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Figure 1: Kitchen scene with the original BRDFs (left) and our non-parametric factor representation of measured anisotropic
spectral BRDFs (right). Our representation enables us to edit the normal distribution function and Fresnel terms. Surface
materials of the kettle, the frying pans, and the microwave are edited to increase anisotropy, and iridescent effects are added to
the surfaces of the frying pans.

ABSTRACT
Measured bidirectional reflectance distribution functions (BRDFs)
can accurately represent the measured material appearance but
suffer from high storage costs and lack editability due to their high
dimensionality. Recent advances in efficient acquisition techniques
extend the dimensionality of measured BRDFs from 3D (isotropic)
to 4D (anisotropic) and from RGB to spectra. This, however, further
compounds the issues of measured BRDFs and limits their practical
use. This paper proposes a non-parametric factor representation for
measured anisotropic spectral BRDFs. Based on microfacet theory,
our method decomposes 4D measured anisotropic BRDF per spec-
trum into low-dimensional, editable factors. We further compress
the spectral domain of decomposed factors using principal com-
ponent analysis. Experimental results show that our method can
compress measured anisotropic spectral BRDFs 1/40 on average
and up to 1/333. Our method also provides several editing tools
for each factor to enhance the editability of measured anisotropic
spectral BRDFs.
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1 INTRODUCTION
Data-driven representation of Bidirectional Reflectance Distribu-
tion Function (BRDF), which uses measured surface reflectance
of real-world materials, can reproduce the material appearance
faithfully. In recent years, film productions have started to shift
from RGB rendering to spectral rendering. This facilitates the use
of spectral BRDFs, and an efficient acquisition method of spectral
reflectances of real-world materials has been proposed [12]. While
measured spectral BRDFs can reproduce the material appearance
faithfully, their data size, especially for anisotropic materials, is
prohibitive due to its high dimensionality (four dimension for the
directional domain and one dimension for the spectral domain).

In addition, raw measured data can be used only to represent the
measured material itself. Thus the expressible range of measured
BRDFs is limited to the number of measured materials. Increasing
the number of measured materials is not accessible due to the ex-
pensive acquisition time, which requires 2-3 days per anisotropic
material [12]. Therefore, compact representation and editability are
essential to enhance the practicality of measured anisotropic spec-
tral BRDFs.
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Recent approaches representing measured BRDFs with neural
networks can faithfully reproduce the original measured BRDFs
using low-dimensional latent vectors [13, 17, 32, 36]. While these
neural-based models can compactly represent BRDFs, the entan-
gled representation makes it difficult to edit measured BRDFs intu-
itively. Currently, the primary editing tool of these neural-based
approaches is interpolating two latent vectors representing two dif-
ferent BRDFs. Interpolating two different BRDFs, while functional,
can change the entire visual appearance, and it is difficult to edit one
property (e.g., shapes and intensities of specular highlight) without
changing other properties (e.g., the color of the entire material).

Another common approach to compact representation of mea-
sured BRDFs is to decompose into low-dimensional factors [2, 18,
20]. While these methods can repsesent measured BRDFs with low-
dimensional, editable factors, these methods are limited to isotropic
BRDFs with RGB channels.

This paper proposes a simple but efficient, easy to edit representa-
tion for measured anisotropic spectral BRDFs using non-parametric
factorization. Based on the microfacet theory, our method decom-
poses four-dimensional anisotropic reflectance distribution per
spectrum into the product of normal distribution function (NDF),
Fresnel term, and geometric attenuation factor (GAF), which are
stored in a low-dimensional table. Our technical contribution lies
in deriving a proper weight for anisotropic BRDFs used to fit
BRDFs with non-parametric factors. Since NDFs and GAFs pri-
marily depend on the geometric structures of microfacets, NDFs
and GAFs across different spectra can be compactly represented us-
ing Principal Component Analysis. Several experiments show that
our method can compress five-dimensional measured anisotropic
spectral BRDFs about 1/40 on average and up to 1/333 while re-
taining appearance fidelity as shown in Fig. 1. We also provide
several editing tools to enhance the expressiveness of the measured
anisotropic spectral BRDFs. Fig. 1 shows an example of editing
measured anisotropic spectral BRDFs. Our representation enables
us to edit NDFs of the kettle, the frying pans, and the microwave to
increase anisotropy, as shown in Fig. 1 bottom. Our representation
also naturally fits into the edition of wavelength-dependent effects,
such as iridescent effects added to the frying pans, as shown in
Fig. 1.

2 PREVIOUS WORK
2.1 Measured BRDFs
Matusik et al. measured the surface reflectances of real-world
isotropic materials for the densely sampled incident and outgoing
directions [23]. The publicized dataset referred to as MERL BRDF
has been pervasively used in both graphics and vision communi-
ties. Filip and Vavra acquired surface reflectances of anisotropic
materials (e.g., fabrics) [14]. Dupuy and Jakob proposed an efficient
acquisition method of isotropic and anisotropic spectral BRDFs [12].
In this paper, we refer to them as EPFL BRDF.

