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ABSTRACT

This paper introduces a model-based approach for training parameterized policies
for an autonomous agent operating in a highly nonlinear (albeit deterministic)
environment. We desire the trained policy to ensure that the agent satisfies specific
task objectives and safety constraints, both expressed in Signal Temporal Logic.
We assert that this learning problem is similar to training recurrent neural networks
(RNNs), where the number of recurrent units is proportional to the temporal horizon
of the agent’s task objectives. This poses a challenge: RNNs are susceptible to
vanishing and exploding gradients, and naïve gradient descent-based strategies
to solve long-horizon task objectives thus suffer from the same problems. To
tackle this challenge, we introduce a novel gradient approximation algorithm
based on the idea of gradient sampling, and a smooth computation graph that
provides a neurosymblic encoding of STL formulas. We show that these two
methods combined improve the quality of the stochastic gradient, enabling scalable
backpropagation over long time horizon trajectories. We demonstrate the efficacy
of our approach on various motion planning applications requiring complex spatio-
temporal and sequential tasks ranging over thousands of time steps.

1 INTRODUCTION

Learning-based approaches to synthesize control policies for highly nonlinear dynamical systems
are prevalent across diverse domains, from autonomous vehicles to robots. Popular ways to train
NN-based controllers include deep reinforcement learning (RL)(Berducci et al., 2021; Li et al., 2017;
Chua et al., 2018; Srinivasan et al., 2020; Velasquez et al., 2021) and deep imitation learning (Fang
et al., 2019). Techniques to synthesize neural controllers (including deep RL methods) largely focus
on optimizing user-defined rewards or costs, but do not directly address specific spatio-temporal
task objectives. For example, consider the objective that the system must reach region R1 before
reaching region R2, while avoiding an obstacle region. Such spatio-temporal task objectives can be
expressed in the formalism of Signal Temporal Logic (STL) (Maler & Nickovic, 2004). Furthermore,
for any STL specification and a system trajectory, we can efficiently compute the robustness degree,
or the approximate signed distance of the trajectory from the set of trajectories satisfying/violating
the specification (Donzé & Maler, 2010; Fainekos et al., 2009).

The use of STL-based objectives has seen considerable recent interest in data-driven methods
for training controllers for dynamical systems that can be described by (stochastic) difference
equations. This literature brings together two separate threads: (1) smooth approximations to the
robustness degree of STL specifications (Gilpin et al., 2020; Pant et al., 2017) enabling the use of
STL robustness in gradient-based learning of control policies, and (2) efficient representation of
the robustness computation allowing its use in training neural controllers using backpropagation
(Yaghoubi & Fainekos, 2019; Leung et al., 2019; 2021; Hashemi et al., 2023; Hashemi et al.). We are
inspired by the work in (Hashemi et al., 2023) that proposes a ReLU-based neural network encoding
(called STL2NN) to exactly encode the STL robustness degree computation. We show how we can
extend this computation graph to obtain smooth underapproximations of the STL robustness degree.
Backpropagation-based methods typically treat the one-step environment dynamics and the neural
controller as a recurrent unit that is then unrolled as many times as required by the temporal horizon
of the specification φ. For instance, if enforcing φ requires reasoning over several hundred time-steps,
then it involves training a recurrent structure that resembles RNN with hundreds of recurrent units. It
is well-known that training of RNNs over long sequences faces problems of exploding and vanishing
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gradients (Goodfellow et al., 2016; Ba et al., 2016). To address this, we propose a sampling-based
approximation of the gradient of the objective function (i.e. the STL property), that is particularly
effective when dealing with behaviors over large time-horizons. Our method can improve training of
NN controllers by at least an order of magnitude, i.e., in some cases, we reduce training times from
hours to minutes. Several planning problems require finding optimal paths over long time-horizons.
For example, consider the problem of planning the trajectory of a UAV in a complex, GPS-denied
urban environment; here, it is essential that the planned trajectory span several minutes while avoiding
obstacles and reaching several sequential goals (Windhorst et al., 2021).

Contributions. To summarize, we make the following contributions:

1. We propose smooth versions of computation graphs representing the robustness degree computa-
tion of an STL specification over the trajectory of a dynamical system. Our computation graph
guarantees that it lower bounds the robustness degree with a tunable degree of approximation.

2. We develop a backpropagation framework which leverages the new differentiable structure, and
we show how we can handle STL specifications.

3. We develop a sampling-based approach to approximate the gradient of STL robustness w.r.t. the
NN controller parameters. Emphasizing the time steps that contribute the most to the gradient,
our method randomly samples time points over the trajectory. We utilize the structure of the
STL formula and the current system trajectory to decide which time-points represent critical
information for the gradient.

4. We demonstrate the efficacy of our approach on high dimensional nonlinear dynamical systems
involving long-horizon and dynamic temporal specifications.

Related Work. The use of temporal logic specifications for controller synthesis is a well-studied
problem. Early work focuses on the model-based setting, where the environment dynamics are
described either as Markov decision processes (Sadigh & Kapoor, 2016; Haesaert et al., 2018)
or as differential equations (Gilpin et al., 2020; Pant et al., 2018; Raman et al., 2014; Farahani
et al., 2015; Lindemann & Dimarogonas, 2018; Raman et al., 2015; Kalagarla et al., 2020; Lacerda
et al., 2015; Guo & Zavlanos, 2018)). Recent years have also seen growing interest in data-driven
techniques (Balakrishnan et al., 2022; Li et al., 2018) for control synthesis. In addition, automata-
based approaches (Sadigh et al., 2014; Hasanbeig et al., 2018; Hahn et al., 2020; Lavaei et al.,
2020) are also proposed in the field to address temporal logic based objectives. In (Liu et al.,
2021), the authors propose an imitation learning framework where a Model-Predictive Controller
(MPC) guaranteed to satisfy an STL specification is used as a teacher to train a recurrent neural
network (RNN). In (Wang et al., 2023; Balakrishnan & Deshmukh, 2019), the authors replace
handcrafted reward functions with the STL robustness within single-agent or multi-agent deep RL
frameworks. The overall approach of this paper is the closest to the work in (Yaghoubi & Fainekos,
2019; Leung et al., 2019; 2021; Hashemi et al., 2023; Hashemi et al.), where STL robustness is used
in conjunction with backpropagation to train controllers. The work in this paper makes significant
strides in extending previous approaches to handle very long horizon temporal tasks, crucially enabled
by the novel sampling-based gradient approximations. Due to the structure of our NN-controlled
system, we can seamlessly handle time-varying dynamics and complex temporal dependencies.

The rest of the paper is organized as follows. In Sec. 2, we introduce the notation and the problem
definition. We propose our learning-based control synthesis algorithms in Sec. 3, present experimental
evaluation in Sec. 4, and conclude in Sec. 5

2 PRELIMINARIES

We use bold letters to indicate vectors and vector-valued functions, and calligraphic letters to denote
sets. We denote the set, {1, 2, · · · , n} with [n]. A feed forward neural network (NN) with ℓ hidden
layers is denoted by the array [n0, n1, · · ·nℓ+1], where n0 denotes the number of inputs, nℓ+1 is the
number of outputs and for all i ∈ [ℓ], ni denotes the width of ith hidden layer.

Neural Network Controlled Dynamical Systems (NNCS). Let s ∈ Rn and a ∈ Rm denote the
state and action variables that take values from compact sets S ⊆ Rn and C ⊆ Rm, respectively. We
use sk (resp. ak) to denote the value of the state (resp. action) at time k. We define a neural network
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controlled system (NNCS) as a recurrent difference equation.

sk+1 = f(sk,ak). (1)

We assume that the control policy is a parameterized function πθ, where θ is a vector of parameters
that takes values in Θ. Later in the paper, we instantiate the specific parametric form using a neural
network for the controller. Given a fixed vector of parameters θ, the parametric control policy πθ
returns an action ak as a function of the current state sk ∈ S and time k ∈ Z≥0, or ak = πθ(sk, k).

Closed-loop Model Trajectory. For a discrete-time NNCS as shown in equation 1, and a set of
designated initial states I ⊆ S, under a pre-defined feedback policy πθ, equation 1 represents an
autonomous discrete-time dynamical system. For a given initial state s0 ∈ I, a system trajectory σθs0
is a function mapping time instants in [0,K] to S, where σθs0(0) = s0, and for all k ∈ [0,K − 1],
σθs0(k + 1) = f(sk, πθ(sk, k))

1. The computation graph for this trajectory is a recurrent structure.
Appendix K shows an illustration of this structure and its similarity to RNN. In this paper, we provide
algorithms to learn a policy πθ⋆ that maximizes the degree to which certain task objectives and safety
constraints are satisfied. To that end, we formulate policy learning as an optimization problem.

