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Abstract

When pretrained language models (LMs) are
applied to discriminative tasks such as multiple-
choice questions, they place probability mass
on vocabulary tokens that aren’t among the
given answer choices. Spreading probability
mass across multiple surface forms with iden-
tical meaning (such as “bath” and “bathtub”)
is thought to cause an underestimation of a
model’s true performance, referred to as the
“surface form competition” (SFC) hypothesis.
This has motivated the introduction of various
probability normalization methods. However,
many core questions remain unanswered. How
do we measure SFC? Are there direct ways of
reducing it, and does doing so improve task
performance?

We propose a mathematical formalism for SFC
which allows us to quantify and bound its im-
pact for the first time. We identify a simple
method for reducing it—namely, increasing
probability mass on the given answer choices
by a) including them in the prompt and b) using
in-context learning with even just one example.
We show this method eliminates the impact of
SFC in the majority of instances. Our experi-
ments on three diverse datasets and six LMs re-
veal several additional surprising findings. For
example, both normalization and prompting
methods for reducing SFC can be ineffective or
even detrimental to task performance for some
LMs. We conclude with practical insights for
effectively prompting LMs for multiple-choice
tasks.1

1 Introduction

Large pre-trained autoregressive language models
(LMs) have shown success not only on genera-
tion, but also on classification and multiple-choice
(MC) tasks with pre-specified answer choices. To
succeed on such tasks, one must pay attention to

∗Work done at AI2.
1Code available at https://github.com/allenai/

revisiting_surface_form_competition.

<question> <option_1> <question> 
Choices: <option_1>, <option_2> 
Answer: <option_1>

<question> 
Choices:  
 A: <option_1> 
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Figure 1: Higher probability mass on given answer
choices (left; Eq. (5)) does not always translate to bet-
ter accuracy (right; Eq. (1)), as shown here for three
different prompt formats (x-axis; §6.3) each with one in-
context example. Results are averaged across MMLU,
OpenbookQA, and CommonsenseQA. Including answer
choices in the prompt substantially increases probabil-
ity mass on them. However, high probability mass is
surprisingly not always associated with increased ac-
curacy; in fact, it can lead to a substantial drop in
performance (e.g., for OPT 30B and GPT-3 curie).

what’s an acceptable answer choice2 and what’s
not, i.e., understand the task format. This is accom-
plished relatively easily in the pretrain-and-finetune
paradigm (Dai and Le, 2015; Howard and Ruder,
2018; Raffel et al., 2020; Lewis et al., 2020), via
task-specific fine-tuning.3

However, in the zero- and few-shot prompting
paradigm, in which the model is provided only a
description or a handful of examples of the target
task in the input, it’s harder to ensure that the model

2E.g., True and False in Boolean question-answering.
3For example, a T5 (Raffel et al., 2020) model fine-tuned

on question-answering tasks (UnifiedQA; Khashabi et al.,
2020) generates a given answer choice option on the Open-
bookQA validation set 99.4% of the time.

https://github.com/allenai/revisiting_surface_form_competition
https://github.com/allenai/revisiting_surface_form_competition


generates only one of the answer choices associ-
ated with the given MC question. Most prior work
tries to circumvent this issue by ignoring generated
predictions and instead selecting the answer choice
that has the highest probability under the model
(“sequence scoring”; Trinh and Le, 2018; Radford
et al., 2019; Brown et al., 2020, i.a.). This helps
to some extent, by ignoring any attention the mod-
els pays to tokens unrelated to the answer choices.
However, the problem persists as the model’s prob-
ability mass can still be split among various strings
or surface forms that are semantically equivalent
to a given answer choice. Holtzman et al. (2021)
propose that this phenomenon can result in under-
estimates of model performance, and refer to it as
the surface form competition (“SFC”) hypothesis.
Motivated by this, they propose to use a probability
normalization method, PMIDC, to address the SFC
issue, thereby (according to the SFC hypothesis)
increasing model performance. In the same spirit,
other probability normalization methods have been
proposed (Zhao et al., 2021; Malkin et al., 2022),
and their merit assessed via end task accuracy.

However, accuracy improvements may be at-
tributable to multiple sources. Without a metric
to directly measure SFC, it is difficult to assess
whether the increased accuracy is, in fact, a conse-
quence of reduced SFC, or something else.

To address this gap, we propose a mathematical
formalism for studying SFC and use it to investi-
gate the following four research questions.

1. How can we measure SFC? We propose to
measure total probability mass on answer choices
(abbreviated as PMA), and use it to upper bound
the extent and impact of SFC (§4).

2. How can we reduce SFC’s effect? Low
PMA is a consequence of an inherently under-
constrained output space that arises from the model
failing to understand the task format. We use this
observation to explain a simple way of increasing
PMA: in-context learning with prompts containing
answer choices (§5.1 and §5.2). We demonstrate
the success of this approach across 6 LMs and
3 MC datasets (§7.1). We find, for instance, that
when using this prompt with instruction-tuned LMs
and just 2 in-context examples, on all 3 datasets,
SFC simply couldn’t have affected the prediction
in more than 5% of instances.

3. Does increasing PMA improve accuracy?
Surprisingly, not always! We provide an upper
bound on the maximum effect an increase in PMA

can have on task accuracy (§4.1). We find empiri-
cally (Fig. 1 and §7.2) that the alignment between
probability mass and accuracy isn’t as clear cut as
assumed in prior work (Holtzman et al., 2021)—
it depends heavily on the model. These experi-
ments also reveal that, contrary to common wisdom
among researchers, encouraging models to produce
answer choices by including them in the prompt
can counter-intuitively be detrimental to task per-
formance for LMs trained only on the next-token
prediction objective.

4. When do probability normalization meth-
ods improve accuracy? While the direct effect
of PMIDC on SFC is not easy to measure (§3.2),
we extend prior work by studying when PMIDC,
which was motivated by SFC and is complimen-
tary to our approach, improves accuracy on a
wider set of prompts and models. We find, con-
sistent with Holtzman et al. (2021), that PMIDC

increases accuracy when models are not shown an-
swer choices. However, this setting generally also
corresponds to low probability assigned to answer
choices. On the other hand, for the LMs that ben-
efit from seeing answer choices, which results in
high probability assigned to them, PMIDC scoring
generally reduces accuracy. This indicates that as
instruction-tuned LMs become more commonplace,
PMI-based scoring methods, inspired by intuitions
behind SFC (Holtzman et al., 2021), will likely
provide less utility.

We conclude by leveraging these insights to pro-
vide practical recommendations on how to maxi-
mize LM accuracy on multiple-choice tasks when
using zero- and few-shot prompting.

2 Related Work

While various methods have been proposed to im-
prove the accuracy of sequence scoring using prob-
ability normalization methods (Brown et al., 2020;
Zhao et al., 2021; Holtzman et al., 2021; Malkin
et al., 2022), none investigate a direct metric for
surface form competition and whether their meth-
ods alleviate it. To the best of our knowledge, we
are the first to systematically study the role of in-
context examples and prompt format on PMA, as
well as how PMA relates to accuracy.

Holtzman et al. (2021) show PMIDC (Eq. (4))
improves over sequence scoring accuracy in most
cases for GPT-2 and GPT-3 models of various
sizes in 0-shot and 4-shot settings. Somewhat
contradictorily, Brown et al. (2020) find that us-



ing a version of PMIDC where the denominator is
Pθ(x|“Answer : ”or“A : ”) improves task perfor-
mance on the validation set for only 5 out of 17
datasets investigated. Zhao et al. (2021) propose to
fit a linear weight matrix and bias vector for classifi-
cation tasks with a shared label set, such that the la-
bels all have equal probability prior to observing x.
Malkin et al. (2022) add hyperparameters to Eq. (4)
that are fit on a dataset’s validation set, showing
further gains at test-time. Min et al. (2022) pro-
pose to score inputs given answer choices, which is
mathematically equivalent to PMIDC (§3.2). This
results in lower variance and better worst-case ac-
curacy on multiple-choice tasks in 0- and few-shot
settings for GPT-2.

Liang et al. (2022) investigate the effect of show-
ing answer choices in the prompt and applying
PMI based scoring (though not the combination of
the two). They find that the success of one method
over the other tends to vary by dataset and model.
Our results elucidate further that the overall capa-
bility of an LM may be a key factor in whether
PMI-based scoring improves accuracy or not.

3 Preliminaries

Given a task input x, a set of answer choices L, and
the correct answer y∗ ∈ L, the goal of a multiple-
choice classification task is to correctly select y∗.
x is often specified as a question q and, optionally,
answer choices L concatenated to q as one string.4

Let M be a generative model architecture with
learned parameters θ and space of natural language
outputs V . In LMs, |V| ≫ |L|, so generating a
prediction ŷ from V without constraints does not
ensure that it is one of the given answer choices
(i.e., that ŷ ∈ L). Instead, we can use a sequence
scoring approach to score each answer choice:

ŷSeq-Sc = argmax
ℓ∈L

Pθ(ℓ|x) (1)

where Pθ(y) is the probability Mθ assigns to output
y.5 This is a common approach for performing
classification with generative LMs, as it ensures
ŷSeq-Sc ∈ L. This will be our prediction setup.

4For instance, if x is a true/false question, L may be
{True,False}. For a multiple choice question, L may be
the set of (string) answers, their labels such as A/B/C/D, or
both, depending on the format used to pose the task to an LM.

5For multi-token outputs y = y1y2 . . . yk, we compute
Pθ(y|x) as

∏k
i=1 Pθ(yi|x, y1 . . . yi−1).

