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Abstract

Deep topic models have shown an impressive abil-
ity to extract multi-layer document latent repre-
sentations and discover hierarchical semantically
meaningful topics. However, most deep topic
models are limited to the single-step generative
process, despite the fact that the progressive gen-
erative process has achieved impressive perfor-
mance in modeling image data. To this end, in this
paper, we propose a novel progressive deep topic
model that consists of a knowledge-informed tex-
tural data coarsening process and a correspond-
ing progressive generative model. The former
is used to build multi-level observations ranging
from concrete to abstract, while the latter is used
to generate more concrete observations gradually.
Additionally, we incorporate a graph-enhanced de-
coder to capture the semantic relationships among
words at different levels of observation. Further-
more, we perform a theoretical analysis of the
proposed model based on the principle of informa-
tion theory and show how it can alleviate the well-
known “latent variable collapse” problem. Finally,
extensive experiments demonstrate that our pro-
posed model effectively improves the ability of
deep topic models, resulting in higher-quality la-
tent document representations and topics.

1. Introduction
Topic modeling has developed into one of the most widely-
used techniques for text analysis. Bayesian probabilistic
topic models (PTMs), such as latent Dirichlet allocation
(LDA) (Blei et al., 2003) and Poisson factor analysis (PFA)
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(Zhou et al., 2012), are built on the assumption that each
document is represented by a mixture of topics, where each
topic defines a probability distribution over words and de-
scribes an interpretable semantic concept. Besides, these
models can also derive low-dimensional representations of
the documents, which have proven useful in a series of nat-
ural language processing tasks (Rubin et al., 2012; Wang
et al., 2007; Mimno et al., 2009).

While these shallow topic models are widely used, their
modeling ability is still limited by the single-layer structure,
which makes it difficult to explore the hierarchical semantic
structure (Marius & Burkhardt). To this end, there has been
an emerging research interest in building deep topic models
(DTMs) (Blei et al., 2010; Paisley et al., 2014; Gan et al.,
2015; Zhou et al., 2016; Zhao et al., 2018) that aims to
mine multi-layer document representations and discover
meaningful topic taxonomies. Recently, the success of deep
generative models such as variational autoencoder (VAE)
(Kingma & Welling, 2013; Rezende et al., 2014) has shown
the potential of deep neural networks in posterior inference,
motivating the proposal of a range of neural topic models
(NTMs) ranging from shallow structure (Srivastava et al.,
2017; Miao et al., 2017) to deep structure (Zhang et al.,
2018). Compared with Bayesian PTMs, NTMs usually
enjoy better flexibility and scalability, which are essential
for applications on large-scale data and downstream tasks.

Despite considerable effort has been put into developing
more effective DTMs, most of them rely on a single-step
generative process. The counterpart to this is the progressive
generative models that synthesize images in a coarse-to-fine
manner, which have attracted wide attention due to their
impressive performance (Karras et al., 2017; Razavi et al.,
2019; Ho et al., 2020; Austin et al., 2021; Bansal et al.,
2022; Shu & Ermon, 2022; Lee et al., 2022; Gu et al., 2022).
Meanwhile, some works (Shen et al., 2019; Tan et al., 2020)
have attempted to build progressive language models for
long sequence generation, which show that progressive gen-
erative models have the potential to model more complex
data distribution (longer sequences). Further, it should be
emphasized that the majority of language models use an
autoregressive technique for generating sequences (Radford
et al., 2019), which can be regarded as a progressive genera-
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tive process that generates longer sequences gradually; and
the non-autoregressive language models, which generate all
of the words in a document in a single step, usually perform
worse than the autoregressive language models (Xiao et al.,
2023). Like the generative process of the non-autoregressive
language models, the original topic model generates Bag-
of-words in a single step. Overall, topic modeling has an
appealing potential to enhance its modeling capability by
applying a progressive generation approach.

For how to build a progressive generative process, we get
inspired from the analogy of topic hierarchy and knowledge
graph to propose a knowledge informed textual data coarsen-
ing process. Specifically, the progressive generative models
mainly consist of a forward process that coarsens an image
gradually by downsampling or blurring, followed by a cor-
responding reverse process (generative process) that upsam-
ples or deblurs progressively. To the best of our knowledge,
most progressive generative models mainly focus on image
data. One reason is that the image coarsening process can
be naturally achieved by pooling the neighboring pixels in
this space due to images having semantic consistency in
Euclidean space. However, this method cannot be directly
transferred to the process of text coarsening, as the semantic
dependency between words in text is more complex than
the spatial dependency. This leaves a challenge in building
a progressive generative process for text data.

Fortunately, we find that external knowledge, such as knowl-
edge graph, can be used to measure the semantic relation-
ships between two words. As shown in Fig. 1(a), words can
be organized as a concept hierarchy with hypernym relations
(Miller, 1995), and the parent nodes have more abstract se-
mantics and contain the semantics of their child nodes. In
the concept hierarchy, the nodes at different layers can be re-
garded as having different levels of semantics, and the nodes
at higher layers have more abstract semantics. For exam-
ple, the concept “organization” has more abstract semantics
compared with “company” and “university”. Inspired with
the semantic structure above, we develop a general frame-
work for gradually coarsening textual data from concrete
to abstract, which will be described in Sec.3.1 in detail.
And this framework will serve as the forward process in a
progressive generative process for textual data.

Motivated by the former works on the progressive model
and deep topic models, we formulate a novel progressive
generative model, named progressive gamma belief network
(ProGBN), which models text data in a coarse-to-fine man-
ner. The proposed ProGBN can be seen as the corresponding
reverse process in a progressive generative process, progres-
sively generating more concrete texture data. Meanwhile,
considering the textual data coarsening process will estab-
lish new semantic dependencies among words, we develop
a graph-enhanced decoder, which can capture this semantic

dependence. After that, we designed a hierarchical inference
network to approximate the posterior of the latent variables
in ProGBN under the VAE framework (Kingma & Welling,
2013). Finally, to verify the benefits of the progressive gener-
ation process, we take theoretically analyze for the ProGBN
from the perspective of information theory (Thomas & Joy,
2006). Our analysis reveal that ProGBN can effectively al-
leviate the well-known latent variable collapse issue (Dieng
et al., 2019a; Li et al., 2022a) in hierarchical VAEs. We
summarize our contributions as follows:

• A general knowledge-informed textual data coarsen-
ing process is developed that can coarsen text from
concrete to abstract.

