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Abstract

Positional and structural encodings (PSE) enable
better identifiability of nodes within a graph, ren-
dering them essential tools for empowering mod-
ern GNNs, and in particular graph Transformers.
However, designing PSEs that work optimally for
all graph prediction tasks is a challenging and
unsolved problem. Here, we present the Graph
Positional and Structural Encoder (GPSE), the
first-ever graph encoder designed to capture rich
PSE representations for augmenting any GNN.
GPSE learns an efficient common latent represen-
tation for multiple PSEs, and is highly transfer-
able: The encoder trained on a particular graph
dataset can be used effectively on datasets drawn
from markedly different distributions and modali-
ties. We show that across a wide range of bench-
marks, GPSE-enhanced models can significantly
outperform those that employ explicitly computed
PSEs, and at least match their performance in oth-
ers. Our results pave the way for the development
of foundational pre-trained graph encoders for
extracting positional and structural information,
and highlight their potential as a more powerful
and efficient alternative to explicitly computed
PSEs and existing self-supervised pre-training ap-
proaches. Our framework and pre-trained models
are publicly available1. For convenience, GPSE
has also been integrated into the PyG library to
facilitate downstream applications.
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1. Introduction
Graph neural networks (GNN) (Scarselli et al., 2009) are the
dominant paradigm in graph representation learning (Hamil-
ton et al., 2017b; Bronstein et al., 2021), spanning di-
verse applications across many domains in biomedicine (Yi
et al., 2022), molecular chemistry (Xia et al., 2022), and
more (Dwivedi et al., 2022a; Hu et al., 2020a; 2021; Liu
et al., 2022). For most of its relatively short history, GNN al-
gorithms were developed within the message-passing neural
network (MPNN) framework (Gilmer et al., 2017), where
vertices exchange internal states within their neighborhoods
defined by the typically sparse graph structure. This stan-
dard MPNN framework has several fundamental limits, such
as the 1-WL bounded expressiveness (Xu et al., 2019; Mor-
ris et al., 2019), under-reaching (Barceló et al., 2020), and
over-squashing (Alon & Yahav, 2021; Topping et al., 2022).
Leveraging the success of the Transformer model in natural
language processing (Vaswani et al., 2017), graph Trans-
former (GT) models were developed as a new paradigm for
GNNs to address the above limitations by attending to all
node pairs in a graph (Dwivedi & Bresson, 2021). This full
attention inevitably discards the inductive biases related to
the graph structure (Battaglia et al., 2018), which MPNNs
leverage well to excel. Consequently, positional and struc-
tural encodings (PSE) have played the quintessential role in
reintroducing such inductive biases, leading to the remark-
able success of GTs (Rampášek et al., 2022; Dwivedi &
Bresson, 2021; Chen et al., 2022; Ying et al., 2021).

While many different types of hand-crafted PSEs have been
proposed in the literature and used by various GT models,
there is no one-size-fits-all PSE that performs optimally for
all tasks. For example, random walk encodings are more
effective for molecular property prediction tasks (Rampášek
et al., 2022; Dwivedi et al., 2022b). Conversely, graph
Laplacian eigenvectors are more useful for tasks involving
long-range dependencies (Dwivedi et al., 2022c;a). More-
over, naively stacking different PSEs together does not yield
the expected gains. As a result, researchers have to rely on a
combination of heuristics, trial-and-error and domain know-
how to select the single best encoding for their respective
tasks. Developing a universal encoding that combines the
benefits of diverse hand-crafted PSEs is thus fundamental to
bringing the most performance out of existing GT models.
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Here, we present GPSE, an MPNN that is trained to extract
graph encodings as latent representations of diverse PSEs.
Once trained on a pre-training graph dataset by learning to
reconstruct different PSEs using only the graph structures,
GPSE can then extract PSE representations from any graph
dataset to augment GT models. However, designing an
MPNN that extracts PSE representations effectively poses
a fundamental challenge: Ensuring that the MPNN suffices
to capture properties necessitated by all target PSEs. First,
encodings derived from random walks require beyond 1-
WL expressivity (Li et al., 2020), while standard MPNNs
are known to be bound by 1-WL (Xu et al., 2019; Morris
et al., 2019). Second, graph Laplacian eigenvectors, espe-
cially those associated with low frequencies, need access to
a global view of the graph structure, which simple MPNNs
fail to capture (Fürer, 2010). Furthermore, naive solutions
to obtain global structural information, such as stacking
more MPNN layers, suffer from well-known issues of over-
smoothing and over-squashing (Alon & Yahav, 2021; Li
et al., 2019). Through careful architectural design, we miti-
gate the aforementioned pitfalls and successfully achieve the
goal of extracting rich representations from diverse PSEs.

GPSE represents a leap forward in building foundational
graph encoders as a one-stop shop for extracting general-
purpose PSEs from any graph, alleviating the burden of
trial-and-error-based feature engineering associated with
conventional PSEs. By demonstrating that GPSE is compu-
tationally efficient and highly performant on a large variety
of tasks, we usher in a new paradigm in graph learning
without manual PSE engineering and open up exciting op-
portunities toward more powerful PSE extractors.

We summarize our main contributions as follows.

1. We propose GPSE, the first attempt at training a foun-
dation graph encoder that extracts rich positional and
structural representations solely from graph structures,
which can be applied to any MPNN or GT model as a
replacement for explicitly constructed PSEs.

2. We show that GPSE provides significant performance
improvements over traditional hand-crafted PSEs
across a variety of benchmarks.

3. Through extensive experiments, we demonstrate that
GPSE is highly transferable across graphs of different
sizes, connectivity patterns, and modalities.

1.1. Related work

Several approaches have been proposed to overcome the
aforementioned limitations of standard MPNNs: Morris
et al. (2019) propose higher-order MPNNs, Gutteridge et al.
(2023) and Barbero et al. (2024) optimize information flow
on graphs through graph rewiring, while Ding et al. (2024)
draw inspiration from deep state-space models and RNNs.

Positional encodings were originally implemented as a se-
ries of sinusoidal functions in the Transformer model to
capture the ordinal position of words in a sentence (Vaswani
et al., 2017). However, capturing the positions of nodes in a
graph is harder, as nodes of a graph lack such a canonical
ordering. Many recent works on graph Transformers (GT)
thus use the graph Laplacian eigenvectors as the positional
encodings (Rampášek et al., 2022; Kreuzer et al., 2021),
which are direct analogues to the sinusoids in Euclidean
space (Spielman, 2012). Other methods for encoding po-
sitional information include electrostatic potential encod-
ings (Kreuzer et al., 2021), shortest-path distances (Ying
et al., 2021), and tree-based encodings (Shiv & Quirk, 2019).
Structural encodings, on the other hand, have been devel-
oped to encode rich local and global connectivity patterns
on graph-structured data. The random walk encoding, for
example, has shown great success when used with GTs,
particularly on small molecular graph benchmarks (Ram-
pášek et al., 2022; Dwivedi & Bresson, 2021; Dwivedi et al.,
2022b). Other notable structural encodings include the
heat kernel (Kreuzer et al., 2021; Mialon et al., 2021), sub-
graphs (Bouritsas et al., 2022; Zhao et al., 2022; Chen et al.,
2022), and node degree centralities (Ying et al., 2021).

PSEs are also useful for MPNNs, besides GTs. They
can be directly used as additional node features for an
MPNN (Dwivedi et al., 2022a; Lim et al., 2022; Wang
et al., 2022b). Other works designed approaches to pro-
cess the PSEs separately from the original node features.
For example, LSPE (Dwivedi et al., 2022b) processes the
PSEs with a separate channel and applies an auxiliary loss.
SignNet and BasisNet explicitly design components in the
prediction model to handle the graph Laplacian eigenvectors,
aiming to resolve the sign- and basis-ambiguity issues (Lim
et al., 2022). Despite this great amount of work in devel-
oping methods to better utilize hand-crafted PSEs, it is still
unclear how to systematically encode information from mul-
tiple types of PSEs to effectively augment GNNs for diverse
applications. GPSE thus represents the first of its kind in an
attempt to tackle this fundamental problem.

2. Methods
Our core idea is to train an MPNN as a graph encoder
to extract rich positional and structural representations of
any query graph based solely on its graph structure (Fig-
ure 1A). To achieve this, we design a collection of PSEs
encompassing a broad range of encodings and use them
as self-supervision to train the encoder via reconstruction
(Figure 1B). Once the encoder is trained, it can then be
used in inference mode to extract PSE representations for
augmenting any downstream dataset (Figure 1C).

For downstream tasks, we primarily use the powerful graph
Transformer model GPS (Rampášek et al., 2022) that lever-
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Figure 1. Overview of Graph Positional and Structural Encoder (GPSE) training and application.

ages the advantages of both the inductive bias of the local
message passing (Battaglia et al., 2018) and the expressive-
ness of the global attention (Vaswani et al., 2017). As it
has previously attained SOTA results on a variety of bench-
marks using hand-crafted PSEs, GPS is a natural baseline
model to demonstrate the effectiveness of GPSE. We also
validate GPSE for other graph Transformers & MPNNs in
our experiments, and thus show that utility of GPSE is not
bound to any particular architecture.

2.1. Self-supervision via positional and structural
encodings (PSE)

We design a diverse collection of six PSEs for GPSE to
learn against, including the Laplacian eigenvectors (4) and
eigenvalues (4), the electrostatic positional encodings (7),
the random walk structural encodings (20), the heat kernel
structural encodings (20), and the cycle counting graph
encodings (7). In short, positional encodings inform the
relative position of each node in the graph, while structural
encodings describe the local connectivity patterns around a
node (Figure 1B). See Appendix A for precise mathematical
definitions of all PSEs used in GPSE training.

2.2. GPSE architecture

At a high level, our GPSE model is an MPNN consisting
of stacked graph convolution blocks with residual gating,
and skip-connections in-between. The mathematical for-
mulation of the architecture can be found in Appendix B.1.
We illustrate below that this careful design enables GPSE

to excel at learning powerful PSE representations. Partic-
ularly, we present different architectural choices and how
they remedy the two key challenges of over-smoothing and
over-squashing (see Appendix C for technical details).

Evidence suggests that over-smoothing and over-squashing
in graph networks relate to the graph’s curvature (Topping
et al., 2022; Nguyen et al., 2022; Giraldo et al., 2022). For-
mulations of graph curvature (Forman, 2003; Ollivier, 2009;
Sreejith et al., 2016; Topping et al., 2022) aim to encode
how a node’s neighborhood looks like a clique (positive cur-
vature), a grid (zero curvature), or a tree (negative curvature).
A clique’s high connectivity leads to rapid smoothing, while
a tree’s exponentially increasing size of k-hop neighborhood
causes over-squashing. These phenomena are in competi-
tion, and negating both is impossible in an MPNN using
graph rewiring (architectures using modified adjacency for
node aggregation). However, there seems to be a sweet spot
where the two effects are not minimized by themselves, but
their sum is minimized. This minimum is sought in Giraldo
et al. (2022) and Nguyen et al. (2022). Some of our follow-
ing choices of architecture are justified by this search of a
sweet spot in the smoothing-squashing trade-off.

