 69.78% 70.21% 72.13% 73.16% 71.31%

FitNet 73.58% 72.24% 69.21% 68.99% 71.06% 73.50% 71.02%
CFitNet 74% 72.83% 69.49% 69.50% 71.66% 73.91% 71.14%

FT 73.25% 71.59% 69.84% 70.22% 72.37% 72.86% 70.58%
CFT 74.04% 72.31% 69.90% 70.25% 71.87% 73.15% 71.07%

AB 72.50% 72.38% 69.47% 69.53% 70.98% 73.17% 70.94%
CAB 71.8% 73.03% 70.11% 69.97% 72.11% 73.33% 71.35%

SP 73.83% 72.43% 69.67% 70.04% 72.69% 72.94% 72.68%
CSP 74.42% 72.87% 69.88% 70.10% 71.98% 73.17% 71.85%

RKD 73.35% 72.22% 69.61% 69.25% 71.82% 71.90% 71.48%
CRKD 73.64% 72.19% 69.85% 69.69% 71.76% 72.95% 71.07%

FSP 72.91% n/a 69.95% 70.11% 71.89% 72.62% 70.23%
CFSP 73.13% n/a 70.33% 70.37% 72.39% 73.08% 69.10%
Table 6
Test accuracy (%) of students on CIFAR100 dataset before and after the coded teacher is applied to the underlying distillation methods when the teacher and
student pair has different architectural styles, where each underlying distillation method, when coupled with the coded teacher, is indicated by the bold prefix
C and referred to as the corresponding coded distillation method. The accuracy for the underlying distillation methods is obtained from [15,29], while the
pre-trained teacher models are also used in [7,15,29–32].

Teacher
Student

VGG13
MobileNetV2

ResNet50
MobileNetV2

ResNet50
VGG8

Resnet32 × 4
ShuffleNetV1

Resnet32 × 4
ShuffleNetV2

WRN-40-2
ShuffleNetV1

Teacher 74.64% 79.34% 79.34% 79.42% 79.42% 75.61%
Student 64.6% 64.6% 70.36% 70.5% 71.82% 70.5%

CC 64.86% 65.43% 70.25% 71.14% 71.29% 71.38%
CCC 65.83% 66% 71.04% 72.02% 73.40% 72.02%

FitNet 64.14% 63.16% 70.69% 73.59% 73.54% 73.73%
CFitNet 65.79% 66.08% 71.07% 73.62% 74.48% 73.46%

FT 61.78% 60.99% 70.29% 71.75% 72.50% 72.03%
CFT 66.39% 66.34% 71.09% 72.48% 73.73% 72.21%

AB 66.06% 67.20% 70.65% 73.55% 74.31% 73.34%
CAB 66.58% 66.93% 71.02% 74.58% 75.19% 74.50%

RKD 64.52% 64.43% 71.50% 72.28% 73.21% 72.21%
CRKD 65.88% 65.42% 71.09% 72.28% 73.06% 72.89%
∙ Teacher and student models: We use wide residual networks (WRN)
with different depths and fixed widths. We utilize the same student–
teacher pairs for both datasets. For our teachers, we utilize pre-trained
WRN-64 and WRN-28 models, which achieved validation accuracies of
38.57% and 42.32% on the CUB200 dataset, and 46.60% and 54.37%
on the Stanford Dog dataset, respectively.
∙ Training setup: We use 𝛿 = 5 yielding |𝐼 | = 22. In our experiments,
we use WRN-<d>-<w> as our baseline focusing on increasing the depth
<d> and fixing the width <w> to 1, with the dropout probability of 0.3.
The selected student models are WRN-10 (W10) and WRN-16 (W16),
with 85K and 182K parameters, respectively. Following the settings
in [43,44], we trained the networks from scratch for 200 epochs with a
batch size of 32 using SGD with a momentum of 0.9 and weight decay
equal to 1 × 10−4 with an initial learning rate 𝛾 of 0.1 that is divided
by 10 at epochs 100 and 150. The training of both teacher and student
models used the same training setup and the standard Inception-style
preprocessing for augmentation settings [24]. The same values 𝜏 = 1
and 𝛼 = 0.5 are used for both the KD and CKD.
∙ Coded AT: In addition to comparing CKD with KD, we also apply
the coded teacher on the top of AT distillation method [10], yielding
coded AT (CAT), and further compare CAT with AT. In this case, the 𝛽

parameter in AT is set to 1000 as recommended in [10].

8 
Table 7 shows the resulting accuracy results. From Table 7, it is clear
that CKD and CAT improve KD and AT by a significant margin, respec-
tively. To shed some light on the respective training processes, Fig. 5
further illustrates the respective Top-1 validation accuracy curves along
the number of training epochs in the case of CUB200 dataset. As shown
in Fig. 5, the CKD significantly outperforms the underlying distillation
method around the 100-th epoch and stays that way afterwards in all
tested cases.