Task Objectives and Safety Constraints. We assume that task objectives or safety constraints of the
system are specified in a temporal logic known as Signal Temporal Logic (STL)(Maler & Nickovic,
2004). Our STL formulas are defined using the following syntax:

φ = h(s) ▷◁ 0 | φ1 ∧ φ2 | φ1 ∨ φ2 | FIφ | GIφ | φ1UIφ2 (2)

that are limited to positive normal form logical expressions. Here, ▷◁∈ {≤, <,>,≥}, h is a function
from S to R, and I is a closed interval [a, b] ⊆ [0,K]. The formal semantics of STL over discrete-
time trajectories have been previously discussed in (Fainekos & Pappas, 2006), we briefly recall them
here.

Boolean Semantics and Formula Horizon. We denote the formula φ being true at time k in trajectory
σθs0 by σθs0 , k |= φ. We say that σθs0 , k |= h(s) ▷◁ 0 iff h(σθs0(k)) ▷◁ 0. The semantics of the Boolean
operations (∧, ∨) follow standard logical semantics of conjunctions and disjunctions, respectively.
For temporal operators, we say σθs0 , k |= FIφ is true if there is a time k′ that k′−k ∈ I where
φ is true. Similarly, σθs0 , k |= GIφ is true iff φ is true for all k′ where k′−k ∈ I . In addition,
σθs0 , k |= φ1UIφ2 if there is a time, k′, k′−k ∈ I where φ2 is true and for all times k′′ ∈ [k, k′) φ1 is
true. The temporal scope or horizon of an STL formula defines the number of time-steps required in a
trajectory to evaluate the formula, σθs0 , 0 |= φ (Maler & Nickovic, 2004). For example, the temporal
scope of the formula F[0,3](x > 0) is 3, and that of the formula F[0,3]G[0,9](x > 0) is 3 + 9 = 12.

Quantitative Semantics (Robustness value) of STL. Quantitative semantics of STL roughly define
a signed distance of a given trajectory from the set of trajectories satisfying or violating the given
STL formula. There are many alternative semantics proposed in the literature (Donzé & Maler,
2010; Fainekos & Pappas, 2006; Rodionova et al., 2022; Akazaki & Hasuo, 2015); in this paper, we
focus on the semantics from (Donzé & Maler, 2010) that are shown below. The robustness value
ρ(φ, σθs0 , k) of an STL formula φ over a trajectory σθs0 at time k is defined recursively as follows2.

φ ρ(φ, k)

h(sk) ≥ 0 h(sk)
φ1 ∧ φ2 min(ρ(φ1, k), ρ(φ2, k))
φ1 ∨ φ2 max(ρ(φ1, k), ρ(φ2, k))
G[a,b]ψ min

k′∈[k+a,k+b]
ρ(ψ, k)

φ ρ(φ, k)

F[a,b]ψ maxk′∈[k+a,k+b] ρ(ψ, k)

φ1U[a,b]φ2 max
k′∈

[k+a,k+b]

min

ρ(φ2, k
′),

min
k′′∈
[k,k′)

ρ(φ1, k
′′)

 (3)

We note that if ρ(φ, k) > 0 the STL formula φ is satisfied at time k, and we say that the formula φ is
satisfied by a trajectory if ρ(φ, 0) > 0.

STL Robustness as a ReLU NN. The quantitative semantics in equation 3 contains min/max operators;
this makes the robustness of an STL formula difficult to be used in gradient-based methods for learning.

1If the policy πθ is obvious from the context, we drop the θ in the notation σθs0 .
2For brevity, we omit the trajectory from the notation, as it is obvious from the context.
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However, min /max operators in equation 3 can be expressed using ReLU functions as follows:

min(a1, a2) = a1 − ReLU(a1 − a2), max(a1, a2) = a2 + ReLU(a1 − a2). (4)

This allows the computation graph representing the robustness of an STL formula w.r.t. a given
trajectory to be expressed using repeated application of the ReLU function (with due diligence
in balancing min,max computations over several arguments into a tree of at most logarithmic
height in the number of operands). We call this ReLU-based computation graph as STL2NN. The
STL2NN, despite being reformulated with ReLU, is essentially equivalent to non-smooth robustness
in equation 3, making it unsuitable for back-propagation. To address this, smooth activations are
introduced to create a differentiable computation graph.

3 TRAINING NEURAL NETWORK CONTROL POLICIES

Problem Definition.: We wish to learn a neural network (NN) control policy πθ (or equivalently
the parameter values θ), s.t. for any initial state s0 ∈ I 3, using the control policy πθ, the trajectory
obtained, i.e., σθs0 satisfies a given STL formula φ.

Our solution strategy is to treat each time-step of the given dynamical equation in equation 1 as a
recurrent unit. We then sequentially compose or unroll as many units as required by the horizon of
the STL specification. For instance, if the specification is F[0,10](x > 0), then, we use 10 instances
of f(sk, πθ(sk)) by setting the output of the kth unit to be the input of the (k + 1)th unit. This
unrolled structure implicitly contains the system trajectory, σθs0 starting from some initial state s0 of
the system. The unrolled structure essentially represents the symbolic trajectory, where each recurrent
unit shares the NN parameters of the controller (see Appendix K for more detail). By composing
this structure with the neural network representing the given STL specification φ; for instance, the
STL2NN computation graph introduced in the previous section, we have a NN that maps the initial
state of the system in equation 1 to the robustness degree of φ. Thus, training the parameters of this
resulting NN to guarantee that its output is positive (for all initial states) guarantees that each system
trajectory satisfies φ. However, we face two main challenges in training such a NN.

Challenge 1: The cost function to be optimized is the output of the STL2NN computation graph.
As mentioned earlier, as this is identical to the non-smooth robustness proposed in equation 3, we
cannot use it effectively with stochastic optimization frameworks. An obvious step is to approximate
STL2NN by a smooth function. We represent this function as STL2LB and leverage it for computing
the gradients of the robustness function. It is important for STL2LB to lower bound STL2NN; if we
find NN parameters that guarantee a positive output of STL2LB for all possible system trajectories,
then it guarantees that the system satisfies the given STL objective.

Challenge 2: As our model can be thought of as a recurrent structure with number of repeated units
proportional to the horizon of the formula, naïve gradient-based training algorithms are applicable to
only short time horizons. As our structure is recurrent, the gradient computation faces the same issues
of vanishing and exploding gradients when dealing with long trajectories that RNNs may face in
training (Pascanu et al., 2013). We introduce an efficient technique to approximate gradients for long
trajectories that is inspired by the idea of Drop-out (Srivastava et al., 2014). This popular technique
also suggests us calling this approximate gradient as robust gradient.

3.1 SMOOTH, GUARANTEED LOWER BOUND FOR STL2NN

To guarantee a smooth lower bound for STL2NN, we replace ReLU activations in the min operation
with the softplus activation function defined as:

softplus(a1 − a2) =
1

b
log
(
1 + eb(a1−a2)

)
, b > 0.

Similarly we replace the ReLU activation functions contributing in max operation with the swish
activation function:

swish(a1 − a2) =
a1 − a2

1 + e−b(a1−a2)
, b > 0.

3In the context of neural network training we satisfy this condition considering a set of sampled initial states,
but we verify our trained NN for all the initial states through formal verification techniques.
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We denote this smooth NN with STL2LB and we claim: (see Appendix J for more detail)
∀(σs0 , b) ∈ RnK × R : STL2LB(σs0 ; b) ≤ STL2NN(σs0)

We note that replacing the min and max operators with smooth versions is, by itself, not novel.
Several prior studies have explored smooth semantics for STL (Gilpin et al., 2020; Pant et al., 2017).
For example, consider the smooth max and min introduced in (Gilpin et al., 2020; Pant et al., 2017;
Liu et al., 2021; Leung et al., 2019; Lindemann & Dimarogonas, 2018):

m̃ax(a1, · · · , aℓ) =
1

b
log

(
ℓ∑
i=1

ebai

)
︸ ︷︷ ︸

Logexpsum

or m̃ax(a1, · · · , aℓ) =
ℓ∑
i=1

aie
bai∑ℓ

i=1 e
bai︸ ︷︷ ︸

Boltzmann

. (5)

and m̃in(a1, · · · , aℓ) = −m̃ax(−a1, · · · ,−aℓ).
An issue with using any kind of smooth approximation is that numerical issues can be caused by the
presence of large positive exponents. Here, we explain this with an example.
Example 1. Let a1 = 0, and a2 = 80, and suppose we wish to perform a smooth approximation of
max(a1, a2) with Logexpsum, Boltzmann and swish operators. Let the parameter b = 10. Then we
can see that computing exp(ba2) and exp(−b(a1 − a2)) causes numerical issues. On the other hand,
for a1 = 80, a2 = 0 the softplus operator may also fail. □

Hence, to resolve the computation problem, we can define a threshold τ > 0 large enough and
approximate swish and softplus activation functions as:

s̃wish(ζ) =

{
swish(ζ) if ζ > −τ/b
0 if ζ < −τ/b , ˜softplus(ζ) =

{
ζ if ζ > τ/b
softplus(ζ) if ζ < τ/b,

where ζ = a1 − a2. It is important to note that such a technique cannot be performed for smoothing
using Logexpsum or Boltzmann-style operators and is exclusively applicable on STL2LB. By
selecting τ large enough, we can maintain the differentiability of operators, at least to the accuracy
level of existing computation tools. To avoid the shortcomings of Logexpsum and Boltzmann-style
approximations, we use softplus (with the above modifications) and the swish function as activations.
Lemma 1. For any formula φ belonging to STL in positive normal form, and b > 0, for a given
trajectory σs0 = s0, s1, . . . , sK , if STL2LB(σs0 ; b) > 0, then σs0 |= φ, where STL2LB is a
computation graph for STL robustness degree but with the modified softplus activation instead of
min and the modified swish activation instead of max.