Although these measured BRDFs can accurately represent real-
world materials, measured BRDFs require a large amount of tab-
ulated data, are difficult to edit, and require a costly acquisition
process, while several methods [21, 25] have been proposed to
reduce the number of acquisition samples. For instance, a single

anisotropic material in EPFL BRDF still requires more than 110MB,
although it is adaptively sampled.

Several methods have been proposed to edit measured BRDFs [29,
30]. These methods provide intuitive BRDF editing tools by embed-
ding measured BRDFs into low-dimensional space and interpolat-
ing them. Our method further enriches editing tools for measured
BRDFs, such as editing anisotropy of normal distribution function
and editing Fresnel term.

2.2 Parametric Representation of Measured
BRDFs

Ngan et al. [24] conducted extensive experiments of fitting MERL
BRDFs with parametric BRDF models such as Blinn-Phong [8] and
Cook-Torrance [10]. Several methods have been proposed to in-
crease the fitting accuracy of MERL BRDFs by using shifted-Gamma
distribution [3], ABC model [22], rational functions [26], fitting
roughness parameters using power iteration [11], two-scale micro-
facet reflectance model [16], image-based adaptive fitting [6]. The
expressiveness of these methods is limited to those of underlying
parametric models. Moreover, all these methods are adapted to RGB
BRDFs, not to spectral BRDFs.

2.3 Non-parametric Representation of
Measured BRDFs

Several methods have been proposed to represent BRDFs with lower
dimensional factors using singular value decomposition [18], non-
negative matrix factorization [20], inverse shade trees [19], tensor
decomposition [7], and PCA with logarithmic mapping [25]. These
methods do not consider the underlying theory (e.g., microfacet
theory) of BRDFs when factoring, resulting in inferior results.

Bagher et al. factored MERL BRDFs into NDF, Fresnel term,
and GAF by solving weighted least squares [2]. Sun et al. sep-
arated MERL BRDFs into diffuse and specular components [31].
Tongbuasirilai et al. represented isotropic measured BRDFs with a
product of one-dimensional factors using the projected deviation
vector parameterization [34], and a sparse combination of multi-
dimensional dictionaries [33]. While these methods can represent
measured BRDFs in a compact fashion with high fidelity, all these
methods are limited to isotropic BRDFs with RGB channels. The
most relevant work to our method is Bagher’s method [2]. The
technical contributions of our method against this previous work
lie in two folds. Our method extends the previous method to handle
anisotropic BRDFs by deriving new weights tailored to anisotropic
BRDFs. Furthermore, by analyzing the fitted NDFs and GAFs, and
exploiting the similarities of these distributions across different
wavelengths, we compress these factors in the spectral domain,
while the previous method, which is limited to RGB channels, does
not utilize such similarities.

2.4 Neural Representation of Measured BRDFs
Sztrajman et al. represented a measured BRDF with a neural net-
work called Neural BRDF (NBRDF) [32]. NBRDF is represented
with a 675D vector corresponding to the neural network weights.
NBRDF is further encoded into a 32D latent vector, which is used to
interpolate two different materials. Zheng et al. introduced Neural
Processes to represent measured BRDFs [36]. Chen et al. proposed
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invertible BRDF for inverse rendering [9]. Fan et al. represented
BRDFs with a latent vector to describe layered BRDFs [13].

While neural-based methods can represent measured BRDFs
with low-dimensional latent vectors, those representations are en-
tangled, and these methods edit measured BRDFs by interpolat-
ing two latent vectors representing two different BRDFs, which
would sometimes generate BRDFs of physically meaningless mate-
rials (e.g., interpolating fabrics and metals). On the contrary, our
method extracts physically-based meaningful components (i.e., dif-
fuse/specular coefficients, NDF, Fresnel term, and GAF), most of
which are orthogonal and easy to edit intuitively.

Hu et al. proposed DeepBRDF that encodes measured BRDFs
into latent vectors using an autoencoder [17]. The latent vectors
are further mapped onto attribute vectors (corresponding to dif-
fuse/specular albedo and roughness) to edit BRDFs at the cost of an
additional network. Benamira et al. proposed an interpretable disen-
tangled parameterization of measured BRDFs using a 𝛽-Variational
AutoEncoder [5]. While these methods struggle to disentangle
the latent space, most of the neural-based methods (except for
NBRDF [32]) are limited to isotropic BRDFs. Moreover, all these
neural-based methods focus on RGB BRDFs and no methods have
been proposed for spectral BRDFs.

