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Abstract

The aim of this paper is to address the challenge of gradual domain adaptation
within a class of manifold-constrained data distributions. In particular, we con-
sider a sequence of T ≥ 2 data distributions P1, . . . , PT undergoing a gradual
shift, where each pair of consecutive measures Pi, Pi+1 are close to each other
in Wasserstein distance. We have a supervised dataset of size n sampled from
P0, while for the subsequent distributions in the sequence, only unlabeled i.i.d.
samples are available. Moreover, we assume that all distributions exhibit a known
favorable attribute, such as (but not limited to) having intra-class soft/hard mar-
gins. In this context, we propose a methodology rooted in Distributionally Robust
Optimization (DRO) with an adaptive Wasserstein radius. We theoretically show
that this method guarantees the classification error across all Pis can be suitably
bounded. Our bounds rely on a newly introduced compatibility measure, which
fully characterizes the error propagation dynamics along the sequence. Specifically,
for inadequately constrained distributions, the error can exponentially escalate as
we progress through the gradual shifts. Conversely, for appropriately constrained
distributions, the error can be demonstrated to be linear or even entirely eradi-
cated. We have substantiated our theoretical findings through several experimental
results.

1 Introduction

Gradual domain adaptation addresses a critical challenge in machine learning: the high cost and
impracticality of continually preparing labeled datasets for training ML models. Once an initial
labeled dataset is obtained through costly labor, machine learning models can use it to automatically
label future unlabeled datasets—a procedure called self-training. However, as these future datasets
experience gradual domain shifts from the original one, the initial dataset may become less effective,
necessitating renewed human effort. Gradual domain adaptation has been proposed to mitigate
this issue by learning a model on the initial dataset and then gradually adapting it to the future
unlabeled data in a sequential manner. Formally, we consider a sequence of datasets modeled via
empirical measures P̂0, . . . , P̂T , where P̂0 represents the initial labeled dataset and the remaining P̂i

are unlabeled. Here, T denotes the length of the sequence, and each P̂i is an empirical estimate of an
unknown distribution Pi based on ni i.i.d. samples. We assume that consecutive measures Pi and
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Pi+1 are within a bounded Wasserstein distance from each other to make the problem theoretically
approachable.

Recent research in this field has proposed various methods, each with distinct advantages and
disadvantages. Theoretical advancements aim to bound the generalization error, provide robustness
certificates as the model adapts to successive datasets, and, importantly, quantify the error propagation
dynamics along the sequence. Naive approaches often lead to exponentially increasing errors with
respect to T for the model performance on the most recent dataset. For some problem families,
this exponential increase is conjectured to be inevitable. However, for appropriately restricted
problem sets, such as linear classifiers and distributions with hard/soft margins, novel methodologies
can control error propagation [KML20]. To date, no work has fully established cases where error
propagation remains fixed or increases sublinearly, and a comprehensive theoretical characterization
of problems in this context is still lacking.

We aim to address these challenges with a novel approach leveraging distributionally robust optimiza-
tion (DRO) for gradual domain adaptation. Our core idea is based on the limited knowledge that the
unknown labeled version of distribution Pi+1, or empirically, the unlabeled measure P̂i together with
its latent labels, is within a bounded proximity of Pi in a distributional sense. Using DRO on Pi (or its
empirical version P̂i) with a carefully chosen and adaptive adversarial radius, we provide theoretical
guarantees on Pi+1. Furthermore, when distributions exhibit favorable properties—such as lying
on a manifold of margin-based measures—we demonstrate that certified bounds on generalization
across domains can be established. In order to do so, we introduce a new complexity measure, the
"compatibility function," which depends on the classifier hypothesis set Θ, the properties of the
manifold for Pis, and the Wasserstein distance between consecutive distributions Pi and Pi+1. This
measure effectively bounds error propagation and identifies scenarios where errors remain bounded.
Our analysis also extends to non-asymptotic cases where only empirical estimates of the distributions
are available, showing that error terms decrease with [mini ni]

−1/2.

We apply our method theoretically to two examples: (i) a toy example involving linear classifiers
and Gaussian mixture model data with two components, which has been central in previous studies
on DRO and gradual domain adaptation, and (ii) a more general class of distributions (referred
to as "expandable" distributions) with learnable classifiers. In the former case, we demonstrate
that accounting for Gaussian structural information eliminates error propagation in the statistical
sense in the asymptotic regime. Additionally, in the non-asymptotic scenario, having n ≥ dT log T
samples per dataset leads to the same result. Conversely, neglecting manifold information results in
exponentially growing error, as anticipated. For expandable distributions and learnable classifiers, we
provide theoretical bounds on sample complexity and error propagation dynamics based on newer
notions of adversarial robustness. Once again, we identify a rather general scenario where DRO
completely eliminates error propagation. We further validate our theoretical findings through a series
of experiments.

The rest of the paper is organized as follows: Section 1.1 reviews related work. Our methodology is
discussed in Section 2, where we present our main theorems. Section 3 details our results for the
Gaussian setting, while a broader class of problems, termed expandable distributions and smooth
classifier families, are analyzed in Section 4, including their non-asymptotic analysis in subsection
4.1. In section 5, we will be discussing our experimental results. We conclude in Section 6.

1.1 Previous Works

Classic unsupervised domain adaptation aims to align feature distributions between a labeled source
domain and an unlabeled target domain. Generating intermediate domains can facilitate smoother
adaptation, transforming the process into gradual domain adaptation. However, these intermediate
domains are often unavailable. Sagawa et al. [SH22] address this by using normalizing flows to
learn transformations from the target domain to a Gaussian mixture distribution through the source
domain. Zhuang et al. [ZZW23] propose Gradient Flow (GGF) to generate intermediate domains,
leveraging the Wasserstein gradient flow to transition from the source to the target domain, minimizing
a composite energy function.

Kumar et al. [KML20] propose a gradual self-training algorithm, adapting the initial classifier using
pseudo-labels from intermediate domains. They show the importance of leveraging the gradual shift
structure, regularization, and label sharpening, providing a generalization bound for target domain
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error. This bound is given by eO(T )
(
ϵ0 +O

(√
n−1 log T

))
, where ϵ0 is source domain error, and

n is each domain’s data size. Wang et al. [WLZ22] improve this approach, achieving a significantly
better generalization bound ϵ0 + Õ

(
T∆+ Tn−1/2 + (nT )−1/2

)
, where ∆ is the average distance

of consecutive domain distributions, and propose an optimal strategy for constructing intermediate
domain paths. He et al. [HWLZ23] suggest placing intermediate domains uniformly along the
Wasserstein distance between the source and target domains to minimize generalization error. The
GOAT framework, based on this insight, uses optimal transport to generate intermediate domains
and applies gradual self-training. Similarly, Abnar et al. [ABG+21] introduce GIFT, which creates
virtual samples from intermediate distributions by interpolating representations of examples from
source and target domains. Zhang et al. [ZDJZ21] propose the AuxSelfTrain framework, generating
a combination of source and target data in different proportions, gradually incorporating more target
data, and employing a self-training procedure.

Unsupervised domain adaptation can be viewed as a Generalized Target Shift problem. Xiao et al.
[XZLS23] introduce a discriminative energy-based method for test sample adaptation in domain
generalization, modeling the joint distribution of input features and labels on source domains.
Kirchmeyer et al. [KRdBG21] propose the OSTAR method, using optimal transport to align pre-
trained representations without enforcing domain invariance, reweighting source samples, and training
a classifier on the target domain. Generative Adversarial Networks (GANs) [GPAM+14] inspire
domain adaptation methods that use a feature extractor and a classifier to generate class responses,
processed by a discriminator to distinguish between source and target domains. Cui et al. [CWZ+20]
introduce the Gradually Vanishing Bridge (GVB) framework to reduce domain-specific characteristics
and balance adversarial training, enhancing domain-invariant representations.

1.2 Notations and Definition

Consider X as a measurable space for features and let Y = {−1,+1} represent the set of possible
labels in a binary classification scenario. In this regard, Z = X × Y encompasses the entire space
of feature-label pairs. We useM (Z) to denote the set of all probability measures supported on Z .
For any p ≥ 1, let ∥·∥p denote the ℓp-norm. Additionally, for a probability measure P ∈M (Z), the
notation PX refers to the marginal distribution of P on X . Let g : R→ R be a given function, and
consider a natural number n ∈ N. We define the composition of g repeated n times as follows:

g⃝n(·) = (g ◦ g ◦ . . . ◦ g) (·), (n times). (1)

In order to assess the distance between any two measures P,Q ∈ M (Z), we use the Wasserstein
metric. For P,Q ∈M (Z), λ ≥ 0 and p, q ≥ 1, the λ-weighted ℓqp-Wasserstein distance between P
and Q is defined as

Wq
p,λ (P,Q) ≜ inf

µ∈C(P,Q)
E
[∥∥X −X ′∥∥q

p
+ λ1 {y ̸= y′}

]
, (2)

where C (P,Q) denotes the set of all couplings µ ∈ Z × Z , ensuring that µ (·,Z) = P and
µ (Z, ·) = Q. Also, let ℓ : Y × Y → R≥0 be a legitimate loss function, where for most of the paper
we simply consider it to be 0− 1 loss for simplicity in the results.

2 The Proposed Method: Gradual Domain Adaptation via
Manifold-Constrained DRO

Let’s consider the distribution set G ⊆ M(Z) to denote a class, or manifold, of distributions
characterized by favorable properties, such as, but not restricted to, having soft or hard margins
between class-conditional measures. Throughout this paper, we presume that all measures Pi belong
to such a class with a known property. Failing to acknowledge this assumption could render the error
propagation dynamics uncontrollable (see Theorem 3.2). Before proceeding further, let us introduce
the following definitions:
Definition 2.1 (Restricted Wasserstein Ball). Assume fixed parameters p, q ≥ 1 and λ > 0. For
η ≥ 0, G ⊆M (X × Y) and P0 ∈ G, let us define

Bη (P0|G) ≜
{
P ∈ G

∣∣Wq
p,λ (P, P0) ≤ η

}
(3)

as a G-restricted Wasserstein ball of radius η.
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Algorithm 1: DRO-based Domain Adaptation (DRODA)
Params :Θ, G, p, q, λ, and η
Input :P0, {PiX }1:T
Initialize:

ε0 ←− η, P̂0 ←− P0

∆∗
0, θ

∗
0 ←−

{
min
θ∈Θ

, argmin
θ∈Θ

}
sup

P∈Bε0(P̂0|G)
EP [ℓ (y, hθ (X))] .

for i = 1, . . . , T − 1 do
P̂i ←− PiX (X)1

(
y = hθ∗

i−1
(X)

)
, ∀ (X, y) ∈ Z

εi ←− λ∆∗
i−1 + η

∆∗
i , θ

∗
i ←−

{
min
θ∈Θ

, argmin
θ∈Θ

}
sup

P∈Bεi(P̂i|G)
EP [ℓ (y, hθ (X))]

Result: θ∗ ←− θ∗T−1

Building upon the above definition, we introduce our method formally outlined in Algorithm 1.
The essence of our approach lies in conducting DRO on a pseudo-labeled version of Pi (or its
empirical estimate P̂i), followed by leveraging the model to assign pseudo-labels to the subsequent
unlabeled distribution. However, two crucial considerations emerge: i) the adaptive adjustment of the
Wasserstein radius (also known as the adversarial power of DRO) based on the robust loss incurred
in the preceding stage, and ii) post pseudo-labeling, distributions are implicitly constrained to the
manifold G. This latter aspect serves as the primary mechanism for controlling error propagation
within appropriately restricted scenarios.