3.1 Surface Form Competition (SFC)

An LM’s vocabulary contains many different
strings, or surface forms, representing the same
(or similar) semantic concept, but typically only
one representative string per concept is among the
given answer choices L. Formally, for each answer
choice ℓ ∈ L, there exists a set of synonyms Gℓ

(containing ℓ) that may be “stealing” probability
mass away from ℓ, while ℓ is the only surface form
in Gℓ that is considered when computing accuracy
via Eq. (1). One can quantify the amount of the
resulting surface form competition as:

SFCθ(L, x) =
∑
ℓ∈L

(
Pθ(Gℓ|x)− Pθ(ℓ|x)

)
(2)

We refer to Gℓ as a semantic equivalence class, fol-
lowing Kuhn et al. (2023). For example, if L =
{A,B,C}, then there exist semantic equivalence
classes GA,GB, and GC containing all synonyms of
A,B, and C, respectively. If A = whirlpoolbath ,
GA might be {whirlpoolbath, bath, bathtub, . . .},
which are all generations the LM may use to ex-
press the semantically similar concept.

The SFC hypothesis put forward by Holtzman
et al. (2021) is that unresolved SFC results in an
underestimate of model performance. They pro-
vide an example of how SFC may lead to incorrect
predictions, which we extend and adapt in Fig. 2
(left): when LMs distribute probability mass across
surface forms such that Pθ(y

∗|x) < Pθ(ℓ|x) for
some incorrect ℓ ∈ L, the model’s prediction will
be considered incorrect even if the total probability
placed by the model on the correct concept Gy∗ is
higher than what it places on incorrect concepts.

To circumvent this issue, one may consider the
notion of an “SFC-free” prediction: compute the
most likely option among semantic equivalence
classes, rather than among specific surface forms:

ŷSFC-free = argmax
ℓ∈L

Pθ(Gℓ|x) (3)

where Pθ(Gℓ|x) =
∑

z∈Gℓ
Pθ(z|x). A limitation of

this formulation, however, is that it is only possible
to compute ŷSFC-free if the full membership of each
Gℓ is known, which is rarely the case. LM vocabu-
laries typically contain many tens of thousands of
tokens, many of which may be partial synonyms.6

This motivates the need for practical workarounds.

6Kuhn et al. (2023) use sampling and unsupervised cluster-
ing to approximate Pθ(Gℓ|x). This approximation, however,
is noisy by nature. They use it only to estimate semantic
uncertainty, not to improve task accuracy.



A human wants to submerge themselves in water. What should they use?
Choices: Puddle, Whirlpool bath
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Figure 2: Left: A visualization of the SFC hypothesis:
strings that are not answer choices can “steal” probabil-
ity from the correct answer choice (“whirlpool bath”),
leading to an incorrect prediction (“puddle”). Right:
LMs can be constrained to place more probability mass
on the answer choices (§5). So long as the probability
mass on other strings 1 is less than the difference in
probability mass between the top two answer choices
2 , SFC cannot affect a model’s prediction (§4.1).

3.2 PMIDC as a Workaround

Holtzman et al. (2021) propose the following alter-
native selection method, PMIDC:7

ŷPMI-DC = argmax
ℓ∈L

Pθ(ℓ|x)
Pθ(ℓ)

(4)

Intuitively, PMIDC measures the causal effect8 of
the input x on the probability assigned to each
answer choice ℓ, and selects ŷ as the answer choice
on which x has the largest effect. The method is an
alternative scoring function; it doesn’t change the
underlying probabilities of the LM, Pθ.

It is unclear when ŷPMI-DC = ŷSFC-free, i.e.,
when Eqs. (3) and (4) lead to the same, SFC-free
prediction. Holtzman et al. note that PMIDC is
mathematically equivalent to argmaxℓ∈L Pθ(x|ℓ).
This, in turn, should intuitively not be far from
argmaxℓ∈L Pθ(x|Gℓ) when ℓ is not directly men-
tioned in the question (which is the setting used
in PMIDC). In this case, the competition among
surface forms within Gℓ would be alleviated. How-
ever, there is still no a priori reason for either
argmaxℓ∈L Pθ(x|ℓ) or argmaxℓ∈L Pθ(x|Gℓ) to be
the same as ŷSFC-free. Moreover, this view reveals a

7W.l.o.g., we ignore their use of a “domain context” string
in the denominator. See Appendix A.4.

8In the sense that it measures the multiplicative factor by
which the probability of ℓ increases upon observing x.

different competition, namely, among various ques-
tions x whose answer (according to the model) is ℓ.
Specifically, a choice that the model thinks is more
“popular” (i.e., the answer to many questions) will
receive an artificially lower PMIDC score. Thus,
now different questions (rather than different sur-
face forms) compete for each answer choice.

4 How can we measure SFC?

Prior work has solely used the task accuracy metric
to evaluate approaches geared towards resolving
SFC. However, it is unclear whether task accu-
racy is an effective measure of the amount of SFC
present. In fact, as we will show later, task accuracy
is often not correlated with the amount of SFC.

While it is difficult to measure SFC (Eq. (2))
directly, we propose bounding it by considering the
model Mθ’s probability mass on answer choices
or PMA, defined as follows:

PMAθ(L, x) =
∑
ℓ∈L

Pθ(ℓ|x) (5)

We assume no surface form in L is a prefix of
another, in which case PMAθ(L, x) ≤ 1 (see Ap-
pendix A.5 for a proof and empirical verification).
Intuitively, if a model is properly trained or in-
structed, it would place all probability mass on L,
resulting in PMAθ(L, x) = 1. However, if SFC
exists, we would observe PMAθ(L, x) < 1.

Combining Eqs. (2) and (5) and observing that∑
ℓ∈L Pθ(Gℓ|x) ≤ 1, we obtain a bound on SFC:

0 ≤ SFCθ(L, x) ≤ 1− PMAθ(L, x) (6)

4.1 When Can SFC Impact Accuracy?

The formulation of SFC as a measurable quan-
tity enables quantifying the maximum amount
by which it may impact a prediction. Specifi-
cally, the probability mass that does not fall on
L cannot affect the model’s final prediction if it
is less than the difference in probability between
the highest-probability answer choice, ŷ, and the
second-highest-probability answer choice, y2 ∈ L.
The right-hand side of Fig. 2 illustrates this princi-
ple. For example, if the probability of ŷ, “whirlpool
bath”, is 0.55 and the probability of y2, “puddle”,
is 0.35, then PMA = 0.9 and the remaining prob-
ability mass is 0.1. Even if all of this remaining
probability mass were on synonyms of “puddle”,
the probability of “puddle” would only increase to
0.45 should SFC be fully resolved, which would
not flip the prediction since it is still less than 0.55.



Combining this observation with Eq. (6), SFC
simply cannot affect the output of Mθ on x when:

1− PMAθ(L, x) < Pθ(ŷ|x)− Pθ(y2|x) (7)

Thus, one can completely remove the impact of
SFC on a model’s accuracy (i.e., achieve ŷSeq-Sc =
ŷSFC-free) by raising PMA high enough relative to
the gap between the probabilities of ŷ and y2; SFC
doesn’t have to be fully resolved (i.e., one need not
push all the way to PMA = 1).

5 How can SFC be reduced?

The quantities used in PMIDC do not represent a
valid probability distribution as they may exceed
1,9 making it difficult to compute our proposed met-
ric PMAθ(L, x). Is there a more straightforward
way to equate ŷSeq-Sc and ŷSFC-free?

5.1 Using In-Context Examples

One path forward is to somehow directly constrain
the model Mθ such that Pθ(Gℓ|x) = Pθ(ℓ|x) for
all ℓ ∈ L, i.e., ensure that the answer choice ℓ is
the only synonym in Gℓ to which Mθ assigns a non-
zero probability mass. This, we posit, will occur
naturally when LMs are properly constrained or
instructed (see Fig. 1, left plot, right point).

One means to achieve this is to condition the
predictions of Mθ on not only x but also on
some in-context examples e0, . . . , ek: ŷICE =
argmaxℓ∈L Pθ(ℓ|x; e0, . . . , ek). Given that in-
context examples are already widely used in prac-
tice, this technique is simple and straightforward
to implement. Additionally, it allows one to easily
compute PMAθ(L, x) for measuring the extent of
SFC. In §6, we demonstrate empirically that with
effective conditioning (prompt format and number
of in-context examples), using in-context examples
can significantly reduce SFC, and sometimes even
completely resolve it by satisfying Eq. (7).

5.2 Prompting With Answer Choices

A key design decision when choosing which format
to use to specify x (and optionally in-context ex-
amples e0, . . . , ek) is whether to provide the model
only the question q or also the answer choices L.
Our PMA metric can be used to provide insight

9The quantity Pθ(ℓ|x)
Pθ(ℓ)

can, in principle, be viewed as the
unnormalized probability of ℓ. However, turning it into a
proper probability distribution requires computing the nor-
malization factor

∑
z

Pθ(z|x)
Pθ(z)

, which is prohibitively expen-
sive and also unreliable, since LMs are generally not well-
calibrated on the long tail of low-probability tokens.

into this, by helping disentangle the contribution
that each of q and L makes to the task accuracy as
well as to reducing surface form competition.

Intuitively, conditioning the prediction on L
makes the model aware of what’s an answer choice
and what’s not. It can thus push the model towards
the specific surface forms contained in L, without
necessarily affecting model accuracy. This, by def-
inition, directly increases the probability mass on
answer choices. One can empirically quantify the
effect of exposure to L by considering the gain
one observes in PMA and in accuracy when going
from Pθ(ℓ) to Pθ(ℓ|L).