3 PROPOSED METHOD
3.1 Anisotropic Fitting Model
Ourmethod represents measured anisotropic spectral BRDFs 𝜌 with
the following anisotropic microfacet model 𝜌𝑀 for each wavelength
𝜆 (we omit 𝜆 for brevity):

𝜌𝑀 (𝜃ℎ, 𝜙ℎ, 𝜃𝑑 , 𝜙𝑑 ) = 𝜌𝑑 + 𝜌𝑠
𝐷 (𝜃ℎ, 𝜙ℎ)𝐹 (𝜃𝑑 )𝐺 (𝜃𝑖 , 𝜙𝑖 )𝐺 (𝜃𝑜 , 𝜙𝑜 )

cos𝜃𝑖 cos𝜃𝑜
,

(1)

where 𝜌𝑑 and 𝜌𝑠 are the diffuse/specular coefficients, 𝐷 is the nor-
mal distribution function (NDF), 𝐹 is the Fresnel term, 𝐺 is the
geometric attenuation factor (GAF), respectively. The anisotropic
microfacet model 𝜌𝑀 is parameterized by Rusinkiewicz parame-
terization [28] (𝜃ℎ, 𝜙ℎ, 𝜃𝑑 , 𝜙𝑑 ), where (𝜃ℎ, 𝜙ℎ) are the zenith angle
and the azimuthal angle of the half vector h = i+o

∥i+o∥ , i and o are
the incident and outgoing directions, and (𝜃𝑑 , 𝜙𝑑 ) are those of the
difference vector d, respectively.

In non-parametric factor representation, NDF 𝐷 and GAF 𝐺

are represented by two-dimensional arrays for discretized angles
(𝜃ℎ, 𝜙ℎ) and (𝜃, 𝜙), and the Fresnel term 𝐹 is represented with a
one-dimensional array for discretized angles 𝜃𝑑 . To better capture
important features of NDF 𝐷 near 𝜃ℎ = 0, the non-linear mapping
of 𝜃 ′

ℎ
=
√︁
𝜃ℎ is used for NDF 𝐷 similar to the previous methods [2,

12, 23].
Our method calculates 𝜌𝑑 , 𝜌𝑠 , 𝐷, 𝐹 , and 𝐺 by minimizing the

following objective function 𝐸:

𝐸 =
∑︁
𝑗

𝑤 𝑗 (𝜌 𝑗 − 𝜌𝑀 (𝚯𝑗 ))2, (2)

here𝚯𝑗 = (𝜃 ′
ℎ,𝑗

, 𝜙ℎ,𝑗 , 𝜃𝑑,𝑗 , 𝜙𝑑,𝑗 ) is the 𝑗-th set of uniformly sampled
angles, 𝜌 𝑗 is the measured BRDF value at Θ𝑗 , 𝑤 𝑗 is a weight for
𝜌 𝑗 described in Sec. 3.2. The objective function 𝐸 is minimized by

Table 1: Comparisons of the average MAPE, relMSE, PSNR,
and SSIM between Bagher’s weight and our weight in Fig. 2
for all anisotropic materials. Our weight can significantly
reduce the relMSE.

MAPE↓ relMSE↓ PSNR↑ SSIM↑
Bagher’s weight 48.90% 2.3593 44.31 0.9797
our weight 11.03% 0.0483 45.08 0.9878

using alternating weighted least square method [2], described in
Sec. 3.3.

3.2 Weights for Anisotropic BRDFs
Weight𝑤 𝑗 for the measured BRDF 𝜌 𝑗 corresponding to 𝑗-th angle
set Θ𝑗 consists of three sub-weights, volume form sub-weight𝑤𝑉 ,
BRDF importance sub-weight𝑤𝐼 , and compressive sub-weight𝑤𝐶

as:
𝑤 𝑗 = 𝑤𝑉 (Θ𝑗 )𝑤𝐼 (Θ𝑗 )𝑤𝐶 (𝜌 𝑗 ). (3)

Since BRDF importance sub-weight𝑤𝐼 and compressive sub-weight
𝑤𝐶 are identical for both isotropic and anisotropic BRDFs, we focus
on the volume form sub-weight𝑤𝑉 .𝑤𝐼 and𝑤𝐶 are described in Ap-
pendix A. Volume form sub-weight𝑤𝑉 considers the Jacobian of the
transformation from the canonical form (i, o) to Rusinkiewicz pa-
rameterization (𝜃ℎ, 𝜙ℎ, 𝜃𝑑 , 𝜙𝑑 ). While the previous method derived
the volume form sub-weight𝑤𝑉 for three-angle parameterization
(𝜃ℎ, 𝜃𝑑 , 𝜙𝑑 ) limited to isotropic BRDFs [2], we derive 𝑤𝑉 for full
parameterization (𝜃ℎ, 𝜙ℎ, 𝜃𝑑 , 𝜙𝑑 ) for anisotropic BRDFs as:

𝑤𝑉 = 4 sin𝜃𝑑 sin𝜃ℎ cos𝜃𝑑𝑑𝜃ℎ𝑑𝜃𝑑𝑑𝜙ℎ𝑑𝜙𝑑 . (4)
The derivations of the transformation matrix and its Jacobian are
shown in the supplemental material. Since Θ𝑗 is uniformly sampled
for 𝜃 ′

ℎ
, 𝑑𝜃ℎ = 2

√︁
𝜃ℎ𝑑𝜃

′
ℎ
is used in 𝐸𝑞. (4).