Before delving into the theoretical guarantees, let us introduce our new complexity measure, which
quantifies the relationship between a family of binary classifiersH = {hθ|θ ∈ Θ} and the distribution
family G. The compatibility function, essentially a bound on the manifold-constrained adversarial
loss ofH on G, plays a pivotal role in error propagation, as elucidated in Theorem 2.3.

Definition 2.2 (Compatibility between G and H). Consider the classifier set H ≜ {hθ| θ ∈ Θ},
distribution manifold G ⊆ M (Z), and Wasserstein metricWq

p,λ (·, ·) for p, q ≥ 1 and λ ≥ 0. We
sayH and G are compatible according to a function gλ(·) : R≥0 → R≥0, if for η > 0 and ∀P0 ∈ G
the following bound holds:

gλ (η) ≥ inf
θ∈Θ

sup
P∈Bη(P0|G)

Ep [ℓ (y, hθ (X))] . (4)

As can be seen, gλ(0) represents an upper bound on the minimum achievable non-robust error rate
across all measures within G. Mathematically, this is expressed as:

gλ(0) ≥ sup
P∈G

inf
θ∈Θ

EP [ℓ (y, hθ (X))] . (5)

We declare that H and G are perfectly compatible if the lower bound on the r.h.s. of (5), and
consequently gλ(0), is zero. This means for any P ∈ G, at least a classifier in H can perform a
perfect non-robust classification.

We believe the concept of "compatibility" as defined above is natural and can uniquely characterize
the applicability of GDA to a problem set. For example, assume all measures in G exhibit some
level of "cluster assumption" or have hard margins, and that H is rich enough to robustly classify
all P ∈ G (with some margin). Then, there exists δ0 > 0 such that gλ(δ) = 0 for all δ ≤ δ0. We
will soon see that such a property can perfectly eliminate error propagation, as long as consecutive
unlabeled measures are chosen close enough as a function of δ0. More generally, the following
theorem provides a general bound on the propagation of generalization error as a function of the
compatibility measure in the asymptotic case where mini ni →∞.

Theorem 2.3. For λ > 0 and p, q ≥ 1, assume classifier set H ≜ {hθ| θ ∈ Θ} and distribution
family G ⊆ M (Z) are compatible according to the Wasserstein metricWq

p,λ(·, ·) and a positive
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function gλ(·). Additionally, for T ≥ 1 assume a finite sequence of distributions P0, P1, . . . , PT in
G, whereWq

p,λ (Pi, Pi+1) ≤ η for i = 0, . . . , T − 1 and a given η ≥ 0. The initial measure P0 is
assumed to be known, however for i ≥ 1, we only have access to the marginals PiX . Then, Algorithm
1 (DRODA) with parametersH, G, p, q, λ, and η outputs θ∗ = A (P0, {PiX }1:T ) which satisfies the
following bound:

EPT
[ℓ (y, hθ∗ (X))] ≤ [gλ (2λ (·) + η)]

⃝T

(
inf
θ∈Θ

sup
P∈Bη(P0|G)

EP [ℓ (y, hθ (X))]

)
,

where⃝T implies composition of function u→ gλ (2λu+ η) on the input for T times. The input is
the restricted robust loss on P0 for a Wasserstein radius of η.

The proof can be found in the Appendix (supplementary material). As inferred from the bound, the
shape of gλ determines the behavior of the generalization error on the last measure. For example,
if g increases linearly, i.e., if the robust loss increases linearly with the adversarial radius with a
coefficient greater than or equal to 1/(2λ), it implies an exponential growth in the generalization
error. However, if the manifold structure on G causes g to grow linearly with a smaller coefficient, or
behave similarly to a saturating (or at least sublinear) function, error propagation can be kept bounded.
In this regard, the following corollary specifies the conditions under which our algorithm provides a
bounded error regardless of T . Proof of Corollary 2.4 can be found inside the Appendix section.
Corollary 2.4 (Elimination of Error Propagation). Consider the setting described in Theorem 2.3. For
a given hypothesis setH, distribution manifold G, 0 ≤ λ < 1 and p, q ≥ 1, assume the compatibility
function gλ satisfies:

gλ (η) ≤
1

3λ
η + α, ∀η ≥ 0, (6)

where α ≥ 0 can be any fixed value. Then, for any T ∈ N we have:

EPT
[ℓ (y, hθ∗ (X))] ≤ 3

(
α+

1

3λ
max
i∈[T ]

Wq
p,λ (Pi−1, Pi)

)
. (7)

which is independent of T as long as consecutive pairs remain distributionally close.

3 Theoretical Guarantees on Gaussian Generative Models

In the following two sections, we investigate practical and theoretically useful cases of potentially
compatible pairs G and H to achieve mathematically explicit bounds. We first focus on the well-
known and celebrated example of a two-component Gaussian mixture model, which has been the
focus of various previous studies [KML20, CRS+19, AUH+19]. One main reason is that our results
can be easily compared with those of prior works.

Mathematically, suppose that the set of features and labels, denoted as (X, y) ∈ Rd × {0, 1},
originates from a Gaussian generative model. For some L > 0, we have:{

P (y = ±1) = 1
2 ,

X|y ∼ N
(
yµ, σ2I

) with ∥µ∥2 ≥ L. (8)

This setting implies that the class-conditional density of feature vectors consists of two Gaussians
with equal covariance matrices σ2I and mean vectors µ and −µ, respectively. The ℓ2-norm of µ is
lower-bounded by some L > 0 to prevent the optimal Bayes’ error from converging toward 1, thus
the classification remains meaningful. Throughout this section, the distribution manifold Gg = Gg(L)
refers to this class, with the vector µ as its only degree of freedom. In this context, our goal is to
find the compatibility function gλ(·) when linear classifiers are employed. The following theorem
presents one of our main results for this purpose:
Theorem 3.1. For L > 0 and any λ ≥ 0, consider the distribution manifold Gg (L). Then, the
compatibility function between Gg (w.r.t. Wasserstein metric W1

2,λ) and the set of linear binary
classifiers asH satisfies this bound:

gλ (η) ≤ e−
L2

18σ2 , ∀η ∈ [0, L/3] . (9)
Also, for any T ∈ N and any sequence of distributions P1, . . . , PT ∈ Gg withW1

2,λ (Pi, Pi+1) ≤ L/3,
DRODA guarantees the following error bound on the last unlabeled measure:

EPT
[ℓ (y, hθ∗ (X))] ≤ e−

L2

18σ2 . (10)
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Proof can be found in Appendix A. Note that there are no error propagation, and the guaranteed
error term is close to the Bayes’ optimal error. In fact, it can become arbitrarily close with more
sophisticated mathematics, which goes beyond the scope of this work. The condition η ≤ L/3 is
necessary to prevent the two Gaussians from swapping, as tracking them becomes impossible if that
happens.

An important question to consider is what happens to gλ if one does not restrict the Wasserstein ball
to the manifold Gg . In other words, assume we set Gg to be the entire space of measures and not the
restricted Gaussian manifold considered so far. We will show that the manifold constraint is a key
property that provides us with the desirable result of Theorem 3.1, and losing this assumption can
have catastrophic consequences.

Theorem 3.2 (Potentials for Error Propagation). For L > 0, consider the Gaussian manifold Gg (L)
versus the set of linear classifiers in X . Also, assume Wasserstein metricW1

2,λ is being employed, for
any λ ≥ 0. By gCλ (·), let us denote the compatibility function when manifold constraint is taken into
account similar to Theorem 3.1, while gUC

λ represents the unconstrained compatibility function when
there are no manifold constraints, i.e., Gg =M (Z). Then,

gCλ (η) ≤ e−L2/(18σ2), η ∈ [0, L/3] , and gUC
λ (η) ≥ Ω

(
e−

L2

2σ2 +

√
ηe−

L2

2σ2

)
, ∀η ≥ 0.

Proof can be found in Appendix section A. We already know the generalization error from the
manifold constrained version of DRODA does not propagate after T iterations. However, the error
term stemming from the unconstrained version can be shown to be bounded by

EPT
[ℓ (y, hθ∗ (X))] ≤ O

((
2λe

−L2

2σ2

)2

η(1/2
T ) + e

−L2

2σ2

)
, (11)

which shows significant potential for error propagation.

The results so far are in the statistical sense, meaning that we have assumed mini ni →∞. A slight
variation of our bounds still applies to the non-asymptotic case, where we can propose PAC-like
generalization guarantees. The following theorem is, in fact, the non-asymptotic version of Theorem
3.1 (proof is given in Appendix A):

Theorem 3.3 (Non-asymptotic Generalization Guarantee). In the setting of Theorem 3.1 with some
L > 0 and any λ ≥ 0, suppose we have n0 labeled samples from distribution P0 and ni unlabeled
samples from distribution Pi for i ∈ [T ]. T can be unbounded, but consecutive pairs Pi, Pi+1 must
have a Wasserstein distanceW1

2,λ bounded by L/3. For any δ ∈ (0, 1] and using algorithm DRODA,
the error in the last (most recent) domain with probability at least 1− δ is bounded by:

∆∗
T ≤ 2e−

L2

2σ2 +

(
d log 2T

δ

ni

) 1
4 T∑

i=1

(
4L2

σ2
e−

L2

18σ2

)i

. (12)

Corollary 3.4 (Elimination of Error Propagation in Non-asymptotic Regime). In the setting of
Theorem 3.3, assume L ≥ 11σ (e.g., each component of mean vectors µ and −µ are larger than
11σ/

√
d). Also, assume each dataset Pi for i ≥ 1 has at least n unlabeled data points, where

n ≥ O
(
d log T

ε4

)
for some ε > 0. Then, the following bound holds for ∆∗

T regardless of T ≥ 2:

∆∗
T ≤ 2e−

L2

2σ2 +
ε

1− 4L2

σ2 e−
L2

18σ2

, (13)

which means error propagation is perfectly eradicated.