Deep GNN As several of the target PSEs, such as the
Laplacian eigenvectors, require having a global view of
the query graph, it is crucial for the encoder to capture
long-range dependencies accurately. To accomplish this, we
need to use an unconventionally deep MPNN with 20 layers.
However, if a graph network suffers from over-smoothing,
having this many layers will result in approximately uniform
node features (Oono & Suzuki, 2020; Li et al., 2019).
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Residual connections & gating mechanism A first attempt
at reducing the smoothing is to exploit the proven ability of
residual connections in reducing over-smoothing (Li et al.,
2019). Using a gating mechanism in aggregation helps re-
duce the over-smoothing even further. Indeed, gating allows
the network to reduce the weight of some edges and in the
limit effectively re-wire the graph by completely or partially
ignoring some edges. We argue that it is possible for gat-
ing to act as a graph sparsification device, which decreases
the graph curvature and have been shown to alleviate over-
smoothing (Giraldo et al., 2022; Rong et al., 2020).

Virtual node In addition, we use a virtual node
(VN) (Gilmer et al., 2017) to enable global message pass-
ing; as the virtual node has access to the states of all nodes,
it allows for (a) better representation of graph-level infor-
mation and (b) faster propagation of information between
nodes that are further apart, and thus faster convergence of
states. In technical terms, adding the virtual node drastically
increases the connectivity of the graph and in turn its curva-
ture (Appendix C, Prop. C.4), and consequently decreases
over-squashing. Alternatively, one can see that the Cheeger
constant (another measure of bottleneckness (Topping et al.,
2022)) of the graph increases after adding the virtual node.

Random node features One critical question is whether
an MPNN is expressive enough to learn all the target PSEs.
In particular, some PSEs, such as the Laplacian eigenvalues,
may require distinguishability beyond 1-WL (Fürer, 2010).
Despite the known 1-WL expressiveness limitation of a stan-
dard MPNN when using constant node features (Xu et al.,
2019; Morris et al., 2019), random node features can help
MPNNs surpass 1-WL expressiveness (Sato et al., 2021;
Abboud et al., 2021; Kanatsoulis & Ribeiro, 2022). Thus,
we base our encoder architecture on an MPNN coupled with
random input node features, as shown in Figure 1A.

We empirically validate that together, the above architectural
design choices lead to an effective graph encoder that finds
the balance between smoothing and squashing (§3.5), and
even has an elevated expressiveness due to random features
(§3.3). A detailed ablation study highlighting the impor-
tance of our architectural choices is available in Table H.1.

2.3. Training GPSE

Given a query graph structure G = (V, E), we first generate
a k-dimensional feature from a standard normal distribu-
tion for each node, X ∼ N (0, I), which is then passed
through the GPSE model to extract the final representations
(Figure 1A). The representations are then decoded into the
target PSEs using multiple independent MLP heads, one per
PSE (Figure 1B). We compute the reconstruction loss based
on the sum of ℓ1 and cosine similarity losses (Appendix B.2),
and optimize GPSE by minimizing this reconstruction loss.
Details about hyperparameters can be found in Table B.4.

Loss function The aforementioned combination of ℓ1 and
cosine similarity losses ensures that the model captures
both (1) the direction of a particular PSE as a signal on the
graph (via cosine similarity loss), and (2) the magnitude
of the PSE (via ℓ1 loss). From a graph signal processing
perspective, both types of information are crucial to describe
the characteristics of PSEs in the form of a graph signal.

Training dataset PCQM4Mv2 (Hu et al., 2021) is a typical
choice of pre-training dataset for molecular tasks. However,
since GPSE only extracts features from graph structures (e.g.,
methane, CH4, would be treated as the same graph as silane,
SiH4), the amount of training samples reduces to 273,920
after extracting unique graphs. Instead, we train GPSE with
MolPCBA (Hu et al., 2020a) with 323,555 unique molecular
graphs and an average number of 25 nodes. We randomly se-
lect 5% validation and 5% testing data fixed across runs, and
use the remaining data for training GPSE. An ablation study
on training datasets considered is available in Table H.5.

3. Experiments

Table 1. Held-out
PSE prediction per-
formance of GPSE
on 5% MolPCBA.

PSE R2 ↑
ElstaticPE 0.964
LapPE 0.973
RWSE 0.984
HKdiagSE 0.981
EigValSE 0.982
CycleSE 0.977

Overall 0.979

GPSE successfully predicts a wide
range of target PSEs The self-
supervised goal of GPSE is to learn
graph representations from which it
is possible to recover predefined po-
sitional and structural encodings. For
each PSE type, we quantify predic-
tion performance in terms of the coef-
ficient of determination (R2) scores,
as presented in Table 1. When
trained on a 5% (16,177) subset of
MolPCBA molecular graphs, GPSE
achieves 0.9790 average test R2 score
across the 6 PSEs. Further, we show that test performance
improves asymptotically as the number of training sam-
ples increases (§3.5), achieving 0.9979 average test R2

when trained on 90% (291,199) of unique MolPCBA graphs.
These results demonstrate the ability of GPSE to extract rich
positional and structural information from a query graph, as
well as its ability to learn from increasing amount of data.

3.1. Enhancing performance on molecular graph data

In these experiments, we demonstrate that GPSE provides
more performance improvements over traditional PSEs for a
wide range of GNN models. Additionally, we show compet-
itive performance achieved by GPSE against the complemen-
tary self-supervised learning (SSL) pre-training approaches.

GPSE-augmented GPS is highly competitive on molec-
ular graph benchmarks We compare the performance
of the GPS model augmented with our GPSE encodings
versus the same model using (a) no PSE, (b) random fea-
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Table 2. Performance in four molecular property prediction tasks, averaged over 10 seeds.
ZINC (subset) PCQM4Mv2 (subset) MolHIV MolPCBA

MAE ↓ MAE ↓ AUROC ↑ AP ↑
GCN (Kipf & Welling, 2017) 0.3670 ± 0.0110 – 0.7599 ± 0.0119 0.2424 ± 0.0034
GIN (Xu et al., 2019) 0.5260 ± 0.0510 – 0.7707 ± 0.0149 0.2703 ± 0.0023
CIN (Bodnar et al., 2021) 0.0790 ± 0.0060 – 0.8094 ± 0.0057 –
CRaWI (Toenshoff et al., 2021) 0.0850 ± 0.0040 – – 0.2986 ± 0.0025
PR-MPNNSIM (Qian et al., 2024) 0.0850 ± 0.0020 – 0.7950 ± 0.0090 –
K-ST SAT+RWSE (Chen et al., 2022) 0.1020 ± 0.0050 – – –
K-SG SAT+RWSE (Chen et al., 2022) 0.0940 ± 0.0080 – – –

K-ST SAT+GPSE 0.0830 ± 0.0023 – – –
K-SG SAT+GPSE 0.0873 ± 0.0008 – – –

GPS+rand 0.8766 ± 0.0107 0.4768 ± 0.0171 0.6210 ± 0.0444 0.0753 ± 0.0045
GPS+none 0.1182 ± 0.0049 0.1329 ± 0.0030 0.7798 ± 0.0077 0.2869 ± 0.0012
GPS+LapPE 0.1078 ± 0.0084 0.1267 ± 0.0004 0.7736 ± 0.0097 0.2939 ± 0.0016
GPS+RWSE 0.0700 ± 0.0040 0.1230 ± 0.0008 0.7880 ± 0.0101 0.2907 ± 0.0028
GPS+LapPE+RWSE 0.0822 ± 0.0040 0.1273 ± 0.0006 0.7719 ± 0.0129 0.2854 ± 0.0029
GPS+AllPSE 0.0734 ± 0.0030 0.1254 ± 0.0011 0.7645 ± 0.0236 0.2826 ± 0.0001

GPS+GPSE 0.0648 ± 0.0030 0.1196 ± 0.0004 0.7815 ± 0.0133 0.2911 ± 0.0036

tures as PSE, (c) LapPE and RWSE, and (d) concatenation
of PSEs from §2.1 on four common molecular property
prediction benchmarks (Dwivedi et al., 2022a; Hu et al.,
2020a; 2021). For ZINC (Gómez-Bombarelli et al., 2018)
and PCQM4Mv2 (Hu et al., 2020a), we use their subset
versions following Dwivedi et al. (2022a) and Rampášek
et al. (2022), respectively.

We first highlight that GPSE-augmented GPS achieves a
remarkable 0.0648 MAE on ZINC (Table 2), not only sig-
nificantly outperforming other PSEs but even challenging
SOTA results. Similarly, GPS+GPSE also achieves the best
result on PCQM4Mv2 amongst models that (a) are not en-
semble methods and (b) do not have access to 3D infor-
mation. These two strategies are highly engineering- and
domain-oriented, thus do not reflect their utilities on general
graph learning tasks, which we aim to demonstrate instead.

Moreover, we note that GPSE always performs better than,
or at least on par with, standard PSEs, while concatenat-
ing multiple PSEs (AllPSE/LapPE+RWSE) always leads to
worse performance than using individual PSEs. On ZINC &
PCQM4Mv2, GPSE improves results comfortably beyond
standard deviation, while in the worst case (e.g., MolHIV)
it recovers the best PSE result, with differences well within
a standard deviation. We discuss why GPSE works better on
some datasets than others in Appendix I.

GPSE as a universal PSE augmentation The utility of
GPSE encodings is not specific to GPS. In Table 2, we
show that GPSE also significantly enhances two variants
of SAT (Chen et al., 2022) on ZINC. Additionally, we show
that augmenting different MPNN methods and the graph
Transformer with GPSE universally results in remarkable
improvements on ZINC: 56.24% reduction in test MAE

on average compared to baselines that do not make use of
any PSE, outperforming all other PSEs and their combina-
tions (Table 3). Notably, concatenating LapPE and RWSE
does not yield any benefit beyond using either one of them,
demonstrating the intricacy of effectively leveraging infor-
mation from multiple PSEs. We additionally perform a
similar set of experiments on PCQM4Mv2 (Table H.2), and
obtain the same improvements over explicitly computed
PSEs, validating the success of GPSE further.

Feature augmentation using GPSE vs. SSL pre-training
Our GPSE feature augmentation is related to self-supervised
learning (SSL) pre-training approaches (Hu et al., 2020b;
You et al., 2020b; Xie et al., 2022; Xu et al., 2021) in that
both transfer knowledge from a large pre-training dataset to
another for downstream evaluation. However, our approach
is a substantial departure from previous SSL approaches in
two distinct aspects:

1. The trained GPSE model only serves as a feature extrac-
tor that can be coupled with any type of downstream
prediction model, which will be trained from scratch.

2. GPSE extracts representations solely from the graph
structure and does not make use of the domain-specific
features such as atom and bond types (Hu et al., 2020b),
allowing GPSE to be utilized on any graph dataset.

To compare the performance of SSL pre-training and GPSE
feature augmentation, we use the MoleculeNet (Wu et al.,
2018; Hu et al., 2020b) datasets. For the downstream model,
we use the identical GINE architecture (Hu et al., 2020b)
from Sun et al. (2022). Finally, the extracted representations
from GPSE are concatenated with the atom embeddings and
are then fed into the GINE model.
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Table 3. Six PSE augmentations combined with five different GNN models evaluated on ZINC (12k subset) dataset. Performance is
evaluated as MAE (↓) and averaged over 4 seeds.