Fig. 2 shows comparisons between Bagher’s weight and ours in
Eq. (4). As shown in Fig. 2, the use of our weight (second row) can re-
construct the original BRDFs (top row) well, while Bagher’s weight
(fourth row) leads to visible artifacts, especially for copper_sheet,
metallic_paper_copper, metallic_paper_gold, miro_7 materials. Ta-
ble 1 shows comparisons between our weight and Bagher’s weight
in terms of image quality metrics, mean absolute percentage error
(MAPE), relative mean square error (relMSE), peak signal-to-noise
ratio (PSNR), and structural similarity index measure (SSIM). As
shown in Fig. 2 and Table 1, our weight tailored to anisotropic
BRDFs outperformes Bagher’s weight qualitatively and quantita-
tively, as indicated by MAPE and relMSE.

3.3 Fitting Procedure using AWLS
To fit each component of NDF𝐷 , Fresnel term 𝐹 , GAF𝐺 , our method
solves the objective function 𝐸 in Eq. (2) using alternating weighted
least squares (AWLS) [2]. Let us explain the fitting procedure of
the Fresnel term 𝐹 (𝜃𝑑 , 𝜆) for each sampled wavelength 𝜆. In the
following explanation, we omit 𝜆 for clarification and the following
procedure is repeated for all sampled wavelengths.

Fresnel term 𝐹 is represented with F ∈ R𝑁𝑑 , where 𝜃𝑑 is dis-
cretized into 𝑁𝑑 angles. To obtain F using AWLS, other factors



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Kei Iwasaki and Yoshinori Dobashi

(a) reference (b) our weight (c) relMSE of (b) (d) Bagher’s weight (e) relMSE of (d)

b
ru

sh
ed

_
a

lu
m

in
iu

m
_

1
co

p
p

er
_

sh
ee

t
g

re
en

_
p

v
c

m
et

a
ll

ic
_

p
a

p
er

_
co

p
p

er
m

et
a

ll
ic

_
p

a
p

er
_

g
o

ld
m

ir
o

_
7

sa
ri

_
si

lk
_

2
co

lo
r

d
a

rt
h

_
v

a
d

er
_

p
a

n
ts

ta
rk

in
_

tu
n

ic
b

ru
sh

ed
_

st
ee

l_
sa

ti
n

_
p

in
k

1.03x10-2

relMSE

4.27x10-2

9.57x10-3

1.66x10-2

1.79x10-2

2.01x10-2

1.26x10-2

1.56x10-2

3.49x10-3

1.28x10-2

1.23x10-1

1.67x101

2.00x10-2

7.63x10-1

4.65x10-1

3.12x10-1

1.23x10-2

1.59x10-2

3.04x10-3

1.73x10-2

Figure 2: Comparisons between (b) our weight tailored to
anisotropic BRDFs and (d) Bagher’s weight. (a) reference im-
ages rendered with original BRDFs, (b) rendering results
using our weights in Eq. (4), (c) visualization of relative
mean square error (relMSE) of (b), (d) rendering results us-
ing Bagher’s weight, (e) relMSE of (d). Artifacts due to the
use of three-angle parametrization volume form sub-weight
can be seen in copper_sheet, metallic_paper_copper, metal-
lic_paper_gold, and miro_7 materials.

𝜌𝑑 , 𝜌𝑠 , 𝐷 and 𝐺 are considered as constant. To compute the 𝑘-th
component 𝑓𝑘 of F, the objective function 𝐸 with respect to 𝑓𝑘 is
rewritten as:

𝐸 (𝑓𝑘 ) =
∑︁
𝑗∈𝐼𝑘

𝑤 𝑗 (𝑎 𝑗 − 𝑏 𝑗 𝑓𝑘 )2, (5)

𝑎 𝑗 = 𝜌 𝑗 − 𝜌𝑑 , (6)

𝑏 𝑗 =
𝜌𝑠𝐷 (𝜃ℎ,𝑗 , 𝜙ℎ,𝑗 )𝐺 (𝜃𝑖, 𝑗 , 𝜙𝑖, 𝑗 )𝐺 (𝜃𝑜,𝑗 , 𝜙𝑜,𝑗 )

cos𝜃𝑖, 𝑗 cos𝜃𝑜,𝑗
, (7)

where 𝜌 𝑗 is the measured BRDF value of (𝜃ℎ,𝑗 , 𝜙ℎ,𝑗 , 𝜃𝑑,𝑗 , 𝜙𝑑,𝑗 ), 𝐼𝑘
is the set of indices of uniformly sampled Rusinkiewicz parame-
terization angles Θ whose 𝜃𝑑 is equal to the 𝑘-th discretized angle.
cos𝜃𝑖, 𝑗 and cos𝜃𝑜,𝑗 are calculated as:

cos𝜃𝑖, 𝑗 = cos𝜃ℎ,𝑗 cos𝜃𝑑,𝑗 − sin𝜃ℎ,𝑗 sin𝜃𝑑,𝑗 cos𝜙𝑑,𝑗 , (8)
cos𝜃𝑜,𝑗 = cos𝜃ℎ,𝑗 cos𝜃𝑑,𝑗 + sin𝜃ℎ,𝑗 sin𝜃𝑑,𝑗 cos𝜙𝑑,𝑗 . (9)

Then 𝑓𝑘 is simply calculated as:

𝑓𝑘 =

∑
𝑗∈𝐼𝑘 𝑤 𝑗𝑎 𝑗𝑏 𝑗∑
𝑗∈𝐼𝑘 𝑤 𝑗𝑏

2
𝑗

. (10)

Other factors 𝐷 , 𝐺 , 𝜌𝑑 , and 𝜌𝑠 are obtained in the similar way.
For each iteration, all the components of each factor are updated
in the order of 𝐷 , 𝐹 , 𝐺 , 𝜌𝑑 , and 𝜌𝑠 . While the GAF 𝐺 can be de-
duced from the NDF 𝐷 , our method calculates the components of
𝐺 independently of 𝐷 for better fitting.