Corollary 3.4 can be directly proved from the result of Theorem 3.3.
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4 Expandable Distribution Manifolds and Learnable Classifiers

The class of isotropic Gaussians, while a well-known theoretical benchmark, is still a very stringent
and impractical case to study. In this section, we investigate a much more general class of distribution
manifold/classifier pair families and provide both asymptotic and non-asymptotic guarantees for this
regime. Before introducing our target regime, let us define some required concepts. Assume (X ,Σ)
is a measurable space, and let P be a distribution supported over X . For r ≥ 0, the r-neighborhood
of a point X ∈ X , denoted by Nr(X), is defined as:

Nr(X) =
{
X ′ | ∥X −X ′∥2 ≤ r

}
. (14)

Similarly, the r-neighborhood of a Borel set A ⊆ X (i.e., A ∈ Σ) is defined as:

Nr(A) =
{
X ′ | ∃X ∈ A such that ∥X −X ′∥2 ≤ r

}
, (15)

we also define the δ-neighborhood of a Borel set A ⊆ X , for δ ∈ Rd as:

Nδ(A) =
{
X ′ | ∃X ∈ A, |α| ≤ 1 such that X ′ = X + αδ

}
. (16)

Following [WSCM20], we define the expansion property as:

Definition 4.1 ((C1, C2)− expansion). For a fixed 0 < a ≤ ā < 1
2 and given C1, C2 ≥ 0, consider

A ≜ {A ⊆ X| a ≤ P (A) ≤ ā}. Then, we say a distribution P has (C1, C2)-expansion property if

sup
A⊆A

P (Nr (A))

P (A)
≤ 1 + C1r , inf

A⊆A

P (Nr (A))

P (A)
≥ 1 + C2r,

for sufficiently small r ≥ 0.

This definition extends the (a, c)-expansion property defined by [WSCM20]. A (C1, C2)-expandable
distribution is required to have a continuous support and avoid singularity, aligning with the majority
of practical measures. Expandable distributions can be further restricted to have additional theoretical
properties, such as ϵ-smoothness, defined as follows:

Definition 4.2 (ϵ − smoothness). We say that a distribution P supported on a feature-label space
Rd × {±1} satisfies the ϵ-smoothness property if for all A ∈ A, there exists a constant C which
depends only on P (A), where the class-conditional measures of P , i.e., P+(X) and P−(X), satisfy
the following for sufficiently small r ≥ 0:

1

r

(
P s(Nδ(A))

P s(A)
− 1

)
≍ CA(1± ϵ), ∀s ∈ {±}, δ ∈ X , ∥δ∥2 ≤ r. (17)

Another necessary definition ensures that a classifier familyH is inherently capable of achieving a
low classification error on a distribution, i.e., a low bias for H and simultaneously a small Bayes’
error for P .

Definition 4.3 (α−separation). For α ≥ 0, a distribution P supported on feature-label set Rd×{±1}
has the α− seperation property with respect to a binary classification hypothesis setH, if

inf
h∈H

P (yh (X) ≤ 0) ≤ α. (18)

We can now explain our proposed setting for the expandable distribution manifold G, which consists
of expandable distributions (in both senses of (C1, C2)-expansion and ϵ-smoothness, which are slight
variations of each other). The core idea is to use the dual formulation of [BM19] and [GK23] for a
(non-manifold constrained) Wasserstein DRO, which can be stated as follows:

sup
P∈Bη(P0)

EP [ℓ(θ;Z)] = inf
γ≥0

{
γη + EP0

[
sup
Z′

{
ℓ(θ;Z ′)− γc(Z,Z ′)

}]}
. (19)

To add the manifold constraint, we propose restricting the space of adversarial examples Z ′ to be
generated from a predetermined function class F , where for f ∈ F we have f : Z → Z . Each f is a
fixed mapping from the feature-label space to itself. By controlling the complexity of F , one can
limit the adversarial budget of the DRO and effectively simulate the condition of optimizing within a
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Wasserstein ball in addition to some kind of "manifold constraint." Mathematically, we can replace
the original dual form with the following (more restricted) formulation:

sup
P∈Bη(P0|G)

Ep [ℓ (θ;Z)] = inf
γ≥0

sup
f∈F

{
γη + EP0 [{ℓ (θ; f (Z))− γc (Z, f (Z))}]

}
, (20)

There exists a (potentially intricate) mathematical relationship between the distributional manifold G
on the left-hand side and the mapping function classF on the right-hand side of the above formulation.
Our main contribution in this part can be informally stated as follows:

• We theoretically show that restricting the distributional manifold G to include only expand-
able distributions, as defined in Definitions 4.1 and 4.2, is equivalent to restricting the dual
optimization formulation such that the mapping class F consists only of "smooth" mappings.

Note that if we do not impose any constraints onF , and f could be any function, there is no difference
between the quantities in Equations (19) and (20).
Theorem 4.4 (Transportability of ϵ-Smooth Measures). For some ϵ > 0, let us consider two data
distributions P1 and P2, both of which are ϵ-smooth according to Definition 4.2. Let f+ and f−

represent the optimal transport (Monge) mappings between P+
1 → P+

2 and P−
1 → P−

2 , respectively.
These mappings are also known as push-forward functions, which transform one measure into another.
Let J+ and J− represent the respective d×d Jacobian matrices of the mappings, where d = dim(X ).
Then, the eigenvalues of the Jacobian matrices satisfy the following conditions:

1− 2ϵ ≤ EIGi(J
s) ≤ 1 + 2ϵ, ∀i ∈ [d], s ∈ {±1}. (21)

Proof is given in Appendix A. Essentially, the theorem states that each pair of ϵ-smooth class-
conditional measures can be optimally transported into each other via highly-smooth mappings,
where the Jacobian of the mapping resembles the identity matrix. At this point, we can present a
theorem that provides an upper bound for the compatibility function between a distribution class G
with expansion properties and a hypothesis set of learnable binary classifiers:
Theorem 4.5. For C1, C2, α, ϵ ≥ 0, consider a distribution manifold G where its distributions
satisfy the (C1, C2)-expansion, α-separation with respect to a hypothesis setH, and ϵ-smoothness
properties as defined in Definitions 4.1 through 4.3. Hypothesis setH is general up to α-separation
property. For λ, η ≥ 0 and T ∈ N, consider the GDA setting of Theorem 2.3 with a distributional
sequence P0, . . . , PT ∈ G where the pairwise distance between consecutive measures satisfies
W1

2,λ (Pi, Pi+1) ≤ η. Moreover, make the following assumptions: i) assume all of the mass of P0

falls inside a hypersphere with radius at most R, ii) assume ϵ ≤ η
14R , and iii) λ > η. Then the

compatibility function between G andH has the following upper bound:

gλ (η) ≤ O ((1 + C1 (4Rϵ+ 2η))α) . (22)

Proof can be found in Appendix A. Based on the bound on the compatibility function, using Theorem
2.3, it can be easily shown that a modified version of Algorithm DRODA, presented in Appendix
A in Algorithm 3, guarantees a generalization error of at most O(α + η) on the last (most recent)
distribution PT , which is irrespective of T , thereby entirely eliminating error propagation.

4.1 Non-Asymptotic Analysis of Manifold-Constrained DRO on Expandable Distributional
Manifold

This section explores the non-asymptotic analysis of manifold-constrained DRO on the expandable
distribution manifold. We assume empirical estimates from Pi’s, where each empirical measure P̂i

is obtained via ni i.i.d. samples from Pi. For simplicity in our results, we assume ni = n for all
i ∈ {0, 1, . . . , T}. First, let us redefine the loss in its dual format:

R (θ;P0) = sup
f∈F

EP0
[{ℓ (θ; f (Z))− γc (Z, f (Z))}] . (23)

Assuming R(θ; P̂0) is the empirical version of R (θ;P0), let the minimizer of R(θ; P̂0) be denoted
as θ̂. For simplicity, we only consider the class of linear binary classifiers and Gaussian mixture
models. However, the main distinction between the setting of Theorem 3.3 and this section lies in the

8



Figure 1: A schematic view of the proposed procedure for our manifold-constrained DRO. A restricted
adversarial block, modeled by fP , tries to perturb the source distribution at each step i to prepare the
algorithm for the worst possible distribution in step i+ 1. Meanwhile, a classifier fC tries to learn a
classifier based on the perturbed distribution.

fact that we assume no prior knowledge regarding the Gaussian assumption; only the expandable
distribution assumption is considered. In other words, there are no implicit or explicit projection onto
the manifold of Gaussian mixture models any more. At this point, we present our main theorems,
which provide the generalization bound for DRODA algorithm:
Theorem 4.6 (Generalization Bound for DRODA in the Non-asymptotic Regime). Consider the
class of linear classifiers as Θ, and the zero-one loss function as ℓ. The rest of the setting is similar to
Theorem 4.5. Assume we limit F to the displacement functions and let P0 be a Gaussian generative
model with mean µ and covariance matrix σ2Id as defined in (8), then for ϵ, δ > 0 we have the
following generalization bound with probability at least 1− δ:

R
(
θ̂;P0

)
≤ min

θ∈Θ
R (θ;P0) + 64

√√√√ d

n
log

(
R

δ

√
n3

d

)
, (24)

where n is the number of i.i.d. samples from P0 and d is the dimension of the feature space.

Proof can be found in Appendix A. As demonstrated, not only is error propagation eliminated, but
the generalization error also decreases with increasing n.

The polynomial-time convergence of Wasserstein-based DRO programs have been extensively stud-
ied (see [SNVD17]). Given sufficient assumptions on the smoothness of our loss functions and
transportation costs in the Wasserstein metric, the convergence rate of O

(
1/ε2

)
iterations (for any

ε > 0) in order to get to the ε-proximity of the optimal solution is already guaranteed.

5 Experimental Results

In this section we present our experimental results. It should be noted that several existing works
have already experimentally validated the first part of the paper which concerns Gaussian mixture
models. Hence, our contributions for those parts are mainly theoretical. In this section, we mainly
focus on the second part of our contributions, i.e., Section 4.

In figure 1 we illustrate the workings of our method to generate adaptive mappings between consecu-
tive distributions and the following projection onto the manifold, which is mathematically modeled
by the function space F in our formulations. As depicted, at the ith step, we perturb the data samples
(Xj , yj) , j ∈ [ni] from Pi using a parametric function class, denoted as fp, and penalize the extent
of perturbation using the following term

γ

ni

ni∑
j=1

∥fp(Xj)−Xj∥2. (25)

These perturbed samples are then classified using a classifier. Let LC (fP ;X1, · · · ,Xni
) represent

the cross-entropy loss of the classifier on the perturbed samples. Our objective is to solve the
following program:

min
fC∈C

max
fP∈P

LC (fp;X1, · · · ,Xni
)− γ

ni

ni∑
j=1

∥fP (Xj)−Xj∥2

 , (26)

9



Figure 2: Comparison of the performance of our proposed method with the GDA [KML20] on
rotating MNIST dataset.

which is a minimization with respect to the parametric classifier family fC ∈ C, while simultaneously
maximizing it with respect to the parametric family of generator function fP ∈ P . In our experiments,
we employed a two-layer CNN with a 7× 7 kernel in the first layer and a 5× 5 kernel in the second
layer for P . We also utilized an affine grid and grid sample function in PyTorch, following the
approach introduced in [JSZ+15]. For the classifier family C, we used a three-layer CNN with max
pooling and a fully connected layer, applying dropout with a rate of 0.5 in the fully connected layer. A
standard Stochastic Gradient Descent (SGD) procedure has been used for the min-max optimization
procedure described in (26).