On the other hand, one would expect that con-
ditioning the prediction on q pushes the model to-
wards the correct semantic concept, i.e., the se-
mantic equivalence class G∗ of the correct answer.
However, not knowing which specific surface form
ℓ∗ appears in both G∗ and L, the model has no
reason to prefer ℓ∗ over other equivalent surface
forms ℓ ∈ G∗ \{ℓ∗}. Thus, conditioning on q alone
can increase accuracy by increasing the probability
mass on G∗, but it does not resolve SFC within
G∗. We can, again, measure this by considering the
gain in PMA and accuracy when going from either
Pθ(ℓ) to Pθ(ℓ|q) or from Pθ(ℓ|L) to Pθ(ℓ|q,L).

6 Experiments

6.1 Models

We experiment with 6 models, described below.

Vanilla LMs These are models that are (to the
best of publicly-available knowledge) only trained
on the next-token prediction task. We experiment
on two GPT-3 base models (Brown et al., 2020)—
curie (~6.7B parameters) and davinci (~175B
parameters)— and one model whose weights are
publicly available, OPT 30B (Zhang et al., 2022).10

LMs with Further Fine-Tuning We study two
instruction-tuned (Mishra et al., 2022, i.a.) mod-
els: FLAN-T5 XXL (~11B parameters; Chung
et al., 2022), and the “original” InstructGPT
model, GPT-3 davinci-instruct-beta (~175B
parameters; Ouyang et al., 2022). We addi-
tionally test one “state of the art” model, GPT-
3 text-davinci-003 (unknown # parameters).
FLAN-T5 is based on the T5 architecture (Raf-
fel et al., 2020) and its weights are publicly

10Sizes and corresponding citations for GPT-3 models are
approximate; see OpenAI (2022).



available. It has demonstrated comparable per-
formance to GPT-3 davinci despite being ~16x
smaller. We include davinci-instruct-beta to
study the effect of supervised instruction tuning
on a model of identical scale to davinci-base
that is also associated with a publicly-available re-
search paper.11 text-davinci-003 is (along with
text-davinci-002) a state-of-the-art model ac-
cording to the HELM benchmark (Liang et al.,
2022). See Appendix A.1 for further details.

6.2 Tasks

We test on three challenging multiple-choice tasks
that are open-vocabulary (i.e., each instance has
a unique set of answer choices). Examples of the
tasks are given in Appendix A.3; see also A.2.

OpenbookQA (Mihaylov et al., 2018) is a 4-way
multiple-choice elementary-level science question-
answering task. Random accuracy is 25%. The test
set has 500 instances. CommonsenseQA v1.11
(Talmor et al., 2019) is a 5-way multiple-choice
commonsense reasoning task. Random accuracy
is 20%. The test set is not publicly available; we
use the first 500 instances of the validation set.
Both OpenbookQA and CommonsenseQA were
explicitly included in the training data of FLAN-T5.
MMLU (Hendrycks et al., 2021), or the “Massive
Multitask Language Understanding” benchmark,
spans 57 different topical areas. The questions are
4-way multiple-choice spanning subjects in social
sciences, STEM, and humanities that were manu-
ally scraped from practice materials available on-
line for exams such as the GRE and the U.S. Medi-
cal Licensing Exam. Many state-of-the-art models
perform poorly (random accuracy is 25%). We
evaluate on the first 20 test questions from each
category (1140 instances total).

6.3 Prompts

In-Context Examples We experiment with k =
0, 1, 2, 4 and 8 in-context demonstrations, which
are the same for each instance, and selected as the
first k examples from a fixed set of 8. For curie,
davinci, and davinci-instruct-beta models,
we report the mean and standard error over 3 ran-
dom seeds used to select the set of 8 demonstra-
tions, since the choice of in-context demonstra-
tions can significantly affect performance (Lu et al.,
2022, i.a.). We select in-context examples from

11It has been hypothesized that davinci-instruct-beta
has been tuned directly from davinci checkpoint (Fu, 2022).

each dataset’s associated training set (combined
dev + validation sets for MMLU).

Prompt Format We experiment with three
prompt formats, corresponding to the format of
x in §5.2. The first, "q", only contains the question
and is thus most similar to next-word prediction.
This is identical to the prompt used by Brown et al.
(2020). For example,

kinetics change stored energy into

The second format, “q + Lstring”, includes an-
swer choices as a string list and is similar to formats
included in PromptSource (Bach et al., 2022) used
to train FLAN-T5 and other models:

question: kinetics change stored energy into
answer choices: snacks, naps, kites, or warmth
The correct answer is:

For both of the above prompts, models score
or output the full string answer, e.g., warmth. The
third format, “q + Lenum”, includes enumerated
newline answer choices, similar to that used for
zero-shot evaluations in FLAN (Wei et al., 2022)
and FLAN-T5:

Question: kinetics change stored energy into
Choices:
A: snacks\n B: naps\n C: kites\n D: warmth

Answer:

Here, models score only the (single-token) sym-
bols, e.g., D. The full prompts are given in Ap-
pendix A.3, and their PMIDC denominators in A.4.

7 Results and Discussion

7.1 On Reducing Surface Form Competition

Fig. 1 (left), demonstrates the effect of choice of
prompt format on PMA (and hence SFC, Eq. (6))
in the one-shot setting. Across datasets, showing
answer choices in the “string” format leads to a
substantial increase in PMA, which reaches near-
100% for all models using the “q + Lenum” for-
mat. Zooming in on the role of in-context exam-
ples in Fig. 3 (dashed lines), we observe PMA
increases significantly for all models after seeing
only one in-context example that includes the an-
swer choices (bottom plot), and stronger models
such as text-davinci-003 and FLAN-T5 exhibit
this behavior zero-shot. Trends also hold for Com-
monsenseQA and OpenbookQA (Figs. 9 and 10,
Appendix). The number of instances for which
the bound in Eq. (7) is satisfied and SFC is fully
alleviated are in Table 8 (Appendix A.6).



7.2 Relationship between Surface Form
Competition and Accuracy

Fig. 1 (right), demonstrates the effect of the choice
of prompt format on accuracy in the one-shot set-
ting. While gains in PMA are consistent across
models, this is not the case for accuracy. Certain
models (curie, OPT 30B) actually achieve their
best task performance when their PMA is the low-
est, perhaps due to the q prompt being the closest
to the next-token prediction objective. For others
(davinci, davinci-instruct-beta), accuracy is
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Figure 3: MMLU test set accuracy (Eq. (1); solid lines)
and average PMA (Eq. (5); dashed lines) as a function
of number (x-axis) and format (by graph) of in-context
examples, for six pretrained LMs.

stable across prompts, even while PMA substan-
tially increases. Seeing the answer choices in the
prompt is crucial to achieving good accuracy with
text-davinci-003 and FLAN-T5, likely due to
their instruction tuning. Thus, showing answer
choices does not guarantee improved accuracy,
especially for vanilla LMs.

We can also observe this lack of positive cor-
relation from the angle of in-context examples
(Figs. 3, 9 and 10). While PMA increases with
more in-context examples, accuracy is relatively
stable across all models and prompt formats.
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Figure 4: The relationship between task accuracy and
average PMA (Eq. (5)) for the MMLU test subset (for
0, 1, 2, 4, and 8 in-context examples). See Fig. 7 in
Appendix A.6 for CommonsenseQA and OpenbookQA,
and Table 1 for Spearman’s correlations.

Fig. 4 shows a shared scatterplot where each
datapoint is a model result. The graph further
illustrates the lack of correlation between in-
creases in PMA (x-axis) and increases in accu-
racy (y-axis), especially in the bottom portion
where PMA increases without any shift in y-
axis position. In Table 1, we observe further
evidence that PMA and accuracy are very nega-
tively correlated in the case of curie and OPT
30B, and very positively correlated in the case of
FLAN-T5 and text-davinci-003. davinci and
davinci-instruct-beta exhibit highly variable
correlation, indicating that the choice of LM modu-
lates the PMA-accuracy relationship.

7.2.1 Role of Different Parts of the Input

In Fig. 5, we follow the methodology proposed in
§5.2 and break down the zero-shot contributions
to probability mass and accuracy of question q vs.
answer choices L when included in the prompt.



Model
Dataset curie OPT 30B davinci davinci-instruct-beta FLAN-T5 text-davinci-003

MMLU −0.84 −0.84 0.45 0.47 1.00 0.98
CommonsenseQA −0.88 −0.91 −0.62 −0.63 1.00 0.86
OpenbookQA −0.50 −0.42 0.78 0.84 1.00 1.00

Table 1: Per-model Spearman’s correlations between avg. PMA and accuracy (as plotted in Figs. 4 and 7). Bold:
results are statistically significant at p < 0.05 for a two-sided hypothesis test.
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Figure 5: Zero-shot results on the MMLU test set: accu-
racy (Eq. (1); blue) and PMA (Eq. (5); orange) averaged
over dataset instances. Observing answer choices in the
prompt contributes far more to PMA than observing
the question, confirming our hypothesis in §5.2. Even
without observing the question, all models place a sub-
stantial amount of probability mass on answer choices
after observing them in the prompt (see Fig. 11 for other
models, and Appendix A.3 for prompt details).