3.4 Principal Component Analysis of 𝐷 and 𝐺

So far, we have represented the measured BRDF 𝜌 𝑗 with non-
parametric factor representation for each wavelength. Fig. 3 vi-
sualizes the hemispherical distributions of NDF 𝐷 and GAF 𝐺 of
𝑏𝑟𝑢𝑠ℎ𝑒𝑑_𝑎𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚_1 material projected onto the unit disk. As
shown in Fig. 3, 𝐷 and𝐺 have similar distributions across different
wavelengths. We further compress NDF 𝐷 and GAF 𝐺 across all
the wavelengths by performing singular value decomposition:

𝐷 (𝜃ℎ, 𝜙ℎ, 𝜆) ≈
∑︁
𝑘

𝜎𝐷
𝑘
𝑢𝐷
𝑘
(𝜃ℎ, 𝜙ℎ)𝑣𝐷𝑘 (𝜆), (11)

𝐺 (𝜃, 𝜙, 𝜆) ≈
∑︁
𝑘

𝜎𝐺
𝑘
𝑢𝐺
𝑘
(𝜃, 𝜙)𝑣𝐺

𝑘
(𝜆), (12)

where 𝜎𝐷
𝑘

and 𝜎𝐺
𝑘

are the 𝑘-th singular values for NDF 𝐷 and GAF
𝐺 , 𝑢𝐷

𝑘
and 𝑢𝐺

𝑘
are the 𝑘-th left singular vectors, and 𝑣𝐷

𝑘
and 𝑣𝐺

𝑘
are

the 𝑘-th right singular vectors, respectively.
Fig. 4 shows the comparisons between the original NDF 𝐷 and

GAF𝐺 (𝜆 = 689.9nm) and the reconstructed NDF and GAF using
PCA with 99% cumulative contribution ratio of 𝑔𝑟𝑒𝑒𝑛_𝑝𝑣𝑐 material
and 𝑑𝑎𝑟𝑡ℎ_𝑣𝑎𝑑𝑒𝑟_𝑝𝑎𝑛𝑡𝑠 material. As shown in Fig. 4, the recon-
structed NDF and GAF match the original distributions well.

3.5 Importance sampling
Our method importance-samples the incident direction by sampling
the half vector h based on NDF 𝐷 . We first compute the average
NDF �̄� by integrating 𝐷 (𝜃 ′

ℎ
, 𝜙ℎ, 𝜆) as:

�̄� (𝜃 ′
ℎ
, 𝜙ℎ) =

∫
𝑦 (𝜆)𝐷 (𝜃 ′

ℎ
, 𝜙ℎ, 𝜆)𝑑𝜆, (13)
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NDF

GAF

Figure 3: Visualization of NDF 𝐷 (top) and GAF 𝐺 (bottom)
for 𝑎𝑛𝑖𝑠𝑜_𝑏𝑟𝑢𝑠ℎ𝑒𝑑_𝑎𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚_1 (from left to right, 388.7nm,
489.2nm, 589.7nm, and 689.9nm). 𝐷 and 𝐺 show similar dis-
tributions across different wavelengths.

green_pvc darth_vader_pants

NDF D GAF G NDF D GAF G

Figure 4: Visualization of original NDF 𝐷 and GAF 𝐺 (top),
and those using PCA with 99% cumultive contribution ratio
(bottom). The reconstructed NDF 𝐷 and GAF 𝐺 (bottom) can
acculately recover the original distributions (top).

where 𝑦 is the CIE_Y color matching function. Since �̄� is a 2D table,
we can sample from it straightforwardly using the alias method [35].

4 RESULTS
In this section, we first show the reconstruction accuracy of our
non-parametric factor (NPF) representation model for measured
anisotropic spectral BRDFs, then we show the rendering results of
BRDFs edited using our method. The numbers of samples for 𝜃 ′

ℎ
,

𝜙ℎ , 𝜃𝑑 , and 𝜙𝑑 are 90, 180, 90, and 180, respectively. Those for 𝜃 and
𝜙 of GAF 𝐺 are 90 and 180, respectively. The computational time
to fit each anisotropic material is about six hours on a standard PC
with Apple M1 Ultra 20 Core CPU. All images are rendered using
HDR environment maps that are upsampled from RGB images to
spectral ones using the method implemented in PBRT [27]. Details
of the decomposed factors 𝜌𝑑 , 𝜌𝑠 , NDF 𝐷 , Fresnel term 𝐹 , and GAF
𝐺 are shown in the supplemental material.