• A novel progressive deep topic model, equipped with
a graph-enhanced decoder, are built to progressively
generate more concrete textual data.

• To verify the benefits of the progressive generative
process, we analyze the ProGBN from an information
theory perspective, and reveal it can well alleviate the
well-known latent variable collapse issue .

• Experiments on different corpora show that our models
outperform other popular NTMs in extracting deeper
interpretable topics and deriving better multi-layer doc-
ument representation.

2. Related work
Deep Topic Models Deep PTMs(Blei et al., 2010; Paisley
et al., 2014; Gan et al., 2015; Zhou et al., 2016; Zhao et al.,
2018; Zhou et al., 2015; Zhou & Carin, 2013) are developed
to constructed multi-layer document representations, with
adjacent layers connected through specific factorization. For
instance, gamma belief network (GBN)(Zhou et al., 2015)
is constructed via factorizing the shape parameters of the
gamma distributed latent representations; DPFA(Gan et al.,
2015) extends PFA(Zhou & Carin, 2013) into a multi-layer
version; DirBN(Zhao et al., 2018) is developed via factoriz-
ing the Dirichlet distributed topic matrix. Besides, there are
various interests in building effective deep NTMs. For exam-
ple, (Zhang et al., 2018) proposed a deep VAE framework
for deep neural topic modeling with the latent representation
followed a Weibull distribution. And (Duan et al., 2021a)
explored designing efficient sawtooth structures with the
word embedding technique. Further, to address the posterior
collapse issue, Li et al. (2022a) propose a policy gradient
based training algorithm for deep NTMs.

Knowledge Informed Deep Topic Models Although
prior knowledge is incorporated into deep topic models
in many works, the methods of incorporation vary. Specifi-
cally, JoSH (Meng et al., 2020) adopted a highly effective
strategy that utilizes a category hierarchy as guidance and
models the semantic correlation between category words
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(a) Concept hierarchy
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(b) Semantic graph A(1)
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(c) Semantic graph A(2)
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(f) Top level Bow X(3)

Figure 1. (a) Concept hierarchy and (b) ∼ (c) are the first and second layer semantic graphs built from concept hierarchy, respectively;
(d) is the original bag-of-words (Bow) representation for a document; and (e) ∼ (f) are the middle and top level Bow built with text
coarsening, respectively.

through joint spherical text and tree embedding. The works
(Duan et al., 2021b) and (Wang et al., 2022) used pre-defined
knowledge graphs as a regularization to instruct models on
learning hierarchical topics, but they do not modify the gen-
erative model; and HyperMiner (Xu et al., 2022) introduced
hyperbolic embeddings to facilitate the mining of implicit
semantic hierarchy. Different from the previous works, this
paper presents a novel generative model that gradually gen-
erates textual data while incorporating prior knowledge via
word representations or knowledge graphs.

3. Progressive Generative Process for Bayesian
Deep Topic Model

This section will first describe a textual data coarsening
process (§ 3.1), followed by the introduction of progres-
sive generative model (§ 3.2) and corresponding embedding
based decoder (§ 3.3). After that, we give details for infer-
ence network (§ 3.4) and model training algorithm (§ 3.5).

3.1. Knowledge Informed Textual Data Coarsening
Process

As shown in Fig. 1(a), words can be organized in a concept
hierarchy, where the concepts at adjacent layers following
the hypernym relations (Miller, 1995). And a parent concept
can be considered to be more abstract in nature than its child
concepts. Inspired by the above observation, we build an
upward-downward word transfer process for coarsening tex-
tual data, in which words first transfer upward to their parent
concepts (i.e., more general or abstract concepts) and then
randomly transfer downward to children’s concepts from
parent concepts with the same probability. For example, the

word “company” will first transfer to the node “organiza-
tion”, and then randomly transfer to words “company” and
“university”. This process can be generalized to a criterion
where words are randomly transferred to their semantically
related words and themselves with the same probability, and
naturally implemented by a semantic graph that represent
the relationships among words. ( The semantic graph of
the concept hierarchy in Fig. 1(a) is shown in Fig. 1(b) and
Fig. 1(c) ). In the following, we will describe a general
framework for textural data coarsening process and provide
two instances of this general framework.

Specifically, given a text corpus consisting of J documents
X = {xj}Jj=1, the tth token in the jth document can be
represented as a one-hot vector xj,t ∈ ZV , where V denotes
the vocabulary size; and given a hierarchical word semantic
graph {G(l)}L−1

l=1 , where the higher level graph represent
more general semantic relationship among words, which
can be represent as a adjacent matrix {A(l) ∈ ZV×V }L−1

l=1 .
And the textual data coarsening process of each token x

(1)
n,t

can be defined as:

q(x
(l+1)
j,t | x(l)

j,t) = Cat(x(l)
j,t; p = x

(l−1)
j,t Q(l)) (1)

with
{Q(l)

i,j = A
(l)
i,j /

∑V

j=1
A

(l)
i,j}

V,V
i=1,j=1 (2)

where, Cat(x; p) is a categorical distribution over the one-
hot row vector x with probabilities given by the row vector
p, and Q(l) ∈ RV×V

+ is the probability transition matrix that
each row sum to one, x(l−1)Q(l) is to be understood as a
row vector-matrix product. Under the proposed framework,
each document x(1)

j in the corpus can be augmented to a
multi-level representation {x(l)

j }Ll=1, where L is the number
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(c) Variational inference network

Figure 2. The graphical model of (a) Gamma belief network (GBN), (b) Progressive GBN; (c) The variational inference network of
Progressive GBN, consisting of a hierarchical latent variable inference network (left) and a graph neural network (GCN) based variational
embedding inference network (right) .

of levels. In the following, we provide two methods to
construct hierarchical word semantic graph.