We find that conditioning Pθ(ℓ) on L (i.e., con-
sidering Pθ(ℓ|L)) substantially increases PMA
(67.23% vs. 0% PMA on average for MMLU; the
accuracy of both is similar, at 24.17% and 30.1%,
resp. (5.93% absolute gain)). On the other hand,
conditioning either of these probabilities further on
q (i.e., considering Pθ(ℓ|q) or Pθ(ℓ|q,L)) provides
a very small gain on PMA (2.97% absolute) as
opposed to 11.88% accuracy gain on average for
MMLU. This indicates that conditioning on q is
not an effective way to increase PMA (or decrease
SFC). Overall, observing q plays a larger role on
accuracy while observing L plays a larger role on
in increasing PMA. In other words, observing q

appears to raise the relative probability of y∗ by re-
distributing mass among the members of L, while
observing L helps to raise the absolute probabil-
ity given to L (i.e., PMA). Results hold for other
models and datasets (Figs. 11 to 13).

7.3 When does PMIDC improve accuracy?
Our experiments provide further insight into when
normalization methods like PMIDC may succeed.
Fig. 6 (also Fig. 8) illustrates how much PMIDC

affects accuracy for each dataset.
Whether PMIDC improves accuracy for a model

seems tied to the largest PMA achieved by some
prompt for that model as well as the model’s
overall performance: lower PMA and lower
accuracy imply higher gains from PMIDC. Indeed,
PMIDC always improves accuracy when answer
choices are not observed in the prompt (Figs. 6b
and 8), and the extent of gain is fairly consistent
for each dataset across number of in-context
examples and models. However, as established
earlier, prompting without answer choices often
results in the worst accuracy for strong models.
Fig. 6a plots the difference between the best
accuracies using each method; gains are relatively
muted, except for OpenbookQA. Additionally,
PMIDC generally (though not always) leads to
significant accuracy drops for the strongest models
(text-davinci-003 and FLAN-T5).

Tabular results for all experiments are in Ta-
bles 9 to 11 (Appendix). For curie, davinci, and
davinci-instruct-beta, we include standard er-
ror over 3 random seeds for example selection. The
effects of random seed are generally negligible.

8 Conclusion

We take a novel approach to studying the effects of
prompt format, in-context examples, and model
type on probability assigned to answer choices
and its relationship with end task performance, by
proposing a new formalization of surface form com-
petition and a quantifiable metric (PMA). This is



an important step towards understanding and im-
proving the use of LMs for discriminative tasks.
Our findings shed light into the role of probability
distributions in model performance. They also chal-
lenge intuitive assumptions such as showing answer
choices for MC tasks is always beneficial, which
is a common practice (Hendrycks et al., 2021; Rae
et al., 2021; Hoffmann et al., 2022, i.a.).

Practical Insights: We find that the best way to
use vanilla LMs in multiple-choice settings is to
provide a string prompt without answer choices and
apply probability normalization. For instruction-
tuned models, on the other hand, answer choices
should be shown and in an enumerated prompt
format, and probability normalization should not
be used. More generally, our results reveal that
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Figure 6: Accuracy changes achieved by using PMIDC

(Eq. (4)) over standard sequence scoring (Eq. (1)). Top:
Differences in the best accuracy achieved by PMIDC

(Eq. (4)) and the best achieved by sequence scoring
(Eq. (1)) across prompt settings for each model (y-axis)
and dataset (x-axis). Bottom: full detail results for
MMLU; other datasets are in Fig. 8.

efforts to increase probability assigned to answer
choices via prompting methods can have surpris-
ingly negative effects, and that scoring methods can
drastically affect the conclusions we reach about
an underlying LM’s fundamental capabilities. We
advocate future work to look into length normaliza-
tion as another understudied scoring mechanism.

Limitations

As with all papers using GPT-3 models, there is
some stochasticity on the backend of the OpenAI
API that researchers cannot control (studied in
more depth by Ruis et al. (2022)). This means
that results may vary from run to run, hampering
reproducibility. In our setting, we find the effects
to be very small in practice.

Additionally, in this work we only investigate
open-vocabulary multiple-choice QA tasks. Future
work might consider a broader suite of tasks or
tasks where the answer choices are shared across
instances, as in-context examples may have a larger
effect on PMA or accuracy in that setting. Further-
more, we do not consider any directly comparable
models for reaching conclusions about instruction
tuning (base model → instruction-tuned) due to
a lack of publicly available ones at the time this
research was conducted; such an experiment would
allow more concrete claims about the effect of in-
struction tuning and relationship with PMIDC to
be made.

Finally, there are other probability normalization
variants that differ from standard PMIDC in subtle
ways (cited in §2). We only compare against the
most straightforward (and common) implementa-
tion here.

Ethics and Broader Impacts

This paper investigates the interplay between prob-
ability mass on vocabulary items and accuracy in
zero-shot- and few-shot-prompted autoregressive
language models. Our efforts show that investiga-
tions into output scoring functions can change the
conclusions drawn about the capabilities of mod-
els, which we believe is an important part of better
understanding how to reliably and adequately use
these systems. The existing NLP benchmarks used
both have limitations in their dissimilarity to real-
world use cases of LMs (Raji et al., 2021), and in
the means in which they were collected, for exam-
ple by scraping (potentially copyrighted) material
off of the internet in the case of MMLU. The use



of copyrighted material in the training and testing
of AI systems is currently unsettled (Levendowski,
2021; Callison-Burch et al., 2023).

Acknowledgements

We thank members of the Aristo team at AI2, Ari
Holtzman, Peter West, Hanna Hajishirzi, and mem-
bers of the H2 lab at the University of Washington
for insightful feedback.

References
Stephen Bach, Victor Sanh, Zheng Xin Yong, Albert

Webson, Colin Raffel, Nihal V. Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault
Fevry, Zaid Alyafeai, Manan Dey, Andrea Santilli,
Zhiqing Sun, Srulik Ben-david, Canwen Xu, Gun-
jan Chhablani, Han Wang, Jason Fries, Maged Al-
shaibani, Shanya Sharma, Urmish Thakker, Khalid
Almubarak, Xiangru Tang, Dragomir Radev, Mike
Tian-jian Jiang, and Alexander Rush. 2022. Prompt-
Source: An integrated development environment and
repository for natural language prompts. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 93–104, Dublin, Ireland. Association for
Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901, Online. Curran Asso-
ciates, Inc.

Chris Callison-Burch, Waleed Ammar, and Pradeep
Dasigi. 2023. Generative ai and copyright. NLP
Highlights Podcast.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
ArXiv:2210.11416.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in Neural Informa-

tion Processing Systems, volume 28. Curran Asso-
ciates, Inc.

Yao Fu. 2022. How does gpt obtain its ability? trac-
ing emergent abilities of language models to their
sources. Blogpost.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, et al. 2022. Training compute-
optimal large language models. ArXiv:2203.15556.

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi,
and Luke Zettlemoyer. 2021. Surface form com-
petition: Why the highest probability answer isn’t
always right. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7038–7051, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. 2020. UNIFIEDQA: Crossing for-
mat boundaries with a single QA system. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1896–1907, Online. Association
for Computational Linguistics.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023.
Semantic uncertainty: Linguistic invariances for un-
certainty estimation in natural language generation.
In The Eleventh International Conference on Learn-
ing Representations.

Amanda Levendowski. 2021. How copyright shapes
your datasets and what to do about it. Roundtable
at the Conference on Neural Information Processing
Systems (NeurIPS).

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://podcasts.apple.com/us/podcast/140-generative-ai-and-copyright-with-chris-callison-burch/id1235937471?i=1000615790164
https://arxiv.org/abs/2210.11416
https://proceedings.neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://neurips.cc/virtual/2021/panel/42002
https://neurips.cc/virtual/2021/panel/42002
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703


Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. ArXiv:2211.09110.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Nikolay Malkin, Zhen Wang, and Nebojsa Jojic. 2022.
Coherence boosting: When your pretrained language
model is not paying enough attention. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8214–8236, Dublin, Ireland. Association for
Computational Linguistics.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391, Brussels, Belgium. Association
for Computational Linguistics.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022. Noisy channel language
model prompting for few-shot text classification. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5316–5330, Dublin, Ireland. As-
sociation for Computational Linguistics.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470–3487, Dublin, Ireland.
Association for Computational Linguistics.

OpenAI. 2022. Model index for researchers. Blogpost.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. ArXiv:2203.02155.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
ArXiv:2112.11446.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(140):1–67.

Deborah Raji, Emily Denton, Emily M. Bender, Alex
Hanna, and Amandalynne Paullada. 2021. Ai and
the everything in the whole wide world benchmark.
In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks, vol-
ume 1. Curran.

Laura Ruis, Akbir Khan, Stella Biderman, Sara Hooker,
Tim Rocktäschel, and Edward Grefenstette. 2022.
Large language models are not zero-shot communi-
cators. ArXiv:2210.14986.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Trieu H Trinh and Quoc V Le. 2018. A simple method
for commonsense reasoning. ArXiv:1806.02847.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.

https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://arxiv.org/abs/2211.09110
https://arxiv.org/abs/2211.09110
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.565
https://doi.org/10.18653/v1/2022.acl-long.565
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://beta.openai.com/docs/model-index-for-researchers
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/084b6fbb10729ed4da8c3d3f5a3ae7c9-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/084b6fbb10729ed4da8c3d3f5a3ae7c9-Paper-round2.pdf
https://arxiv.org/abs/2210.14986
https://arxiv.org/abs/2210.14986
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://arxiv.org/abs/1806.02847
https://arxiv.org/abs/1806.02847
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
ArXiv:2205.01068.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 12697–12706.
PMLR.