4.1 Non-Parametric Factor Representation
Fig. 5 shows the rendering results of the Sphere scene using anisotropic
materials of the EPFL BRDF dataset [12]. We evaluate the visual
quality of our representation using PSNR and SSIM shown in Fig. 5.

Table 2: The average PSNR, SSIM, data size, and average com-
pression ratio of Fig. 5 with respect to the original data across
all anisotropic materials of EPFL BRDF dataset.

PSNR↑ SSIM↑ data size↓ ratio↓
NPF (w/o PCA of D/G) 45.08 0.9878 25.3MB 22.7%
NPF PCA (99%/99%) 44.93 0.9850 2.64MB 2.36%
NPF PCA (99%/95%) 44.45 0.9815 1.11MB 1.00%
NPF PCA (99%/90%) 43.87 0.9813 0.91MB 0.82%
NPF PCA (95%/95%) 43.83 0.9677 0.73MB 0.66%
NPF PCA (90%/90%) 42.60 0.9602 0.45MB 0.41%

The average PSNR, SSIM, average data size, and compression ratio
of all (eleven) anisotropic materials in the EPFL BRDF dataset are
shown in Table 2. As shown in Fig. 5, our NPF representation with-
out PCA compression of NDF and GAF (Fig. 5(b)) can reproduce
the visual appearance similar to the reference images (Fig. 5(a)) ren-
dered by using the original measured anisotropic spectral BRDFs.
Highly anisotropic materials, such as brushed_aluminium_1, metal-
lic_papermaterials, can be reproduced faithfully using our anisotropic
NPF model. Since our method bases upon the microfacet model, ma-
terials thatmeet this assumption (e.g., metals like brushed_aluminium_1
and copper_sheet) can be represented with our NPF model. As
shown in the insets of Fig. 5(b) of the visualization of relative mean
square error (relMSE), the relative errors are slightly high at graz-
ing angles, the same as the previous NPF method for isotropic
BRDFs [2].

Fig. 5(c) shows the rendering results of our NPF representation
using PCA-compressed NDF 𝐷 and GAF 𝐺 (with 99% cumulative
contribution ratio). By exploiting the similarity of NDF 𝐷 and GAF
𝐺 in the spectral domain, the average data size is reduced to 1/10
(from 25.3MB to 2.64MB) using PCA, and the net compression ra-
tio from the original EPFL BRDF (111.5MB) is 1/40. As shown in
Figs. 5(b) and (c), all the rendering results using our NPF represen-
tation without PCA compression are indistinguishable from those
using NPF with PCA compression, and the decreases in PSNR and
SSIM between Fig. 5(b) and 5(c) are small (0.15 and 0.0028) as shown
in Table 2. We also conducted experiments on the reconstruction
accuracy of BRDFs with different cumulative ratios of PCA com-
pression, 95% in Fig. 5(d), and 90% in Fig. 5(e). As shown in Figs. 5(d)
and (e), most of the rendering results with PCA-compressed NDF
𝐷 and GAF 𝐺 provide high visual fidelity similar to those without
PCA compression, and the decreases in PSNR and SSIM are still
small (1.25 and 0.0201) on average (see Table 2), while the net com-
pression ratio from the original BRDF is about 1/150. In the case
of 90% cumulative contribution ratio, some materials (e.g., miro_7)
can be rendered without losing accuracy compared with our NPF
representation without PCA compression, and the net compression
ratio is further reduced up to 1/333. However, other materials (e.g.,
copper_sheet) show degradation of visual quality, PSNR, and SSIM.
In the following examples, NPF representation with both 99% cu-
mulative contribution ratios for NDF 𝐷 and GAF 𝐺 is used unless
otherwise stated.
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Fig. 6 shows comparisons of the Buddha scene rendered with the
original BRDF and our NPF representation using PCA-compressed
NDF 𝐷 and GAF 𝐺 . While minor relative errors can be seen in
contours of the Buddha model (i.e., grazing angles of incident and
outgoing directions) as the Sphere scene, our NPF representation
closely matches the original appearance as shown in Fig. 6 and visu-
alized relMSE images. The average PSNR and SSIM of our method
in Fig. 6 are 51.88 and 0.9984, respectively.

4.2 Comparison with neural-based method
Fig. 7 shows comparisons between our NPF representation (the cu-
mulative contribution ratios for NDF𝐷 and GAF𝐺 are 99% and 95%)
and Neural BRDF (NBRDF) [32], which is the only neural network
representation method that can handle anisotropic materials. We
follow the network architecture of NBRDF [32], except for the num-
ber of nodes in the output layer, to apply NBRDF to spectral BRDFs.
We modified the author’s code to encode anisotropic EPFL BRDFs
with a 6 × 21 × 21 × 195 shape neural network. The average PSNR
values of our method and NBRDF in Fig. 7 are 44.45 and 43.95,
respectively. The average data sizes of our method and NBRDF
are 1.1 MB and 26 KB, respectively. While NBRDF can represent
anisotropic measured spectral BRDFs very compactly compared
with our method, our method can reconstruct the original measured
spectral BRDFs better than NBRDF in this case. In addition, our
factored representation provides several editing tools, as described
in Sec. 4.3, while NBRDF only accepts interpolating latent vectors
to edit BRDFs.