We implemented this method on the "Rotating MNIST" dataset, similar to [KML20]. In particular,
we sampled 6 batches, each with a size of 4200, without replacement from the MNIST dataset, and
labeled these batches as D0, D1, · · · , D4, which represent the datasets obtained from P0, P1, · · · , P4,
respectively. The images in dataset Di were then rotated by i × 15 degrees, with D0 serving as
the source dataset and D4 as the target dataset. We provided the source dataset with labels and left
D1, D2, D3, and D4 unlabeled for our algorithm. We then tested the accuracy of θ∗0 , · · · , θ∗3—the
outputs of our algorithm at each step—on D1, D2, D3, and D4, respectively.

For comparison, we implemented the GDA method exactly as described in [KML20]. We compared
our method to the GDA and detailed the results in Figure 2. Additionally, we reported the accuracy
of θ∗0 on D0 as an example of in-domain accuracy. Our results show that our method outperforms
GDA by a significant margin of 8 percent in the last domain D4.

6 Conclusions

In conclusion, we have introduced a novel approach to gradual domain adaptation leveraging distri-
butionally robust optimization (DRO). Our methodology provides theoretical guarantees on model
adaptation across successive datasets by bounding the Wasserstein distance between consecutive
distributions and ensuring that distributions lie on a manifold with favorable properties. Through
theoretical analysis and experimental validation, we have demonstrated the efficacy of our approach in
controlling error propagation and improving generalization across domains. A key tool for achieving
this is our newly introduced complexity measure, termed the "compatibility function."

We have investigated two theoretical settings: i) a two-component Gaussian mixture model, a well-
known theoretical benchmark, and ii) a more general class of distributions termed "expandable"
distributions, along with general expressive (low-bias) classifier families. Theoretical analyses show
that our method completely eliminates error propagation in both scenarios, and also in both asymptotic
and non-asymptotic cases. These findings contribute to a better understanding of gradual domain
adaptation and provide practical insights for developing robust machine learning models in real-world
situations.
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A Proofs for the Theorems and Corollaries

Proof of Theorem 2.3. The proof follows an inductive approach, relying on the steps outlined in
Algorithm 1 (DRODA). To enhance clarity, we initially delve into the step component of the induction.
Subsequently, we proceed to establish the base case.

Step: For all j = 1, . . . , i, assume hθ∗
j−1

guarantees an error rate of at most ∆∗
j−1 on Pj . Then, our

aim in this part of the proof is to show that:

• hθ∗
i

also guarantees an error rate of at most ∆∗
i on Pi+1.

• We have ∆∗
i ≤ gλ

(
2λ∆∗

i−1 + η
)
.

Recall that for all i = 0, 1, . . . , T , the marginals of Pi and P̂i on X are the same by definition. Hence,
we have

Wq
p

(
P̂iX , PiX

)
= 0.

The conditional distribution of label y given feature vector X according to Pi is denoted as Pi (·|X).
However, again according to the definition in DRODA the conditional distribution of labels given a
feature vector X for P̂i is

1 (· = hθ∗i−1 (X)) .

Let us define Q as the set of all couplings between the two above-mentioned conditionals, i.e.,
Pi (·|X) and 1

(
· = hθ∗

i−1
(X)

)
. In this regard, we have

Wq
p,λ

(
P̂i, Pi

)
≤ Wq

p

(
P̂iX , PiX

)
+ λ inf

µ∈Q
EPiX

Eµ [1 (y ̸= y′) |X] ≤ λ∆∗
i−1. (27)

Due to the triangle inequality for Wasserstein metrics, we have

Wq
p,λ

(
P̂i, Pi+1

)
≤ Wq

p,λ

(
P̂i, Pi

)
+Wq

p,λ (Pi, Pi+1) ≤ λ∆∗
i−1 + η. (28)

Consequently, having defined εi ≜ λ∆∗
i−1 + η as in the algorithm, and noting the fact that due to the

theorem’s assumptions we have Pi+1 ∈ G, guarantees that Pi+1 ∈ Bεi
(
P̂i|G

)
. Therefore, we have

EPi+1

[
ℓ
(
y, hθ∗

i
(X)

)]
≤ ∆∗

i . (29)

On the other hand, we have the following useful inequality for the Wasserstein balls centered on P̂i

and Pi, respectively:

Bλ∆∗
i−1+η

(
P̂i|G

)
⊆ B2λ∆∗

i−1+η (Pi|G) , (30)

which again directly results from triangle inequality. Therefore, we have

inf
θ∈Θ

sup
Bλ∆∗

i−1
+η(P̂i|G)

Ep [ℓ (y, hθ (X))]

≤ inf
θ∈Θ

sup
B2λ∆∗

i−1
+η(Pi|G)

Ep [ℓ (y, hθ (X))]

≤ gλ
(
2λ∆∗

i−1 + η
)
, (31)

and thus ∆∗
i ≤ gλ

(
2λ∆∗

i−1 + η
)

which completes the step part of the induction.
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Base: After the initialization step, θ∗0 represents a robust classifier that is guaranteed to have an
expected error rate of ∆∗

0 ≤ gλ (η) on all probability measures inside a Wasserstein ball of radius η
centered on P0. This also includes P1, since we have

Wq
p,λ (P1, P0) ≤ η.

According to DRODA, P̂1 denotes a measure supported over Z whose marginal on X is the same as
that of P1. However, and similar to the arguments in the previous part of the proof, the conditional
P1Y|X has a total variation distance of at most λ∆∗

0 from that of P̂1. Recall that the feature-conditioned
distribution for labels in P̂1 is a deterministic rule represented by hθ∗

0
: X → Y . In mathematical

terms, the error rate on P1 is guaranteed to satisfy the following upper-bound:

EP1

[
ℓ
(
y, hθ∗

0
(X)

)]
≤ ∆∗

0 ≤ gλ (η) . (32)

which completes the base part.

End of induction

Combining the base with the step, one can conclude that:

inf
θ∈Θ

EPT
[ℓ (y, hθ (X))] ≤ g

(
2λ∆∗

T−1 + η
)
,

∆∗
T−1 ≤ g

(
2λ∆∗

T−2 + η
)
,

...
∆∗

0 ≤ inf
θ∈Θ

sup
P∈Bη(P0|G)

EP [ℓ (y, hθ (X))] . (33)

Additionally, gλ (·) is an increasing function which directly results from its definition according to
Definition 2.2. This completes the whole proof.

Proof of Corollary 2.4. Recall that α represents a value independent of η, which in fact indicates the
loss of the best standard (non-robust) classifier. In general, assume we have

gλ (η) ≤ βη + α,

for any fixed α, β ≥ 0. Then, it can be simply seen that we have

gλ (2λgλ(η) + η) ≤ gλ (2λβη + η + 2λα)

= gλ ((1 + 2λβ) η + 2λα)

≤ β (1 + 2λβ) η + (1 + 2λβ)α. (34)

By induction, and assuming 2λβ < 1, we have

[gλ (2λ (·) + η)]
⃝T

(η) ≤

(
T−1∑
i=0

(2λβ)
i

)
(βη + α)

=
1− (2λβ)

T

1− 2λβ
(βη + α)

≤ βη + α

1− 2λβ
. (35)

Substituting with β = 1/ (3λ), and considering η as a bound on the distance between consecutive
distribution pairs, the result of Theorem 2.3 gives us the inequality and completes the proof.

Proof of Theorem 3.1. To prove this theorem, we first need to determine the restricted Wasserstein
ball for any distribution in this class. The following lemma provides a super-set for this ball:

Lemma A.1. Consider a distribution P0 ∈ Gg with parameter µ0. Based on Definition 2.1, we have

Bη (P0|Gg) ⊆ {Pµ : ∥µ− µ0∥2 ≤ 2η ∨ ∥µ+ µ0∥2 ≤ 2η} , (36)

where Pµ is a Gaussian generative model with parameter µ.
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To prove this lemma we need the following lemma:

Lemma A.2. Consider two arbitrary (and not necessarily Gaussian) distributions P and Q on Z
with respective densities f1 and f2. Also, assume P (y = 1) = Q(y = 1) = 1/2. Let c : X 2 → R be
a proper and lower semi-continuous transportation cost defined in the space of features, i.e., X . For
any λ ≥ 0, let us define c̃ : Z2 → R as

c̃
(
X, y,X ′, y′

)
≜ c

(
X,X ′)+ λ1 {y ̸= y′} . (37)

Then, the following lower-bound holds for the Wasserstein distance between P and Q with respect to
transportation cost c̃:

Wc̃ (P,Q) ≥ Wc̃ (f1, f2) ≥
1

2
max

i∈{±1}
min

j∈{±1}
Wc (f1 (·|y = i) , f2 (·|y′ = j)) . (38)

The proofs for the above lemmas can be found in section B.

Now, we aim to find an upper bound for the compatibility function gλ (·) between the class of
Gaussian generative distributions and linear classifiers.

gλ (η) = max
0≤i≤T

giλ

= max
0≤i≤T

inf
θ∈Θ

sup
P∈Bη(Pi|G)

Ep [ℓ (y, hθ (X))]

≤ max
0≤i≤T

inf
θ∈Θ

sup
Pµ:∥µ−µi∥≤2η

EPµ [ℓ (y, hθ (X))] . (39)

If we consider the (0− 1)-loss function and the set of linear classifiers with a d-dimensional vector
ω, where ∥ω∥2 = 1, then we have:

ℓ (y, hθ (X)) = 1 (y⟨ω,X⟩ ≤ 0) (40)

hence we can write

EPµ [ℓ (y, hθ (X))] = Pµ (y⟨ω,X⟩ ≤ 0) = Pµ

(
y⟨ω,X⟩

σ
≤ 0

)
. (41)

We know that if (X, y) ∼ Pµ then z = y⟨ω,X⟩
σ ∼ N

(
⟨ω,µ⟩

σ , 1
)

. Therefore we can extend
inequalities in (39) as follows:

g0λ (η) ≤ inf
θ∈Θ

sup
Pµ:∥µ−µ0∥≤2η

EPµ [ℓ (y, hθ (X))]

≤ inf
ω∈Rd:∥ω∥2=1

sup
µ:∥µ−µ0∥≤2η

Q
(
⟨ω,µ⟩

σ

)
= inf

ω∈Rd:∥ω∥2=1
sup

v∈Rd:∥v∥≤2η

Q
(
⟨ω,µ0⟩

σ
+
⟨ω,v⟩
σ

)
≤ sup

v∈Rd:∥v∥≤2η

Q
(
∥µ0∥2
σ
− ∥v∥2

σ

)
≤Q

(
∥µ0∥2
σ
− 2η

σ

)
≤e−

(∥µ0∥2−2η)2

2σ2 , (42)

where the last inequality is true if we have:

η ≤ ∥µ0∥2
2

. (43)

Due to the above inequalities we have that η ≤ L
3 then we have the following:

gλ (η) ≤ e−
L2

18σ2 . (44)
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Based on the above results if we use Algorithm 1 (DRODA) when the distribution class G, is the
class of two labeled Gaussian generative model we have:

EPT
[ℓ (y, hθ∗ (X))] ≤ [gλ (2λ (·) + η)]

⃝T
(η) ≤ e−

L2

18σ2 , (45)

where the last inequality holds if we have:

2λe−
L2

18σ2 +
L

3
≤ L

2
→ λ ≤ L

12
e

L2

18σ2 .