GCN GatedGCN GIN GINE Transformer Avg. MAE reduction

none 0.288 ± 0.004 0.236 ± 0.008 0.285 ± 0.004 0.118 ± 0.005 0.686 ± 0.017 –

rand 1.277 ± 0.340 1.228 ± 0.012 1.239 ± 0.011 0.877 ± 0.011 1.451 ± 0.002 N/A
LapPE 0.209 ± 0.008 0.194 ± 0.006 0.214 ± 0.004 0.108 ± 0.008 0.501 ± 0.145 21.12%
RWSE 0.181 ± 0.003 0.167 ± 0.002 0.175 ± 0.003 0.070 ± 0.004 0.219 ± 0.007 42.75%
LapPE+RWSE 0.184 ± 0.008 0.163 ± 0.009 0.174 ± 0.003 0.082 ± 0.004 0.205 ± 0.007 41.32%
AllPSE 0.150 ± 0.007 0.143 ± 0.007 0.153 ± 0.006 0.073 ± 0.003 0.190 ± 0.008 50.85%
GPSE 0.129 ± 0.003 0.113 ± 0.003 0.124 ± 0.002 0.065 ± 0.003 0.189 ± 0.016 56.24%

Table 4. Performance on MoleculeNet datasets (scaffold split), evaluated in AUROC (%) ↑. Red indicates worse than baseline performance.

BBBP BACE Tox21 ToxCast SIDER ClinTox MUV HIV

Pr
e-

tr
ai

ni
ng

Self-supervised pre-trained (Hu et al., 2020b)† 68.8 ± 0.8 79.9 ± 0.9 76.7 ± 0.4 64.2 ± 0.5 61.0 ± 0.7 71.8 ± 4.1 75.8 ± 1.7 77.3 ± 1.0
GraphCL pre-trained (You et al., 2020b) 69.7 ± 0.7 75.4 ± 1.4 73.9 ± 0.7 62.4 ± 0.6 60.5 ± 0.9 76.0 ± 2.7 69.8 ± 2.7 78.5 ± 1.2
InfoGraph pre-trained (Wang et al., 2022a) 66.3 ± 0.6 64.8 ± 0.8 68.1 ± 0.6 58.4 ± 0.6 57.1 ± 0.8 66.3 ± 0.6 44.3 ± 0.6 70.2 ± 0.6
JOAOv2 pre-trained (Wang et al., 2022a) 66.4 ± 0.9 67.4 ± 0.7 68.2 ± 0.8 57.0 ± 0.5 59.1 ± 0.7 64.5 ± 0.9 47.4 ± 0.8 68.4 ± 0.5
GraphMAE (Hou et al., 2022) 72.0 ± 0.6 83.1 ± 0.9 75.5 ± 0.6 64.1 ± 0.3 60.3 ± 1.1 82.3 ± 1.2 76.3 ± 2.4 77.2 ± 1.0
GraphLoG (Xu et al., 2021) 72.5 ± 0.8 83.5 ± 1.2 75.7 ± 0.5 63.5 ± 0.7 61.2 ± 1.1 76.7 ± 3.3 76.0 ± 1.1 77.8 ± 0.8

N
o

pr
e-

tr
ai

ni
ng No augmentation (baseline) (Hu et al., 2020b) 65.8 ± 4.5 70.1 ± 5.4 74.0 ± 0.8 63.4 ± 0.6 57.3 ± 1.6 58.0 ± 4.4 71.8 ± 2.5 75.3 ± 1.9

GraphLoG augmented 65.6 ± 1.0 82.5 ± 1.2 73.2 ± 0.5 63.6 ± 0.4 60.9 ± 0.7 72.5 ± 3.5 72.4 ± 1.5 74.4 ± 1.5
LapPE augmented 67.1 ± 1.6 80.4 ± 1.5 76.6 ± 0.3 65.9 ± 0.7 59.3 ± 1.7 76.4 ± 2.3 75.6 ± 0.8 75.6 ± 1.1
RWSE augmented 67.0 ± 1.4 79.6 ± 2.8 76.3 ± 0.5 65.6 ± 0.3 58.5 ± 1.4 74.5 ± 4.4 75.0 + 1.0 78.1 ± 1.5
AllPSE augmented 67.6 ± 1.2 77.0 ± 4.4 75.9 ± 1.0 63.9 ± 0.3 63.0 ± 0.6 72.6 ± 4.3 67.9 ± 0.7 75.4 ± 1.5
GPSE augmented 66.2 ± 0.9 80.8 ± 3.1 77.4 ± 0.8 66.3 ± 0.8 61.1 ± 1.6 78.8 ± 3.8 76.6 ± 1.2 77.2 ± 1.5

† Best test performance reported out of four pre-training strategies (see Table H.7 for expanded results).

We note that GPSE-augmented GINE achieves the best per-
formance on three out of the eight MoleculeNet datasets
against previously reported performances (Table 4). More-
over, GPSE augmentation improves performance over the
baseline across all eight datasets, unlike some of the previ-
ously reported results that show negative transfer. Together,
these results corroborate with the findings from Sun et al.
(2022) that rich features can make up for the benefits of SSL
pre-training. In our case, the GPSE encodings act as the rich
features that contain positional and structural information
from the graphs.

We also highlight that the Table 4 results are achieved in
a setup where GPSE is at a comparative disadvantage: As
a general-purpose feature extractor trained on a separate
dataset, GPSE cannot leverage atom and bond features of
the downstream graphs unlike typical molecular graph SSL
methods. When GraphLoG (Xu et al., 2021) is similarly
used as a feature extractor only, for a fair comparison, it is
well outperformed by GPSE and even suffers from negative
transfer, highlighting the power of GPSE as a feature extrac-
tor. With this in mind, GPSE can potentially be combined
with other SSL methods to enhance them in future work.

3.2. Transferability across diverse graph benchmarks

GPSE can be used on arbitrary types of graphs as it is trained
using the graph structures alone, in contrast to the SSL pre-
training methods. Here, we show that GPSE is transferable

to general graph datasets beyond molecular data, even under
extreme out-of-distribution (OOD) cases.

Transferability to molecular graph sizes We use Peptides-
struct and Peptides-func from the Long Range Graph Bench-
mark (Dwivedi et al., 2022c) to test whether GPSE can still
work when the downstream (macro-)molecular graphs are
substantially larger than those used for training. Despite
this difference in graph sizes, GPSE outperforms explicitly
computed PSEs when used with GPS as well as a GCN archi-
tecture optimized for long-range benchmarks by Tönshoff
et al. (2023) (Table 5). More strikingly, GPS+GPSE chal-
lenges SOTA results for Peptides-struct, surpassing Graph
MLP-Mixer (He et al., 2022). The improved performance
emphasizes the ability of GPSE to better extract global infor-
mation from query graphs by providing a more informative
initial encoding for the global attention mechanism in GPS.

Transferability to graph connectivity patterns We further
test if GPSE generalizes to graph connectivity patterns dis-
tinct from its training dataset. Particularly, we use the super-
pixel graph benchmarking datasets CIFAR10 and MNIST
from Dwivedi et al. (2022a), which are k-nearest neighbor
graphs with k = 8, and employ connectivity patterns that
significantly differ from those found in molecular graph
datasets. Impressively, GPS+GPSE again achieves compara-
ble results against GPS + computed PSEs (Table 5).

Transferability to extreme OOD node-classification
benchmarks Taking the evaluation of GPSE one step fur-
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Table 5. OOD transferability of MolPCBA-trained GPSE to datasets that vary in graph size and connectivity patterns. Dataset information
and statistics are available in Appendix D.

Peptides-struct Peptides-func CIFAR10 MNIST
MAE ↓ AP ↑ ACC (%) ↑ ACC (%) ↑

Avg. # nodes 150.9 150.9 117.6 70.6
Avg. connectivity 0.022 0.022 0.069 0.117

GIN – – 55.26 ± 1.53 96.49 ± 0.25
GINE 0.3547 ± 0.0045 0.5498 ± 0.0079 – –
GatedGCN (Bresson & Laurent, 2017) 0.3420 ± 0.0013 0.5864 ± 0.0077 67.31 ± 0.31 97.34 ± 0.14
Graph MLP-Mixer (He et al., 2022) 0.2475 ± 0.0020 0.6920 ± 0.0054 72.46 ± 0.36 98.35 ± 0.10
DRew+GCN (Gutteridge et al., 2023) 0.2781 ± 0.0028 0.6996 ± 0.0076 – –
PR-MPNN (Qian et al., 2024) 0.2477 ± 0.0005 0.6825 ± 0.0086 – –

GCN+LapPE (Tönshoff et al., 2023) 0.2492 ± 0.0019 0.6218 ± 0.0055 – –
GCN+RWSE 0.2574 ± 0.0020 0.6067 ± 0.0069 – –
GCN+GPSE 0.2487 ± 0.0011 0.6316 ± 0.0085 – –

GPS+none 0.3817 ± 0.0207 0.6231 ± 0.0252 71.67 ± 0.01 98.05 ± 0.00
GPS+(RWSE/LapPE) (Rampášek et al., 2022) 0.2500 ± 0.0005 0.6535 ± 0.0041 72.30 ± 0.36 98.05 ± 0.13
GPS+AllPSE 0.2509 ± 0.0028 0.6397 ± 0.0092 72.05 ± 0.35 98.08 ± 0.12
GPS+GPSE 0.2464 ± 0.0025 0.6688 ± 0.0151 72.31 ± 0.25 98.08 ± 0.13

ther, we test its ability to provide useful information to
transductive node classification tasks, where the graphs con-
tain hundreds of thousands of nodes, which are completely
out of distribution from the GPSE training dataset. We use
both MPNN (GCN, GraphSAGE (Hamilton et al., 2017a),
GATv2 (Veličković et al., 2018; Brody et al., 2022)) and
graph Transformer baselines. Remarkably, on 8/10 model-
dataset combinations, GPSE attains the best or equal-best
result, as well as the best overall results, while LapPE per-
forms below the no-encoding baseline for MPNNs (Table 6).

Meanwhile, the indifference in performance on the Proteins
dataset for MPNNs is not unexpected, as the connectivity
structures of the protein interaction network do not con-
tribute to the proteins’ functions as meaningfully. Instead,
the identity of the proteins’ interacting partners is of im-
portance, commonly referred to as homophily in the graph
representation learning community (Zhu et al., 2020) or
more generally known as the Guilt-by-Association princi-
ple in network biology (Cowen et al., 2017). This result
provides valuable insights into the usefulness of GPSE as
an augmentation: It is more beneficial when the underlying
graph structure is informative for the downstream tasks.

3.3. Expressiveness of GPSE encodings

Given that GPSE can recover different PSEs so well (Ta-
ble 1), it is natural to wonder whether it boosts standard
MPNN expressiveness. We first confirm that GPSE encod-
ings surpass 1-WL distinguishability by observing a clear
visual separation of GPSE encodings on 1-WL indistinguish-
able graph pairs (Figure E.1). More information regarding
graph isomorphism, the WL test and their connections to
GNN expressivity is discussed in Appendix E.