We also compared our NPF representation with NBRDF in terms
of computational performance, namely the computational time for
BRDF evaluation and importance sampling. In our method, the
computational time for BRDF evaluation depends on the number
of truncated singular values to reconstruct NDF 𝐷 and GAF 𝐺 as
shown in Eqs (11) and (12). The computational time for BRDF evalu-
ation ranges from 1.156𝜇𝑠 (brushed_steel_satin_pink material with
three singular values for both𝐷 and𝐺) to 2.742𝜇𝑠 (satin_silk_2color
material with 26 singular values for 𝐷 and 6 for 𝐺). The average
computational time for BRDF evaluation of our method is 1.898𝜇𝑠 ,
while that of NBRDF is 2.245𝜇𝑠 . Our BRDF evaluation is 18% faster
than that of NBRDF since our BRDF evaluation is a simple look-up
of low-dimensional tables.

For importance sampling, NBRDF uses Blinn-Phong BRDFwhose
parameters are inferred by inputting the latent vector of NBRDF
into a shallow network. Then, the inverse cumulative distribution
function (CDF) of Blinn-Phong BRDF is calculated for importance
sampling. Extending this method to anisotropic BRDFs is difficult
since anisotropic BRDFs lack the label data (parameters) for training.
Therefore, we only measure the computational time for computing
the inverse CDF under the assumption that the parameters are given,
which is advantageous for NBRDF. The average computational
time for importance sampling of our method is 0.0935𝜇𝑠 , while
that of computing inverse CDF for NBRDF is 0.0678𝜇𝑠 . The total
computational time of BRDF evaluation and importance sampling
for our method is 1.99𝜇𝑠 , 16% faster than that for NBRDF (2.31𝜇𝑠).

For equal-memory comparison, we use a 6 × 128 × 256 × 256 ×
195 shape neural network whose data size is 660 KB, which is
comparable to ours with 95% PCA (730KB). Using this network,

the average PSNR value of NBRDF is 53.44 dB, which is 9.61 dB
higher than ours as shown in Table 2. The use of a deeper network,
however, also increases the time for BRDF evaluation (78.41𝜇𝑠),
which is 41 times larger than ours. Therefore, our method seems to
be suitable for applications that require fast evaluation speeds with
moderate data size.

4.3 Editing Measured Spectral BRDFs
4.3.1 Editing NDF. Our NPF representation is capable of editing
NDF directly. Our method edits NDF 𝐷 using linear transforma-
tions [1, 15]. Fig. 8 shows the rendering results of the Sphere scene
using edited BRDFs of copper_sheet material. The leftmost image
of Fig. 8 shows the rendering result of our NPF representation (with
PCA compression), and the edited NDF 𝐷 and GAF𝐺 are shown at
the bottom. By transforming 𝐷 using the transformation matrix𝑀 ,
the specular highlight changes without changing other properties
(e.g., the entire color), as shown in Fig. 8. This kind of material
editing is difficult for interpolation-based editing of neural-based
method that can change the whole appearance.

4.3.2 Editing diffuse colors. OurNPF representation allows the user
to change the diffuse color by changing the diffuse coefficient 𝜌𝑑 .
To increase the number of expressible anisotropic spectral BRDFs
without costly acquisition of surface reflectances of new materials,
our method re-uses the measured data. To do this, our method
represents 51 isotropic spectral materials in EPFL BRDF dataset
with NPF representation and extracts 𝜌𝑑 , 𝜌𝑠 , 𝐷 , 𝐹 , and 𝐺 .

Fig. 9 shows the rendering result of the Pillow scene. The former
three pillows are rendered using edited darth_vader_pants material,
and the two pillows in the back row are rendered using edited
tarkin_tunic material. Our method replaces the diffuse coefficient
of darth_vader_pants material with those of acrylic_felt isotropic
materials as shown in Fig. 9. NDF 𝐷 of the purple pillow is also
edited to increase the anisotropy of darth_vader_pants material as
shown in the inset. The diffuse colors of two pillows in the back
row are also edited using those of acrylic_felt materials. NDF 𝐷 of
tarkin_tunic material is also edited to increase the specularity.

4.3.3 Editing specular colors. Our NPF representation also enables
us to edit the specular colors by changing the specular coefficient
𝜌𝑠 and Fresnel term 𝐹 (𝜃𝑑 , 𝜆). Fig. 10 shows the rendering results of
edited brushed_steel_satin_pink material, by replacing the specular
color 𝜌𝑠𝐹 with those of measured isotropic spectral BRDFs.