We know that the error of the Bayes classifier in the target domain in the scenario of this example is

equal to e−
∥µT ∥22
2σ2 .

There is a point here that we should note. According to Lemma A.2, the last inequality in (39) is not
entirely correct because it is possible for the labels of all samples to be multiplied by −1. To address
this problem, we slightly modify our algorithm and replace the risk function as follows:

R (P, θ) = EP [ℓ (y, hθ(X))]→ R̃ (P, θ) = min {EP [ℓ (y, hθ(X))],EP [ℓ (−y, hθ(X))]} . (46)

If we change the risk function as in the above equation, we have:

giλ (η) = inf
θ∈Θ

sup
P∈Bη(P0|G)

R̃ (P, θ)

≤ inf
θ∈Θ

sup
Pµ:∥µ−µi∥≤2η∨

∥µ+µi∥≤2η

R̃ (Pµ, θ)

= inf
θ∈Θ

max
i∈{−1,+1}

sup
Pµ:∥iµ−µi∥≤2η

R̃ (Piµ, θ)

≤ inf
ω∈Rd:∥ω∥2=1

max
i∈{−1,+1}

sup
Pµ:∥iµ−µi∥≤2η

min

{
Q
(
⟨ω, iµ⟩

σ

)
,Q
(
−⟨ω, iµ⟩

σ

)}
= inf

ω∈Rd:∥ω∥2=1
sup

Pµ:∥µ−µi∥≤2η

Q
(∣∣ ⟨ω,µ⟩

σ

∣∣)
≤ e−

(∥µi∥2−2η)2

2σ2 . (47)

The above inequality means that the result of the algorithm DRODA, with this new risk function,
on the ith distribution has an error less than giλ either on Pi+1 or P−1

i+1. Here, P−1
i refers to the

distribution Pi with its labels flipped. On the other hand, from the definition of Wasserstein distance
in 2, for the class of distributions here, we have:

Wq
p,λ (Pi, Pi+1) =Wq

p,λ

(
P−1
i , P−1

i+1

)
. (48)

Based on the above statements the error of the output of the algorithm in the target domain can be
described as follows:

min{EPT
[ℓ (y, hθ∗ (X))] ,EPT

[ℓ (−y, hθ∗ (X))]} ≤ e−
L2

18σ2 , (49)

This implies that if we consider the labeling by the algorithm or multiply this labeling by -1, one of
these two will have an error bound as described above in the target domain. If we have one sample in
the target domain, we can choose the better classifier between these two with high probability.

Proof of Theorem 3.2. For the constrained version, the proof is similar to the one in Theorem 3.1.
Here, we present the proof for the unconstrained version of the compatibility function.

Due to [BM19] and [GK23] we know that the following holds for conntinuous ℓ and c

sup
P∈Bη(P0)

Ep [ℓ (y, hθ (X))] = inf
γ≥0

{
γη + EP0

[
sup
X′,y′

{
ℓ (y, hθ (X))− γ∥X −X ′∥2 − λγ|y − y′|

}]}
On the other hand If we set λ =∞ it will give a lower bound for the above quantity.

sup
P∈Bη(P0)

Ep [ℓ (y, hθ (X))] ≥ inf
γ≥0

{
γη + EP0

[
sup
X′

{
ℓ (y, hθ (X))− γ∥X −X ′∥2

}]}
(50)
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The Problem is that the (0 − 1)-loss is not continuous. To Address this problem, we introduce a
modified version of the (0− 1)-loss function. Let us define the (0− 1)-loss function for the class of
linear classifiers as follows:

ℓ (y, hθ (X)) = 1 (yhθ (X) ≤ 0)

= 1 (y⟨θ,X⟩ ≤ 0) . (51)

Now, we define the modified version of the (0− 1)-loss function, ℓα,β , as follows:

ℓ1α,β(x) = max{1− x− β

α
, 0},

ℓ2α,β(x) = min{ℓ1α,β(x), 1},
ℓα,β (y, hθ (X)) = ℓ2α,β (y⟨θ,X⟩) . (52)

From the above definitions, it can be seen that ℓα,−α is continuous and always less than or equal to
the (0− 1)-loss function. To provide a lower bound for gUC

λ , we consider the scenario where λ =∞
and replace the (0− 1)-loss function with ℓα,−α for some small positive α.

gUC
λ (η) = inf

θ∈Θ
sup

P∈Bη(Pµ)

Ep [ℓ (y, hθ (X))]

≥ inf
θ∈Θ

sup
P∈Bη(Pµ)

Ep [ℓα,−α (y, hθ (X))]

= inf
θ∈Θ

inf
γ≥0

{
γη + EPµ

[
max
X′

{
ℓα,−α (y, hθ (X))− γc

(
X,X ′)}]}. (53)

Now suppose that c
(
X,X ′) = ∥X −X ′∥2 and γ ≤ 1

α , then we can continue the above inequalities
as follows:

gUC
λ (η) ≥ inf

θ∈Θ
inf
γ≥0

{
γη + EPµ

[
max
X′

{
ℓα,−α (y, hθ (X))− γc∥X −X ′∥2

}]}
≥ inf

θ∈Θ
inf
γ≥0

{
γη + EPµ

[
ℓ1/γ,−α (y, hθ (X))

]}

≥ inf
γ≥0

{
γη +

e−
(∥µ∥2+α)2

2σ2

4γσ
+ e−

(∥µ∥2+α)2

2σ2

}
≥Ω

(
e−

(∥µ∥2+α)2

2σ2 +

√
η

σ
e−

(∥µ∥2+α)2

2σ2

)
. (54)

The above inequality holds for all α ≤

√
e
− |µ|2

2σ2

4ησ . Therefore, the bound is valid as we let α approach
zero. On the other hand if in some step i we have µi = L then we have:

gUC
λ (η) ≥ Ω

(
e−

L2

2σ2 +

√
e−

L2

2σ2 η

)
. (55)

A very important point of Theorem 3.2 is that, constraining the Wasserstein ball could significantly
improve the compatibility function gλ. For example, if we do not constrain the Wasserstein ball and
use gUC

λ for the gradual domain adaptation, we can not guarantee a good upper-bound for the expected
loss in the target domain, and if we use the proposed algorithm in this situation our upper-bound will
be worse than the following in the target domain:

EPT
[ℓ (y, hθ∗ (X))] ≤

[
gUC
λ (2λ (·) + η)

]⃝T

(
inf
θ∈Θ

sup
P∈Bη(P0)

EP [ℓ (y, hθ (X))]

)

≤ O
((

2λe
L2

2σ2

)2
η

1

2T + e
L2

2σ2

)
, (56)
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Algorithm 2: Non-asymptotic DRO-based Domain Adaptation (DRODA)
Params :Θ, G, p, q, λ, and η
Input :P0, {PiX }1:T
Initialize:

ε0 ←− η, µ̂0 ←− EP̂0
[yX]

∆∗
0, θ

∗
0 ←−

{
min
θ∈Θ

, argmin
θ∈Θ

}
sup

P=N(yµ,σ2Id)
∥µ−µ̂0∥≤ε0

EP [ℓ (y, hθ (X))] .

for i = 1, . . . , T − 1 do
P̂i ←− P̂iX (X)1

(
y = hθ∗

i−1
(X)

)
, ∀ (X, y) ∈ Z

µ̂i ←− EP̂i
[yX]

εi ←− η + σ

√
d log 2

δ

ni
+ σe

−∥µi∥
2
2

2σ2
(
1 + ∆∗

i−1

)
∆∗

i , θ
∗
i ←−

{
min
θ∈Θ

, argmin
θ∈Θ

}
sup

P=N(yµ,σ2Id)
∥µ−µ̂i∥≤εi

EP [ℓ (y, hθ (X))] .

Result: θ∗ ←− θ∗T−1

where, by increasing T , the upper bound will be independent of η. On the other hand if we constrain
the Wasserstein ball and use gCλ for the gradual domain adaptation, we can guarantee an upper-bound
as good as the following for the expected loss in the target domain:

EPT
[ℓ (y, hθ∗ (X))] ≤

[
gCλ (2λ (·) + η)

]⃝T

(
inf
θ∈Θ

sup
P∈Bη(P0)

EP [ℓ (y, hθ (X))]

)

≤ O
(
e−

(∥µ∥−2η)2

2σ2

)
. (57)

And the proof is complete.

Proof of Theorem 3.3. To prove this theorem, we first present the non-asymptotic version of Algo-
rithm DRODA in 2. As can be seen, we have made some modifications to the algorithm in 1 to
make it suitable for the non-asymptotic regime. The main idea is that, since we know the class of
distributions are Gaussian generative models with different means, in each step we define a ball in
which the mean of the distribution Pi is contained. To do this we first bound the distance between µ̂i
and µi. Where µ̂i is defined in the algorithm 1 and µi is the mean of ith distribution.