Table 6. OOD transferability to OGB node classification bench-
marks. Best model in each model-dataset category is underlined,
best overall model for each dataset is indicated in bold.

arXiv Proteins
ACC (%) ↑ AUROC (%) ↑

GCN+none 71.62 ± 0.23 80.44 ± 0.56
GCN+LapPE 70.89 ± 0.20 80.38 ± 0.16
GCN+GPSE 71.70 ± 0.26 80.25 ± 0.19

SAGE+none 72.36 ± 0.43 80.35 ± 0.07
SAGE+LapPE 71.63 ± 0.16 80.27 ± 0.45
SAGE+GPSE 72.34 ± 0.19 80.14 ± 0.22

GAT(E)v2+none 71.69 ± 0.21 83.47 ± 0.13
GAT(E)v2+LapPE 71.30 ± 0.27 83.25 ± 0.05
GAT(E)v2+GPSE 72.17 ± 0.42 83.51 ± 0.11

Transformer+none 57.00 ± 0.79 73.93 ± 1.44
Transformer+LapPE 57.21 ± 0.25 74.05 ± 0.11
Transformer+GPSE 59.17 ± 0.21 74.67 ± 0.74

GPS+none 70.60 ± 0.28 69.55 ± 5.67
GPS+LapPE 70.62 ± 0.41 70.80 ± 4.14
GPS+GPSE 70.89 ± 0.36 72.05 ± 3.75

Table 7. Synthetic graph benchmarks with ten times stratified five-
fold CV evaluated on ACC (%) ↑.

CSL EXP
Train Test Train Test

GIN 10.0 ± 0.0 10.0 ± 0.0 49.8 ± 1.8 48.7 ± 2.2
GIN+rand 11.6 ± 3.7 12.7 ± 6.4 51.0 ± 2.0 51.3 ± 2.9
GIN+GPSE 98.2 ± 1.5 42.9 ± 7.9 84.6 ± 6.8 68.3 ± 7.5

GIN+LapPE 100.0 ± 0.0 92.5 ± 4.2 99.9 ± 0.2 99.5 ± 0.8
GIN+RWSE 100.0 ± 0.0 100.0 ± 0.0 99.7 ± 0.2 99.7 ± 0.6
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To rigorously and systematically illustrate the expressivity
of GPSE encodings further, we employ two synthetic bench-
marks (Dwivedi et al., 2022a; Abboud et al., 2021) that
require beyond 1-WL power, and use an MPNN model with
1-WL expressivity in GIN. Indeed, we find that GPSE pro-
vides extra power to the base MPNN to correctly distinguish
graph isomorphism classes (Table 7). This expressivity
boost by GPSE is particularly impressive, considering that
(1) GPSE is pre-trained on MolPCBA, whose graph struc-
tures are not designed to be 1-WL indistinguishable like
these synthetic graphs, and (2) naively adding random fea-
tures to the input does not provide the same improvement.

We further point out that, in fact, augmenting the base GIN
model using common PSEs like LapPE and RWSE readily
archives nearly perfect graph isomorphism classification,
corroborating with previous theoretical results on distance-
encodings (Li et al., 2020) and spectral invariants (Fürer,
2010). This finding partially explains why GPSE provides
additional power and also why previous methods using
LapPE achieve perfect classification on these tasks (He et al.,
2022). Finally, we note the performance difference between
LapPE/RWSE and GPSE is not unexpected, as random in-
put features only act as a patch to the MPNN expressivity
limitation, rather than fully resolving it. Thus, developing
more powerful and practically scalable GPSE models that
losslessly capture the latent semantics of various PSEs is a
vital avenue to explore in the future.

3.4. Efficiency & scaling of GPSE

We demonstrate the efficiency and scalability advantages of
GPSE over hand-crafted PSEs through two sets of scaling
experiments. In the first, we compare the computation time
for different PSEs against GPSE as we vary the number of
graphs, represented as a percentage of the MolPCBA dataset.
In the latter set of experiments, we instead generate four
datasets of 1000 synthetic graphs, but scale up the individ-
ual graph sizes in each dataset. Our results are presented
in Appendix G, where we show that GPSE is not only con-
siderably faster to compute than explicitly computing PSEs,
but also scales much better than explicit PSE computation
as both the number of graphs and graph sizes increase.

The benefit of GPSE further compounds and leads to orders-
of-magnitude faster computation times when we compute
and combine all PSEs required for a fair comparison
(AllPSE). One primary computational advantage of GPSE is
that its complexity remains unchanged at inference time, re-
gardless of the number of PSE types used to train the model.
In our study, we restricted ourselves to six different PSEs,
but future work could easily include more complex and spe-
cialized PSEs yet claim the same efficiency properties for
PSE extraction. However, for AllPSE, the computational
costs of stacking an increasing number of encodings would
quickly become untenable.
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Figure 2. Virtual node (VN), convolution type, and layers ablation
using 5% MolPCBA for training GPSE. The y-axis denotes the
GPSE average test R2 score over all six PSEs, as per Table 1.

3.5. Ablation studies

GPSE makes good use of depth and global message pass-
ing from the VN Despite the commonly known issue with
MPNN over-smoothing as the number of message passing
layers increases, we observe that GPSE does not oversmooth
thanks to the gating mechanism and the residual connections
in GatedGCN (Bresson & Laurent, 2017), benefiting from
both the global message passing by VN and the model depth
as indicated in Figure 2 and §2.2.

Downstream tasks benefit from the wide variety of PSEs
used in GPSE pre-training Since GPSE is trained to cap-
ture latent semantics for recovering a wide range of PSEs,
it mitigates the reliance on manually selecting task-specific
PSEs, a major shortcoming of graph Transformers such
as GPS and Graphormer (Ying et al., 2021). For instance,
RWSE typically performs well for molecular tasks, while
LapPE could be more useful for long-range dependency
tasks (Rampášek et al., 2022; Dwivedi et al., 2022c). In
Table H.4, we investigate whether a particular type of PSE
contributes more or less to GPSE by testing the downstream
performance of PCQM4Mv2 and MolHIV using different
variants of GPSE that excludes one type of PSE during train-
ing. We observe that excluding any type of PSE generally
reduces its performance in the downstream tasks, indicating
the usefulness of different PSEs’ semantics to the down-
stream tasks at various levels.

Asymptotic behavior with respect to the GPSE training
sample sizes We perform a scaling law experiment with
respect to the training sample sizes, from 5% to 80% of
the MolPCBA. As shown in Figure H.1, the test loss (Ap-
pendix B) reduces as the size of the training set increases.
This asymptotic behavior suggests that GPSE can further
benefit from the increasing amount of training data.
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The impact of pre-training dataset choice and fine-
tuning on GPSE performance We reevaluate the perfor-
mance of GPSE on PCQM4Mv2 and ZINC when trained on
several other choices of molecular graph datasets, includ-
ing GEOM (Axelrod & Gomez-Bombarelli, 2022), ZINC
250k (Gómez-Bombarelli et al., 2018), PCQM4Mv2 (Hu
et al., 2021), and ChEMBL (Gaulton et al., 2012). On
ZINC, GPSE performance is variable across different train-
ing datasets (Table H.5). Particularly, training GPSE on
ChEMBL and MolPCBA, two largest datasets here, re-
sults in much better performances than using other, smaller
datasets. The superior downstream performance achieved
using larger pre-training datasets aligns well with our asymp-
totic results above, where a larger amount of training sam-
ples results in a more accurate GPSE for capturing PSEs and
better downstream performance. However, we did not ob-
serve the same performance difference in the PCQM4Mv2-
subset downstream task, indicating that the training size is
not always the most crucial factor for good performance, an
observation similar to Sun et al. (2022).

Finally, we investigate whether fine-tuning the GPSE model
specifically on the downstream dataset could further im-
prove its downstream performance (Table H.5). Similar to
the above findings, we see that further fine-tuning GPSE may
help in a task-specific manner, generally providing slight
improvements on ZINC but less so on PCQM4Mv2. To-
gether, the fact that using different pre-training datasets (pro-
vided they are sufficiently diverse) and further fine-tuning
to specific downstream datasets having limited effects on
GPSE performance reemphasize that GPSE learns general
and transferable knowledge about various PSEs.

The success of GPSE as a general-purpose PSE encoding
raises important discussion points regarding its effectiveness.
Of particular interest is how and why GPSE outperforms
individual and concatenated PSEs, even under significant
distribution shifts. In Appendix I, we address several such
points to both shed light on several aspects regarding GPSE’s
effectiveness, and encourage future work towards a better
theoretical foundation of GPSE-like PSE extractors.

4. Conclusion
We have introduced GPSE, a unifying graph positional
and structural encoder for augmenting any graph learning
dataset while being applicable to all graph Transformers and
message-passing GNNs. GPSE extracts rich node encodings
by learning to predict a diverse collection of predefined
PSEs in the initial self-supervised training phase on a set
of unattributed graphs. We demonstrate the superior perfor-
mance of GPSE encodings over explicitly constructed PSEs
on a variety of graph learning benchmarks. Furthermore,
GPSE shows great transferability across diverse benchmark-
ing datasets and even challenges the SOTA on the Peptides-

struct long-range benchmark, whose graph structures are
vastly different from those in the MolPCBA dataset used to
train the GPSE model.

Our study proposes a powerful, transferable and scalable
alternative to hand-crafted PSEs to enhance GNNs. We
therefore hope our work will motivate a shift from the lim-
itations of PSE-based feature-engineering to developing
more powerful encoders and foundation models for PSEs as
feature extractors to advance the field of graph learning.

Limitations and future directions Despite the effective-
ness of our GPSE model, it is currently prohibitively large
to be trained on graph datasets with over one million graphs
efficiently. As GPSE exhibits data scaling laws, where it
asymptotically achieves perfect PSE recovery, it is a promis-
ing future direction to make GPSE more efficient and thus
allow it to be trained on billion scale molecular graph
datasets (Patel et al., 2020; Irwin et al., 2020).
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A. Positional and structural encoding tasks
The success of GPSE relies on reliably learning diverse positional and structural encodings (PSE) for graphs during training.
Here, we elaborate on the formulations of the PSEs introduced in §2.1.

We consider a simple undirected and unweighted graph G = (V, E) as a tuple of the vertex set V and the edge set E, with
no node or edge features. We denote the number of nodes and the number of edges as n = |V | and m = |E|, respectively.
Then, the corresponding adjacency matrix representing the graph G is a symmetric matrix M ∈ {0, 1}n×n, where Mij = 1
if (vi, vj) ∈ E and 0 otherwise. The graph Laplacian L is defined as

L = D − M (A.1)

where D ∈ Nn×n is a diagonal matrix whose entries correspond to the degree of a vertex in the graph, Dii = deg(vi) =
|N (vi)| = |{u|(vi, u) ∈ E}|.

The graph Laplacian is a real symmetric matrix, thus having a full eigendecomposition as

L = UΛU⊤ (A.2)

where, Λii = λi and U[:,i] = ui are the ith eigenvalue and eigenvector (an eigenpair) of the graph Laplacian. We follow the
convention of indexing the eigenpair from the smallest to the largest eigenvalue, i.e., 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. We further
denote Û (and analogously the subdiagonal matrix Λ̂) as the matrix of Laplacian eigenvectors corresponding to non-trivial
eigenvalues.

Û = U[:,{i|λi ̸=0}] (A.3)

Finally, we denote the (ℓ2) normalization operation as normalize(x) := x
∥x∥2

Laplacian eigenvector positional encodings (LapPE) LapPE is defined as the absolute value of the ℓ2 normalized
eigenvectors associated with non-trivial eigenvalues. We use the first four LapPE to train GPSE by default.

LapPEi = |normalize(Û[:,i])| (A.4)

The absolute value operation is needed to counter the sign ambiguity of the graph Laplacian eigenvectors, a known issue to
many previous works that use the Laplacian eigenvectors to augment the models (Dwivedi et al., 2022a; Lim et al., 2022).
However, common strategies to overcome the sign ambiguity issue such as random sign flipping (Dwivedi et al., 2022a)
or constructing sign invariant function (Lim et al., 2022) do not resolve our issue here as we are trying to recover the PEs
rather than using them as features.