A Appendix

A.1 Implementation Details
We use Huggingface Datasets (Lhoest et al., 2021)
and Huggingface Transformers (Wolf et al., 2020)
for implementation. All GPT-3 models were
queried via the OpenAI API (https://beta.openai.
com) between January and May 2023.

A.2 Nature of Datasets for Each Model
For models trained only on the autoregressive next-
token prediction objective (curie, davinci, and
OPT 30B (Zhang et al., 2022)), in theory the Open-
bookQA and CommonsenseQA datasets have not
been seen in during training. However, guarantees
would require access and indexing of the training
corpora, which are not publicly available for the
GPT-3 models. Additionally, due to the fact that
training data was scraped for these models up to
and including 2019 (Brown et al., 2020), it is pos-
sible there is some leakage in the training corpus.

For the instruction-tuned models, the authors of
FLAN-T5 (Chung et al., 2022) explicitly report the
datasets which are used and not used during train-
ing, and we report these details in §6.2. As for
InstructGPT instruct-davinci-beta (Ouyang
et al., 2022), the following details are given about
its supervised instruction tuning training dataset
(emphasis ours):

“...The SFT dataset contains about 13k
training prompts (from the API and
labeler-written)...To give a sense of the
composition of our dataset, in Table 1
we show the distribution of use-case cat-
egories for our API prompts (specifi-
cally the RM [reward modeling] dataset)

as labeled by our contractors. Most of
the use-cases have (sp) are generative,
rather than classification or QA. These
prompts are very diverse and include
generation, question answering, dia-
log, summarization, extractions, and
other natural language tasks (see Table
1).”

In Table 1, generation makes up 45.6% of the
dataset, followed by open QA at 12.4%. Closed
QA is a relatively small percentage of the training
set, at 2.6%, and classification 3.5%, providing
some possibility that the tasks we study are out-
of-domain/zero-shot (though these exact numbers
are reported on the reward modeling dataset, not
the one used for instruction tuning, and these are
not guarantees due to the proprietary nature of the
dataset). No details are given about the datasets
used to train text-davinci-003 (OpenAI, 2022).

A.3 Prompt Details
Exemplar prompts containing 4 in-context demon-
strations (for 1 of the 3 random seeds used) are
given in Tables 2 to 4 for OpenbookQA and Ta-
bles 5 to 7 for CommonsenseQA. The last instance
shown is the test instance, which the model com-
pletes with an answer prediction. For each random
seed, 8 demonstrations are drawn from the training
set of each dataset. When fewer demonstrations
(0-4) are used, the first k are taken and the prompt
otherwise stays the same.

Role of Different Parts of the Input In Figs. 5
and 11 to 13, when prompts do not include q, we
use the same prompts as in §6.3, minus the ques-
tion.

For example, when x = Lstring:
answer choices: snacks, naps, kites, or warmth
The correct answer is:

When x = Lenum:
Choices:
A: snacks
B: naps
C: kites
D: warmth

Answer:

When x = None, the prompt is simply “? ”
to avoid an empty context, which the OpenAI API
does not allow.

A.4 Computing PMIDC

In Holtzman et al. (2021), the denominator of
Eq. (4) is actually computed as Pθ(ℓ|d), where d

https://arxiv.org/abs/2205.01068
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html
https://beta.openai.com
https://beta.openai.com


Bears will always have longer life cycles than a fox
If a river is rushing southwest on a sunny day, then it is safe to assume that the land gently inclines in that direction
After the moon phase where you can see nothing of the moon, what comes next? the first quarter
kinetics change stored energy into motion and warmth
A person wants to start saving money so that they can afford a nice vacation at the end of the year. After looking
over their budget and expenses, they decide the best way to save money is to

Table 2: One of three “q” prompt templates used for OpenbookQA, containing 4 in-context demonstrations and one
test instance.

Let’s answer science questions.

question: Bears will always have longer life cycles than a
answer choices: tortoises, whales, elephants, or fox
The correct answer is: fox
###
question: If a river is rushing southwest on a sunny day, then it is safe to assume that
answer choices: southwest is a good place to be, the land gently inclines in that direction, the world is mostly land,
or the land is supple
The correct answer is: the land gently inclines in that direction
###
question: After the moon phase where you can see nothing of the moon, what comes next?
answer choices: the full moon, the last quarter, the first quarter, or the half moon
The correct answer is: the first quarter
###
question: kinetics change stored energy into motion and
answer choices: snacks, naps, kites, or warmth
The correct answer is: warmth
###
question: A person wants to start saving money so that they can afford a nice vacation at the end of the year. After
looking over their budget and expenses, they decide the best way to save money is to
answer choices: make more phone calls, quit eating lunch out, buy less with monopoly money, or have lunch with
friends
The correct answer is:

Table 3: One of three “q+Lstring” prompt templates used for OpenbookQA, containing 4 in-context demonstrations
and one test instance.

represents some “domain context” string. In their
implementation, d is the phrase “ the answer
is:”. A context is necessary practically when
querying the OpenAI API as well, as they do not
allow queries with empty contexts, presumably
to avoid revealing model weights. In our setting,
we follow the prompt format to determine d. For
x = q, d = “? ” (to avoid an empty context).
Otherwise, d is the last line of the prompt— for
x = q + Lstring, d = “The correct answer is:
”, and for x = q + Lenum, d = “Answer: ”.

Following Holtzman et al. (2021), Pθ(ℓ|d) is
always computed zero-shot, even when the numer-
ator has in-context examples. We follow this de-
sign, as it is unintuitive to include in-context exam-
ples that do not contain a question, such as “The
correct answer is: birds
The correct answer is: dogs
The correct answer is: ”, and unclear how
this would better calibrate a model’s predictions.

We experimented with a “label-conditional” do-

main context where we included answer choices in
d when the prompt contained them, but found this
version of PMIDC, ŷ = p(ℓ|q+L)

p(ℓ|L) , to underperform
the version without answer choices.

A.5 Proofs
We say that a string y forms a prefix of a string
y′ if y = y1 . . . yk and y′ = y1 . . . yk . . . ym for
k < m. We call a set S of strings prefix-free if no
string in S is a prefix of another string in S. We
show below (using two alternative arguments) that
the total probability mass assigned by a language
model Mθ to a prefix-free set is at most 1. Note
that the prefix-free condition is necessary for the
upper bound of 1 to hold in general.

Proposition 1. For any prefix-free set S of strings
and any x,

∑
y∈S Pθ(y|x) ≤ 1.

It follows that if the set L of answer choices is
prefix-free, then PMAθ(L, x) ≤ 1.

The idea behind the first proof of Proposition 1
is that if multiple strings in S share a common max-



The following are elementary-level multiple-choice questions about science. For the question below, select the most
suitable answer from the 4 options given.

Question: Bears will always have longer life cycles than a
Choices:

A: tortoises
B: whales
C: elephants
D: fox

Answer: D

Question: If a river is rushing southwest on a sunny day, then it is safe to assume that
Choices:

A: southwest is a good place to be
B: the land gently inclines in that direction
C: the world is mostly land
D: the land is supple

Answer: B

Question: After the moon phase where you can see nothing of the moon, what comes next?
Choices:

A: the full moon
B: the last quarter
C: the first quarter
D: the half moon

Answer: C

Question: kinetics change stored energy into motion and
Choices:

A: snacks
B: naps
C: kites
D: warmth

Answer: D

Question: A person wants to start saving money so that they can afford a nice vacation at the end of the year. After
looking over their budget and expenses, they decide the best way to save money is to
Choices:

A: make more phone calls
B: quit eating lunch out
C: buy less with monopoly money
D: have lunch with friends

Answer:

Table 4: One of three “q+Lenum” prompt templates used for OpenbookQA, containing 4 in-context demonstrations
and one test instance.

imal prefix, the token that immediately follows that
common prefix must be distinct across the strings
(because S is prefix-free). It follows from this that
the total probability of those strings sharing the
prefix is no more than the probability of the com-
mon prefix itself. We can use this observation to
repeated reduce S into strictly smaller sets that re-
tain the invariant of being prefix-free and upper
bound the total probability of the original S. The
process end when no two strings share a common
prefix, at which point, the upper bound of 1 follows
immediately. Formally,

Proof via maximal common prefixes. Let
y1y2 . . . yk denote the k tokens comprising a
string y ∈ S, where k = |y| is the length of y.

Recall that Pθ(y|x) =
∏k

i=1 Pθ(yi|x, y1 . . . yi−1).
We thus have Pθ(y|x) ≤ Pθ(y1 . . . yl|x) for any
l ≤ k. In particular, Pθ(y|x) ≤ Pθ(y1|x).

If it’s the case that the first tokens of all strings
y ∈ S are distinct, then

∑
y∈S Pθ(y1|x) ≤ 1 since

Pθ is a probability distribution over tokens. It fol-
lows that

∑
y∈S Pθ(y|x) ≤ 1, finishing the proof.

If the first tokens are not all distinct, then there
must exist at least two strings in S that share a com-
mon prefix. We can therefore identify a maximal
prefix p and a subset S′ ⊆ S with |S′| ≥ 2 such
that all strings in S′ begin with the prefix p, while
none of the ones in S \S′ do. Since p is a maximal
prefix, the tokens y|p|+1 of strings y ∈ S′ that im-
mediately follow p must all be distinct. Following



Fabric is cut to order at what type of seller? tailor shop
Where are you if your reading magazines while waiting for a vehicle on rails? train station
What would need oil to be used? combustion engines
What is person probably feeling that plans on stopping being married to their spouse? detachment
A revolving door is convenient for two direction travel, but it also serves as a security measure at a what?