See Appendix J for proof. The main contributions of STL2LB comparing to the existing smooth
robustness formula (Gilpin et al., 2020; Pant et al., 2017) can be summarized as follows:

• Example 1 shows that STL2LB provides convenience for computation.
• Lemma 1 indicates that, like (Gilpin et al., 2020), it is also a guaranteed smooth lower-bound for

robustness function, thus, can be considered as a control barrier function.

3.2 TRAINING WITH STL2LB Algorithm 1: Neurosymbolic policy learning

1 Input: Î, θ0, b, φ, ρ̄
2 j ← 0

3 while
(
min
s0∈Î

(
ρ(φ, σθ

j

s0 , 0)
)
< ρ̄

)
do

4 s0 ← Sample from Î
5 σθ

j

s0 ← Simulate using policy πθj

6 d← ∇θSTL2LB(σθ
j

so ) using σ
θj

so

7 θj+1 ← θj + Adam(d)
8 j ← j + 1

In order to train the controller for all ini-
tial states, s0 ∈ I we solve the following
optimization problem:

θ∗ = argmax
θ

(
E
s0

u∼I
[
ρ(φ, σθs0 , 0)

])
,

s.t. σθs0(k + 1) =

f
(
σθs0(k), πθ

(
σθs0(k), k

))
.

that aims to increase the expectation of the
robustness for initial states uniformly sam-
pled from the set of initial states. Solving
this optimization problem is equivalent to training the NN controller using a gradient-based algorithm
(shown in Alg. 1). However we terminate the algorithm once the robustness is above a pre-specified
lower threshold ρ̄. We also generate a population of samples from the set of initial states of the
system, i.e. I, for training purposes and denote this set by Î.
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3.3 EXTENSION TO LONG HORIZON TEMPORAL TASKS & HIGHER DIMENSIONAL SYSTEMS

When dealing with long time-horizon trajectories or high dimensional models, considering the
entire trajectory to compute ∇θSTL2LB(σθ

j

s0 ) in Alg. 1, becomes computationally impractical as
it either approaches zero (vanishes) or diverges (explodes) due to the high number of steps in the
trajectory σs0 . To alleviate this, inspired by the well-known idea of Drop-out (Srivastava et al.,
2014) for backpropagation, we propose a sampling-based gradient approximation technique that
prevents the gradient to explode/vanish and is also known to provide a robust training process. The
basic idea in sampling-based technique is to only select certain time-points in the trajectory for
gradient computation, while using a fixed older control policy at the non-selected points. In order to
select time points, a naïve strategy is to choose time-points randomly. However, in our preliminary
results, exploiting the structure of the given STL formula – specifically identifying and using critical
predicates – gives superior results compared to random sampling.

Definition 1 (Critical Predicate). As the robustness degree of STL is an expression consisting of min
and max of robustness values of predicates at different times, the robustness degree is consistently
equivalent to the robustness of one of the predicates h(·) at a specific time. This specific predicate h∗
is called the critical predicate, and this specific time k∗ is called the critical time.

A difficulty in using critical predicates is that a change in controller parameter values may change
the system trajectory, which may in turn change the predicate that is critical for its robustness value.
Specifically, if the critical predicate in one gradient step is different from the critical predicate in the
subsequent gradient step, our gradient ascent strategy fails to augment the robustness value, since it
only results in the elevation of that specific critical predicate’s value. The incorrect gradient generated
in this gradient step can lead to failure in the training process, as it may abruptly reduce the robustness
value drastically.

Figure 1: Shows a demonstration for the func-
tionality of non-differentiable robustness function
with respect to the control parameters. Assuming a
fixed initial state, every control parameter is corre-
sponding to a simulated trajectory, and that trajec-
tory represents a robustness value. This robustness
value is equal to the quantitative semantics for
the critical predicate. In every single smooth part
of this plot, the control parameters are offering a
unique critical predicate.

Given a predefined specification φ, Fig. 1 shows
the non-differentiable points in robustness as
a function of control parameters, with each
smooth segment corresponding to a distinct crit-
ical predicate. In order to optimize robustness
within these smooth partitions, stochastic opti-
mizers like Adam can be employed effectively.
However, it is essential to note that the Adam
optimizer’s applicability is confined to differen-
tiable points. To overcome this challenge, we
employ a technique which utilizes STL2LB to
re-smooth the problem at the non-differentiable
local maxima. However, it is practically impos-
sible to accurately detect the non-differentiable
local maxima, thus we take a more conservative
approach and shift the training approach to uti-
lize STL2LB at every gradient step where the critical predicate technique is unable to improve the
robustness. The rest of this section presents a detailed explanation for each module in our training
algorithm, and Alg. 2 encapsulates these modules within a unified training process. In this algorithm,
we use ρφ(σθs0) as shorthand for the robustness degree of σθs0 w.r.t. φ at time 0. A detailed explanation
for Alg. 2 is also provided in Appendix A.

Sampling-based gradient approximation technique. This technique is based on sampling across
recurrent units and is originally inspired by the popular idea of Drop-out proposed in (Srivastava et al.,
2014). Considering the NN controllers rolled out over the trajectory, the idea of Drop-out suggests
removing the randomly selected nodes from a randomly selected NN controller over the trajectory.
This requires the node to be absent in both forward-pass and backward-pass in backpropagation
algorithm. However, our primary goal is to alleviate the problem of vanishing and exploding gradients.
Thus, we propose to sample random time steps and select all of its controller nodes to apply Drop-
out. However, for long trajectories we need to drop out a large portion of time steps that result in
inaccurate approximation, thus we compensate for this by repeating this process and computing for
accumulative gradients (See parameters N1, N2 in Alg. 2). Restriction of Drop-out to sample time
steps results in less number of self multiplication of weights and therefore alleviates the problem of
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vanishing/exploding gradient. However, this may result in disconnection between the trajectory states
and thus we need to apply modifications to this strategy. To that end, we drop out the selected nodes
but we also replace that group of selected nodes ( controller unit) with its evaluation in forward pass.
This strategy motivates us to define the sampled trajectory as proposed in definition 2.

Definition 2 (Sampled Trajectory). Consider the set of time steps T = {0, t1, t2, · · · , tN} sampled
from the horizon K = {0, 1, 2, · · · ,K}, and the control parameters θj in the gradient step j. The
sampled trajectory σ̃θ

j

s0,T is a subset of trajectory states σθ
j

s0 , where σ̃θ
j

s0,T (0) = s0 and,

∀i ∈ {0, 1, · · · , N} : σ̃θ
j

s0,T (i+ 1) = f ji (σ̃
θ
s0,T (i), πθj (σ̃

θj

s0,T (i), ti)).

Given the pre-computed constants
{
a1+ti ,a2+ti , · · ·ati+1−1

}
using θj in the gradient step j, the

dynamics model f ji is defined as: f ji (s,a) = f(f(· · · (f(s,a),a1+ti),a2+ti), · · · ,ati+1−1).

Algorithm 2: Gradient-direction approximation algo-
rithm for training the controller for long horizon tasks.