We have, however, conducted an ablation study to find if better strategies may exist than taking the absolute value of the
eigenvectors. new set of experiments to demonstrate this aspect further. In this study, we pretrained four different versions
of GPSE using 5% MolPCBA-subset:

1. GPSE-abs takes the absolute value of the LapPE (default setting in our paper)

2. GPSE-noabs does not take the absolute value of the LapPE,

3. GPSE-signinvar uses a sign invariant loss function for LapPE by taking the minimum of the losses from both signs,

4. GPSE-SignNet uses a randomly initialized SignNet (Lim et al., 2022) model to generate sign invariant features as the
training target for GPSE.

Our results in Table H.6 indicate that using the default absolute handling of LapPE results in similar or better performance
than other strategies, indicating the effectiveness of using the absolute LapPE for training GPSE. Nevertheless, investigating
better strategies for learning invariant representations for eigenvectors is an interesting venue for future studies.

We additionally use the eigenvalues as a graph-level regression task for training GPSE.
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Electrostatic potential positional encodings (ElstaticPE) The pseudoinverse of the graph Laplacian L† has a physical
interpretation that closely relates to the electrostatic potential between two nodes in the graph G when each node is treated
as a charged particle (Kreuzer et al., 2021) and can be computed as

L† = UΛ†U⊤ = ÛΛ̂−1Û⊤ (A.5)

We further subtract each column of L† by its diagonal value to set zero ground state such that each node’s potential on itself
is 0.

Q = L† − diag(L†)1n (A.6)

The final ElstaticPE is a collection of aggregated values for each node, that summarizes the electrostatic interaction of a
node with all other nodes:

1. Minimum potential from vi to vj : ElstaticPE1(i) = min(Q[:,i])

2. Average potential from vi to vj : ElstaticPE2(i) = mean(Q[:,i])

3. Standard deviation of potential from vi to vj : ElstaticPE3(i) = std(Q[:,i])

4. Minimum potential from vj to vi: ElstaticPE4(i) = min(Q[i,:])

5. Standard deviation of potential from vj to vi: ElstaticPE5(i) = std(Q[i,:])

6. Average interaction on direct neighbors: ElstaticPE6(i) = mean
(
(MQ)[:,i]

)
7. Average interaction from direct neighbors: ElstaticPE7(i) = mean

(
(MQ)[i,:]

)
Random walk structural encodings (RWSE) Define the random walk matrix as the row-normalized adjacency matrix
P := D−1M. Then Pi,j corresponds to the one-step transition probability from vi to vj .

The kth RWSE (Dwivedi et al., 2022b) is defined as the probability of returning back to the starting state of a random walk
after exactly k step of random walks:

RWSEk = diag(Pk) (A.7)

Heat kernel diagonal structural encodings (HKdiagSE)

HKdiagSEk =
∑

i:λi ̸=0
e−kλinormalize(U[:,i])2 (A.8)

Cycle counting structural encodings (CycleSE) CycleSE encodes global structural information of the graph by counting
the number of k-cycles in the graph. For example, a 2-cycle corresponds to an undirected edge, and a 3-cycle corresponds to
a triangle.

CycleSEk = |{Cycles of length k}| (A.9)

CycleSE is used as a graph-level regression task for training GPSE.

Normalizing PSEs tasks Finally, we perform graph-wide normalization preprocessing step on each node-level PSE task
so that they have zero mean and unit standard deviation. This normalization step ensures all PSE targets are on the same
scale, making the training process more stable.
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B. Implementation details
B.1. GPSE computation

The GPSE model is built using a GatedGCN backbone (Bresson & Laurent, 2017) with PSE-specific MLP decoding heads.
GPSE uses random noise drawn from a 20-dimensional standard Gaussian as the input node features. The random features
are then projected to the match the hidden dimension, d, of the model, resulting in the hidden representations of the first
layer:

h
(0)
i = ReLU

(
xiWinp

)
(B.1)

where h
(0)
i ∈ R1×d indicates the hidden feature of node i in the first layer, Winp ∈ R20×d is the linear projection layer, and

xi ∼ N (0, I) ∈ R1×20 is the random noise. Next, the model enters L layers of GatedGCN convolution layers, where each
layer is defined as:

h
(l+1)
i = ReLU

(
h

(l)
i W

(l)
1 +

∑
j∈N (i)

σ
(

h
(l)
i W

(l)
2 + h

(l)
j W

(l)
3

)
⊙
(

h
(l)
j W

(l)
4

))
(B.2)

where W
(l)
1 , W

(l)
2 , W

(l)
3 , W

(l)
4 ∈ Rd×d are learnable parameters for layer l, σ is the sigmoid function, and ⊙ is the

elementwise multiplication operator. Finally, the processed hidden feature h
(L)
i is decoded via a two-layer MLP to predict

the kth node-level PSEs, such as LapPE and RWSE.

ŷi,k = ReLU
(

h
(L)
i Wk,1

)
Wk,2 (B.3)

where Wk,1 ∈ Rd×d and Wk,2 ∈ Rd×1 are learnable parameters for projecting the final hidden representation to the PSE
prediction. For graph-level PSEs, such as CycleSE, we use sum-pooling to reduce the hidden representations to graph-level
first, and similarly apply a two-layer MLP afterwards. Once trained, we apply GPSE to extract h(L) for the graphs in the
downstream dataset and use it in-place of the traditional PSEs. We set L to 20, and d to 512 for our final GPSE architecture.
We also present an ablation study on various architectural choices to demonstrate the effectiveness of our final model setting
(Table H.1).

B.2. GPSE training loss function

We use a combination of ℓ1 loss and cosine similarity loss for training GPSE using the PSE self-supervision defined in
Appendix A. More specifically, given M number of graphs, and K number of target PSE tasks, we compute the loss as
follows:

L =
K∑

k=1

M∑
i=1

[( |V (Gi)|∑
j=1

∣∣∣y(i)
j,k − ŷ

(i)
j,k

∣∣∣)+
(

1 −
|V (Gi)|∑

j=1
ỹ

(i)
j,k

˜̂y(i)
j,k

)]
(B.4)

where y
(i)
j,k, ŷ

(i)
j,k are the true and predicted values of the jth node of ith graph for the kth PSE task. ỹ and ˜̂y are the ℓ2

normalized version of y and ŷ, respectively. Note that in practice, we compute the loss over mini-batches of graphs rather
than over all of the training graphs.

B.3. Compute environment and resources

Our codebase is based on GraphGPS (Rampášek et al., 2022), which uses PyG and its GraphGym module (Fey & Lenssen,
2019; You et al., 2020a). All experiments are run using Tesla V100 GPUs (32GB), with varying numbers of CPUs from 4 to
8 and up to 48GB of memory (except for two cases: (i) 80GB of memory is needed when performing downstream evaluation
on MolPCBA, and (ii) 128GB is needed when pre-training GPSE on the ChEMBL dataset).

We recorded the run time for both the GPSE pre-computation and the downstream evaluation training loop using Python’s
time.perf_counter() function and reported them in Table B.1, B.2, B.3. We did not report the GPSE pre-computation
time for other downstream benchmarks since they are all within five minutes.
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B.4. Hyperparameters

B.4.1. DOWNSTREAM TASKS

In most of the downstream task hyperparameter searches, we followed the best settings from previous studies (Rampášek
et al., 2022), and primarily tuned the GPSE encoding parameters, including the GPSE processing encoder type, the encoded
dimensions, the input and output dropout rate of the processing encoder, and the application of batch normalization to the
input GPSE encodings. For completeness, we list all hyperparameters for our main benchmarking studies in Tables B.1
and B.2.

Table B.1. GPS+GPSE hyperparameters for molecular property prediction benchmarks
Hyperparameter ZINC (subset) PCQM4Mv2 (subset) MolHIV MolPCBA

# GPS Layers 10 5 10 5
Hidden dim 64 304 64 384
GPS-MPNN GINE GatedGCN GatedGCN GatedGCN
GPS-SelfAttn – Transformer Transformer Transformer
# Heads 4 4 4 4
Dropout 0.00 0.00 0.05 0.20
Attention dropout 0.50 0.50 0.50 0.50
Graph pooling mean mean mean mean

PE dim 32 128 20 48
PE encoder 2-Layer MLP 2-Layer MLP Linear Linear
Input dropout 0.50 0.50 0.30 0.30
Output dropout 0.00 0.20 0.10 0.10
Batchnorm yes no yes yes

Batch size 32 256 32 512
Learning rate 0.001 0.0002 0.0001 0.0005
# Epochs 2000 100 100 100
# Warmup epochs 50 5 5 5
Weight decay 1.00e-5 1.00e-6 1.00e-5 1.00e-5

# Parameters 292,513 6,297,345 573,025 9,765,264
PE precompute 2 min 1.5 hr 8 min 1.3 hr
Time (epoch/total) 10s/5.78h 102s/2.82h 121s/3.37h 185s/5.15h

MoleculeNet small benchmarks settings We used the default GINE architecture following previous studies (Hu et al.,
2020b), which has five hidden layers and 300 hidden dimensions. For all five benchmarks, we use the same GPSE processing
encoder settings as shown in Table B.4a.

CSL & EXP synthetic graph benchmarks settings We follow He et al. (2022) and use GIN (Xu et al., 2019) as the
underlying MPNN model, with five hidden layers and 128 dimensions. We use the same GPSE processing encoder settings
for both CSL and EXP as shown in Table B.4b.
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Table B.2. GPS+GPSE hyperparameters for transferability benchmarks
Hyperparameter Peptides-struct Peptides-func CIFAR10 MNIST

# GPS Layers 4 4 3 3
Hidden dim 96 96 52 52
GPS-MPNN GatedGCN GatedGCN GatedGCN GatedGCN
GPS-SelfAttn Transformer Transformer Transformer Transformer
# Heads 4 4 4 4
Dropout 0.00 0.00 0.00 0.00
Attention dropout 0.50 0.50 0.50 0.50
Graph pooling mean mean mean mean

PE dim 8 24 8 8
PE encoder Linear 2-Layer MLP 2-Layer MLP Linear
Input dropout 0.10 0.10 0.30 0.50
Output dropout 0.05 0.00 0.00 0.00
Batchnorm yes yes no no

Batch size 128 128 16 16
Learning rate 0.0005 0.0003 0.001 0.001
# Epochs 200 200 100 100
# Warmup epochs 10 10 5 5
Weight decay 1.00e-4 0 1.00e-5 1.00e-4

# Parameters 510,435 529,250 120,886 119,314
PE precompute 3 min 3 min 14 min 16 min
Time (epoch/total) 12s/0.65h 12s/0.67h 88s/2.44h 104s/2.90h

Table B.3. Downstream MPNN hyperparameters for node-level benchmarks.
Hyperparameter arXiv Proteins

MPNN SAGE GATEv2
# MPNN Layers 3 3
Hidden dim 256 256
Dropout 0.50 0.00

PE dim 32 32
PE encoder 2-Layer MLP Linear
Input dropout 0.50 0.40
Output dropout 0.20 0.05
Batchnorm no no

Learning rate 0.01 0.01
# Epochs 500 1000
Weight decay 0 0

# Parameters 534,888 910,448
PE precompute 8 sec 3 min
Time (epoch/total) 0.25s/0.07h 35s/9.40h
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Table B.4. GPSE processing encoder hyperparameters for MoleculeNet small benchmarks and synthetic WL graph benchmarks.
(a) MoleculeNet small benchmarks settings.