∥µ̂i − µi∥2 = ∥µ̂i − EPiX [µ̂i] + EPiX [µ̂i]− µi∥2
≤ ∥µ̂i − EPiX [µ̂i] ∥2 + ∥EPiX [µ̂i]− µi∥2
≤ I + II. (58)

To give an upper bound for I and II in the above inequality, we should first analyze the distribution
P̃i(X, y) = PiX (X)1(y = hθ∗

i−1
(X)). According to the theorem, Pi is a Gaussian generative model

with mean µi. Thus, if (X, y) ∼ Pi, we have w = yX ∼ N (µi, σ
2Id). Also, we know that hθ∗

i−1

is a linear classifier with parameter θ∗i−1 and error ∆∗
i . We know that, µ̃i = EP̃i

[yX] = EPiX [µ̂i].
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Therefore, we have:
µ̃i = EPiX [sign

(
⟨θ∗i−1,X⟩

)
X]

=
1

2
EN (µi,σ

2Id)[sign
(
⟨θ∗i−1,X⟩

)
X] +

1

2
EN (−µi,σ

2Id)[sign
(
⟨θ∗i−1,X⟩

)
X]

=
1

2
EN (µi,σ

2Id)[sign
(
⟨θ∗i−1,X⟩

)
X] +

1

2
EN (µi,σ

2Id)[sign
(
⟨θ∗i−1, (−X)⟩

)
(−X)]

= EN (µi,σ
2Id)[sign

(
⟨θ∗i−1,X⟩

)
X]

= EN (0,Id)[sign
(
⟨θ∗i−1, (µi + σu)⟩

)
(µi + σu)]

= µiEN (0,Id)[sign
(
⟨θ∗i−1, (µi + σu)⟩

)
] + σEN (0,Id)[sign

(
⟨θ∗i−1, (µi + σu)⟩

)
u], (59)

where for the first term in the last line of the above equations we have:
EN (0,Id)[sign

(
⟨θ∗i−1, (µi + σu)⟩

)
] = EN (µi,σ

2Id)[sign
(
⟨θ∗i−1,X⟩

)
]

= Pµi

(
⟨θ∗i−1,X⟩ > 0

)
− Pµi

(
⟨θ∗i−1,X⟩ < 0

)
= 1− 2Pµi

(
⟨θ∗i−1,X⟩ < 0

)
= 1− 2Pi

(
y⟨θ∗i−1,X⟩ < 0

)
= 1− 2∆i, (60)

where in the above equations Pµi
is a Gaussian probability distribution with mean µi and Covariance

matrix σ2Id. Now we should compute the the second term in the last line of equations 59. We know
that a zero mean Isotropic Gaussian random vector with identity covariance matrix is rotation invariant,
therefore we can write u = uθ θ̂

∗
i−1 + u⊥

θ , where uθ ∼ N (0, 1) and u⊥
θ ∼ N

(
0, σ2Id−1

)
, where

θ̂∗i−1 is a vector with norm 1 in the direction of θ∗i−1 and u⊥
θ belongs to the subspace perpendicular

to the θ∗i−1 and uθ is independent from u⊥
θ . Now for the second term in the last line of equations 59

we have:
EN (0,Id)[sign

(
⟨θ∗i−1, (µi + σu)⟩

)
u] =EN (0,Id)[sign

(
⟨θ∗i−1,µi⟩+ σuθ

)
u]

=θ̂∗i−1EN (0,1)[sign
(
⟨θ∗i−1,µi⟩+ σuθ

)
uθ]

+ EN (0,1)EN (0,Id−1)[sign
(
⟨θ∗i−1,µi⟩+ σuθ

)
u⊥
θ ]

=θ̂∗i−1EN (0,1)[sign
(
⟨θ∗i−1,µi⟩+ σuθ

)
uθ]

+ EN (0,1)[sign
(
⟨θ∗i−1,µi⟩+ σuθ

)
]EN (0,Id−1)[u

⊥
θ ]

=θ̂∗i−1EN (0,1)[sign
(
⟨θ∗i−1,µi⟩+ σuθ

)
uθ] + 0

=θ̂∗i−1EN (0,1)

[
uθ

∣∣∣∣uθ > −
⟨θ∗i−1,µi⟩

σ

]
− θ̂∗i−1EN (0,1)

[
uθ

∣∣∣∣uθ < −
⟨θ∗i−1,µi⟩

σ

]

=θ̂∗i−1


√

2
π e

−
⟨θ∗i−1,µi⟩

2

2σ2

1−∆i

 , (61)

where in the last line we use the fact that if uθ has normal distribution its conditional distribution on
uθ > − ⟨θ∗

i−1,µi⟩
σ and uθ < − ⟨θ∗

i−1,µi⟩
σ has truncated Gaussian distribution. Now we can continue

equations in 59 as follows:

µ̃i = µi (1− 2∆i) + θ̂∗i−1


√

2σ2

π e−
⟨θ∗i−1,µi⟩

2

2σ2

1−∆i

 , (62)

and for II in equation 58 we have:

∥µ̃i − µi∥2 = 2∆i∥µi∥2 +


√

2σ2

π e−
⟨θ∗i−1,µi⟩

2

2σ2

1−∆i

 . (63)
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Now we try to compute I in equation 58. For µ̂i we have:

µ̂i =
1

ni

ni∑
j=1

sign
(
⟨θ∗i−1,Xj⟩

)
Xj =

1

ni

ni∑
j=1

Zj , (64)

where Xj ∼ PiX come from a mixture of two Gaussian distribution where their means are in
µi and −µi. On the other hand distribution of sign

(
⟨θ∗i−1,Xj⟩

)
Xj is not different when we

have Xj ∼ N
(
µi, σ

2Id
)

from when Xj ∼ N
(
−µi, σ

2Id
)
. Therefore distribution of Zj =

sign
(
⟨θ∗i−1,Xj⟩

)
Xj when Xjs are come from PiX is not different from when Xjs are come from

N
(
µi, σ

2Id
)
. For simplicity in the rest of the proof we will drop the subscript j and use Z,X

instead of Zj ,Xj respectively. Now for the variable Z we have:

P
(
Z
∣∣⟨θ∗i−1,X⟩ > 0

)
= P

(
X
∣∣⟨θ∗i−1,X⟩ > 0

)
= P

(
µ+ σu

∣∣⟨θ∗i−1,µ⟩+ σ⟨θ∗i−1,u⟩ > 0
)
. (65)

Now suppose that we rotate the space such that the θ∗i−1 align to the first dimension of the space. We
know that the zero mean isotropic Gaussian is rotation invariant, therefore by this rotation distribution
of u doesn’t change. So we have:

P
(
Z
∣∣⟨θ∗i−1,X⟩ > 0

)
= P

(
µθ + σu

∣∣µθ1 + σu1 > 0
)
, (66)

where µθ is the rotated version of µ, and µθ1 and u1 are the first dimension of µθ and
u respectively. Due to the above equation if we name the random vector with distribution
P
(
µθ + σu

∣∣µθ1 + σu1 > 0
)
, Zθ, its first dimension is a truncated random variable and its other

dimensions are normal random variable and all of them are independent from each other. Therefore
due to [HJ14] and [Wai19] ∥Zθ − E [Zθ] ∥22 is a sub exponential random variable with parameters(
8
√
dσ2, 4σ2

)
. With the same method the random variable with distribution P

(
Z
∣∣⟨θ∗i−1,X⟩ < 0

)
is sub exponential random variable with parameters

(
8
√
dσ2, 4σ2

)
. Therefore we have:

E
[
eλ∥Z−E[Z]∥2

2

]
= (1−∆)E

[
eλ∥Z−E[Z]∥2

2

∣∣⟨θ∗i−1,X⟩ > 0
]
+∆E

[
eλ∥Z−E[Z]∥2

2

∣∣⟨θ∗i−1,X⟩ < 0
]
,

(67)

and ∥Z − E [Z] ∥22 is sub exponential with parameters
(
8
√
dσ2, 4σ2

)
. So with probability more

than 1− δ we have:

∥µ̂i − EPiX [µ̂i] ∥22 ≤E
[
∥µ̂i − EPiX [µ̂i] ∥22

]
+ σ2

(
d

ni
log

1

δ

) 1
2

≤ dσ2

ni
+ σ2

(
d

ni
log

1

δ

) 1
2

(68)

and therefore:

∥µ̂i − µi∥2 ≤ σ

√
d

ni
+ σ

(
d

ni
log

1

δ

) 1
4

+ 2∆i∥µi∥2 +


√

2σ2

π e−
⟨θ∗i−1,µi⟩

2

2σ2

1−∆i


≤ σ

√
d

ni
+ σ

(
d

ni
log

1

δ

) 1
4

+ 2∆i∥µi∥2 +
√

2σ2

π
e−

L2

4σ2

= ϵ̃i (69)
Based on the Algorithm 2 we have:

∆∗
i =min

θ∈Θ
sup

P=N(yµ,σ2Id)
∥µ−µ̂i∥≤εi

EP [ℓ (y, hθ (X))]

≤min
θ∈Θ

sup
P=N(yµ,σ2Id)
∥µ−µi∥≤εi+ε̃i

EP [ℓ (y, hθ (X))]

≤e−
L2

18σ2

(
1 +

2L

σ

(√
d

ni
+

(
d

ni
log

1

δ

) 1
4

+ 2
∆i−1L

σ
+ e−

L2

4σ2

))
(70)
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Therefore for the error in the target domain we have:

∆∗
T ≤ 2e−

L2

2σ2 +

(
d log 2T

δ

ni

) 1
4 T∑

i=1

(
4L2

σ2
e−

L2

18σ2

)i

. (71)

And the proof is complete.

Proof of Theorem 4.4. Since the proofs for both f+ and f− are the same, we ignore the superscript
and denote both functions simply by f . It should be noted that f : X → X , and we have dim (X ) = d.

for any given point X0 ∈ X and i ∈ [d], let ui (X0) denote the unitary direction vector of the
ith eigenvector (without any particular order) of the Jacobian matrix of f at position X0. Also,
let λi (X0) represent its corresponding eigenvalue. We drop the input argument x0 throughout the
remainder of the proof, for the sake of simplicity.

For a sufficiently small ∆ > 0, we consider a d-dimensional Parallelepiped that has the following
properties: i) it contains X0, ii) its edges are aligned with ui (X0)s for i ∈ [d], and iii) the probability
mass inside the Parallelepiped according to P1 is ∆. Let us call this Parallelepiped A (X0). Again,
we drop X0 for simplicity throughout the remainder of the proof.

Hence, for j ∈ {1, 2}, the probability mass of A with respect to Pj can be written as:

Pj (A) = Pj ({X : X ∈ A}) =
∫
A

dj(X)dX, (72)

where dj represents the density function of Pj with respect to Lebesgue measure. Suppose Â is the
image of A under the function f . For P1 and P2 satisfying the ϵ-smoothness property and a vector
δ ∈ X with ∥δ∥2 ≤ r (for sufficiently small r > 0), we have

C(∆) (1− ϵ) r ≤

∫
Nδ(A)

d1(X)dX∫
A
d1(X)dX

− 1 ≤ C(∆) (1 + ϵ) r

C(∆) (1− ϵ) r ≤

∫
Nδ(Â) d2(X)dX∫

Â
d2(X)dX

− 1 ≤ C(∆) (1 + ϵ) r. (73)

On the other hand, due to the fact that P2 = f#P1 the following holds:∫
Nδ(Â)

d2(X)dX =

∫
Nδ/λi

(A)

d1(X)dX +O
(
r2
)
, ∀δ ∈ X , ∥δ∥2 ≤ r. (74)

In the above inequality, the first order of r appears in the volume over which the integral is calculated.
This inequality directly results into the following bounds:

C(∆) (1− ϵ) r ≤

∫
Nδ(Â) d2(X)dX∫

Â
d2(X)dX

− 1

=

∫
Nδ/λi

(A)
d1(X)dX∫

A
d1(X)dX

− 1 +O
(
r2

∆

)
≤ C(∆) (1 + ϵ) r/λi +O

(
r2

∆

)
C(∆) (1− ϵ) r/λi ≤

∫
Nδ/λi

(A)
d1(X)dX∫

A
d1(X)dX

− 1

=

∫
Nδ(Â) d2(X)dX∫

Â
d2(X)dX

− 1 +O
(
r2

∆

)
≤ C(∆) (1 + ϵ) r +O

(
r2

∆

)
. (75)

Now based on Equations (73) and (75) we have the following:

1− 2ϵ−O
( r

∆

)
≤ λi ≤ 1 + 2ϵ+O

( r

∆

)
, ∀i ∈ {1, . . . , d}. (76)
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If we set r = ∆ϵ2 then we have:

1− 2ϵ ≤ λi ≤ 1 + 2ϵ, ∀i ∈ {1, . . . , d}. (77)

And the proof is complete.