Table 5: One of three “q” prompt templates used for CommonsenseQA, containing 4 in-context demonstrations and
one test instance.

Let’s answer commonsense reasoning questions.

question: Fabric is cut to order at what type of seller?
answer choices: hardware store, curtains, tailor shop, clothing store, or sewing room
The correct answer is: tailor shop
###
question: Where are you if your reading magazines while waiting for a vehicle on rails?
answer choices: bookstore, vegetables, market, doctor, or train station
The correct answer is: train station
###
question: What would need oil to be used?
answer choices: service station, ground, human body, repair shop, or combustion engines
The correct answer is: combustion engines
###
question: What is person probably feeling that plans on stopping being married to their spouse?
answer choices: wrong, detachment, bankruptcy, sad, or fights
The correct answer is: detachment
###
question: A revolving door is convenient for two direction travel, but it also serves as a security measure at a what?
answer choices: new york, bank, library, department store, or mall
The correct answer is:

Table 6: One of three “q + Lstring” prompt templates used for CommonsenseQA, containing 4 in-context demon-
strations and one test instance.

the argument used earlier, we have:∑
y∈S′

Pθ(y|x) ≤
∑
y∈S′

Pθ(y1 . . . y|p|+1|x)

=
∑
y∈S′

Pθ(py|p|+1|x)

=
∑
y∈S′

Pθ(p|x)Pθ(y|p|+1|xp)

= Pθ(p|x)
∑
y∈S′

Pθ(y|p|+1|xp)

≤ Pθ(p|x)
where the last inequality holds because Pθ is a
probability distribution and the tokens y|p|+1 are
all distinct as observed above. Now consider the set
T = (S \ S′) ∪ {p}, i.e., the original set S except
with all strings beginning with the prefix p replaced

with a single string p. Observe that:∑
y∈S

Pθ(y|x) =
∑

y∈S\S′

Pθ(y|x) +
∑
y∈S′

Pθ(y|x)

≤
( ∑

y∈S\S′

Pθ(y|x)
)
+ Pθ(p|x)

=
∑
y∈T

Pθ(y|x).

That is, the total probability mass over strings in S
is upper bounded by that on strings in T . Further, T
contains p and has size |S|− |S′|+1, and we know
|S′| ≥ 2. Thus, 1 ≤ |T | < |S|. If |T | = 1, we im-
mediately have

∑
y∈T Pθ(y|x) ≤ 1 and the proof

is complete. Otherwise, we observe that T is also
prefix-free just like S, so we can simplify S to be T
and repeat the process of checking the distinctness
of first tokens, identifying the maximal prefix, and
further upper bounding the probability mass on S.
Since each iteration of this process reduces the size
of S by at least 1, the process must terminate with
|S| = 1, at which point we conclude that the total
probability mass on the reduced S—and hence on
the original S—is at most 1, as claimed.



An alternative argument for proving Proposi-
tion 1 is to expand the set S into a larger set T
such that (a) the total probability mass on S is the
same as that on T and (b) all strings in T are of the
same length, say k. We can then observe that the
total probability mass on T is upper bounded by
the probability mass on all strings of length k, and
argue that the latter is exactly 1.

Proof using length normalization. Let k denote
the length of the longest string in S and V denote
the token vocabulary. For any string y of length at
most k, let Zk

y denote the set of all possible exten-
sions of y to strings of length exactly k. We first
argue that Pθ(y|x) =

∑
y′∈Zk

y
Pθ(y

′|x):∑
y′∈Zk

y

Pθ(y
′|x)

=
∑

y′|y|+1
∈V

. . .
∑
y′k∈V

Pθ(yy
′
|y|+1 . . . y

′
k|x)

= Pθ(y|x)
∑

y′|y|+1
∈V

. . .
∑
y′k∈V

Pθ(y
′
|y|+1|xy)× . . .

× Pθ(y
′
k|xy . . . y′k−1)

= Pθ(y|x)

 ∑
y′|y|+1

∈V

Pθ(y
′
|y|+1|xy)

× . . .

×

∑
y′k∈V

. . . Pθ(y
′
k|xy . . . y′k−1)


= Pθ(y|x)× 1× . . .× 1

= Pθ(y|x)
where the equality with 1 in the second-last line
follows because Pθ is a probability distribution
over tokens in V .

Now define an expanded set T as the set of all
expansions of strings in S to strings of lengths ex-
actly k. Since S is prefix-free, all of these expanded
strings are distinct. Thus, it follows from the above
argument that the total probability mass on S is the
same as that on T . Lastly, the probability mass on
T is clearly upper bounded by that on all length-k
strings, which itself is exactly 1 (using the same
argument as in the second-last line of the derivation
above). Therefore, the total probability mass on S
is upper bounded by 1.

Empirical Verification of Prefix-Free Assump-
tion Empirically,12 only 24/1140 MMLU in-
stances contain an answer choice that is a prefix
of another answer choice in L, 5/500 in Common-
senseQA, and 0/500 in OpenbookQA. In the case
of MMLU, 24 instances is an upper bound since
many of the prefix answers are numeric; whether
the answer choices are true prefixes would depend
on the model’s tokenizer (e.g., whether “2” and
“200” have the same first token after tokenization
will vary).

A.6 Additional Results
• Table 8 contains the tables of bound satisfac-

tion (Eq. (7)) for all datasets.

• Table 9 contains tabular results for MMLU;
Table 10 for CommonsenseQA and Table 11
for OpenbookQA.

• Fig. 7 contains scatterplots for Common-
senseQA and OpenbookQA.

• Fig. 8 contains PMIDC vs. sequence-scoring
accuracy heatmaps for OpenbookQA and
CommonsenseQA.

• Figs. 9 and 10 contain line graphs for Com-
monsenseQA and OpenbookQA, respectively.

• Figs. 11 to 13 show barcharts for accuracy
and probability mass on given answer choices
conditioned on various combinations of in-
dependent variables in the prompt, for all 3
datasets.

12After removing instances where two answer choices are
duplicates, which is an artifact of dataset collection that can
easily be resolved (1 instance in MMLU, 10 in Common-
senseQA, and 0 in OpenbookQA).
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Figure 7: A scatterplot showing the relationship between average PMA and task accuracy for 0, 1, 2, 4 and 8
in-context examples. Note these datasets are explicitly in-domain for FLAN-T5. See Figure 4 for more info.
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Figure 8: Accuracy changes achieved by using PMIDC (Eq. (4)) over standard sequence scoring (Eq. (1)). Full
accuracy scores are in Tables 9 to 11.



The following are multiple-choice questions about everyday situations. For the question below, select the most
suitable answer from the 5 options given.

Question: Fabric is cut to order at what type of seller?
Choices:

A: curtains
B: tailor shop
C: clothing store
D: sewing room
E: hardware store

Answer: B

Question: Where are you if your reading magazines while waiting for a vehicle on rails?
Choices:

A: vegetables
B: market
C: doctor
D: train station
E: bookstore

Answer: D

Question: What would need oil to be used?
Choices:

A: ground
B: human body
C: repair shop
D: combustion engines
E: service station

Answer: D

Question: What is person probably feeling that plans on stopping being married to their spouse?
Choices:

A: detachment
B: bankruptcy
C: sad
D: fights
E: wrong

Answer: A

Question: A revolving door is convenient for two direction travel, but it also serves as a security measure at a what?
Choices:

A: bank
B: library
C: department store
D: mall
E: new york

Answer:

Table 7: One of three “q + Lenum” prompt templates used for CommonsenseQA, containing 4 in-context demon-
strations and one test instance.



Prompt # In-Context Demonstrations
Model Name Format Dataset 0 1 2 4 8

OPT 30B

q
MMLU 0.18 0.88 0.61 1.05 2.19
CommonsenseQA 0.0 0.0 1.2 2.6 3.6
OpenbookQA 0.6 0.4 0.6 0.6 0.4

q + Lstring

MMLU 6.23 37.54 40.53 45.26 49.21
CommonsenseQA 2.4 29.4 38.2 47.2 52.2
OpenbookQA 4.8 25.8 42.4 45.2 48.6

q + Lenum

MMLU 3.68 78.25 78.25 82.81 88.6
CommonsenseQA 0.0 54.6 63.4 74.6 78.2
OpenbookQA 0.2 65.2 78.2 78.0 85.4

GPT-3 curie (~6.7B)

q
MMLU 0.35 1.370.56 1.20.94 0.940.56 0.910.13
CommonsenseQA 0.0 0.070.12 0.60.53 2.130.5 3.80.4
OpenbookQA 0.4 0.40.0 0.40.0 0.40.0 0.470.12

q + Lstring

MMLU 3.86 25.111.71 30.120.9 38.011.58 44.530.68
CommonsenseQA 1.8 28.271.21 32.00.6 37.872.81 40.84.13
OpenbookQA 1.2 21.610.89 35.0712.7 36.611.48 32.86.92

q + Lenum

MMLU 0.0 78.832.26 86.050.79 91.080.82 93.620.99
CommonsenseQA 0.0 71.8711.7 82.8711.96 98.270.12 98.00.53
OpenbookQA 0.0 76.8710.85 84.5311.27 91.274.96 91.671.17