Knowledge Graph Structure: Given a pre-defined knowl-
edge graph such as WordNet (Miller, 1995), as shown in
figure. 1(a), we can construct a hierarchical graph as:

{A(l)}m,n = 1 if ωm and ωn have a same
ancestor at lth layer else 0.

(3)

Token Embedding Distance: Given a pre-trained word
embedding, such as Glove (Pennington et al., 2014), we can
construct hierarchical graph as:

{A(l)}m,n = 1 if ωm is one of a T (l)-nearest
neighbors of ωn else 0,

(4)

where T (l) ∈ {1, 2, · · · , } is a hyper-parameters.
Remark 3.1. From the Eq. 1 and Eq. 2 , the textural data
coarsening process can be seen as a process of building de-
pendencies among words with pre-defined semantic graphs.

3.2. Progressive Generative Model

To model the data constructed by the coarsening process,
we extend GBN (Zhou et al., 2015) to propose a progressive
generative model, progressive gamma belief network. Gen-
erally, given the multi-level bag-of-words (Bow) represen-
tation {x(l)

n ∈ ZV }Ll=1, as shown in Fig. 2(b), the generative
model with L layers can be formulated as

θ
(L)
j ∼ Gam(r, c

(L+1)
j ), x

(L)
j ∼ Pois(Φ(L)θ

(L)
j ),

· · · ,

θ
(l)
j ∼ Gam(ϕ(l+1)θ

(l+1)
j , c

(l+1)
j ), x

(l)
j ∼ Pois(Φ(l)θ

(l)
j ),

· · · ,

θ
(1)
j ∼ Gam(ϕ(2)θ

(2)
j , c

(2)
j ), x

(1)
j ∼ Pois(Φ(1)θ

(1)
j ),

(5)

where, ϕ(l+1) ∈ RK(l)×K(l+1)

+ is the factor loading matrix at
layer l; θ(l) ∈ RK(l)

+ denotes the gamma distributed latent
representation (topic proportions) of layer l; Φ(l) ∈ RK(l)×V

+

can be regarded as the topic matrix for the observation x
(l)
j

at l layer; K(l) is the number of topic at layer l.

The ProGBN first factorize the count vector x
(1)
j (e.g.,

the bag-of-word of document j as the product of the fac-
tor loading matrix Φ(1) (topics), and gamma distributed
factor scores θ

(1)
j (topic proportions), under the Poisson

likelihood; for l ∈ {1, . . . , L− 1}, the shape parameter of
gamma distributed hidden units θ

(l)
j ∈ RK(l)

+ is further fac-
torized into the product of the connection weight matrix
Φ(l+1) ∈ RK(l)×K(l+1)

+ and hidden units θ(l+1)
j of layer l+1,

capturing the dependence between different layers; the aug-
ment vector x(l)

j is generated by drawing from the Poisson
distribution with rate parameter Φ(l)θ

(l)
j ; the top layer’s hid-

den units θ
(T )
j share the same r ∈ RK(T )

+ as their gamma
shape parameters; and c

(t+1)
j are gamma scale parameters,

which set as 1 in our models.

3.3. Embedding-Based Topic Generative Process

For ProGBN, we need to create two class decoders:
{ϕ(l)}Ll=2, which captures the relationship between adjacent
layer latent variables, and {Φ(l)}Ll=1, which captures the rela-
tionship between latent variables and words. Motivated from
the recent popular distributed topic representation adopted
in neural topic models (Dieng et al., 2020; 2019b), we em-
ploy the Sawtooth Connector technique (Duan et al., 2021a)
to build decoder {ϕ(l)}Ll=2 as:

α
(l)
k ∼ N (0, I) , k ∈ {1, 2, · · · ,K(l)}, l ∈ {1, · · · , L}

ϕ
(l)
k = Softmax(α(l−1)Tα

(l)
k ), l ∈ {2, · · · , L}

(6)

where α
(l)
k ∈ RD is a distributed semantic representation
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of kth topic at layer l and modeled as a Gaussian distributed
variables, which aim to model the stochasticity of topic
interrelationships and provide a appropriate uncertainty.

To create an effective decoder {Φ(l)}Ll=1, one way (Li et al.,
2022a) is employing embeddings to capture the relationship
between topics and words, which can be defined as:

ρv ∼ N (0, I) , v ∈ {1, 2, · · · , V },

Φ
(l)
k = Softmax(α(l)ρ), l ∈ {1, · · · , L}

(7)

where ρv ∈ RD is a distributed representation of the vth
words. While this decoder can capture the dependency
of topics and words, it ignores the semantic relationships
among words that are constructed in the textual data coars-
ening process, which is discussed in Reamrk. 3.1. Generally,
as shown in Eq. 1, the observation at the high level is con-
structed from the observation at the low level through the
semantic relations between words, which is represented by a
graph, as shown in Fig. 1(b) and 1(c). Thus, the observations
at different levels will contain the semantic relationships rep-
resented by the corresponding layer graph. To capture this
semantic relationships, we develop a novel graph-enhanced
decoder, which can be described as:

ρ(l)
v ∼ N (0, I) , v ∈ {1, 2, · · · , V }, l ∈ {1, · · · , L}

Φ
(l)
k = Softmax(α(l)ρ(l)), l ∈ {1, · · · , L}

A(l)
v1v2 ∼ Bern(σ(ρ(l+1)

v1 Wρ(l+1)
v2 )), l ∈ {1, · · · , L− 1},

(8)
where ρ(l)

v ∈ RD is a distributed representation of the vth
words at layer l, σ(·)is the sigmoid function and Bern(·)
denotes the Bernoulli distribution; W is a learnable param-
eter. By modeling the semantic graph of different layers
with Bernoulli likelihood, we can better incorporate the se-
mantic relationship among words to the corresponding layer
decoder (Kipf & Welling, 2016b; Shen et al., 2021).