Hyperparameter

PE dim 64
PE encoder Linear
Input dropout 0.30
Output dropout 0.10
Batchnorm yes

Learning rate 0.003
# Epochs 100
# Warmup epochs 5
Weight decay 0

(b) Synthetic WL graph benchmarks settings.

Hyperparameter

PE dim 128
PE encoder Linear
Input dropout 0.00
Output dropout 0.00
Batchnorm yes

Learning rate 0.002
# Epochs 200
Weight decay 0
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C. Theory details
Message-passing GNNs have receptive fields that grow exponentially with the number of layers. Given two nodes, the
influence of one onto the other might become too weak over long graph distances, hindering the learning task. This
phenomenon has been referred to as over-squashing (Alon & Yahav, 2021). A similar problem also occurs as the number of
layers increases, where the nodes’ hidden representations become increasingly similar as the number of layers increase, also
known as over-smoothing (Li et al., 2019).

C.1. Relevance to GPSE

The over-smoothing and over-squashing problems are essential to overcome to effectively learn the positional and structural
encodings, especially for those that require global views of the graph. For example, the Laplacian eigenvector corresponding
to the first non-trivial eigenvalue, also known as the Fiedler vector, corresponds to the solution of the graph min-max cut
problem (Ding et al., 2001). Intuitively, this problem requires accessing the global view of the entire graph as it, colloquially,
aims to partition the entire graph into two parts with minimal connections.

A straightforward solution to incorporating more global information into the model is by stacking more message-passing
layers to increase the receptive field and thus effectively expose the model to information beyond the local structure.
However, simply stacking more message-passing layers easily leads to over-smoothing, where the messages of each node
become increasingly uniform as the number of layers increases. Our usage of the gating mechanism, along with residual
connections, effectively mitigates this issue while still exposing the model to more non-local information.

Meanwhile, the model may still have difficulty incorporating global information, even after fixing over-smoothing and
stacking more layers, due to over-squashing. Informally, over-squashing can be understood as the difficulty in losslessly
sending messages between two nodes across the network. This difficulty is primarily because there are only a few possible
routes between the two nodes compared to all other available routes to each of the nodes. We mitigate this problem using a
virtual node that serves as the global information exchange hub to enable global information exchange, bypassing the “few
routes” limitation.

C.2. Formal analysis

Definition C.1 (Over-squashing). The squashing of a GNN is measured by the influence of one node on the features of
another which we interpret as the partial derivative

∂h
(r+1)
i

∂xj

for h
(r)
i (x1, ..., xn) the r-th hidden feature at node i, and xj the input feature at node j. If this quantity converges to 0 as r

increases, then the network is said to suffer from over-squashing.

Another common problem with MPNNs is known as over-smoothing. It has often been observed that MPNNs with many
layers produce node features that are very close or even identical, which limits expressivity and prevents learning. This
stems from message-passing being equivalent to a local smoothing operation; too many smoothing iterations result in all
nodes converging to identical states.

Definition C.2 (Over-smoothing). The smoothing of a network can be measured by the norm (for example the ℓ1-norm) of
the state difference between neighbors, i.e. ∑

(i,j)∈E

|h(r)
i − h

(r)
j |

where the sum is taken over the edges of the graph. If this quantity converges to 0 as r increases, the network is said to
suffer from over-smoothing.

In the following section, we will refer to the relationships between over-squashing and over-smoothing with graph curvature.
There are many versions of graph curvature (Forman, 2003; Ollivier, 2009; Sreejith et al., 2016; Topping et al., 2022), all
closely related. Here we will only consider the balanced Forman curvature from Topping et al. (2022).

Definition C.3 (Graph curvature). For any edge (i, j) in a simple, unweighted graph G, its contribution to graph curvature
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is given by

Ric(i, j) = 2
di

+ 2
dj

− 2 + |#∆(i, j)|
(

2
max{di, dj}

+ 1
min{di, dj}

)
+ γmax

max{di, dj}

(
|#i

□| + |#j
□|
)

where #i
□ is the number of 4-cycles containing the node i (diagonals not allowed), #i

∆ is the number of 3-cycles containing
i, di is the degree of i and γmax is the maximum over nodes k of the number of 4-cycles that pass through the nodes i, j and
k.

It can then be shown that negative curvature causes over squashing (Topping et al., 2022; Nguyen et al., 2022) and positive
curvature causes over smoothing (Nguyen et al., 2022; Giraldo et al., 2022).

Next, we show that rewiring the graph by adding a virtual node increases the balanced Forman curvature of the graph at
most edges.

Proposition C.4. The balanced Forman Curvature is increased for most edges when adding a virtual node such that

Ric(i, j) − Ric+VN(i, j) ≤ 1
(di − δ)2 + di − δ

− 2δ

d2
i + di

,

where di is the degree of the most connected node of the edge (i, j) and δ = di − dj .

Proof. #□ is invariant when adding virtual node because it automatically creates diagonals in the new 4-cycles. Therefore,
γmax is also invariant. As for di, dj and #∆, they are all increased by 1:

Ric(i, j) − Ric+(i, j) ≈ 2
(

1
di

+ 1
dj

− 1
di + 1 − 1
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)
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)

−
(
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max{di, dj} + 1 + 1

min{di, dj} + 1

)
We can let di ≥ dj without loss of generality. The inequality is not influenced by the introduction of a virtual node:
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)
The number of triangles is upper bounded by the least connected node’s degree minus 1, |#∆| ≤ dj − 1. We then have:

Ric(i, j) − Ric+(i, j) ≤ 2
(

1
d2

i + di
+ 1

d2
j + dj

)
+ (dj − 1)

(
2

d2
i + di

+ 1
d2

j + dj

)
−
(

2
di + 1 + 1

dj + 1

)

= −2(di − 1)
d2

i + di
− dj − 2

d2
j + dj

+ (dj − 1)
(

2
d2

i + di
+ 1

d2
j + dj

)

= −2(di − 1 − dj + 1)
d2

i + di
− dj − 2 − dj + 1

d2
j + dj

= 1
d2

j + dj
− 2(di − dj)

d2
i + di

Let’s call the difference between the two nodes’ degrees δ. We get:

Ric(i, j) − Ric+(i, j) ≤ 1
(di − δ)2 + di − δ

− 2δ

d2
i + di

21



Graph Positional and Structural Encoder

This upper bound gives us a good insight on the general behavior of the curvature when adding a virtual node.

First case: The upper bound of the difference is negative for δ ̸= 0 and dj ̸= 1. This means that for the most cases, the
addition of the virtual node clearly increases the curvature.

Second case: The upper bound is positive for dj = 1 (ie. di − δ = 1). However, the isolated edges are not responsible for
bottleneckness. It is to be noted that such isolated edges never have negative curvature, neither before nor after the addition
of the virtual node. This is a direct consequence of the curvature definition.

Third case: The upper bound is positive for δ = 0. This comes as a surprise and might need future work. It is to be noted
that the upper bound tends toward 0 pretty quickly as (as 1

d2
i

), thus, by the nature of the upper bound, the addition of the
virtual node should still increase curvature for most of the cases where δ = 0.

Note that we didn’t include the 4-cycle term, because this term is inversely proportional to the number of triangles, and is
therefore equal to 0 when the number of triangle is maximal. Otherwise, as the number of triangle decreases, the upper
bound on the 4-cycle term increases, in a slower fashion. Thus, the upper bound still holds.
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D. Datasets

Table D.1. Task information for datasets used in transferability experiments.

Dataset Num. Num. Num. Pred. Pred. Num. Metricgraphs nodes edges level task tasks

ZINC-subset 12,000 23.15 24.92 graph reg. 1 MAE
CIFAR10 60,000 117.63 469.10 graph class. (10-way) 1 ACC
MNIST 70,000 70.57 281.65 graph class. (10-way) 1 ACC
MolHIV 41,127 25.51 27.46 graph class. (binary) 1 AUROC
MolPCBA 437,929 25.97 28.11 graph class. (binary) 128 AP
MolBBBP 2,039 24.06 25.95 graph class. (binary) 1 AUROC
MolBACE 1,513 34.09 36.86 graph class. (binary) 1 AUROC
MolTox21 7,831 18.57 19.29 graph class. (binary) 21 AUROC
MolToxCast 8,576 18.78 19.26 graph class. (binary) 617 AUROC
MolSIDER 2,039 33.64 35.36 graph class. (binary) 27 AUROC
PCQM4Mv2-subset 446,405 14.15 14.58 graph reg. 1 MAE
Peptides-func 15,535 150.94 153.65 graph class. (binary) 10 AP
Peptides-struct 15,535 150.94 153.65 graph reg. 11 MAE
CSL 150 41.00 82.00 graph class. (10-way) 1 ACC
EXP 1,200 48.70 60.44 graph class. (binary) 1 ACC
arXiv 1 169K 40M node class. (40-way) 1 ACC
Proteins 1 133K 1.2M node class. (binary) 112 AUROC

Table D.2. Classical graph properties of graph-level datasets used in transferability experiments.

Num. Num.
Density Connectivity Diameter

Approx.
Centrality

Cluster. Num.
nodes edges max clique coeff. triangles

ZINC-subset 23.15 24.92 0.101 1.00 12.47 2.06 0.101 0.006 0.06
CIFAR10 117.63 469.10 0.068 3.56 9.14 5.65 0.068 0.454 502.66
MNIST 70.57 281.65 0.116 3.71 6.83 5.56 0.116 0.478 316.65
MolHIV 25.51 27.46 0.103 0.927 11.06 2.02 0.103 0.002 0.03
MolPCBA 25.97 28.11 0.093 0.998 13.56 2.02 0.093 0.002 0.02
MolBBBP 24.06 25.95 0.114 0.950 10.75 2.03 0.114 0.003 0.03
MolBACE 34.09 36.86 0.070 1.00 15.22 2.10 0.070 0.007 0.10
MolTox21 18.57 19.29 0.157 0.976 9.37 2.02 0.159 0.003 0.03
MolToxCast 18.78 19.26 0.154 0.803 7.57 2.02 0.154 0.003 0.03
MolSIDER 33.64 35.36 0.103 0.856 12.45 2.02 0.120 0.004 0.04
PCQM4Mv2-subset 14.15 14.58 0.163 1.00 7.95 2.06 0.163 0.010 0.07
Peptides-func 150.94 153.65 0.022 0.990 56.42 2.00 0.022 0.000 0.001
Peptides-struct 150.94 153.65 0.022 0.990 56.42 2.00 0.022 0.000 0.001
CSL 41.00 82.00 0.100 3.98 6.00 2.10 0.100 0.050 4.10
EXP 48.70 60.44 0.054 0.00 1.00 2.00 0.054 0.000 0.00

D.1. Pre-training datasets

MolPCBA (Hu et al., 2020a) (MIT License) contains 400K small molecules derived from the MoleculeNet benchmark (Wu
et al., 2018). There are 323,555 unique molecular graphs in this dataset.

ZINC (Gómez-Bombarelli et al., 2018) (Apache 2.0 License) contains 250K drug-like commercially available small
molecules sampled from the full ZINC (Irwin et al., 2012) database. There are 219,2384 unique molecular graphs in this
dataset.