GPT-3 davinci (~175B)

q
MMLU 0.53 2.750.28 2.490.98 3.330.46 4.620.4
CommonsenseQA 0.0 1.81.71 4.530.31 6.130.58 7.331.3
OpenbookQA 0.2 0.730.31 0.40.2 0.40.35 0.60.2

q + Lstring

MMLU 2.89 51.871.4 59.071.7 64.061.72 66.811.25
CommonsenseQA 6.8 61.86.12 62.3314.87 67.5312.08 74.46.97
OpenbookQA 4.0 48.4713.27 67.7312.91 61.7311.71 64.076.74

q + Lenum

MMLU 1.14 88.191.63 94.210.09 96.70.73 98.360.42
CommonsenseQA 0.0 87.673.14 96.20.2 97.80.2 98.40.4
OpenbookQA 0.0 92.81.59 96.730.7 97.80.53 99.00.53

davinci-instruct-beta

q
MMLU 0.88 1.340.53 2.10.85 2.690.05 4.240.37
CommonsenseQA 0.0 3.071.36 5.40.6 6.730.42 7.00.87
OpenbookQA 0.4 0.870.31 0.670.23 0.60.2 0.730.12

q + Lstring

MMLU 32.72 65.561.77 68.890.98 70.850.57 72.750.05
CommonsenseQA 46.8 69.077.16 76.04.57 79.63.34 80.84.2
OpenbookQA 36.4 60.9316.15 70.1310.72 68.879.2 72.05.96

q + Lenum

MMLU 20.79 93.710.36 95.940.34 96.350.68 97.920.86
CommonsenseQA 15.6 94.80.35 97.20.35 98.00.4 98.130.42
OpenbookQA 33.4 95.82.03 98.20.35 99.00.53 99.00.4

FLAN-T5-XXL (11B)

q
MMLU 0.79 1.05 1.75 1.58 2.28
CommonsenseQA 3.4 5.0 6.0 6.0 7.8
OpenbookQA 0.6 0.8 0.6 0.6 0.6

q + Lstring

MMLU 85.96 88.86 89.74 90.18 90.79
CommonsenseQA 98.0 99.4 99.4 99.0 98.6
OpenbookQA 95.6 95.2 96.4 97.4 96.8

q + Lenum

MMLU 98.86 98.33 98.68 98.68 98.33
CommonsenseQA 99.2 99.2 99.4 99.4 99.0
OpenbookQA 99.8 100.0 100.0 99.6 100.0

text-davinci-003

q
MMLU 0.88 3.77 7.11 9.47 10.61
CommonsenseQA 0.0 11.6 19.6 18.8 19.6
OpenbookQA 1.6 1.6 1.8 2.6 3.0

q + Lstring

MMLU 91.75 94.56 95.96 96.67 96.93
CommonsenseQA 80.4 92.8 91.8 93.2 93.4
OpenbookQA 82.0 94.4 93.6 94.0 95.2

q + Lenum

MMLU 99.91 100.0 99.91 100.0 99.82
CommonsenseQA 99.8 100.0 100.0 99.8 100.0
OpenbookQA 99.8 100.0 99.8 99.8 100.0

Table 8: % of instances for which Eq. (7) is true and thus SFC could not have affected the model’s prediction, shown
here for all combinations of models, datasets, and prompt formats considered.



Prompt # In-Context Demonstrations
Model Name Format Metric 0 1 2 4 8

OPT 30B

q
Accuracy 32.98 33.86 34.74 34.56 35.26
PMIDC Acc. 35.18 34.65 35.96 36.84 36.84
Avg. PMA 0.74 2.53 3.35 5.12 5.93

q + Lstring

Accuracy 31.49 30.79 30.61 32.19 30.7
PMIDC Acc. 27.72 28.51 27.98 27.98 28.33
Avg. PMA 44.67 71.43 73.7 75.61 76.74

q + Lenum

Accuracy 26.23 27.28 26.84 25.61 25.88
PMIDC Acc. 28.25 27.81 28.16 28.16 28.51
Avg. PMA 81.04 97.94 98.5 98.86 99.04

GPT-3 curie (~6.7B)

q
Accuracy 34.04 34.150.58 34.711.04 35.290.53 36.290.31
PMIDC Acc. 36.4 36.871.23 38.360.27 39.240.45 39.150.84
Avg. PMA 0.82 2.640.17 3.550.19 4.280.09 5.160.27

q + Lstring

Accuracy 30.26 31.21.44 29.850.58 31.110.96 31.721.59
PMIDC Acc. 31.32 31.020.48 30.580.31 30.410.35 30.820.7
Avg. PMA 32.77 57.940.34 65.050.24 71.40.41 75.740.58

q + Lenum

Accuracy 22.81 26.370.13 26.520.89 25.321.49 27.10.83
PMIDC Acc. 29.65 29.650.23 29.390.35 29.330.18 29.150.28
Avg. PMA 69.61 98.540.02 98.940.01 99.230.01 99.460.01

GPT-3 davinci (~175B)

q
Accuracy 37.81 38.510.23 39.730.57 40.320.5 40.960.83
PMIDC Acc. 41.32 41.840.85 42.690.33 43.830.89 44.590.31
Avg. PMA 1.18 4.350.4 5.840.11 7.060.14 7.980.28

q + Lstring

Accuracy 34.74 38.070.84 39.740.75 39.770.73 40.260.27
PMIDC Acc. 30.53 31.580.61 31.990.45 32.020.3 32.510.35
Avg. PMA 39.0 80.140.51 83.480.15 85.820.04 87.030.03

q + Lenum

Accuracy 36.49 41.231.29 42.810.09 43.510.35 44.120.69
PMIDC Acc. 27.54 28.830.28 29.360.18 29.940.49 30.00.31
Avg. PMA 67.54 98.70.06 99.20.02 99.510.02 99.70.01

davinci-instruct-beta

q
Accuracy 37.37 38.070.4 39.150.54 40.440.81 40.910.51
PMIDC Acc. 41.32 42.140.89 43.630.53 44.30.61 44.330.75
Avg. PMA 1.1 3.420.43 5.050.24 6.70.22 7.680.28

q + Lstring

Accuracy 37.02 38.620.85 39.242.06 40.380.67 40.111.17
PMIDC Acc. 31.49 31.960.48 32.430.48 32.250.48 33.130.31
Avg. PMA 68.54 85.160.02 86.360.18 87.810.15 88.730.15

q + Lenum

Accuracy 40.0 40.121.25 41.490.7 42.310.25 42.830.1
PMIDC Acc. 29.39 30.090.35 30.030.14 30.230.35 29.680.18
Avg. PMA 67.55 97.640.1 98.520.09 98.720.05 99.190.05

FLAN-T5-XXL (11B)

q
Accuracy 34.04 34.21 34.21 33.6 34.91
PMIDC Acc. 39.04 39.91 38.86 39.65 40.44
Avg. PMA 2.68 3.41 4.24 4.62 4.77

q + Lstring

Accuracy 51.75 52.89 53.68 53.51 53.68
PMIDC Acc. 39.12 39.82 39.91 39.91 40.0
Avg. PMA 91.84 92.89 93.37 94.0 94.54

q + Lenum

Accuracy 53.86 54.3 55.18 55.35 55.79
PMIDC Acc. 37.37 38.25 39.21 39.21 39.65
Avg. PMA 99.18 99.39 99.42 99.38 99.36

text-davinci-003

q
Accuracy 44.91 47.54 49.65 50.88 52.11
PMIDC Acc. 50.7 51.93 54.21 56.49 57.19
Avg. PMA 1.23 4.87 8.43 11.03 12.36

q + Lstring

Accuracy 60.61 64.39 65.18 66.32 67.81
PMIDC Acc. 52.46 55.18 55.7 55.96 55.0
Avg. PMA 90.95 94.98 96.63 97.25 97.82

q + Lenum

Accuracy 63.77 65.26 66.67 65.96 67.37
PMIDC Acc. 54.04 52.89 53.42 53.95 53.16
Avg. PMA 99.77 99.9 99.86 99.85 99.82

Table 9: Full metrics for each model and prompt type on the MMLU test subset. Models are ordered by increasing
performance. The mean and standard error of using 3 random seeds to select in-context demonstrations are reported
for experiments with at least 1 demonstration for the curie, davinci, and davinci-instruct-beta models. For each
model and each column, we bold the prompt format and scoring metric (accuracy or PMIDC accuracy) that results
in the highest score, as well as any scores within 1 percentage point of it. We underline the prompt format with the
largest average PMA.