6. Conclusion

In this paper, we have proposed a novel KD framework referred to
as coded KD (CKD). In CKD, we insert an additional adaptive encoding
layer in front of the teacher, yielding a coded teacher. The purpose
of the coded teacher is to generate less confident output responses to
be passed to the student so as to help the student generalize better.
A specific JPEG adaptive encoding layer has been presented. The
effectiveness and accuracy performance advantage of CKD have been
demonstrated via comprehensive experimental results when it is com-
pared with the conventional KD method and when the coded teacher

is applied on top of diverse underlying knowledge transfer methods.
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Table 7
The performance of CKD and CAT against conventional KD and AT.

Dataset CUB200 Stanford Dog

Teacher
Student WRN-10 WRN-16 WRN-10 WRN-16

15.24% 27.63% 23.73% 34.79%

WRN-28

KD 17.68% (±1.21) 29.10% (±0.76) 25.79% (±0.88) 38.13% (±1.35)
CKD 21.27%(±0.52) 31.84%(±0.40) 28.32%(±0.70) 41.17%(±0.74)
AT 22.20% (±1.15) 32.94% (±0.65) 26.97% (±0.47) 39.04% (±0.57)
CAT 24.82%(±0.47) 37.10%(±0.10) 29.54%(±0.46) 41.84%(±0.33)

WRN-64

KD 18.04% (±0.60) 29.9% (±1.04) 26.76% (±1.16) 38.30% (±1.63)
CKD 21.41% (±0.44) 33.1% (±0.89) 29.69% (±0.99) 41.66% (±0.38)
AT 22.55% (±0.82) 33.95% (±0.71) 27.14% (±1.36) 39.39% (±1.03)
CAT 24.94% (±0.92) 37.31% (±0.77) 29.73% (±0.41) 41.93% (±0.65)
Fig. 5. Validation accuracy curves along the number of epochs over CUB200 dataset with (WRN-64) as the teacher and (W10) and (W16) as students: (a) CKD vs KD; and (b)
AT vs AT.
p
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Two areas for improvement in CKD are: (1) its time complexity;
nd (2) the sub-optimality of the proposed JPEG adaptive encoding.
ompared to the conventional KD, CKD has a slight increase in time
omplexity due to using adaptive image encoding. Nonetheless, this
ime complexity increase is significantly lower than that incurred by
ther knowledge transfer methods using input perturbation, such as
SS and TALD. In our future work, we will address the sub-optimality of
daptive JPEG encoding by exploring more advanced and generalized
ncoding methods to further improve the accuracy performance of
KD.
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Table A.8
Covariance (×10−5) for both coded and original teacher on the CIFAR-100.

Teacher Coded teacher Original teacher

Resnet56 13.0308 40.7161
Resnet32 × 4 23.5506 29.1309
VGG13 3.7323 58.7183
ResNet50 16.2534 61.1902

Appendix A. Analyzing student’s generalization error in CKD

In this section, we aim to demonstrate the reason why CKD reduces
the generalization error of the student model. To this end, we will first
establish a clear definition of generalization error.

In a classification task with 𝐶 classes, a DNN could be regarded as
a mapping 𝑓𝜃 ∶ 𝐼 → 𝑝𝐼 , where 𝜃 represents all the model parameters,
𝐼 ∈ R𝑑 is an input image, and 𝑝𝐼 is a probability vector. One may learn
such a classifier by minimizing the true risk 𝑅(𝑓𝜃) defined as follows:

𝑅(𝑓𝜃) ≜ E(𝐼,�̂�)
[

𝓁
(

�̂�, 𝑝𝐼
)]

, (A.1)

where 𝓁(⋅) is the loss function and 𝓁(⋅) ≜ [𝓁(1, ⋅),… ,𝓁(𝐶, ⋅)] is the vector
of loss function.

On the other hand, to understand how KD works, let us write the
loss function for the student in KD. To this end, denote by 𝑝𝑡𝐼 and 𝑝𝑠𝐼 the
re-trained teacher’s and student’s outputs to sample 𝐼 , respectively.
hen, the student uses the training dataset  ≜ {(𝐼𝑛, �̂�𝑛)}𝑁𝑛=1 sampled
rom the joint distribution 𝑃(𝐼,�̂�) in order to minimize the following
istillation risk function:

S(𝑓𝜃 ,) ≜ 1
𝑁

∑

𝑛∈[𝑁]

(

𝑝𝑡𝐼𝑛

)𝑇
⋅ log

(

𝑝𝑠𝐼𝑛

)

, (A.2)

hen, the generalization error for the student model is defined as
ollows [5]:
{(

𝑅 (𝑓 ,) − 𝑅(𝑓 )
)2}

. (A.3)
S 𝜃 𝜃
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Table B.9
CKD performance on ImageNet-1K subset with and without data augmentation.