GEOM (Axelrod & Gomez-Bombarelli, 2022) (CC0 1.0 license) consists of 300K drug-like small molecules. There are
169,925 unique molecular graphs in this dataset.
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ChEMBL (Gaulton et al., 2012)2 (CC BY-SA 3.0 License) consists of 1.4M drug-like bioactive small molecules. There are
970,963 unique molecular graphs in this dataset.

PCQM4Mv2 (Hu et al., 2021) (CC BY 4.0 License) contains 3.4M small molecules from the PubChemQC (Nakata
& Shimazaki, 2017) project. The ground-state electronic structures of these molecules were calculated using Density
Functional Theory. There are 273,920 unique molecular graphs in this dataset.

D.1.1. EXTRACTING UNIQUE MOLECULAR GRAPH STRUCTURES

To extract unique molecular graphs, we use RDKit with the following steps:

1. For each molecule, convert all its heavy atoms to carbon and all its bonds to single-bond.
2. Convert the modified molecules into a list of SMILES strings.
3. Reduce the list to unique SMILES strings using the set() operation in Python.

D.2. Downstream evaluation datasets

ZINC-subset (Dwivedi et al., 2022a) (Custom license, free to use) is a 12K subset of the ZINC250K dataset (Gómez-
Bombarelli et al., 2018). Each graph is a molecule whose nodes are atoms (28 possible types) and whose edges are chemical
bonds (3 possible types). The goal is to regress the constrained solubility (Dwivedi et al., 2022a) (logP) of the molecules.
This dataset comes with a pre-defined split with 10K training, 1K validation, and 1K testing samples.

MolHIV & MolPCBA (Hu et al., 2020a) (MIT License) are molecular property prediction datasets derived from the
MoleculeNet benchmarks (Wu et al., 2018). Each graph represents a molecule whose nodes are atoms (9-dimensional
features containing atom type, chirality, etc.) and whose edges are chemical bonds. The goal for MolHIV is to predict
molecules’ ability to inhibit HIV virus replication as a binary classification task. On the other hand, MolPCBA consists
of 128 binary classification tasks that are derived from high-throughput bioassay measurements. Both datasets come with
pre-defined splits based on the scaffold splitting procedure (Hu et al., 2020b).

PCQM4Mv2-subset (Hu et al., 2021; Rampášek et al., 2022) (CC BY 4.0 License) is a subsampled version of
PCQM4Mv2 (Hu et al., 2021) using random 10% for training, 33% for validation, and the original validation set for
testing. The molecular graphs are processed the same way as for MolHIV and MolPCBA, where each node is an atom, and
each edge is a chemical bond. The task is to regress the HOMO-LUMO energy gap (in electronvolt) given the molecular
graph. We note that the subsetted splits used in this work could be different from those used in Rampášek et al. (2022) as the
numpy random generator may not be persistent across numpy versions3. To enable reproducibility, we also make our split
indices available for future studies to benchmark against.

MoleculeNet small datasets (Hu et al., 2020b) (MIT License) We follow Sun et al. (2022) and use the selection of five
small molecular property prediction datasets from the MoleculeNet benchmarks, including BBBP, BACE, Tox21, ToxCast,
and SIDER. Each graph is a molecule, and it is processed the same way as for MolHIV and MolPCBA. All these datasets
adopt the scaffold splitting strategy that is similarly used on MolHIV and MolPCBA.

Peptides-func & Peptides-struct (Dwivedi et al., 2022c) (CC BY-NC 4.0 License) both contain the same 16K peptide
graphs retrieved from SAT-Pdb (Singh et al., 2016), whose nodes are residues. The two datasets differ in the graph-level
tasks associated with them. Peptides-func aims to predict the functions of each peptide (10-way multilabel classification),
while Peptides-struct aims to regress 11 structural properties of each peptide. Splitting is done via meta-class holdout based
on the original labels of the peptides.

CIFAR10 & MNIST (Dwivedi et al., 2022a) (CC BY-SA 3.0 and MIT License) are derived from the CIFAR10 and MNIST
image classification benchmarks by converting the images into SLIC superpixel graphs with 8 nearest neighbors for each
node (superpixel). The 10-class classification and the splitting follow the original benchmarks (MNIST 55K/5K/10K,
CIFAR10 45K/5K/10K train/validation/test splits).

CSL (Dwivedi et al., 2022a) (MIT License) contains 150 graphs that are known as circular skip-link graphs (Murphy et al.,
2019). The goal is to classify each graph into one of ten isomorphism classes. The dataset is class-balanced, where each

2We used release 32 of ChEMBL: http://doi.org/10.6019/CHEMBL.database.32
3https://stackoverflow.com/a/71790820/12519564
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isomorphism class contains 15 graph instances. Splitting is done by stratified five-fold cross-validation.

EXP (Abboud et al., 2021) (unknown license) contains 600 pairs of graphs (1,200 graphs in total) that cannot be distinguished
by 1&2-WL tests. The goal is to classify each graph into one of two isomorphism classes. Splitting is done by stratified
five-fold cross-validation.

arXiv (Hu et al., 2020a) (ODC-BY License) is a directed citation graph whose nodes are arXiv papers and whose edges are
citations. Each node is featured by a 128-dimensional embedding obtained by averaging over the word embeddings of the
paper’s title and abstract. The goal is to classify the papers (nodes) into one of 40 subject areas of arXiv CS papers. Papers
published before 2017 are used for training, while the remaining papers that are published before and after 2019 are used for
validation and testing.

Proteins (Hu et al., 2020a) (CC0 License) is an undirected and weighted graph representing the interactions (edges) between
proteins (nodes) obtained from eight species. Each edge has eight channels, corresponding to different types of protein
interaction evidence. The task is to predict proteins’ functions (112-way multilabel classification). The splitting is done by
holding out proteins that correspond to specific species.
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E. Visualization of GPSE encodings on 1-WL indistinguishable graph pairs
Definition E.1 (Graph isomorphism). Two graphs G and H are isomorphic if there exists a bijection f between their vertex
sets

f : V (G) → V (H)

s.t. any two vertices u, v ∈ G are adjacent in G if and only if f(u), f(v) ∈ H are adjacent in H .
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Figure E.1. 2D PCA visualization of GPSE encodings on 1-WL indistinguishable graph pairs. Applying GPSE with randomly initialized
node features results in distinct encodings for HEXAGON (indigo) and PENTAGON (orange) graphs (left). The same graphs cannot be
distinguished by our encoder when the node features are set to 1 for each node (right).

The 1-Weisfeiler-Leman (WL) test is an algorithm akin to message-passing that is commonly used to detect non-isomorphic
graphs. It can also be viewed as a measure of expressivity: A GNN that can distinguish all pairs of non-isomorphic graphs
that can also be distinguished by the 1-WL test is called “1-WL expressive”.

In §3.3, we discussed that our GPSE is expressive enough to discern graphs that are 1-WL indistinguishable, a well-known
limitation of MPNNs (Xu et al., 2019). However, Sato et al. (2021) show that the 1-WL expressivity limitation exists only
when each node employs identical features; appending random features to the nodes is sufficient to achieve expressivity that
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goes beyond 1-WL. GPSE leverages precisely this property by replacing the node features by vectors drawn from a standard
normal distribution, such that no two graphs have identical node features.

Here, we demonstrate the importance of these random node features empirically. Consider the following two graphs
displayed in Figure E.1: One resembles two hexagons sharing an edge (referred to as HEXAGON), while the other
resembles two pentagons connected by an edge (PENTAGON). These are a well-known pair of non-isomorphic but 1-WL
indistinguishable graphs. Non-isomorphism implies that these graphs do not share the same connectivity (see Def. E.1 for a
formal definition). The WL test also has its limitations: While two graphs that are deemed non-isomorphic are guaranteed to
be so, there are cases where it cannot detect non-isomorphism as in the HEXAGON-PENTAGON case.

In our experiment, we create two sets of graphs, both consisting of 20 copies of HEXAGON and PENTAGON graphs each.
The two sets are identical except one has all node features set to 1, while the other has features drawn from a random Normal
assigned to each node, thus mirroring the actual GPSE training pipeline. We then apply an already trained GPSE encoder
(trained on ZINC) to both sets and for each graph we generate aggregated (graph-level) encodings by averaging the obtained
512-dimensional node encodings from GPSE. For visualization purposes, we then apply dimensionality reduction to these
graph-level encodings by first fitting a 2-dimensional PCA to GPSE encodings generated on ZINC, and then applying it to
the encodings from the synthetic data.

As shown in Figure E.1, applying GPSE to graphs with randomly initialized node features results in distinct encodings
for HEXAGON (indigo) and PENTAGON (orange) graphs (Fig. E.1, left). The same graphs cannot be distinguished by
our encoder when the node features are 1 for each node (Fig. E.1, right). The same result is observed when analysing the
graph-level PCA embeddings, that can clearly separate the two types of graphs when random node features are used by
GPSE, but not otherwise. This underlines the importance of randomized node features in GPSE.
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F. GPSE training and inference times

Table F.1. GPSE training times. Target PSE pre-computation included.

Training dataset Num. unique graphs Target PSE pre-comp time Time (epoch/total) Full training time

MolPCBA (default) 323,555 1.58h 596s / 19.88h 21.46h
PCQM4Mv2-full 273,920 0.87h 429s / 14.30h 15.17h
ZINC-full 219,384 0.89h 398s / 13.26h 14.15h
GEOM 169,925 0.78h 321s / 10.69h 11.47h
ChEMBL 970,963 5.97h 2509s / 83.65h 89.62h

Table F.2. GPSE inference times. LapPE and RWSE computation times are included for comparison. Missing entries are due to
experimental settings not included in the benchmarking experiments.

Dataset Num. graphs Time (GPSE) Time (LapPE) Time (RWSE)

ZINC-subset 12,000 6 sec 25 sec 11 sec
PCQM4Mv2-subset 446,405 3.57 min 3.88 min 7.32 min
PCQM4Mv2-full 3,746,620 31.15 min – 51 min *
MolHIV 41,127 23 sec 37 sec 58 sec *
MolPCBA 437,929 4.6 min 6.13 min 8.33 min *
Peptides 15,535 28 sec 73 sec * –
CIFAR10 60,000 2.15 min 2.55 min * –
MNIST 70,000 100 sec 96 sec * –
arXiv 1 4 sec – –
Proteins 1 6.68 min ** – –

* Obtained from the GPS paper
** Neighbor batched computation (batch size: 1024, neighbor sizes: 30, 20, 10, 5, . . . , 5)
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G. GPSE vs. conventional PSE scaling experiments

Table G.1. Runtimes of each PSE computation with respect to percentage of dataset used.
PSE / % MolPCBA 0.1% 0.3% 0.5% 0.8% 1% 3% 5% 8% 10% 25%

GPSE 1s 1s 1s 2s 3s 9s 15s 24s 32s 1m 16s
AllPSE 12s 46s 41s 1m 2s 1m 15s 4m 15s 7m 13s 12m 3s 14m 22s 39m 52s
LapPE 1s 1s 3s 3s 5s 15s 24s 35s 55s 1m 53s
RWSE 1s 1s 3s 3s 4s 17s 25s 36s 44s 1m 41s
ElstaticPE 1s 1s 2s 2s 3s 10s 20s 33s 53s 2m 12s
HKdiagSE 1s 1s 2s 3s 4s 11s 22s 31s 48s 3m 14s
CycleGE 6s 17s 28s 44s 58s 2m 57s 4m 35s 7m 12s 9m 15s 27m 20s

(a) GPSE + individual PSEs + combined PSEs
(AllPSE)

(b) GPSE + individual PSEs only (c) Log-log plot of GPSE + individual
PSEs + combined PSEs (AllPSE)

Figure G.1. Scaling of PSE computation time with respect to number of graphs as % of MolPCBA dataset used. Visualization of Table G.1.