1 Input: ϵ, M, N, N1, N2, θ
0, φ, ρ̄, Î, j = 0

2 while ρφ(σθ
j

s0 ) ≤ ρ̄ do
3 s0 ← Sample from Î
4 use_STL2LB← False; j ← j + 1
5 if use_STL2LB = False then
6 θ1, θ2 ← θj

7 for i← 1, · · · , N1 do
8 σθ

j

s0 , k
∗, h∗(sk∗)← Simulate trajectory,

obtain critical predicate

9 T q, Xq, σ̃θ
j

s0,T q , q ∈ [M ]←
Generate sampled time steps
& sampled trajectories

10 d1 ← robust gradient∇θJ wp(σθ
j

s0 )
11 d2 ← robust gradient∇θh∗(sk∗)
12 θ1 ← θ1 + Adam(d1/N1)
13 θ2 ← θ2 + Adam(d2/N1)

14 if ρφ(σθ1s0 ) ≥ ρφ(σθ
j

s0 ) then θj+1 ← θ1

15 else if ρφ(σθ2s0 ) ≥ ρφ(σθ
j

s0 ) then θj+1 ← θ2
16 else
17 ℓ← 1, update← True
18 while update & (use_STL2LB=False) do
19 ℓ← ℓ/2; θ̂ ← θj + ℓ(θ2 − θj)

20 if ρ(φ, σθ̂s0 , 0) ≥ ρφ(σθ
j

s0 ) then
21 θj+1 ← θ̂, update← False

22 else if ℓ < ϵ then use_STL2LB← True

23 if use_STL2LB = True then
24 θ3 ← θj

25 for i← 1, · · · , N2 do
26 T q, Xq, σ̃θ

j

s0,T q , q ∈ [M ]←
Generate sampled time steps
& sampled trajectories

27 d3 ←robust gradient∇θSTL2LB(σθ
j

s0 , b)
28 θ3 ← θ3 + Adam(d3/N2)

29 θj+1 ← θ3

Figure 2 in Appendix A makes this def-
inition more clear through visualization.
This definition applies the idea of Drop-
out that is also equipped with our modifi-
cation to replace the set of selected nodes
on a randomly selected time step with its
pre-computed output in the forward pass
for original trajectory. This set of nodes
are indeed a controller unit on the sam-
pled time step. However our contribution
from the idea of sampled trajectory are
listed as follows:

1. to apply the idea of Drop-out on con-
trol synthesis over extended trajectories
which alleviates for the problem of van-
ishing/exploding gradients.

2. to restrict the sampling process to time-
steps instead of a random node selection
on trajectory.

3. to assure that the critical time is included
in the set of sampled time steps.

In this work we denote the gradient of
original trajectory with ’original gradi-
ent’ and the approximate gradient from
our sampling technique as ’robust gra-
dient’ 4. In the backpropagation algo-
rithm at a given gradient step j with
control parameter, θj we wish to com-
pute the robust gradient ∂J /∂θj . To
that end, we utilize θj to simulate the
trajectory {s0, s1, ..., sK} and control se-
quence {a0,a1, ...,aK−1}. We then gen-
erate a set of random selections for the
sampled times T q, q ∈ [M ] and define
the sampled trajectories, σ̃θ

j

s0,T q with the
specified interrelation proposed in the
definition 2. In the next gradient step,

j + 1 we again generate a new set of sampled times and repeat the process. 5.

4We call this gradient robust since the Drop-out technique claims this gradient results in robust training.
5In this work, we evaluate the applicability of our sampling based technique through different case studies.

This is a common approach to replace the mathematical proofs with validation through experimental results. See
the famous works like (Srivastava et al., 2014).
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Way Point Function. The way point function, J wp(σθs0), is established as a reward-based function
designed to offer incentives to the optimizer to guide the trajectory toward a pre-defined path.

Safe re-smoothing. As discussed before, in the event that the optimization process steers the
control parameters towards non-differentiable local maxima, there may be a drastic reduction in
the value of the robustness function. In this case, we replace the objective function with J (σθjs0 ) =
STL2LB(σθ

j

s0 ; b). This is because, STL2LB is a smooth version of robustness over the trajectory,
in addition, it is a guaranteed lower bound for robustness and its distance to robustness can also be
controlled with b. Thus, its inclusion makes the re-smoothing process safe against a potential drastic
drop in robustness value.

In case the objective function J is the value of critical predicate, it is only a function of the trajectory
state sk∗ and we sample the time steps as, T = {0, t1, t2, · · · , tN} , tN = k∗. The original gradient
is ∂J /∂θ = (∂J /∂sk∗) (∂sk∗/∂θ) but based on our sampling technique inspired with Drop-out, the
robust gradient will be defined as, ∂J /∂θ = (∂J /∂sk∗)

(
∂σ̃θs0,T (N)/∂θ

)
where unlike ∂sk∗/∂θ

that is prone to vanish/explode problem, the new term ∂σ̃θs0,T (N)/∂θ can be computed efficiently6.

In case the objective function is way-point or STL2LB, that is a function of all the trajectory states,
we consequently segment the trajectory into M different partitions, by random time sampling as,

T q = {0, tq1, t
q
2, · · · , t

q
N} , q ∈ [M ], (∀q1, q2 ∈ [M ] : T q1 ∩ T q2 = {0}) ∧ (K =

M⋃
q=1

T q), (6)

with sub-trajectories generated by T q, q ∈ [M ] denoted as Xq =
{
s0, stq1 , · · · , stqN

}
. We know the

original gradient in this case is ∂J /∂θ =
∑M
q=1 (∂J /∂Xq) (∂Xq/∂θ). However in our training

process to compute the robust gradient, the gradient matrix ∂Xq/∂θ is supposed to be replaced with
∂σ̃θs0,T q/∂θ. Unlike the inefficient gradient matrix ∂Xq/∂θ that is prone to vanish/explode problem,
the gradient matrix ∂σ̃θs0,T q/∂θ can be computed efficiently.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our proposed method. We implemented all experiments
in MATLAB7. We give the details of our experimental setup in the Appendix. We evaluate on 5
environments (details given in the Appendix) (a) a 3 dimensional simple car, (b) a 6 dimensional
drone, (c) a 6 dimensional drone combined with a moving frame with a task requiring a long path
plan, (d) a multi-agent system of 10 connected Dubins car, and (e) a 12 dimensional quad-rotor.

Evaluation metric. To evaluate the performance of our method, we first compare the results of
Alg. 1 with the examples proposed in (Yaghoubi & Fainekos, 2019) for environments (a) and (b),
and compare the runtimes. As the dimension of system increases, it becomes more challenging to
avoid the training procedure from converging to local optima. Increasing the horizon of temporal task
causes the gradients to become non-informative, as they potentially vanish or explode. Therefore,
environments (c), (d) and (e) are solved with Alg. 2. We also show that Alg. 1 is unable to finish the
computation for long horizon experiments within a reasonable number of iterations or runtime.

Comparison. Application of Alg. 1 on the environments (a) and (b), shows noticeable improvement,
w.r.t. the previous work in (Yaghoubi & Fainekos, 2019). In these examples, we started from a
random initial guess for NN parameters and computed the solution within ≈ 6 minutes. However the
reported runtime in (Yaghoubi & Fainekos, 2019) is noticeably higher than ours. Appendix L shows
a comparison between the performance of STL2LB and the previous works (Pant et al., 2017; Gilpin
et al., 2020). This comparison emphasizes on the computational problem proposed in Example 1.

Main results. We test the performance of our proposed sampling-based algorithm in highly nonlinear
and high dimensional environments over long and also complex temporal tasks (details in the
appendix). Table 2 reports the results of these experiments.

6The efficiency results from the control parameters θ repeating in fewer steps as most of them are fixed.
7All experiments were run on a laptop PC with a Core i9 CPU, and we did not utilize GPUs for computation.
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To evaluate the contribution of Alg. 2 we perform an ablation study on a simple Dubin’s car envi-
ronment. We assume an 1m × 1m area for execution, and specify that the car moves in this area
within K = 10 time steps (δt = 0.1) while avoiding an obstacle presented in this area (Figure 11 is a
scaled (×100) version of this area). We evaluate the same case study, but with task horizons ranging
from 10 to 1000 time steps. With increasing number of time-steps, we also need to magnify the size
of the environment to maintain task difficulty. The ablation study involves solving each of these
problems: (1) with the vanilla version of Alg. 1 with no sampling-based robust gradient computation
(2) Alg. 1 where sampling-based robust gradient approch is performed using random times within
the trajectory, and (3) Alg. 2 that combines gradient-based sampling based on critical predicates,
safe re-smoothing, and waypoint functions. We summarize the results in Table 1. We can see that
the inclusion of time sampling decreases the runtime for training process. We also observe that for
relatively small horizons K = 10, 50, Alg. 1 performs slightly better than Alg. 2 in terms of runtime
but for K = 100, 500, 1000 Alg. 2 is much more efficient. In the table, an entry “NF” indicates when
the algorithm is unable to solve the problem within 8000 gradient steps. In Alg. 1, as the dimension
of STL2LB grows with the length of the horizon and dimension of the system, we see it struggle with
the more complex case studies.