4.3.4 Editing Fresnel term. Our method allows the user to edit the
extracted the Fresnel term 𝐹 . Fig. 11 shows the editing of Fresnel
term by adding iridescent effects. Fresnel term 𝐹 is fitted with Airy
reflectance [4] that considers the reflectance of a microfacet-surface
coated with a single thin dielectric film (thickness 𝑑 and refractive
index 𝜂). The top row in Fig. 11 shows the rendering results of
miso_7 material by adding a thin film of thickness 𝑑 = 615𝑛𝑚 with
varying refractive index 𝜂. By increasing the refractive index 𝜂,
color fringes can be seen, especially for 𝜂 = 1.30 and 1.50. The
bottom row in Fig. 11 shows the rendering results with varying
thicknesses. The change of the thickness 𝑑 also changes the colors.
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Figure 5: Rendering results of Sphere scene using our non-
parametric factor representation (NPF): (a) reference (ren-
dered with original EPFL BRDF), (b) NPF without PCA com-
pression of NDF 𝐷 and GAF 𝐺 . (c)(d)(e) NPF with PCA com-
pressed 𝐷 and 𝐺 whose cumulative contribution ratios are
99%, 95%, and 90%, respectively. The inset images visualize
relative mean square errors (relMSE) where blue (red) colors
indicate 0%(≥ 5%) relative errors. SSIM/PSNR are also shown
in the bottom of relMSE images. The data size of (b) NPF
(without PCA) is 25.3MB (the compression ratio is 22.7%), and
that of (c) NPF with PCA 99% is 2.64MB (the compression
ratio is 2.36%).
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Figure 6: Comparison of Buddha scene rendered by using
original EPFL BRDF and our method (PCA compression of
NDF 𝐷 and GAF𝐺 with 99% cumulative contribution ratio).
SSIM and PNSR are shown in the bottom of each relMSE
image. As shown in the comparisons and relMSE images,
our non-parametric factor representation can provide visual
fidelity similar to the reference.
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Figure 7: Comparison with Neural BRDF (NBRDF) [32]. The
average PSNR values of our NPF representation with PCA-
compression (99% for NDF 𝐷 and 95% for GAF𝐺) and NBRDF
are 44.45 and 43.95, respectively.

Figure 8: Editing NDF 𝐷 by transforming 𝐷 with transfor-
mation matrix𝑀 . The top row images are rendered by using
the transformed NDF 𝐷 (shown in bottom row). The leftmost
image (copper_sheet material) is rendered using the original
NDF 𝐷 . The shapes of specular highlight are controlled by𝑀

(shown in the inset).

original color and NDF

original color and NDF

edited colors and NDF

edited colors and NDF

Figure 9: Editing diffuse colors 𝜌𝑑 of 𝑑𝑎𝑟𝑡ℎ_𝑣𝑎𝑑𝑒𝑟_𝑝𝑎𝑛𝑡𝑠 mate-
rial (front row three pillows) and 𝑡𝑎𝑟𝑘𝑖𝑛_𝑡𝑢𝑛𝑖𝑐 material (back
row two pillows). NDFs of the purple pillow and the yellow
pillow are also edited (as shown in the insets) to increase the
specularity.

chm_orange satin_gold cc_nothern_aurora satin_white cc_military_green

Figure 10: Editing specular colors 𝜌𝑠𝐹 of
brushed_steel_satin_pink material by replacing those
of isotropic materials (shown in the inset). Our method can
change the specular colors without changing the shapes of
highlights.
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Figure 11: Editing iridescent effects by adding a thin film
(refraction index 𝜂 and film thickness 𝑑) on miro_7 material.
By changing the refractive index 𝜂 (top row) and the film
thickness 𝑑 (bottom row), our method can edit iridescent
effects.

34.30/0.961329.85/0.901732.53/0.9314reference

NPF NPF with PCA NBRDF

Figure 12: Failure case of our microfacet-based non-
parametric factorization.𝑚𝑜𝑟𝑝ℎ𝑜_𝑚𝑒𝑙𝑒𝑛𝑎𝑢𝑠 material exhibits
complex reflections due to its mesostructure, which cannot
be represented with neither microfacet models nor NBRDF.

4.4 Limitations
While our method can represent most of the measured anisotropic
spectral BRDFs, our method cannot represent anisotropic materials
that deviate from the underlying microfacet theory. Fig. 12 shows
the failure case of our NPF representation. While our NPF repre-
sentation struggles to fit the complex anisotropic reflections, the
high-frequency structural color variations arising from complex
mesostructure of morpho_melanaus material cannot be represented
as shown in Fig. 12.

5 CONCLUSION
We have proposed a non-parametric factor representation for mea-
sured anisotropic spectral BRDFs. Our method decomposes mea-
sured anisotropic spectral BRDFs into physically-based, meaningful
factors such as diffuse/specular coefficients and NDF for compact
representation. Our method further compresses the spectral domain
of NDF and GAF, reducing the data size to 1/40 on average and up
to 1/333. Our NPF representation also allows the user to intuitively
edit measured anisotropic spectral BRDFs.

As for future work, we would like to investigate advanced fitting
models that can deal with complex interactions of light beyond
the microfacet theory, such as structural colors and diffraction of
light. Currently, the proposed method is used for forward rendering.
Applying our method to inverse rendering (e.g., predicting spectrum

distributions of diffuse/specular coefficients from a single image)
would be an interesting avenue for future work.
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