Table G.2. Runtimes of each PSE computation with respect to average graph sizes in dataset. CycleGE is excluded both in itself and as
part of AllPSE, as cycle counting on large, dense and regular Erdős-Rényi graphs become computationally infeasible.

PSE / Graph size 100 300 500 1000

GPSE 1s 7s 27s 1m 29s
AllPSE (No CycleGE) 8s 44s 2m 15s 11m 20s
LapPE 2s 9s 250ms 34s 2m 35s
RWSE 2s 9s 760ms 31s 480ms 3m 27s
ElstaticPE 1s 500ms 10s 670ms 25s 30ms 2m 19s
HKdiagSE 2s 13s 44s 2m 44s

In these experiments, we measure and compare the computation time of GPSE with those of individual PSEs used in the
pre-training of the GPSE model, as well as their combination (AllPSE). We conducted two sets of experiments. In the first,
we used a dataset of similarly sized graphs in MolPCBA, but ran PSE computation for an increasing percentage of the
dataset (Figure G.1). In the second, we generated multiple datasets of 1000 synthetic (Erdős-Rényi) graphs, scaling up the
number of nodes per graph (Figure G.2) in each.

In both sets of experiments, GPSE is considerably faster to compute than the individual PSEs, and orders-of-magnitude
faster than computing and combining all PSEs as AllPSE. Additionally, we observed that GPSE scales better than individual
and combined PSEs. The better scaling properties of GPSE are particularly evident in scaling graph sizes (Figure G.2): As
we scaled up the number of nodes in a graph to 1000, the advantage of GPSE became more apparent. This is somewhat
an expected result: Regardless of graph size, inference of GPSE involves O(Lm) computations, where L is the number
of layers, and m is the number of edges; thus GPSE scales linearly on the number of edges in a graph. On the other hand,
LapPE, for example, is expected to have polynomial complexity, as it involves eigendecomposing the graph Laplacian.

Another important point to highlight is that at inference time, the complexity of GPSE remains unchanged regardless of
how many types of PSEs were used to train the model. This leads to significant advantages over AllPSE, which relies on
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(a) GPSE + individual PSEs + combined PSEs (AllPSE) (b) Log-log plot of GPSE + individual PSEs + combined
PSEs (AllPSE)

Figure G.2. Scaling experiments with respect to size of graphs, keeping the number of graphs in each dataset constant. Visualization of
Table G.2.

computing and concatenating all PSEs. The scalability issues of AllPSE is additionally exacerbated when useful but highly
expensive PSEs such as CycleGE are used.
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H. Additional results
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Figure H.1. Training size scaling law for GPSE on MolPCBA.

Table H.1. GPSE architecture ablation. Held-out positional and structural encodings prediction performance when trained on 5% MolPCBA
(R2 scores ↑). Ablated settings of the GPSE architecture are listed and compared to the full GPSE settings. The performance of the full
GPSE architecture is shown in the bottom row.

Ablated setting GPSE default Overall ElstaticPE LapPE RWSE HKdiagSE EigValSE CycleSE

10 layers 20 layers 0.9585 0.9376 0.9302 0.9645 0.9622 0.9543 0.9701
128 dim 512 dim 0.9688 0.9484 0.9501 0.9729 0.9734 0.9706 0.9739

GCN GatedGCN 0.0409 0.0408 0.0325 0.0424 0.0396 0.0483 0.0410
GIN GatedGCN 0.6095 0.6953 0.4180 0.6237 0.6349 0.4002 0.6391
GATv2 GatedGCN 0.9580 0.9560 0.9476 0.9643 0.9530 0.9679 0.9561

No VN VN 0.9478 0.9340 0.9359 0.9552 0.9479 0.9314 0.9568
Shared MLP head Indep. MLP heads 0.9751 0.9619 0.9644 0.9802 0.9764 0.9714 0.9778

GPSE 0.9790 0.9638 0.9725 0.9837 0.9808 0.9818 0.9774

Table H.2. Five PSE augmentations combined with five different GNN models evaluated on the PCQM4Mv2-subset dataset. Performance
is evaluated as mean absolute error (MAE ↓) and averaged over 4 seeds. Red indicates worse than baseline (none) performance.

GCN GatedGCN GIN GINE Transformer Avg. reduction

none 0.1934 ± 0.0012 0.1845 ± 0.0031 0.1790 ± 0.0011 0.1364 ± 0.0011 0.4193 ± 0.0167 –

rand 0.7604 ± 0.0019 0.7515 ± 0.0027 0.7532 ± 0.0021 0.4269 ± 0.0068 0.9810 ± 0.0064 N/A
LapPE 0.1834 ± 0.0023 0.1757 ± 0.0010 0.1720 ± 0.0018 0.1338 ± 0.0006 0.2433 ± 0.0056 11.55%
RWSE 0.1877 ± 0.0025 0.1782 ± 0.0012 0.1695 ± 0.0007 0.1317 ± 0.0005 0.1930 ± 0.0016 13.82%
LapPE+RWSE 0.1895 ± 0.0022 0.1632 ± 0.0016 0.1705 ± 0.0016 0.1370 ± 0.0005 0.1884 ± 0.0011 14.76%
AllPSE 0.1903 ± 0.0010 0.1595 ± 0.0014 0.1656 ± 0.0004 0.1416 ± 0.0040 0.2133 ± 0.062 13.59%
GPSE 0.1822 ± 0.0028 0.1495 ± 0.0015 0.1615 ± 0.0015 0.1294 ± 0.0006 0.1805 ± 0.0021 19.32%
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Table H.3. GPSE pre-training ablations.
(a) Virtual node, convolution type, and layers ablation using
5% MolPCBA for training.

GPSE (GatedGCN) GPSE (GIN)

Layers VN no VN VN no VN

5 0.8387 0.6982 0.4879 0.1347
10 0.9585 0.8353 0.5156 0.2476
15 0.9716 0.9231 0.5887 0.2523
20 0.9778 0.9478 0.6095 0.2743
30 0.9806 0.9559 0.4149 0.3740
40 0.9782 0.9459 0.5420 0.3968

(b) Training size scaling law for GPSE on MolPCBA.

Training size Overall test loss (MAE + cosine loss) ↓

5% 0.06939
10% 0.04414
20% 0.03579
40% 0.01945
80% 0.01219

Table H.4. GPSE training task ablation. The colors indicate whether a particular PSE task for training GPSE improves or worsens the
downstream performance.

PCQM4Mv2 (subset) ogbg-molhiv
Excluded task MAE ↓ AUROC ↑

– 0.1196 ± 0.0004 0.7815 ± 0.0133

LapPE & EigVals 0.1200 ± 0.0006 0.7849 ± 0.0067
ElstaticPE 0.1197 ± 0.0007 0.7681 ± 0.0146

RWSE 0.1205 ± 0.0006 0.7771 ± 0.0105
HKdiagSE 0.1202 ± 0.0004 0.7787 ± 0.0198
CycleSE 0.1199 ± 0.0011 0.7739 ± 0.0240

Table H.5. GPSE training dataset ablation. Performance measured in MAE ↓. Green indicates fine-tuning GPSE on specific downstream
dataset helps improve the performance. Bold indicates the best performance achieved on a particular downstream task.

ZINC (subset) PCQM4Mv2 (subset)
Training dataset # unique graphs Avg. # nodes Not finetuned Finetuned Not finetuned Finetuned

GEOM 169,925 18 0.0707 ± 0.0086 0.0685 ± 0.0055 0.1196 ± 0.0005 0.1194 ± 0.0002
ZINC 219,384 23 0.0700 ± 0.0041 – 0.1202 ± 0.0005 0.1197 ± 0.0007

PCQM4Mv2 273,920 14 0.0721 ± 0.0042 0.0713 ± 0.0014 0.1192 ± 0.0005 –
ChEMBL 970,963 30 0.0667 ± 0.0079 0.0643 ± 0.0036 0.1195 ± 0.0003 0.1195 ± 0.0005

MolPCBA 323,555 25 0.0648 ± 0.0030 0.0668 ± 0.0076 0.1196 ± 0.0004 0.1195 ± 0.0007

Table H.6. Ablation study on strategies to learn LapPE for GPSE.

ZINC (subset) PCQM4Mv2 (subset) Peptides-struct Peptides-func
MAE ↓ MAE ↓ MAE ↓ AP ↑

GPSE-abs (default) 0.0957 ± 0.0044 0.1216 ± 0.0002 0.2516 ± 0.0018 0.6584 ± 0.0042
GPSE-noabs 0.1051 ± 0.0046 0.1229 ± 0.0006 0.2554 ± 0.0025 0.6687 ± 0.0119
GPSE-signinvar 0.1116 ± 0.0072 0.1243 ± 0.0004 0.2594 ± 0.0019 0.6619 ± 0.0097
GPSE-SignNet 0.1035 ± 0.0052 0.1232 ± 0.0006 0.2568 ± 0.0020 0.6647 ± 0.0093
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I. Additional discussions
Why does GPSE improve over precomputed PSEs? Our results demonstrate that GPSE encodings can improve upon
augmenting GNNs with precomputed PSEs in downstream tasks. The fact that we can recover the target PSEs in pretraining
(Table 1) accounts for why we can match the original PSEs. Why we improve upon them, meanwhile, can be attributed to
our joint encoding: Learning to encode a diverse collection of PSEs leads to a general embedding space that abstracts both
local and global perspectives of the query graph, which are more readily useable by the downstream model compared to
the unprocessed PSEs. This also explains why a joint encoding outperforms the concatenation of all encodings, AllPSE.
Concatenating many encodings very likely to leads to redundant representations, and also introduces significant noise to
node features particularly in datasets/downstream tasks where only a small portion of the encodings are useful: This is
reflected in most experiments where not only GPSE, but also RWSE- or LapPE-only configurations outperform AllPSE.

What advantages does GPSE bring over traditional SSL pre-training? In addition to being less prone to negative transfer
and having competitive performance (Table 4), GPSE provides a few more advantages over traditional SSL pre-training
methods: (1) GPSE uses randomly generated features instead of dataset-specific graph features, thus can be applied to
arbitrary graph datasets; (2) GPSE is only used as a feature extractor and hence does not impose any constraint on the
downstream model. Despite these differences, GPSE can be complementary to traditional SSL to further enhance the
prediction performance, for example, by using GPSE encodings as input features to the SSL pre-training.

Why is GPSE transferable to OOD data? The transferability of GPSE to OOD data is uncommon in the graph SSL
pre-training literature, particularly for molecular applications. We hypothesize that GPSE’s transferability is a consequence
of the choice of its predictive self-supervision tasks, which contain a mixture of both local and global intrinsic graph
information. This encourages GPSE to capture global invariances using local information, hence allowing it to extract
valuable representations on graphs that are different in sizes and connectivity from the training graphs.

When does GPSE help, and when does it not? GPSE provides essential information to the model when the downstream
task requires positional or structural information of the graph or better node identifiability in general, which is typically
the case for molecular property predictions (Hu et al., 2020b). Conversely, for downstream tasks that do not rely on such
information, e.g. protein function prediction using the protein interaction network (Table 6), the benefits from GPSE are not
as apparent.
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