3.4. Variational Inference Network

The inference network of the proposed model is built around
two main components: variational encoder and the varia-
tional embedding inference network.

Variational Latent Variables Inference: As shown in
Fig. 2(c)(left), we employ a Weibull upward-downward
variational encoder to approximate the posteriors of gamma
distribution latent variables {θ(l)

j }Ll=1 as:

q(θ
(l)
j | {x(t)

j }lt=1,θ
(l+1)
j ) = Weibull(NNk(h̃

(l)

j ),NNλ(h̃
(l)

j )),

h̃
(l)

j = NNc(h
(l)
j ,θ

(l+1)
j ), h

(l)
j = NNh(x

(l)
j , h

(l−1)
j ),

(9)
where NN(·) are deep neural networks, h̃

(l)

j combine the
upward information of document feature h

(l)
j and downward

information of latent variable θ
(l+1)
j . The details of the

inference network can be found in Appendix.A.2.

Variational Embedding Inference: Due to the topic em-
bedding {α(l)}Ll=1 and the word embedding at bottom layer
{ρ(1)} are full data driven parameters, we approximate their
posteriors as:

q(α
(l)
k ) = N (W

(l)
α,k,µ, W

(l)
α,k,σ) , l ∈ {1, · · · , L},

q(ρ(1)
v ) = N (W (1)

ρ,v,µ, W
(l)
ρ,v,σ),

(10)

where {W (l)
·,·,·} are learnable parameters. To approximate

the posterior of higher layer word embedding {ρ(l)}Ll=2,
we need to consider two semantic relationships, where the
first is the relationship between word embedding at differ-
ent layer and the second is the relationship among words
introduced by the semantic graph. Fortunately, the Eq. 1 de-
scribes the textual data coarsening process with mathematics
form, and motivates us build a corresponding word embed-
ding transfer process, which can preserve the relationship
among words. In particular, as shown in Fig. 2(c)(right), we
construct the variational posterior of word embeddings with
graph neural network (Kipf & Welling, 2016a) as:

q(ρ(l+1)
v |ρ(l), A(l)) = N (Ã(l)

v: ρ
(l) W (l)

µ,v, Ã
(l)
v: ρ

(l) W (l)
σ,v)

(11)
where, l ∈ {1, · · · , L− 1}, and A(l) ∈ ZV×V are adjacent
matrixes which are built in Sec. 3.1; Ã(l) = D− 1

2A(l)D− 1
2

is the normalized adjacent matrix with degree matrix D.

3.5. Inference and Estimation

The optimization objective of ProGBN can be achieved by
maximizing the evidence lower bound (ELBO) of the log
marginal likelihood, which can be computed as:

L =

J∑
j=1

L∑
l=1

EQ

[
ln p(x(l)

j |θ(l)
j ,α(l),ρ(l))

]

+ γ

L∑
l=1

EQ

[
ln p(A(l) |ρ(l))

]
−

J∑
j=1

L∑
l=1

EQ

[
ln

q(θ
(l)
j |x(1)

j ,x
(l)
j ,θ(l))

p(θ
(l)
j |θ(l+1)

j ,α(l),α(l+1))

]

−
L∑

l=1

EQ

[
q(ρ(l))/p(ρ(l))

]
−

L∑
l=1

EQ

[
q(α(l))/p(α(l))

]
(12)

Where, Q = q (θj | −) q (α) q (ρ), and γ denote the hyper-
parameter and is set as 0.05 in our experiments. The first
two terms are the expected log-likelihood or reconstruction
error of corresponding layer observation and semantic graph
respectively, while last three terms are the Kullback–Leibler
(KL) divergence that constrains variational posterior to be
close to its prior in the generative model. The parameters
in ProGBN can be directly optimized by advanced gradient
algorithms, like Adam (Kingma & Ba, 2014).
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4. Analysing ProGBN from the Principle of
Information Theory

The “latent variable collapse” is a common problem in hier-
archical variational autoencoders (HVAEs) (Sønderby et al.,
2016; Dieng et al., 2019a; Maaløe et al., 2019; Li et al.,
2022b). As a HAVE, the deep neural topic models, such as
WHAI and SawETM, also encounter this issue obviously
(Li et al., 2022a). In this section, we employ theory analysis
to confirm that the proposed model can well alleviate the
“latent variable collapse” issue.

4.1. Analysis: Text Coarsening Process

Rethinking the text coarsening process as defined in Eq. 1,
this process can be regarded as a Markov chain. As a result,
we can use the data processing inequality (Thomas & Joy,
2006) to obtain the mutual information relationships be-
tween the original observation and the higher lever augment
observation as follows:

I(X(1); X(1)) ≥ I(X(1); X(2)), · · · ,≥ I(X(1); X(L)) (13)

where I(·) denote the mutual information between two vari-
ables, x(l) is the observation at lth layer, and the equal sign
is true when the constructed semantic graph A(l) = I .

4.2. Analysis: Progressive Generative Process

Assumption 4.1. The encoder are ideal information trans-
mission models which can perfectly preserve all the input
information during the inference process.

Under Assumption. 4.1, we analyse ProGBN with the princi-
ple of information theory (Thomas & Joy, 2006), and derive
a lower bound for the mutual information between the obser-
vation X(1) and higher layer latent variables θ(≥l). Gener-
ally, given the original observation X(1) and corresponding
augment observation {X(l)}Ll=2 by the text coarsening pro-
cess, we have:

I(X(1); θ(≥l)) ≥ I(X(1); X(l)) (14)

where, θ(≥l) = {θ(l), · · · ,θ(L)} are the latent variables, and
I(·) denote the mutual information between two variables,
and the detailed derivation can be found in Appendix. A.1.

As VAE-like models, deep NTMs inherit the phenomenon
of latent variable collapse from traditional VAEs, where
the variational posterior collapses to the prior and pro-
vides meaningless latent representations at higher layers.
In other words, the hierarchical latent variable model cannot
guarantee the mutual information (MI) I(X(1); θ(≥l)) be-
tween the observed data and the hidden variables at higher
levels, which may decrease to zero as the number of lay-
ers increases and is independent of the observed data (Li
et al., 2022b). Based on the assumption of our model,

we can derive a lower bound for the mutual information
I(X(1); θ(≥l)), which highlights the advantege of ProGBN
in terms of alleviating “latent variable collapse” issue.