Prompt # In-Context Demonstrations
Model Name Format Metric 0 1 2 4 8

OPT 30B

q
Accuracy 53.2 57.4 60.0 64.0 64.0
PMIDC Acc. 57.0 57.6 59.8 62.6 64.4
Avg. PMA 0.05 1.59 5.74 7.84 8.68

q + Lstring

Accuracy 30.8 35.4 34.2 35.8 35.4
PMIDC Acc. 21.4 20.2 20.8 21.6 22.0
Avg. PMA 46.84 75.78 79.73 83.2 86.02

q + Lenum

Accuracy 18.0 18.4 21.8 21.8 20.8
PMIDC Acc. 17.8 17.2 18.0 17.2 17.6
Avg. PMA 74.85 97.31 97.71 98.81 98.92

GPT-3 curie (~6.7B)

q
Accuracy 47.2(40.0) 52.43.82 58.331.5 61.41.83(52.3) 62.331.36
PMIDC Acc. 51.0(50.3) 56.42.91 61.731.3 65.21.64(56.5) 66.531.3
Avg. PMA 0.15 1.690.92 4.031.23 6.880.98 8.430.51

q + Lstring

Accuracy 30.4 37.63.8 39.42.03 40.24.39 40.074.63
PMIDC Acc. 21.8 23.20.53 22.870.61 22.930.61 23.131.22
Avg. PMA 38.98 71.260.92 74.041.03 77.040.68 79.261.08

q + Lenum

Accuracy 19.2 19.61.91 21.00.4 21.270.12 21.20.0
PMIDC Acc. 17.6 18.20.8 18.60.35 19.00.72 18.730.9
Avg. PMA 68.84 98.740.17 98.990.07 99.230.07 99.30.05

GPT-3 davinci (~175B)

q
Accuracy 58.2(61.0) 63.475.13 68.931.29 70.530.5(69.1) 71.331.27
PMIDC Acc. 63.6(66.7) 68.63.61 72.131.62 74.01.91(72.0) 73.730.81
Avg. PMA 0.19 4.612.48 8.850.55 11.120.82 12.020.65

q + Lstring

Accuracy 38.0 51.270.5 55.23.83 56.333.92 57.271.5
PMIDC Acc. 23.8 29.20.53 31.731.79 33.732.89 33.671.22
Avg. PMA 54.72 85.622.33 82.719.12 85.336.97 87.563.77

q + Lenum

Accuracy 34.4 48.271.72 50.80.87 49.62.31 53.673.61
PMIDC Acc. 17.8 21.730.61 23.131.01 25.071.14 27.470.46
Avg. PMA 63.34 98.460.33 99.150.07 99.370.06 99.360.07

davinci-instruct-beta

q
Accuracy 59.2 65.273.37 69.01.39 69.80.53 70.60.92
PMIDC Acc. 66.6 70.732.23 72.01.06 74.01.04 74.270.7
Avg. PMA 0.05 5.552.68 9.611.27 11.450.84 12.360.65

q + Lstring

Accuracy 52.2 60.63.3 63.732.01 61.472.47 62.131.22
PMIDC Acc. 32.4 36.61.4 38.071.29 37.61.78 36.330.81
Avg. PMA 72.75 83.876.35 87.323.47 88.943.06 89.731.96

q + Lenum

Accuracy 44.2 51.331.8 53.20.53 53.472.47 54.932.32
PMIDC Acc. 24.0 27.270.81 26.730.61 28.471.6 30.01.06
Avg. PMA 58.6 97.660.43 98.620.14 98.750.11 99.060.19

FLAN-T5-XXL (11B)

q
Accuracy 68.0 69.0 71.0 70.2 71.6
PMIDC Acc. 75.2 75.2 77.0 77.8 79.0
Avg. PMA 7.54 9.54 10.05 10.62 11.64

q + Lstring

Accuracy 86.8 87.8 88.0 87.6 87.6
PMIDC Acc. 71.8 74.0 74.2 73.6 74.0
Avg. PMA 98.16 98.95 99.11 99.15 99.15

q + Lenum

Accuracy 87.2 86.8 86.8 87.6 88.0
PMIDC Acc. 69.2 68.0 68.2 67.6 68.8
Avg. PMA 99.48 99.53 99.56 99.49 99.27

text-davinci-003

q
Accuracy 62.8 71.4 75.6 75.6 77.4
PMIDC Acc. 66.6 75.2 77.2 79.0 80.8
Avg. PMA 0.0 13.62 19.78 20.19 21.03

q + Lstring

Accuracy 76.2 79.8 82.0 81.6 82.0
PMIDC Acc. 74.2 76.8 79.0 79.0 79.0
Avg. PMA 74.06 93.04 92.71 93.68 94.1

q + Lenum

Accuracy 79.4 79.4 82.8 83.2 81.8
PMIDC Acc. 76.0 77.0 77.8 80.2 78.0
Avg. PMA 99.61 99.95 99.95 99.85 99.92

Table 10: Full metrics for each model and prompt type on the CommonsenseQA validation subset. See caption of
Table 9 for more details. #s in parentheses are those reported in Holtzman et al. (2021), though exact model used
may not be the same.



Prompt # In-Context Demonstrations
Model Name Format Metric 0 1 2 4 8

OPT 30B

q
Accuracy 29.2 27.8 29.2 29.8 34.2
PMIDC Acc. 55.6 51.0 53.2 55.4 55.8
Avg. PMA 1.29 1.34 1.43 1.74 2.27

q + Lstring

Accuracy 34.0 32.0 32.8 32.4 32.4
PMIDC Acc. 44.4 44.4 45.4 46.6 45.0
Avg. PMA 44.13 66.89 77.52 77.23 80.25

q + Lenum

Accuracy 27.2 22.4 25.2 20.8 22.0
PMIDC Acc. 43.0 42.0 42.2 41.6 42.2
Avg. PMA 79.08 98.24 98.49 98.63 99.14

GPT-3 curie (~6.7B)

q
Accuracy 29.0(22.4) 28.671.17 29.532.2 31.330.46 31.81.11
PMIDC Acc. 50.4(48.0) 49.272.53 49.933.38 53.03.5 52.732.05
Avg. PMA 1.22 1.370.23 1.390.23 1.670.19 1.90.35

q + Lstring

Accuracy 29.2 27.333.95 30.41.11 30.62.16 30.270.31
PMIDC Acc. 43.4 45.130.5 44.871.53 44.670.31 44.00.8
Avg. PMA 34.49 59.8111.35 71.746.01 73.275.73 72.643.44

q + Lenum

Accuracy 24.0 25.270.92 25.331.29 26.01.04 26.82.09
PMIDC Acc. 42.6 42.530.64 41.670.31 42.20.35 42.670.31
Avg. PMA 67.55 99.040.08 99.180.16 99.530.05 99.60.04

GPT-3 davinci (~175B)

q
Accuracy 33.6(33.2) 33.02.42 33.23.03 35.730.95 36.670.81
PMIDC Acc. 57.8(58.0) 58.072.58 58.733.58 60.531.45 60.21.04
Avg. PMA 1.27 1.610.43 1.610.51 1.920.34 2.090.24

q + Lstring

Accuracy 34.8 41.673.14 43.272.91 46.532.32 45.730.7
PMIDC Acc. 46.6 49.62.11 50.530.95 50.530.64 50.331.33
Avg. PMA 43.52 77.984.95 85.03.77 83.933.89 85.481.97

q + Lenum

Accuracy 31.2 39.00.72 41.732.55 47.472.08 44.531.1
PMIDC Acc. 42.8 44.071.03 45.20.2 47.070.61 46.331.36
Avg. PMA 65.75 98.730.28 99.310.24 99.570.12 99.70.1

davinci-instruct-beta

q
Accuracy 36.4 36.40.4 37.732.14 38.271.47 38.40.72
PMIDC Acc. 59.6 62.270.12 63.071.67 63.61.25 62.671.14
Avg. PMA 1.5 1.790.32 1.90.48 2.140.44 2.250.28

q + Lstring

Accuracy 41.6 44.135.62 46.43.22 48.471.03 47.731.97
PMIDC Acc. 50.6 53.072.01 52.81.64 53.871.7 52.930.42
Avg. PMA 68.18 80.675.85 84.673.0 84.823.03 86.371.95

q + Lenum

Accuracy 36.2 44.872.19 47.872.84 46.872.81 48.130.5
PMIDC Acc. 45.0 48.21.59 48.870.76 48.671.03 50.41.0
Avg. PMA 69.07 97.790.45 98.920.25 99.410.01 99.540.17

FLAN-T5-XXL (11B)

q
Accuracy 33.2 33.4 34.6 35.2 35.8
PMIDC Acc. 58.4 58.4 60.6 59.8 61.4
Avg. PMA 2.28 2.52 2.49 2.57 2.53

q + Lstring

Accuracy 80.0 79.6 81.2 81.2 80.6
PMIDC Acc. 75.0 76.2 76.6 76.6 76.2
Avg. PMA 96.16 96.52 97.2 97.37 97.42

q + Lenum

Accuracy 83.0 83.6 84.2 83.6 84.2
PMIDC Acc. 73.0 72.4 72.8 73.2 72.8
Avg. PMA 99.69 99.73 99.75 99.71 99.64

text-davinci-003

q
Accuracy 42.8 42.0 44.4 45.4 46.0
PMIDC Acc. 63.0 62.4 64.6 65.4 68.0
Avg. PMA 2.03 2.14 2.43 3.19 3.65

q + Lstring

Accuracy 77.0 77.0 78.0 80.2 81.0
PMIDC Acc. 77.0 80.2 80.6 81.6 81.6
Avg. PMA 77.21 93.97 93.28 93.91 95.49

q + Lenum

Accuracy 80.0 81.6 81.6 83.0 83.6
PMIDC Acc. 80.4 81.2 81.8 84.2 82.6
Avg. PMA 99.76 99.96 99.79 99.83 99.92

Table 11: Full metrics for each model and prompt type on the OpenbookQA test set. See caption of Table 9 for
more details. #s in parentheses are those reported in Holtzman et al. (2021), though exact model used may not be
the same.
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Figure 9: CommonsenseQA validation subset accuracy
and average PMA as a function of number and format
of in-context examples. Random accuracy is 20%. See
caption of Fig. 3 for more details. Note this task is
explicitly in-domain for FLAN-T5.
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Figure 10: OpenbookQA test set accuracy and average
PMA as a function of number and format of in-context
examples. Random accuracy is 25%. See caption of
Fig. 3 for more details. Note this task is explicitly in-
domain for FLAN-T5.
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Figure 11: Zero-shot results on a subset of the MMLU test set for various LLMs. See Fig. 5 for more details.
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Figure 12: Zero-shot results on a subset of the CommonsenseQA validation set for various LLMs. See Fig. 5 for
more details.
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Figure 13: Zero-shot results on the OpenbookQA test set for various LLMs. See Fig. 5 for more details.