Table 2 highlights the versatility of our technique to handle various case studies with number of
dimensions as high as 20, and time horizons in thousands of steps. We also use a diverse set of
temporal task objectives that include nested temporal operators, and those involving trajectories from
two independently moving objects (Drone & Moving Frame case study). The results were produced
using Alg. 2.

Algorithm 1 Algorithm 1 Algorithm 2
Horizon (No time Sampling) (With time Sampling) (With time Sampling)

Num. of Runtime Num. Runtime Num. of Runtime
Iterations (seconds) Iterations (seconds) Iterations (seconds)

10 34 2.39 11 1.39 4 5.61

50 73 2.46 53 14.01 25 6.09

100 152 8.65 105 112.6 157 90.55

500 NF[−1.59] 4986 3237 8566 624 890.24

1000 NF[−11.49] 8008 NF[−88.42] 28825 829 3728

Table 1: Ablation study. We mark the experiment with NF[.] if it is unable to provide a positive
robustness within 8000 iterations, and the value inside brackets is the maximum value of robustness
it finds. We magnify the environment proportional to the horizon (see Appendix H for details). All
experiments use a unique guess for initial parameter values.

Case Study Temporal System Time NN Controller Number of Runtime Optimization Setting
Task Dimension Horizon Structure Iterations (second) [M,N,N1, N2, ϵ, b]

Simple Car φ1 3 40 steps [4,10,2] 750 403.19 Algorithm 1, b=10

Drone φ2 6 35 steps [7,10,3] 16950 354.36 Algorithm 1, b=20

Quad-rotor φ3 12 45 steps [13,20,20,10,4] 1120 6413.3 [9, 5, 30, 40, 10−5, 5]

Multi-agent φ4 20 60 steps [21,40,20] 2532 6298.2 [12, 5, 30, 1, 10−5, 15]

Drone & Frame φ5 7 1500 steps [8,20,20,10,4] 84 443.45 [100, 15, 30, 3, 10−5, 15]

Dubins car φ6 2 1000 steps [3,20,2] 829 3728 [200, 5, 60, 3, 10−5, 15]

Table 2: Results on different case studies (details in the appendix)

5 CONCLUSION
We introduce STL2LB, a smooth computation graph that lower bounds the robustness degree of an
STL specification. We present a neurosymbolic algorithm that uses informative gradients for the
design of NN controllers to satisfy STL specifications. We also propose a sampling-based technique
to compute robust gradient that does not vanish/explode for long-horizon STL formulas, and provide
some strategies to overcome challenges posed by non-differentiable local maxima. We show the
efficacy of our training algorithm on a variety of different case studies and present an ablation study
that validates the significance of our proposed heuristics.
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6 REPRODUCIBILITY

The environments used in this paper are standard in the domain of STL controller synthesis. We
have provided environment parameters and the hyperparameters used in each of these models. The
Appendix sections include sufficient details of our implementation, and our code will be publicly
available upon publication.

REFERENCES

Takumi Akazaki and Ichiro Hasuo. Time robustness in mtl and expressivity in hybrid system
falsification. In International Conference on Computer Aided Verification, pp. 356–374. Springer,
2015.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Anand Balakrishnan and Jyotirmoy V Deshmukh. Structured reward shaping using signal temporal
logic specifications. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3481–3486. IEEE, 2019.

Anand Balakrishnan, Stefan Jaksic, Edgar Aguilar, Dejan Nickovic, and Jyotirmoy Deshmukh.
Model-free reinforcement learning for symbolic automata-encoded objectives. In Proceedings of
the 25th ACM International Conference on Hybrid Systems: Computation and Control, pp. 1–2,
2022.

Randal Beard. Quadrotor dynamics and control rev 0.1. 2008.
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A A DETAILED DISCUSSION ON TRAINING ALGORITHM

Figure 2: This figure illustrates the trajectory sampling pro-
cess for gradient step j in detail. Following the calculation
of actions during the forward pass, we maintain dependence
between the actions and the state for the sampled time steps.
Meanwhile, the remaining actions are set to be independent
and fixed. The actions that are fixed are highlighted in red,
whereas the dependent actions are denoted in black. The black
and red circles represent the sampled and un-sampled time
steps.

In this section, we propose the details of
the Alg. 2. Although this algorithm is uti-
lized for the case where the gradient may
require to be approximated, here we base
our reasoning on the assumption that the
computed gradient direction increases the
objective function in the points of differen-
tiability. However, we evaluate the perfor-
mance of the algorithm in the presence of
gradient approximation, through different
challenging case studies.

In this algorithm, we initially sample an
initial state from the sampled set of initial
states s0 ∼ Î. This sampling process can
be wise or random. For instance, at every
iteration, we may compute the robustness
value for all the initial states and select the candidate with the lowest robustness value, or we may
sample s0 uniformly at random.

Here, the initial states are the input data in the training process and the robustness is the objective
function. We need to make it certain the objective function is differentiable for a given input data,
and this algorithm is designed to do this task. Control synthesis with critical predicate is more
efficient than STL2LB but it may result in non-differentiability, and we should re-smooth the function
in the point of non-differentiability. This is a challenging task to accurately detect the point of
non-differentiability. Thus, we adopt a more conservative approach, and the training algorithm shifts
to the smooth version of the robustness function once it is unable to increase the robustness with
a critical predicate. To do so, we initialize the parameter use_STL2LB to be False and update it to
True in case the robustness is not increased.

Lines [17-22] are proposed to have a more accurate detection for non-differntiable local maxima,
where given a small threshold ϵ, keeps the direction of gradient for critical predicate and decreases the
learning rate exponentially. In case the gradient of critical predicate is not increasing the robustness
for an infinitesimal learning rate, then the chance is high to be in a non-differentiable local maxima.

At the start of the training process, we don’t have access to the desired control parameters, but we can
envision a desired path for the model to track. This path may not satisfy the temporal specification,
but its availability is still valuable information, which its inclusion to the training process can make
the problem easier for the Adam optimizer. Therefore, we utilize a desired path and provide a convex
and efficient waypoint function and benefit from its gradient in our control synthesis to expedite the
training process. We also prioritize the gradient of the waypoint function over the critical predicate.
Hence, the lines [14-16] in the algorithm dictates, in case the gradient of this convex function is
unable to provide an increment to the robustness value, we should shift to utilize the gradient of
critical predicate to increase the robustness function.

In this algorithm, we approximate the gradient for long trajectories through the idea of sampled
trajectories visualized in Fig. 2. The idea of sampled trajectories is motivated with the popular idea of
(Srivastava et al., 2014) known as drop-out. This approximation may not be precise in some gradient
steps of training process. In order to decrease the potential risk, we included a for-loop to repeat
sampling for time steps and utilize the accumulative gradient to update the parameters. This for-loop
for computing θ1 and θ2 is proposed in lines [7,13] and another for-loop for θ3 is presented in lines
[23-29].

B SIMPLE CAR: VEHICLE NAVIGATION (SEQUENCE FORMULA)

We assume a 3 dimensional model for the simple car dynamics with pre-specified control inputs, i.e.
velocity, vk ∈ [0, 5] and steering wheel angle, γk ∈ [−π/4, π/4]. Assuming the ZOH discretization
with time-step δt = 0.05 sec. This dynamics can be presented as follows:

13



Under review as a conference paper at ICLR 2024

Figure 3: This figure shows the simulated trajectories
for trained controller in comparison to the trajectories
for naive initial random guess for control parameters.
The trajectories are initiated from the set of sampled
initial conditions that is the corners of I with its center.
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Figure 4: This figure presents the simulated trajecto-
ries from the trained control parameters, on the simple
car dynamics, comparing in contrast to the trajectories
from initial naive random guess for control parameters.
The trajectories are initiated from the set of sampled
initial conditions, which is θ = −3π
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ẋ = v cos(θ), ẏ = v sin(θ), θ̇ =
v

L
tan(γ),

v ← 2.5 tanh(0.5a1) + 2.5, γ ← π/4 tanh(0.5a2), a1, a2 ∈ R
(7)

We plan to train a NN controller with tanh() activation function and structure [4, 10, 2] for this
problem That maps the vector, [s⊤k , k]

⊤ to the unbounded control inputs [a1(k), a2(k)]
⊤. We

assume that initially the car is at (x0, y0) = (6, 8), but the heading angle can vary in the set
θ0 ∈ [−3π/4,−π/2].
Figure 4 shows the simulation of car’s trajectories with our trained controller parameters.