5. Experiment
5.1. Experimental Setup

Datasets: Our experiments are conducted on four widely
used benchmark datasets of varying sizes, including 20
News Groups (20NG)(Lang, 1995), Tag My News (TMN)
(Vitale et al., 2012), Reuters extracted from the Reuters-
21578 dataset(R8), Reuters Corpus Volume I (RCV1). In
particular, 20NG and TMN, R8 are the three corpora that are
associated with document labels. We follow the procedure in
SawETM(Duan et al., 2021a) to preprocess these documents
to obtain their BoW representations and the statistics of
these datasets are presented in Appendix. B.1.

Baselines: As baselines, we choose several exemplary
ones from the state-of-the-art topic models, including: 1)
LDA (Blei et al., 2003), a basic Bayesian topic model; 2)
AVITM (Srivastava et al., 2017), a NTM which replaces the
mixture model in LDA with a product of experts; 3) ETM
(Dieng et al., 2020), a embedding topic model that marries
LDA with word embeddings; 4) GBN (Zhou et al., 2015),
an extension of LDA with hierarchical latent variables; 5)
WHAI(Zhang et al., 2018), a Weibull hybrid autoencod-
ing inference model based on GBN(Zhou et al., 2015); 6)
SawETM (Duan et al., 2021a), which proposes a Sawtooth
Connection module to build the dependencies between top-
ics at different layers; 7) TopicNet(Duan et al., 2021b), a
knowledge-based hierarchical NTM that guides topic discov-
ery through prior semantic graph; 8)TopicKGA(Wang et al.,
2022), a knowledge-based hierarchical NTM with adaptive
semantic graph; 9) dc-ETM (Li et al., 2022a) a DNTM
which apply skip-connection structure in its hierarchical
generative model; 10) ProGBN-kg/wv, which employs a
knowledge graph(Miller, 1995) or pre-trained word embed-
ding (Pennington et al., 2014) to construct a semantic graph
in the text data coarsening process; and we set a variant
ProGBN-x that directly use the original Bow as the higher
level observation. In this case, the semantic graph A(l) =: I .
Note that the ProGBN-kg/ProGBN-wv will be reduced to
the ProGBN-x if there is no knowledge (all the word or
entity is not included in these resources) during the textual
data coarsening process.

Experiment Setting To make a fair comparison, we set the
same network structure for all deep topic models as [256,
128, 64, 32, 16] from shallow to deep. For PTMs, we use
the default hyperparameter settings in their published papers
. For NTMs, we set the size of their hidden layers as 256,
the embedding size as 100 for them incorporating word
embeddings, like ETM, SawETM, dc-ETMs and ProGBN
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Figure 3. The performance comparison of different models on the topic quality. The top row shows the topic coherence score, i.e., NPMI,
and the bottom row displays the topic diversity score. The horizontal axis represents the index of the layers and we set up 5 layers for all
the hierarchical topic models.

the mini-batch size as 200. For optimization, we adopt the
same Adam optimizer (Kingma & Ba, 2014) with a learning
rate of 1e-2.

5.2. Experimental Results

Topic Quality: To make a comprehensive quantitative com-
parison, we adopt topic coherence(TC) and topic diversity
(TD) to evaluate topic interpretable/quality. Precisely, topic
coherence is obtained by taking the average Normalized
Pointwise Mutual Information (NPMI) of the top 10 words
of each topic (Aletras & Stevenson, 2013). Note that the
value of NPMI ranges from -1 to 1, and higher values indi-
cate better interpretability. We use external Wikipedia docu-
ments1 as its reference corpus to estimate the co-occurrence
probabilities of words. Following Dieng et al (Dieng et al.,
2020), we define Topic diversity to be the percentage of
unique words in the top 25 words of all topics. Diversity
close to 1 means more diverse topics.

Fig. 3 shows the topic quality comparison results of differ-
ent models. For the bottom layer topic, the ProGBN gets
the best performance for TC on three datasets, which can be
attributed to its effective progressive generative process that
can provide a good prior. Furthermore, because the latent
variables in the bottom layer frequently do not suffer from
the latent variable collapse problem, there are no differences
in TD performance between different topic models. For the
higher layer topics, it’s evident that the ProGBN performs
best for TD on all the datasets, which can be attributed to its
ability to keep the mutual information between the observa-
tion and higher layer latent variables, as discussed at Sec.4.

1https://github.com/dice-group/Palmetto

While the dc-ETM also gets better TD results compared
with SawETM by modeling the skip-connection in its gen-
erative process, it can’t achieve a better TC compared with
SawETM from the bottom layer to the top layer. The reason
behind this may be the information in the observed data will
be scattered into the various layer variables, leading to the
attenuation of information. According to another principle,
ProGBN translates information through its forward process,
which prevents the information from being scattered. And
as a result, ProGBN can achieve the best TC results on the
20NG and R8 datasets while producing comparable TC by-
products on the RCV1 dataset with sufficient improvement
on TD compared with SawETM.

Document Modeling: To measure the document model-
ing performance, we use the average of pre-heldout-word
perplexity (the lower, the better) to measure the perfor-
mance. Similar to Zhang et al. (2018), for each corpus, we
randomly select 80% of the word token from each document
to form a training matrix T, holding out the remaining 20%
to form a testing matrix Y. The detailed results are shown in
Tab. 2. The deep topic model’s performance generally out-
performs shallow ones, demonstrating the effectiveness of
deep structure in improving modeling capability. Benefiting
from the progressive generative process, both ProGBN-kg,
and ProGBN-wv achieve lower perplexity scores than other
deep topic models. And ProGBN-wv gets the best perfor-
mance, which may be attributed to the pre-trained word
embedding containing more semantic information than the
knowledge graph. Further, while the ProGBN-x achieves
comparable results with other deep topic models, there is
a clear gap between the ProGBN-x and ProGBN-kg/wv,
which proves the importance of knowledge-informed textu-

7
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Table 1. Document clustering results comparison ( km-Purity and km-NMI) on the 1st hidden layer or the concatenation of all hidden
layers of different topic models. The best scores of each dataset are highlighted in boldface.