Training Setup Without Augmentation With Augmentation

Teacher
Student Resnet18 MobileNet-V2 Resnet18 MobileNet-V2

Resnet34
KD T1: 40.28% 49.27% 47.68% (±0.25) 52.65% (±0.44)

T5: 67.07% 75.52% 73.81% (±0.28) 78.01% (±0.35)

CKD T1: 41.27% 49.87% 49.74%(±0.09) 54.39%(±0.18)
T5: 67.86% 76.21% 75.56%(±0.17) 79.57%(±0.07)

Resnet50
KD T1: 44.51% 51.43% 49.37% (±0.37) 53.93% (±0.16)

T5: 71.45% 77.46% 75.42% (±0.24) 79.21% (±0.14)

CKD T1: 46.78% 52.78% 51.82%(±0.21) 55.11%(±0.28)
T5: 73.17% 78.46% 77.08%(±0.06) 80.31%(±0.21)
Table B.10
Ablation study on the adaptive layer in CKD on ImageNet dataset subset.

Teacher
Student Resnet18 MobileNet-V2

Resnet34
KD+QF50 T1: 48.11% 53.57%

T5: 74.24% 78.91%

KD+R(QF) T1: 48.64% 53.48%
T5: 74.68% 78.84%

Resnet50
KD+QF50 T1: 49.86% 54.53%

T5: 75.61% 79.89%

KD+R(QF) T1: 49.89% 54.13%
T5: 75.76% 79.42%
The smaller this value, the lower the generalization error is.
In order to provide justification about why the student model

trained by CKD generalizes better than that trained by KD, we use
the theoretical results derived in [45]. Particularly, the authors in [45]
showed that the generalization error for the student is lower when the
teacher’s output vectors exhibit a lower covariance.

Hence, by conducting some experiments, we show that the out-
puts of the coded teacher exhibit a lower covariance than those of a
onventional teacher. Specifically, we use exactly the same method as
hat used in [45] to estimate the covariance of the teacher’s output
robability. The results for four teacher models trained on CIFAR-100
ataset are listed in Table A.8 which suggest the output probability
ectors of a coded teacher have lower covariance than those of an
riginal teacher.

ppendix B. ImageNet subset dataset

Dataset: We use a subset of the original ImageNet ILSVRC 2012
dataset [34], namely ImageNet-1K subset, which has also been used
in the literature [46,47]. This subset shares the same validation set as
the original ImageNet dataset. The training subset5 is subsampled in
a label-balanced fashion to result in a 1% configuration used in our
experiments.
∙ Training setup: In the KD loss function in Eq. (1), 𝛼 was set to 0.5.
To determine the optimal value of 𝜏 for conventional KD, we conducted
experiments for 𝜏 ∈ {1, 2, 3}, and selected the one that yields the
best performance. Specifically, we use 𝜏 = 2 and 𝜏 = 3 for Resnet34
and Resnet50, respectively. Then, the same values for 𝛼 and 𝜏 are
used in the CKD framework. This step was essential in ensuring the
consistency of the source of gain between the conventional KD and CKD
frameworks.
∙ Results and analysis: The results are reported in Table B.9, en-
compassing two distinct columns outlining CKD with and without
input augmentation, which can also serve as an ablation study. It is

5 For detailed information about the sampling methodology and specific
ubsets used in the experiments, please refer to
ttps://www.tensorflow.org/datasets/catalog/imagenet2012_subset.
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worth noting that the authors in [48] observed that various knowl-
edge distillation approaches, such as vanilla KD and CRD [1,15], can
also achieve a modest improvement in the student model’s perfor-
mance solely through applying data augmentation. As such, the objec-
tive of conducting CKD with and without data augmentation was to
demonstrate its efficacy in both scenarios.

As the first main column suggests (corresponding to without aug-
mentation), CKD outperforms KD in both Top-1/Top-5 (T1/T5) valida-
tion accuracy. In the second column (with augmentation), we followed
the best practice in the literature by performing three random runs with
the default augmentation settings. The mean and standard deviation for
T1/T5 validation accuracy is shown in Table B.9. The Top-1 validation
accuracy indicates 2.18% and 2.32% improvement over the standard
KD when Resnet34 and Resnet50 are the teacher models, respectively.
∙ Ablation study on the adaptive layer in CKD: To elucidate the

necessity of the adaptive layer, we remove this layer and perform the
following two sets of experiments: (1) using a constant QF=50 for
all images, and (2) using a random QF for each image ranging from
50 to 100. The results for these experiments are listed in Table B.10.
Compared to conventional KD and CKD in Table B.9, these results
suggest the necessity of using an adaptive layer method in all setups.
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