The car is planned to firstly visit Goal1 and once it is there then it should visit Gaol2 and this
ordered task should be successfully finished in 40 time steps. However, the car should always
avoid the unsafe set according to its assigned task. Unsafe, Goal1 and Goal2 sets are 2D sets:
[1, 4]× [2, 5], [3, 4]× [0, 1] and [5, 6]× [3, 4], respectively. This temporal task can be formalized in
STL framework as follows:

φ1 := F[1,40] [Goal1 ∧ F[Goal2]] ∧G[1,40] [¬ Unsafe set]

The black trajectories are the simulation of the initial guess for the controller, which are generated
completely at random and are obviously violating the specification. We sampled I with 3 points
(θ = −3π/4,−5π/8,−π/2). We also generated STL2LB with b = 10 in 1.31 sec and starting from
mentioned initial guess for control parameters we followed Alg. 1 and trained the parameters within
403.19 seconds and 750 gradient steps on CPU with no parallel computing.

C DRONE: DRONE MOTION PLANNING (REACH-AVOID FORMULA)

We assume a 6 dimensional model for the quadcopter with pre-specified bounds on the control inputs,
u1 ∈ [−0.1, 0.1], u2 ∈ [−0.1, 0.1], u3 ∈ [7.81, 11.81]. Assuming the ZOH8 discretization with
time-step δt = 0.05 sec. This dynamics can be presented as follows:

8Zero Order Hold, fixed control signal over the time step.
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ẋ = vx, ẏ = vy, ż = vz, v̇x = g tan(u1), v̇y = −g tan(u2), v̇z = g − u3,
u1 ← 0.1 tanh(0.1a1), u2 ← 0.1 tanh(0.1a2), u3 ← g − 2 tanh(0.1a3), a1, a2, a3 ∈ R.

(8)

We plan to train a NN controller with tanh() activation function and structure [7, 10, 3] for this
problem That maps the vector, [s⊤k , k]

⊤ to the unbounded control inputs [a1(k), a2(k), a3(k)]
⊤.

Here the parameter g = 9.81 is the gravity. We assume that initially the quadcopter is still,
[vx(0), vy(0), vz(0)] = [0, 0, 0], and at zero altitude z0 = 0. The initial x − y position of the
quadcopter can vary in [x(0), y(0)] ∈ [0.02, 0.05]× [0, 0.05].

Figure 3 shows the simulation of quadcopter’s trajectories with our trained controller parameters.
The quadcopter launches at one point in the set I and is planned to visit the goal set while avoiding
the obstacle. The projection of the obstacle and goal sets into the quadcopter’s position states are
[−∞, 0.17]×[0.2, 0.35]×[0, 1.2] and [0.05, 0.1]×[0.5, 0.58]×[0.5, 0.7], respectively. This temporal
task can be formalized in STL framework as,

φ2 = G[1,35][¬ Obstacle] ∧ F[32,35][Goal]

The black trajectories are the simulation of the initial guess for the controller which are generated
completely at random and are obviously violating the specification. We sampled I with 5 points
on the corners and center. We also generated STL2LB with b = 20 in 0.13 sec and starting from
mentioned initial guess for control parameters we followed Alg. 1 and trained the parameters within
354.36 seconds and 16950 gradient steps on CPU with no parallel computing. In this example, we
started from a random initial guess and solved for a control parameter within 6 minutes. However, the
authors in (Yaghoubi & Fainekos, 2019) report that they spent 8 hours to find a good initial control
parameters. This emphasizes on that fact that our gradients are more informative.

D QUAD-ROTOR: 12-DIMENSIONAL QUAD-ROTOR (NESTED 3-FUTURE
FORMULA)

Figure 5: shows the simulation of trained control
parameters to satisfy the specified temporal task
in companion with the simulation result for initial
guess for control parameters.

We assume a 12-dimensional model for the quad-
rotor of mass, m = 1.4 kg. The distance of
rotors from the quad-rotor’s center is also ℓ =
0.3273 meter and the inertia of vehicle is Jx =
Jy = 0.054 and Jz = 0.104 (see (Beard, 2008)
for the detail of quad-rotor’s dynamics). The con-
troller sends bounded signals δr, δl, δb, δf ∈ [0, 1]
to the right, left, back and front rotors respectively
to drive the vehicle. Each rotor is designed such that
given the control signal δ it generates the propeller
force of k1δ and also exerts the yawing torque k2δ
into the body of the quad-rotor. We set k1 = 3mg/4
such the net force from all the rotors can not ex-
ceed 3 times of its weight, (g = 9.81). We also
set k2 = 1.5ℓk1 to make it certain that the maxi-
mum angular velocity in the yaw axis is approxi-
mately equivalent to the maximum angular velocity
in the pitch and roll axis. We use the sampling time
δt = 0.1 sec in our control process. The dynamics
for this vehicle is proposed in equation 9, where
F, τϕ, τθ, τψ are the net propeller force, pitch torque,
roll torque and yaw torque respectively. We plan to train a NN controller with tanh() activation func-
tion and structure [13, 20, 20, 10, 4] for this problem that maps the vector, [s⊤k , k]

⊤ to the unbounded
control inputs [a1(k), a2(k), a3(k), a4(k)]⊤. In addition to this, the trained controller should be valid
for all initial states proposed in equation 9.

Figure 5 shows the simulation of quad-rotor’s trajectories with our trained controller parameters.The
quad rotor is planned to pass through the green hoop in the next no later than the next 15 time steps
and no sooner than the next 10th step and once it passed the green hoop it should pass the blue hoop
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

ẋ1 = cos(x8) cos(x9)x4 + (sin(x7) sin(x8) cos(x9)− cos(x7) sin(x9))x5

+(cos(x7) sin(x8) cos(x9) + sin(x7) sin(x9))x6

ẋ2 = cos(x8) sin(x9)x4 + (sin(x7) sin(x8) sin(x9) + cos(x7) cos(x9))x5

+(cos(x7) sin(x8) sin(x9)− sin(x7) cos(x9))x6

ẋ3 = sin(x8)x4 − sin(x7) cos(x8)x5 − cos(x7) cos(x8)x6

ẋ4 = x12x5 − x11x6 − 9.81 sin(x8)
ẋ5 = x10x6 − x12x4 + 9.81 cos(x8) sin(x7)
ẋ6 = x11x4 − x10x5 + 9.81 cos(x8) cos(x7)− F/m
ẋ7 = x10 + (sin(x7)(sin(x8)/ cos(x8)))x11 + (cos(x7)(sin(x8)/ cos(x8)))x12

ẋ8 = cos(x7)x11 − sin(x7)x12

ẋ9 = (sin(x7)/ cos(x8))x11 + (cos(x7)/ cos(x8))x12

ẋ10 = −((Jy − Jz)/Jx)x11x12 + (1/Jx)τϕ
ẋ11 = ((Jz − Jx)/Jy)x10x12 + (1/Jy))τθ
ẋ12 = (1/Jz)τψ

I =

s0

∣∣∣∣∣∣
−0.1−0.1
−0.1

 ≤
x1(0)
x2(0)
x3(0)

 ≤
0.10.1
0.1


Fτϕτθ
τψ

 =

 k1 k1 k1 k1
0 −ℓk1 0 ℓk1
ℓk1 0 −ℓk1 0
−k2 k2 −k2 k2


δfδrδb
δl


δf = 0.5(tanh(0.5 a1) + 1),
δr = 0.5(tanh(0.5 a2) + 1),
δb = 0.5(tanh(0.5 a3) + 1),
δl = 0.5(tanh(0.5 a4) + 1),
a1, a2, a3, a4 ∈ R.

(9)

in the future 10th to 15th time steps and again once it has passed the blue hoop it should pass the red
hoop again in the future next 10 to 15 time steps. This is called a nested future formula, in which
we design the controller such that the drone satisfies this specification. This temporal task can be
formalized in STL framework as follows:

φ3 = F[10,15]

[
green_hoop ∧ F[10,15]

[
blue_hoop ∧ F[10,15] [ red_hoop ]

] ]
The black trajectories are the simulation of the initial guess for the controller, which are generated
completely at random and are obviously violating the specification. We sampled I with 9 points, that
are the corners of, I including its center. The setting for gradient approximation is M = 9, N = 5
that implies that for every iteration of backpropagation, we generate a new 9 different set of 5
random time steps T q, q ∈ [9] to sample the trajectory in a way that these sets should satisfy the rule
provided in equation 6. We trained the controller with ρ̄ = 0, in Alg. 2 with optimization setting
(N1 = 30, N2 = 40, ϵ = 10−5) over 1120 gradient steps (runtime of 6413.3 sec). The runtime to
generate STL2LB is also 0.495 sec and we set b = 5. The Alg. 2, utilizes gradients from waypoint
function, critical predicate, and STL2LB , 515, 544, and 61 times respectively.