Methods Layer
km-Purity(%) km-NMI(%)

20NG TMN R8 20NG TMN R8

LDA 1 41.79 ± 0.75 48.17 ± 0.86 75.74 ± 0.73 45.15 ± 0.89 30.96 ± 0.87 39.82 ± 0.94
AVITM 1 42.33 ± 0.58 55.28 ± 0.40 78.96 ± 0.42 46.33 ± 0.48 35.57 ± 0.38 41.20 ± 0.52
ETM 1 42.61 ± 0.63 59.35± 0.59 80.20 ± 0.43 48.40 ±0.56 38.75 ± 0.80 41.28 ± 0.72

GBN 1 43.30 ± 0.47 50.89 ± 0.93 76.52 ± 0.15 46.51 ± 0.96 31.34 ± 0.72 41.24 ± 0.87
WHAI 1 42.35 ± 0.79 45.06 ± 0.88 75.70 ± 0.81 46.98 ± 1.03 37.34 ± 0.78 43.98 ± 0.94
SawETM 1 43.33 ± 0.64 62.02 ± 0.85 82.25 ± 0.79 50.77 ± 0.75 40.78 ± 0.84 42.97 ± 0.93
TopicNet 1 40.88 ± 0.76 59.80 ± 0.842 78.06 ± 0.73 47.85 ± 0.942 38.06 ± 0.79 40.58 ± 0.85
TopicKGA 1 42.02 ± 0.79 63.48 ± 0.84 80.15 ± 0.97 51.45 ± 0.80 38.54 ± 0.79 41.08 ± 0.81
dc-ETM 1 40.11 ± 0.86 50.12 ± 0.92 71.30 ± 0.67 44.12 ± 0.92 35.02 ± 0.84 38.34 ± 0.78
ProGBN-x 1 47.36 ± 0.74 59.83 ± 0.29 84.29 ± 0.65 50.74 ± 0.23 37.43 ± 0.54 46.91 ± 0.83
ProGBN-kg 1 54.31 ± 0.41 63.52 ± 0.24 84.12 ± 0.67 56.01 ± 0.90 40.94 ± 0.57 49.36 ± 0.38
ProGBN-wv 1 54.68 ± 0.44 64.23 ± 0.57 84.64 ± 0.74 57.41 ± 0.78 40.27 ± 0.93 51.41 ± 0.60

GBN All 41.17 ± 0.34 47.21 ± 0.84 72.93 ± 0.54 44.20 ± 0.92 30.02 ± 0.57 31.35 ± 0.73
WHAI All 32.00 ± 0.77 47.21 ± 0.85 70.80 ± 0.68 39.33 ± 0.84 30.02 ± 0.90 41.25 ± 0.87
SawETM All 38.69 ± 0.86 55.56 ± 0.92 75.89 ± 0.67 39.33 ± 0.92 32.72 ± 0.84 39.55 ± 0.78
dc-ETM All 48.60 ± 0.84 58.75 ± 0.62 78.29 ± 0.64 55.79 ± 0.93 38.43 ± 0.71 48.62 ± 0.76
ProGBN-x All 50.24 ± 0.76 61.72 ± 0.34 85.93 ± 0.54 56.75 ± 0.85 39.13 ± 0.64 51.22 ± 0.47
ProGBN-kg All 57.56 ± 0.64 68.42 ± 0.32 87.91 ± 0.28 57.46 ± 0.59 41.31 ± 0.47 53.98 ± 0.85
ProGBN-wv All 57.14 ± 0.38 69.47 ± 0.54 87.23 ± 0.82 58.12 ± 0.46 41.56 ± 0.78 54.16 ± 0.58

ral data coarsening processes. Another experimental finding
is that the degree of improvement of ProGBN-kg/ProGBN-
wv over ProGBN-x is different on different datasets. This
may be due to the fact that the amount of information ob-
tained from the knowledge graph or word representation
may be different for different datasets, which makes the
degrees of improvement of ProGBN-kg/ProGBN-wv over
ProGBN-x different. Besides, we performed an ablation
study on the graph-enhanced decoder, and the experimental
results verified its effectiveness.

Document Representation: Since per-document topic
proportions can be viewed as unsupervised document repre-
sentations, we intend to evaluate the quality of such represen-
tations by performing document clustering tasks. In detail,
we use the trained topic models to extract the latent repre-
sentations of the testing documents and then apply K-Means
to predict the clusters. We use the purity and normalized
mutual information metric (NMI) to measure the KMeans
clusters (denoted by km-Purity and km-NMI) (the higher,
the better). The clustering results are exhibited in Tab. 1.
The results of only using the bottom layer latent feature for
clustering demonstrate that ProGBN-x/kg/wv significantly
improves the performance compared with other deep topic
models. This highlights the effectiveness of the progres-
sive generative process, which can provide a good prior for
the bottom layer latent variables. Compared to the results
on the TMN dataset, the improvement of ProGBN is more
pronounced on the 20NG and R8 datasets. This could be
because ProGBN is better suited for modeling complex data,

Table 2. Comparisons of hold-out perplexity on different bench-
marks.

Methods Depth
Perplexity

20NG RCV1 R8

LDA 1 735 942 996
ProdLDA 1 784 951 561
ETM 1 742 921 985

GBN 5 678 877 657
WHAI 5 726 906 773
SawETM 5 685 873 530
dc-ETM 5 647 801 420

ProGBN-x 5 653 798 436

ProGBN-kg 5 620 753 411
-w/o graph decoder 5 633 784 419

ProGBN-wv 5 614 735 408
-w/o graph decoder 5 632 769 427

and the TMN dataset contains shorter text. Unlike other
deep topic models such as GBN, WHAI, and SawETM,
where concatenating hierarchical latent document repre-
sentations can negatively impact clustering performance,
ProGBN has a positive impact. This is likely due to the
fact that ProGBN effectively addresses the issue of latent
collapse (Li et al., 2022a) and is able to effectively combine
information from different levels of observed variables.