Proof of Theorem 4.5. Based on the result of Theorem 4.4, we know that if P0 and P1 both have the
ϵ-smoothness property and P1 = f#P0, then the eigenvalues of the Jacobian matrix of f should not
be far from 1. Therefore, if we define F as the class of functions with such Jacobian matrices, then
we have:

sup
P∈Bη(P0|D)

EP [ℓ (y, h (X))] ≤ sup
P∈Bη(P0|F)

EP [ℓ (y, h (X))] , (78)

where Bη (P0|F) is defined mathematically as follows:

Bη (P0|F) ≜
{
P : P = f#P0, f ∈ F ,Wq

p,λ (P, P0) ≤ η
}
. (79)

Now suppose that for a point X0 ∈ Rd, we have ∥X0 − f (X0) ∥22 = ∆. In this case, we have the
following lemma:

Lemma A.3. Suppose that f is a function where the eigenvalues of its Jacobian matrix have the
following property:

1− 2ϵ ≤ λi ≤ 1 + 2ϵ, ∀i ∈ {1, . . . , d}, (80)

and there exists some point X0 ∈ Rd where ∥X0 − f (X0) ∥2 = ∆, then we have the followings:

∥E [f (X)−X] ∥2 ≥∆− 2ϵE [∥X −X0∥2] ,
∥f (X)−X∥2 ≤∆+ 2Rϵ, ∀X : ∥X −X0∥2 ≤ R,

∥f (X)−X∥2 ≥∆− 2Rϵ, ∀X : ∥X −X0∥2 ≤ R. (81)

Now based on the result of Lemma A.3, if we have E [∥X −X0∥2] ≤ R, then we have the followings:

∆− 2Rϵ ≤ ∥E [f (X)−X] ∥2 ≤ max
s∈{+1,−1}

inf
µ∈C(P s,Qs)

E (∥X − Y ∥2) , (82)

where Q is the distribution of Y = f (X), and P s = P (X|y = s). On the other-hand due to
Auxiliary lemma A.2, if λ > η then we have:

1

2
max

s∈{+1,−1}
inf

µ∈C(P s,Qs)
E (∥X − Y ∥2) ≤ inf

µ∈C(P,Q)
E (∥X − Y ∥2) ≤ η (83)

Therefore we have :
∆ ≤ 2η + 4Rϵ. (84)

Now suppose that hs is the classifier with minimum standard error δ. If we assume the region of the
space where this classifier misclassify as A and the distribution has the (C1, C2)− expansion then
we have :

inf
h∈H

sup
P∈Bη(P0|F)

EP [ℓ (y, h (X))] ≤P0 (N∆max (A))

≤ (1 + C1∆max)P (A)

≤ (1 + C1 (4Rϵ+ 2η))α. (85)

And the proof is complete.

2LC
(
P
∣∣∆,G

)
is a function that changes the label of a set whose measure, according to P , is at most ∆, so

that the resulting measure falls into the G class
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Algorithm 3: DRO-based Domain Adaptation For Expandable and Smooth Distributions
Params :Θ, G, p, q, λ, and η
Input :P0, {PiX }1:T
Initialize:

ε0 ←− η, P̂0 ←− P0

∆∗
0, θ

∗
0 ←−

{
min
θ∈Θ

, argmin
θ∈Θ

}
sup

P∈Bε0
(P0|F)

EP [ℓ (y, hθ (X))] .

for i = 1, . . . , T − 1 do
P̃i ←− PiX (X)1

(
y = hθ∗

i−1
(X)

)
, ∀ (X, y) ∈ Z

P̂i ←− LC
(
P̃i

∣∣∣∣∆∗
i−1,G

)
2

εi ←− 2λ∆∗
i−1 + η

∆∗
i , θ

∗
i ←−

{
min
θ∈Θ

, argmin
θ∈Θ

}
sup

P∈Bεi(P̂i|F)
EP [ℓ (y, hθ (X))]

Result: θ∗ ←− θ∗T−1

Proof of Theorem 4.6. We show for each θ ∈ Θ, RCDRL
(
θ; P̂0

)
is converging to RCDRL (θ;P0).

Assume F is the family of displacement functions; i.e. each f ∈ F is moving all the points within a
fixed vector δ. suppose we have n empirical samples from P0 named z1, z2, . . . , zn. Also Suppose
S+ contains indices of positive class samples and S− similarly for negative class samples. Then

RCDRL
(
θ; P̂0

)
= sup

f∈F

1

n

n∑
i=1

1 (yi⟨θ, fyi
(xi)⟩) < 0)− γc(xi, fyi

(xi))

=
1

n
sup
δ1

(∑
i∈S+

1 (⟨θ, δ1 + xi⟩) < 0)− γ∥δ1∥2

)

+
1

n
sup
δ2

(∑
i∈S−

1 (⟨θ, δ2 + xi⟩) > 0)− γ∥δ2∥2

)
Now just focus on positive class samples and we know the underlying distribution for each sample
is according to Gaussian distribution with parameters (µ, σ2I). It is obvious that for each θ, the
supremum is maximized when δ is in the same direction as θ. Then without loss of generality assume
∥θ∥2 = 1 and define m := |S+| and pi := ⟨xi, θ⟩. Also assume m = n

2 with high probability. Hence
we have:

1

m
sup
δ

(∑
i∈S+

1 (⟨θ, δ + xi⟩) < 0)− γ∥δ∥2

)
= sup

t≥0

(
#(pi < t)

m
− γt

)
(86)

Now if we consider RCDRL (θ;P0) for positive class samples the above expression would become:

sup
t≥0

P0[⟨θ,Xi⟩ < t]− γt

Note ⟨θ,Xi⟩ is one dimensional Gaussian distribution with parameters (⟨θ, µ⟩, σ2) and we denote
it’s CDF with Fθ(X). Using derivatives we have at the maximization point:

γ =
1√
2πσ2

exp(− (t− ⟨θ, µ⟩)2

2σ2
)

Then the maximization point is:

t = ⟨θ, µ⟩+ σ

√
2 log

1

γ
√
2πσ2
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Note t = ⟨θ, µ⟩ − σ
√
2 log 1

γ
√
2πσ2

doesn’t make the expression maximum because at that point

increasing t will increase the expression. Also note if γ > 1√
2πσ2

the supremum doesn’t exist which
means the optimum case is not moving any point.

Now we can use the uniform convergence of Fθ(X) and F̂θ(X). We have with probability at least
1− δ:

sup
t≥0

∣∣∣∣#(pi < t)

m
− P0[⟨θ,Xi⟩ < t]

∣∣∣∣ ≤ 4

√
log(m+ 1)

m
+

√
2

m
log

2

δ
< 4

√
2

m
log

4m

δ

Then for a fixed θ, with probability at least 1− δ we conclude:∣∣∣∣sup
t≥0

(
#(⟨xi, θ⟩ < t)

m
− γt

)
− sup

t≥0
(P0[⟨θ,Xi⟩ < t]− γt)

∣∣∣∣ < 8

√
2

m
log

4m

δ

Therefore we can conclude for a fixed θ, with probability at least 1− 2δ:∣∣∣RCDRL (θ;P0)−RCDRL
(
θ; P̂0

)∣∣∣ < 32

√
1

n
log

2n

δ

Now we can extend this bound for all θ ∈ Θ via quantization on θ. Assume that all of data points are
inside a R-Ball with high probability. if ∥θ1−θ2∥ < ϵ, ∥⟨xi, θ1⟩−⟨xi, θ2⟩∥ < ϵR and the close-form
answer of supt≥0 (P0[⟨θ,Xi⟩ < t]− γt) differs at most µϵ ≤ ϵR. Hence, with ϵ-covering of Θ we
conclude with probability 1− 2δ for each θ ∈ Θ:

∀θ ∈ Θ :
∣∣∣RCDRL (θ;P0)−RCDRL

(
θ; P̂0

)∣∣∣ < 4ϵR+ 32

√
1

n

(
d log

(
1 +

2

ϵ

)
+ log

2n

δ

)

< 64

√√√√ d

n
log

(
R

δ

√
n3

d

)

B Proofs for the Lemmas

proof of Lemma A.1. To establish this theorem, we must show that if we have two Gaussian generative
models, Pµ1

and Pµ2
, with densities f1 and f2, where ∥µ1 − µ2∥2 ≥ ζ, and ∥µ1 + µ2∥2 ≥ ζ, then

the Wasserstein distance between these two distributions has a non-zero lower bound. Building on
the result of Lemma A.2, if we set p = 2 and q = 1, for any λ ≥ 0, we have:

Wc (f1, f2) ≥
1

2
min

i,j∈{−1,+1}
W1

2,λ

(
f1X|y=i, f2X|y=j

)
=
1

2
min {∥µ1 − µ2∥2, ∥µ1 + µ2∥2}

≥ζ

2
, (87)

This concludes the proof.