E MULTI-AGENT: NETWORK OF DUBINS CARS (NESTED FORMULA)
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Figure 6: Shows the agents vs
goal sets

In this example we assume a network of 10 different dubins car
that are all under the control of a neural network controller, The
dynamics of the system is,[

ẋi

ẏi

]
=

[
vi cos(θi)
vi sin(θi)

]
,
vi ← tanh(0.5ai1) + 1, ai1 ∈ R
θi ← ai2 ∈ R, i ∈ [10].

(10)

which is a 20 dimensional multi-agent system with 20 controllers,
vi ∈ [0, 1], θi ∈ R, i ∈ [10]. Figure 6 shows the initial position
of each dubins car in R2 in companion with their corresponding
Goal sets. The cars should be driven to their goal sets, and they
should also keep a minimum distance of d = 0.5 meters from each
other while they are moving toward their goal sets. We assume a
sampling time of δt = 0.26 for this model, and we plan to train a
NN controller with tanh() activation function and structure [21, 40, 20] via Alg. 2, for this problem
that maps the vector, [s⊤k , k]

⊤ to the unbounded control inputs
{
ai1(k), a

i
2(k)

}10
i=1

. This temporal
task can be formalized in STL framework as follows:

φ4 :=

(
10∧
i=1

F[20,48]

[
G[0,12]

[(
xi(k), yi(k)

)
∈ Goali

]])∧
 ∧

i ̸=j
i,j∈[10]

G[0,60]

[(
| xi(k)− xj(k) |> d

)
∨
(
| yi(k)− yj(k) |> d

)]
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13 Figure 8: Shows the simu-
lation of trained controller
on the multi-agent system
of 10 connected Dubins
cars. The cars start from
an assigned initial position
and follow the command
of a central NN controller,
which we have trained with
Alg. 2. This controller
makes it certain that cars ar-
rive to and stay in their Goal
sets based on the specifica-
tion and will always keep a
pre-specified distance from
each other over the course
of traveling. The trajecto-
ries are intentionally plot-
ted with astric points to spot
the position of cars at ev-
ery single time step. The
identity of each agent and
its assigned Goal sets is also
available in Figure 6. Our
observation shows that the
agents finish their personal
tasks (First component of
φ4) in different times.

Figure 8 shows the simulation of the trajectories for the trained controller, and Figure 7 presents
the simulation of trajectories for the initial guess for control parameters. We observe that
our controller manages the agents to satisfy the task in different times. We present the time
steps with astric to make a more clear presentation of the task. Due to the high dimen-
sion and complexity of the task in this example, we were unable to solve it with Alg. 1,
but we were able to solve this with Alg. 2 within a 6298 seconds and 2532 gradient steps.

-10 -5 0 5 10 15
-10

-5

0

5

10

15

Figure 7: Shows the simulation
of trajectories for the initial guess
of the control parameters.

We also set the optimization setting as, M = 12, N = 5, N1 =
30, N2 = 1, ϵ = 10−5, b = 15. The runtime to generate STL2LB
is also 6.2 seconds. Over the course of the training process we uti-
lized 187, 1647 and 698 gradients from way point function, critical
predicate and STL2LB respectively.

F DRONE & FRAME: LANDING A DRONE

We again use the 6 dimensional dynamics for the drone presented
in equation 8. The horizon of the temporal task is 1500 time steps
with δt = 0.05 sec. The drone launches at a helipad located at
(x(0), y(0), z(0)) = (−40, 0, 0). We also accept a deviation of 0.1
for (x(0) and y(0) and we train the controller to be valid for all the
states sampled from this region. The helipad is also 40 meters far
from a building located at (0, 0, 0). The building is 30 meters high, where the building’s footprint
is 10× 10 meters. We have also a moving platform with dimension 2× 2× 0.1 that is starting to
move from (10, 0, 0) with a variable velocity, modeled as, ẋf = u4.. We also accept a deviation 0.1

for, xf (0) and our trained controller is also robust with respect to this deviation. We define Î with 9
samples that are located on corners of, I including its center.

The frame is also required to keep always a minimum distance of 4.5 meters from the building. We
train a NN controller that controls the drone and the platform together such that the drone will land on
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the platform with relative velocity of at most 1m/s on x, y and z directions and its relative distance
is also at most 1 meter in x, y direction and 0.4 meter in z direction. This temporal task can be
formulated as a reach-avoid formula in STL as follows:

φ5 = G[0,1500] [¬obstacle]

∧ F[1100,1500][Goal]

∧G[0,1500][x
f (k) > 9.5]

, Goal=





x(k)
y(k)
z(k)
vx(k)
vy(k)
vz(k)
xf (k)


|


−1
−1
0.11
0
−1
−1

≤

x(k)− xf (k)

y(k)
z(k)
vx(k)
vy(k)
vz(k)

≤


1
1
0.6
2
1
1





Figure 9: This figure shows the simulated tra-
jectory for trained controller in comparison to the
trajectories for naive initial random guess. The
frame is moving with a velocity determined with
the controller that also controls the drone.

We plot the simulated trajectory for the center of
set of initial states I, in Figure 9. The NN con-
troller’s structure is specified as [8, 20, 20, 10, 4]
and uses the tanh activation function. We ini-
tialize it with a random guess for its parameters.
The simulated trajectory for initial guess of pa-
rameters is also depicted in black. The setting
for gradient approximation is M = 100, N =
15 that implies that for every iteration of back-
propagation, we generate a new 100 different set
of 15 random time steps T q, q ∈ [100] to sam-
ple the trajectory, such that these sets satisfy the
specified requirements in equation 6. We trained
the controller with ρ̄ = 0, over 84 gradient steps
(runtime of 443 sec). The runtime to generate
STL2LB is also 7.74 sec and we set b = 15. In total, the Alg. 2, utilizes gradients from waypoint
function, critical predicate, and STL2LB , 5, 71, and 8 times respectively.

G ANALYSIS FOR DIFFERENT MODULES INCLUDED IN ALGORITHM 2

In this section, we perform an analysis over the three modules proposed in Alg. 2. We focus on the
landing drone mission and compare the results once a module is disabled from the algorithm. In the
first step, we remove the way point function from Alg. 2 and show the performance of algorithm with
critical predicate based sampling process and safe-resmoothing. In the next step, we also dis-regard
the presence of critical time in time sampling and train the controller with completely at random time
sampling. This implies we solve the problem relying only on safe-resmoothing module. Table 3
shows the efficiency of training process in each case and Fig. 10 compare the learning curves. Our
experimental result shows, the control synthesis for drone landing mission faces a small reduction
in efficiency when the way point function is disregarded and fails when the critical predicate is also
removed from time sampling.

H DUBINS CAR: GROWING TASK HORIZON FOR DUBINS CAR

In this example, we utilize the dubins car to provide an experiment that shows us, (a) the advantage
for reformulating the Alg. 1 to the Alg. 2 and (b) the advantage for inclusion of sampling based
gradient approximation. To that end, given a scale factor a > 0 and a time horizon K. We plan
to train a neural network controller with structure [3, 20, 2] with tanh() activation function and a
pre-defined initial guess for control parameters to drive a dubins car, with dynamics,[

ẋ
ẏ

]
=

[
v cos(θ)
v sin(θ)

]
,
v ← tanh(0.5a1) + 1, a1 ∈ R
θ ← a2 ∈ R

to satisfy the following temporal task,

φ6 := F[0.9K,K] [Goal] ∧G[0,K] [¬Obstacle] .

The dubins car starts from (x(0), y(0)) = (0, 0). The obstacle is also a square centered on a/2 with
the side length, 2a/5 and the Goal region is again a square centered at 9a/10 with the side length
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Figure 10: Shows the learning curve for training pro-
cesses. This figure shows the Alg. 2 concludes success-
fully in 84 iterations while removing the way point it
concludes in 107 iterations. The algorithm also fails if
the critical predicate is not considered in time sampling.

Way-point Critical Safe Number of Runtime
function Predicate Resmoothing Iterations (seconds)

✓ ✓ ✓ 84 443
× ✓ ✓ 107 607
✓ × ✓ NF[−0.74] 6971
× × ✓ NF[−1.32] 4822

Table 3: Shows the numerical results for the train-
ing algorithms. In case the training process does not
provide positive robustness within 300 gradient step
we report it with NF[.] which indicates the value of
robustness in iteration 300. In this table we disable the
main modules in Alg. 2 step by step and report the ex-
tent of reduction in efficiency. The symbol ✓ indicates
the module is included and × indicates the module is
neglected.