Visualization of Different Layer Word Embeddings:
The top 10 words from six topics at the 5th layer are selected
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(a) 1th layer word embedding ρ(1)
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(b) 3th layer word embedding ρ(3)

−5 −4 −3 −2 −1 0 1 2 3

−8

−7

−6

−5

−4

−3

smith

league

game

games

johnson

god

fact

christ

faith

heaven

software

user
phone

internet

mail

government

criminal

area

enforcement
forces

spacecraft
orbit

earth

escrow

mars

mon
apr

book

wrote
books

(c) 5th layer word embedding ρ(5)

Figure 4. T-SNE visualisation of different layer word embeddings. The top 10 words from six topics at the 5th layer are selected for
visualization. The different color represent different topics at the 5th layer

Table 3. The 5th-layer topics learned by SawETM, dc-ETM and ProGBN on 20NG, where each topic is interpreted by its top-10 words.
We select semantic-related topics for comparison, highlighting the semantically related words in boldface.

Topic SawETM dc-ETM ProGBN-wv

1
lines subject organization

com article just host don writes know
organization lines subject don

article just writes think com like
wrote book article published read

apr books magazine written volume articles

2
lines subject organization

com article just host don writes know
lines organization subject article

baseball games game hockey time nntp
smith players game dave league
mike johnson games player john

3
lines subject organization

com article just host don writes know
organization lines subject article

windows file com just writes host
rom macintosh interface intel cpu

software motorola car computers disk

4
lines subject organization

com article just host don writes know
lines subject organization article com

university nntp host posting just
university harvard yale stanford

smith professor science dept james research

5
lines subject organization

com article just host don writes know
organization lines subject space gov

nasa article writes just host
spacecraft earth orbit result large

nasa planet increase particularly mars

for visualization in Fig. 4(a) to 4(c) using t-SNE visualiza-
tion (Van der Maaten & Hinton, 2008). The results show
that semantically similar words have a stronger clustering
effect at the highest layer, while the effect diminishes at
lower layers. For instance, as shown in Fig. 4(c) and 4(a),
Semantically similar words like ’earth’ and’mars’ are close
in the high-layer word embedding space but far apart in the
bottom layer word embedding space. This can be attributed
to the fact that the higher layer is used to capture more ab-
stract semantic structures, while the lower layer captures
more specific semantic structures.

Visualization of Topics: The learned topics at the 5th layer
of different models are shown in Tab. 3, and more results
can be found in Appendix. C.2. It can be observed that
the topics learned by SawETM are quite similar, which ex-
plains why concatenating its hierarchical latent document
representations does not improve and even harms the per-
formance on downstream tasks. Compared to dc-ETM, the
topics learned by ProGBN-wv exhibit more semantic con-
sistency and diversity, demonstrating the effectiveness of
our proposed model in discovering semantically meaningful
topics at higher layers. Additionally, the visualization of
hierarchical topics can be found in Appendix C.1.

6. Conclusion
In this paper, we propose a novel ProGBN model that in-
corporates a knowledge-informed textual data coarsening
process and a corresponding text data generation process
to enhance the capacity of deep topic modeling. Addition-
ally, we propose a graph-enhanced decoder to capture the
semantic dependencies established during the textual data
coarsening process. Through theoretical analysis based on
information theory principles, we demonstrate the ability
of our model to avoid the latent variable collapse problem.
Furthermore, we conduct practical experiments to validate
the effectiveness of our proposed model.
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A. Model
A.1. Detailed Derivations for Section 3.1

Assumption A.1. The encoder are ideal information transmission models that can perfectly preserve all the input information
during the inference process.

Under Assumption. A.1, we have

H
(
θ(≥l) |X(l)

)
= 0 (15)

We define the joint information entropy for the latent variables (X(1), X(l),θ(≥l)) as

H
(
X(1), X(l),θ(≥l)

)
= H

(
X(l),θ(≥l)

)
+H

(
X(1) |X(l),θ(≥l)

)
= H

(
X(l)

)
+H

(
θ(≥l) |X(l)

)
+H

(
X(1) |X(l),θ(≥l)

) (16)

we define the joint information entropy for the latent variables (X(1), X(l)) as

H
(
X(1), X(l)

)
= H

(
X(l)

)
+H

(
X(1) |X(l)

)
(17)

According to the chain rule of information entropy, we can get

H
(
X(1), X(l),θ(≥l)

)
≥ H

(
X(1), X(l)

)
(18)

The Eq. 18 is equal when H(θ(≥l) |X(1), X(l)) = 0. According to Eq. 15 ∼ 18, we can get

∴ H
(
X(l)

)
+H

(
θ(≥l) |X(l)

)
+H

(
X(1) |X(l),θ(≥l)

)
= H

(
X(l)

)
+H

(
X(1) |X(l)

)
(19)

Which can further get

H
(
X(1) |X(l), θ(≥l)

)
= H

(
X(1) |X(l)

)
(20)

Similarity, we can get

H(X(1) |θ(≥l)) ≥ H(X(1) |X(l),θ(≥l)) (21)

The Eq. 22 is equal when H(X(l) |θ(≥l)) = 0.

we define the mutual information between the original observation X(1) and latent variables θ(≥l) as

I
(
X(1);θ(≥l)

)
= H

(
X(1)

)
−H

(
X(1) |θ(≥l)

)
≥ H

(
X(1)

)
−H(X(1) |X(l),θ(≥l)) (According to Eq. 21)

(22)

we define the mutual information between the original observation X(1) and higher layer observation X(l) as

I
(
X(1);X(l)

)
= H

(
X(1)

)
−H

(
X(1) |X(l)

)
= H

(
X(1)

)
−H

(
X(1) |X(l),θ(≥l)

)
(According to Eq. (20)

≤ I
(
X(1);θ(≥l)