Proof of Lemma A.2. The Wasserstein distance between two distributions P and Q which are both
supported over Z is defined as

Wc̃ (P,Q) ≜ inf
ρ∈Ω(P,Q)

E(X,y,X′,y′)∼ρ

(
c̃(X, y;X ′, y′)

)
, (88)

where Ω(P,Q) denotes the set of all couplings (i.e., joint distributions) on Z2 that have P and Q as
their respective marginals. Based on the above definition, the distance between Pµ1

and Pµ2
can be
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attained via the following formula:

Wc̃

(
Pµ1

, Pµ2

)
= inf

ρ∈Ω(f1,f2)

∑
y,y′

∫
c̃(X, y;X ′, y′)ρ(X, y,X ′, y′)dXdX ′ (89)

= inf
ρ∈Ω(f1,f2)

1

2

∑
y′

∫
c̃(X, 1;X ′, y′)ρ(X ′, y′|X, y = 1)f1(X|y = 1)dXdX ′

+
1

2

∑
y′

∫
c̃(X,−1;X ′, y′)ρ(X ′, y′|X, y = −1)f1(X|y = −1)dXdX ′,

where due to the definition of Pµ1
, we have that f1(X|y) is the density function of a Gaussian

distribution with mean yµ1 and covariance matrix σ2I . Regarding the density function ρ in equation
(89), we have the following set of constraints:

i) f2(X
′, y′) =

1

2

∫
ρ(X ′, y′|X, y = 1)f1(X|y = 1)dX

+
1

2

∫
ρ(X ′, y′|X, y = −1)f1(X|y = −1)dX, ∀X ′, y′. (90)

ii)
∑

y′∈{±1}

∫
ρ(X ′, y′|X, y = 1)dX ′ = 1, ∀X. (91)

iii)
∑

y′∈{±1}

∫
ρ(X ′, y′|X, y = −1)dX ′ = 1, ∀X. (92)

Let us define a non-negative function ρ̃ as follows:

ρ̃(X,X ′, y′) ≜
1

2

ρ(X ′, y′|X, y = −1)f1(X|y = −1)
f1(X|y = 1)

+
1

2
ρ(X ′, y′|X, y = 1). (93)

It should be noted that ρ̃ may not even be a probability density since it may not integrate into one
over all possible values of X,X ′ and y′. In any case, for this function (i.e., ρ̃), we have:

(∗)
∫

ρ̃(X,X ′, y′)f1(X|y = 1)dX = f2(X
′, y′), ∀X ′, y′. (94)

(∗∗)
∑

y′∈{±1}

∫
ρ̃(X,X ′, y′)dX ′ =

1

2

(
1 +

f1(X|y = 1)

f1(X|y = −1)

)
, ∀X. (95)

Therefore, if there exists a joint density ρ that satisfies the set of constraints i), ii) and iii) (respectively
defined in (90), (91), and (92)), then there also exists a function ρ̃ that satisfies the set of constraints
in (*) and (**) as defined in (94) and (95), respectively. Additionally, since we know that f1 is a
non-negative function, we can further relax the conditions as follows:

∫
ρ̃(X,X ′, y′)f1(X|y = 1)dX ≥ f2(X

′, y′), ∀X ′, y′. (96)∑
y′∈{±1}

∫
ρ̃(X,X ′, y′)dX ′ ≥ 1

2
, ∀X. (97)

Therefore, the constraints in (96) and (97) are relaxed versions of the constraints in (90), (91),
and (92). Let us denote the set of all non-negative functions ρ̃ that satisfy the (newer versions of)
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conditions (*) and (**) with Π. Then, we have:

Wc̃

(
Pµ1

, Pµ2

)
= inf

ρ∈Ω(f1,f2)

1

2

∑
y′

∫
c̃(X, 1;X ′, y′)ρ(X ′, y′|X, y = 1)f1(X|y = 1)dXdX ′

+
1

2

∑
y′

∫
c̃(X,−1;X ′, y′)ρ(X ′, y′|X, y = −1)f1(X|y = −1)dXdX ′

= inf
ρ∈Ω(f1,f2)

1

2

∑
y′

∫
c(X,X ′)ρ(X ′, y′|X, y = 1)f1(X|y = 1)dXdX ′

+
1

2

∑
y′

∫
c(X,X ′)ρ(X ′, y′|X, y = −1)f1(X|y = −1)dXdX ′

+
λ

2

(
ρ(y′ = −1

∣∣y = 1) + ρ(y′ = 1
∣∣y = −1)

)
≥ inf

ρ∈Ω(f1,f2)

1

2

∑
y′

∫
c(X,X ′)ρ(X ′, y′|X, y = 1)f1(X|y = 1)dXdX ′

+
1

2

∑
y′

∫
c(X,X ′)ρ(X ′, y′|X, y = −1)f1(X|y = −1)dXdX ′,

which due to the definition of Π and its discussed properties imply the following bound on the
Wasserstein distance between f1 and f2:

Wc̃

(
Pµ1

, Pµ2

)
≥ Ŵc (f1, f2)

≜ inf
ρ̃∈Π

∑
y′

∫
c(X,X ′)ρ̃(X,X ′, y′)f1(X|y = 1)dXdX ′

= inf
ρ̃∈Π

∫
c(X,X ′)

∑
y′

ρ̃(X,X ′, y′)

 f1(X|y = 1)dXdX ′

= inf
ρ̃∈Π

∫
c(X,X ′)ρ̃(X,X ′)f1(X|y = 1)dXdX ′, (98)

where ρ̃(X,X ′) is defined as

ρ̃(X,X ′) ≜
∑
y′

ρ̃(X,X ′, y′). (99)

The rest of the proof proceeds by trying to find a proper structure for Π. In order to do so, let us
define Π⊕ as the following set:

Π⊕ ≜

 ∑
i∈{1,2}

∑
y′∈{±1}

ρ̃i (·, ·, y′)
∣∣∣∣ ρ̃1, ρ̃2 ∈ Π

 ⊆ RX×X
+ . (100)

Then, it can be readily seen that the following bound can be established:

Wc̃

(
Pµ1

, Pµ2

)
≥ Ŵc (f1, f2)

≥ 1

2
inf

ζ∈Π⊕

∫
c(X,X ′)ζ(X,X ′)f1(X|y = 1)dXdX ′. (101)
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Also, we should keep in mind that each ζ in Π⊕ has the following properties:

∀ζ ∈ Π⊕ → ∃ρ̃1, ρ̃2 ∈ Π : ζ
(
X,X ′) = ∑

y′∈{±1}

∑
i=1,2

ρ̃i
(
X,X ′, y′

)
, ∀X,X ′, (102)

i)

∫
ζ
(
X,X ′) f1(X|y = 1)dX

=
∑

y′∈{±1}

∫ [
ρ̃1
(
X,X ′, y′

)
+ ρ̃2

(
X,X ′, y′

)]
f1(X|y = 1)dX = 2f2

(
X ′) , ∀X ′,

ii)

∫
ζ
(
X,X ′) dX ′

=
∑

y′∈{±1}

∫ [
ρ̃1
(
X,X ′, y′

)
+ ρ̃2

(
X,X ′, y′

)]
dX ′ ≥ 1, ∀X,

which hold due to (96) and (97). Now, we define two more sets, denoted by Π−,Π+ ⊆ RX×X

according to the following definitions. For s ∈ {±}, let us define:

∀ξ ∈ Πs : ∃ρ̃ ∈ Π→ ξ
(
X,X ′) = ∑

y′∈{±1}

ρ̃
(
X,X ′, y′

)
,

∑
y′′∈{±1}

∫
ρ̃(X,X ′, y′′)f1(X|y = 1)dX ≥ f2(X

′|y′ = s), ∀X ′,

∑
y′∈{±1}

∫
ρ̃(X,X ′, y′)dX ′ ≥ 1, ∀X. (103)

What remains to do is to show that for any ζ in Π⊕, there exists at least a pair (ξ−, ξ+) ∈ Π− ×Π+

such that ζ ≥ (ξ− + ξ+) /2 everywhere in X 2. This can be easily verified by seeing that since we
have:

2f2
(
X ′) = f2

(
X ′|y′ = 1

)
+ f2

(
X ′|y′ = −1

)
, (104)

the constraints for ζ ∈ Π⊕ which are derived in (102) always hold for average between any two
members of the due (Π−,Π+). Therefore, we can further bound the Wasserstein distance between f1
and f2 via the following chain of inequalities:

Wc̃

(
Pµ1

, Pµ2

)
≥ Ŵc (f1, f2) (105)

≜ inf
ρ̃∈Π

∫
c(X,X ′)ρ̃(X,X ′)f1(X|y = 1)dXdX ′

≥ 1

2
inf

ζ∈Π⊕

∫
c(X,X ′)ζ(X,X ′)f1(X|y = 1)dXdX ′

≥ 1

2
inf

ξ±∈(Π±)

∫
c(X,X ′)

[
ξ+(X,X ′) + ξ−(X,X ′)

2

]
f1(X|y = 1)dXdX ′

≥ 1

2
min

s∈{±1}
inf
ξ∈Πs

∫
c(X,X ′)ξs(X,X ′)f1(X|y = 1)dXdX ′.

For any s ∈ {±1}, ξs
(
X ′,X

)
acts as a surrogate for ρ

(
X ′|X, y = 1, y′ = s

)
where ρ ∈ Ω (f1, f2).

However, the marginal and normalization equality constraints, i.e.,∫
ρ
(
X ′|X, y = 1, y′ = s

)
f1(X|y = 1)dX = f2

(
X ′|y′ = s

)
,∫

ρ
(
X ′|X, y = 1, y′ = s

)
= 1, (106)

have been relaxed and, in fact, replaced by inequalities. However, since the optimization problem
infξ∈Πs

is a linear program with both linear objective and constraints, the optimal point (if exists)
always occurs at the boundaries of the feasible set where constraints are active. The objective is
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non-negative and thus bounded below, thus the optimal point exists. On the other hand, neither of the
constraints are degenerate and hence they all become active. Therefore, we have

inf
ξ∈Πs

∫
c(X,X ′)ξs(X,X ′)f1(X|y = 1)dXdX ′ =Wc (f1 (·|y = 1) , f2 (·|y′ = s)) , (107)

and as a result, we have

Wc̃ (f1, f2)

≥ 1

2
min {Wc (f1(·|y = 1), f2 (·|y′ = 1)) , Wc (f1(·|y = 1), f2 (·|y′ = −1))} . (108)

Also, it should be noted that the whole proof can be re-written from the start with f1(·|y = −1)
instead of conditioning on y = 1. Therefore, the final bound can be written as

Wc̃ (f1, f2) ≥
1

2
max

i∈{±1}
min

j∈{±1}
Wc (f1 (·|y = i) , f2 (·|y′ = j)) , (109)

which completes the proof.

Proof of Lemma A.3. We write the Mean value theorem for the function f around X0 we have:

f (X) = f (X0) + Jf

(
X ′) (X −X0) , (110)

where Jf

(
X ′) is the Jacobian matrix of f in X ′, and X ′ is a point between X0 and X . From the

properties of Jf in the lemma, we can continue the above inequalities as follows:

f (X)−X = f (X0)−X0 +
(
Jf

(
X ′)− Id

)
(X −X0) , (111)

where Id is the d× d identity matrix. Now we have:

∥E [f (X)−X] ∥2 ≥ ∥f (X0)−X0∥2 − ∥E
[(
Jf

(
X ′)− Id

)
(X −X0)

]
∥2

≥∆− 2ϵE [∥X −X0∥2] . (112)

We also can continue equation 111 as follows:

∥f (X)−X∥2 ≤ ∥f (X0)−X0∥2 + 2ϵ∥X −X0∥2
≤ ∆+ 2Rϵ,

∥f (X)−X∥2 ≥ ∥f (X0)−X0∥2 − 2ϵ∥X −X0∥2
≥ ∆− 2Rϵ (113)

Which completes the proof.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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