Figure 11: Show the simulation of the results for Dubins car. One of
the main issues of using NN controller for this problem is that the tanh()
activations functions gets saturated over long horizon and the straight lines
confirm this. However, Alg. 2 has successfully solved for this long horizon
task in the presence of this source of difficulty. Consider a) the vehicle
should visit the Goal set after k = 900, b) the controller gets saturated at
some time steps before that, and c) the Goal set may not be reachable before
k = 900. Therefore, the algorithm is required to firstly locate the car in a
specific zone before controller’s activation functions are saturated and then
drive it toward the Goal set with a saturated controller, or in another word,
constant velocity and fixed heading angle.

a/20. We solve this problem for K = 10, 50, 100, 500, 1000 and we also utilize a = K/10 for
each case study. We solve each case study with both Algorithms 1 and 2 and for each algorithm we
consider two different conditions, where the former is to utilize the real gradient and the latter is to
employ the approximated gradient using the time sampling technique. Consider we keep the initial
guess and the controller’s structure fixed for all the training processes, and we also manually stop
the process once the number of iterations exceeds 8000 gradient steps. We also assume a singleton
as the set of initial states (0, 0) to present a more clear comparison. The runtime and the number of
iterations for each training process is presented in table 1. Figure 11 shows the simulation trajectories
trained from Alg. 2 with gradient approximation for K = 1000 time steps in companion with the
simulation of trajectories for the initial guess of controller parameters.

I VERIFICATION OF RESULTS

In order to verify the results, we adopt the approach presented in (Lindemann et al., 2022). To that
end, we set the probabilities δ = %0.1, ε = %99.9 and prove:

Pr
[
Pr[−ρ(φ, σθs0 , 0) ≤ −ρ̄] ≥ ε

]
≥ 1− δ (11)

Based on the methodology proposed in (Lindemann et al., 2022) we are required to generate a
minimum of 3.8005× 106 random trajectories to formalize the statement equation 11. Accordingly,
we sampled 4 × 106 initial states s0 ∈ I uniformly at random and simulated the corresponding
trajectories for all the examples, and we faced no counter example with negative robustness value.

J PROOF OF LEMMA 1

Assume a STL specification φ which defines a set of predicates on the trajectory states in σs0 and
establishes a positive normal form relation over these predicates (see equation 3). Let’s denote the set
of quantitative semantics for these predicates with A,

A = {a1, a2, · · · , aN} .
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Figure 12: Shows an illustration of the recurrent structure for the control feedback system.

The non-smooth robustness function ρ(σs0 , φ, 0) can be considered a recursive combination of
min()/max() operators over the quantitative semantics ai ∈ A, i ∈ [N ]. This implies, in case we
replace the min()/max() operators with their guaranteed lower-bounds, the robustness value will
likewise be under-approximated, provided that the formula φ is in positive normal form.

Let’s use the notation max2() and min2() to refer to the specific case of max() and min() applied to
two quantities. Then the maximum or minimum for a multitude of quantities is also computable recur-
sively over the functions max2()/min2(). As an example for a case of 5 quantities, x1, x2, x3, x4, x5,
we can write:

max(x1, x2, x3, x4, x5) = max2 ( max2 ( max2 (x1 , x2) , max2 (x3 , x4)) , x5)

This implies in case we replace the functions max2()/min2() with a guaranteed lower-bound, the
functions min()/max() will be under approximated and thus the robustness function is also under-
approximated.

We know for all x, y ∈ R, max2(x, y) = y+ReLU(x− y) and min2(x, y) = x−ReLU(x− y). We
also know, for all z ∈ R, swish(z) < ReLU(z) and softplus(z) > ReLU(z) where,

softplus(z) =
1

b
log
(
1 + ebz

)
, swish(z) =

z

1 + e−bz
, b > 0.

This motivates us to define the smooth functions max2s()/min2s() as follows:

max2s(x, y) = y + swish(x− y), min2s(x, y) = x− softplus(x− y)

and claim for all x, y ∈ R, max2s(x, y) < max2(x, y) and min2s(x, y) < min2(x, y). Therefore,
considering robustness function ρ(σs0 , φ, 0), replacement of max2() with max2s() and min2() with
min2s() results in a smooth lower-bound for robustness function that is a recursive combination
of max2s()/min2s() over the elements of set A. Since STL2NN(σs0) is exactly equivalent to
ρ(σs0 , φ, 0), we denote the proposed smooth robustness with STL2LB(σs0 ; b) and conclude,

∀(σs0 , b) ∈ RnK × R : STL2LB(σs0 ; b) ≤ STL2NN(σs0)

K AN ILLUSTRATION FOR THE RECURRENT STRUCTURE

Figure 12 shows an illustration for computation graph of trajectory states in our control feedback
system. The controller is a feed forward neural network that receives the time and state and returns a
decision. The parameters of this controller will be trained to satisfy a temporal property, formulated
in STL framework. As the control parameters are repeated over the computation graph, this recurrent
structure is similar to RNN structure and also suffers from vanishing/exploding gradient for a long
horizon trajectory.

L COMPARISON BETWEEN THE PERFORMANCE OF STL2LB AND OTHER
SMOOTH SEMANTICS IN TRAINING.

Considering the Boltzmann operator and log-exp-sum operators provided in equation 5 and the STL
robustness proposed in equation 3, the methodology proposed in (Pant et al., 2017) suggests to replace

20



Under review as a conference paper at ICLR 2024

(a) STL2LB vs Pant et al. (2017) (b) STL2LB vs Gilpin et al. (2020)
Figure 14: Shows the comparison of learning curve between STL2LB with the smooth semantics proposed
by Pant et al. (2017) and Gilpin et al. (2020). This figure shows STL2LB trains the controller in 2700 gradient
steps and provide positive robustness. This is, while the smooth semantics from Pant et al. (2017) and Gilpin
et al. (2020) are unable to provide positive robustness within up to 40000 gradient steps. Since the operational
zone is wide, the proposed techniques in Pant et al. (2017) and Gilpin et al. (2020), do not accept b ≥ 8 due
to computational errors proposed in Example 1. Although STL2LB have no limit for handling large values of
hyper-paramter b, here we also restrict STL2LB for b = 4 to have more clear comparison.

max()/min() operators in equation 3 with log-exp-sum smooth operator. On the other hand, the
methodology proposed in (Gilpin et al., 2020) suggests to replace max() operator with Boltzmann
operator and min() operator with log-exp-sum. However, both of these techniques suffer from the
computational issues proposed in Example 1. This problem manifest when the quantitative semantics
for predicates is sufficiently large. Therefore, we intentionally assume a wide operational zone for a
Dubin’s car and show including smooth semantics from Pant et al. (2017) and Gilpin et al. (2020)
into training process results in failure, while incorporation of STL2LB results in an efficient training
process. In this training process, we assume the sampling time is δt = 2 sec, the velocity of car,
is constrained with v ∈ [0, 2] and the set of initial states in I = [0, 2] × [0, 2]. Dubin’s car is also
planned to satisfy the STL specification:

φ7 = G[0,35][¬Unsafe]
∧

F[12,17][Goal1]
∧

F[30,35][Goal2]

Figure 13: shows the simulation of trained
control parameters to satisfy the specified
temporal task in companion with the simu-
lation result for initial guess for control pa-
rameters. The black, blue, magenta and red
trajectories are for the initial guess, Pant et al.
(2017), STL2LB and Gilpin et al. (2020), re-
spectively. The only trajectory that satisfies
the specification is for STL2LB.

where the sets Unsafe,Goal1,Goal2 are shown in Fig. 13.
The controller is also feedforward neural network with
structure [3, 10, 2]. Since the operational zone is wide,
the quantitative semantics of predicates are large to the
extent that smooth semantics from Pant et al. (2017) and
Gilpin et al. (2020) can not handle b ≥ 8 and thus we are
restricted to utilize b < 8. On the other hand, STL2LB
does not face numerical problems mentioned in Example 1.
Therefore, we plan to show in this condition, unlike Pant
et al. (2017) and Gilpin et al. (2020), STL2LB do not face
this issue. To validate this issue, we train for controller
with STL2LB and the other two techniques. Fig. 14 shows
the results of these training processes, and clearly shows
STL2LB is the only smooth semantics that can be utilized
to solve this problem. In this case study, b = 4 provides
the best solution for Pant et al. (2017) and Gilpin et al.
(2020) thus we also generate STL2LB with b = 4 to have
a more clear comparison 9. We also compare the simulated
trajectories for this case with the result of STL2LB in
Fig. 13.

All the three training algorithms are identical except the
smooth semantics that is utilized. They are also started from a unique guess for initial control
parameters. We utilized the MATLAB function adamupdate(), that automatically tunes the learning
rate and momentum in SGD.

9The low value for b is the main reason behind the sudden drop in the learning curve for STL2LB. We can
effectively compensate for this issue by increasing the value of b. Here, increasing to b = 15 is sufficient.
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