)
(According to Eq. (22)

(23)

Thus, we can get

∴ I
(
X(1);θ(≥l)

)
≥ I

(
X(1);X(l)

)
, (24)
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A.2. Detail of hierarchical variational inference network

To approcimate the gamma distribution latent variables, we utilize a Weibull upward-downward variational encoder to
approximate the posteriors of {θ(l)

j }Ll=1 inspired by the work in Zhang et al. (2018; 2020). Then we have

q(θ
(l)
j | {x(1)

j }ll=1,θ
(l+1)
j ) = Weibull(k(l)

j ,λ
(l)
j ), (25)

where parameters k(l)
j ,λ

(l)
j ∈ RKl

+ are deterministic transformations of the observed document features x(1)
j , corresponding

level observation x
(l)
j , and the information from the stochastic up-down path θ

(l+1)
j . Fig. ?? shows how these pieces of

information are propagated to influence θ
(l+1)
j . Formally, the inference process can be described by

h
(l)
j = ReLU(h

(l−1)
j W

(l)
1 + b

(l)
1 ),

h̃
(l)

j =

{
h
(L)
j ⊕ (x

(L)
j W

(l)
2 + b

(l)
2 )), l = L,

h
(l)
j ⊕Φ

(l+1)
i θ

(l+1)
j ⊕ (x

(l)
j W

(l)
2 + b

(l)
2 ), l < L,

k
(l)
j = ln (1 + exp(h̃

(l)

j W
(l)
3 + b

(l)
3 )),

λ
(l)
j = ln (1 + exp(h̃

(l)

j W
(l)
4 + b

(l)
3 )),

(26)

where h
(0)
j = x

(1)
j , {h(l)

i,j}
M,N,L
i=1,j=1,l=1 ∈ RKl , ReLU(·) = max(0, ·) is the nonlinear activation function, and ⊕ denotes the

concatenation in feature dimension.

A.3. Detain of marginal likelihood

For PG-GGN, with the multi-level observation {x(l)
j }Ll=1, the marginal likelihood of the dataset X is defined as

p({X,A(l)}Ll=1 | {α(l),ρ(l),W (l)}Ll=1)

=

∫ ∫ ∫ L∏
l=1

J∏
j=1

p(x
(l)
j |α(l),ρ(l))

L∏
l=1

p(A(l) | ρ(l))

L∏
l=1

J∏
j=1

p(θ
(l)
j | θ(l+1)

j ,α(l),α(l+1))

L∏
l=1

p(α(l))p(ρ(l))dθL,J
l=1,j=1dα

L
l=1dρ

L
l=1.

(27)

A.4. Training algorithm

We summarize the training algorithm at Algorithm 1.

B. Experimental detail
B.1. Detaset

Details about the datasets this paper relied on are as follows:

C. Additional results
C.1. Hierarchical topic visualization

Fig .5 displays the hierarchical topic structure with the top two layers and the bottom two layers.

C.2. The learned topics at 5th layer
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Algorithm 1 Training algorithm of ProGBN
Set mini-batch size m and the number of layer L
Construct hierarchical word semantic graph {A(l)}L−1

l=1

Generate multi-level representations {X(l)}Ll=2 in a coarsening process according to Eq. (1)
Initialize the encoder parameters Ω and decoder parameters Ψ;
for iter = 1,2, · ·· do

Randomly select a mini-batch of m documents with their multi-level representation to form a subset {X(l)}Ll=1 ={
x
(l)
i

}L

l=1,m
;

Dram random noise
{
εli
}m,L

i=1,l=1
from uniform distribution;

Calculate ∇Ω,ΨL
(
Ω,Ψ; {X(l)}Ll=1, {A(l)}Ll=1,

{
εli
}m,L

i=1,l=1

)
according to Eq. (12), and update encoder parameters

Ω and decoder parameter Ψ jointly ;
end for

Table 4. Statistics of the datasets.(N : Dataset size. L: Average document length. V : Vocabulary size. C: Number of categories. )

Dataset Dataset size Vocabulary size Average document
length.

Number of categories

20NG 18,846 2,000 108 20

TMN 32,597 13,368 18 7

R8 7,639 2,074 47 8

RCV2 804,414 8,000 74 N/A
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Figure 5. An example of hierarchical topics learned from 20NG by a 5-layer ProGBN-wv, We only show example topics at the top two
layers and bottom two layers.
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Table 5. The 5th-layer topics learned by SawETM and ProGBN-wv on 20NG, where each topic is interpreted by its top-10 words.

Topic SawETM ProGBN

1
lines subject organization

com article just host don writes know
window error include lib

jpeg function application widget display code

2
lines subject organization

com article just host don writes know
key encryption clipper attack

chip secure security government public keys

3
lines subject organization

com article just host don writes know
lines com subject organization

article host posting just university nntp

4
lines subject organization

com article just host don writes know
said people went time

house came did know day didn

5
lines subject organization

com article just host don writes know
religion christian god faith

people believe does say evidence christians

6
lines subject organization

com article just host don writes know
gun weapon weapons fbi

waco batf guns koresh firearms law

7
lines subject organization

com article just host don writes know
available image ftp data

graphics faq pub file images version

8
lines subject organization

com article just host don writes know
medical health disease cancer

drugs study age patients drug aids

9
lines subject organization

com article just host don writes know
team game games season win
hockey baseball play nhl year

10
lines subject organization

com article just host don writes know
conference national april american

report information new york year professor

11
lines subject organization

com article just host don writes know
science theory light energy

physics scientific space surface field ray

12
lines subject organization

com article just host don writes know
max armenians turkish armenian

argic armenia soviet serdar genocide azerbaijan

13
lines subject organization

com article just host don writes know
drive scsi bit lines

subject card dos organization windows uses

14
lines subject organization

com article just host don writes know
israel israeli jews jewish

arab arabs muslims islam gay homosexual

15
lines subject organization

com article just host don writes know
god jesus christ lord

bible shall sin man faith life

16
lines subject organization

com article just host don writes know
don just people know

think like time going good say
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