
BAYESFLOW: LEARNING COMPLEX STOCHASTIC MODELS WITH
INVERTIBLE NEURAL NETWORKS

A PREPRINT

Stefan T. Radev
Institute of Psychology
Heidelberg University

Hauptstr. 47-51, 69117 Heidelberg
stefan.radev93@gmail.com

Ulf K. Mertens
Institute of Psychology
Heidelberg University

Hauptstr. 47-51, 69117 Heidelberg
mertens.ulf@gmail.com

Andreas Voss
Institute of Psychology
Heidelberg University

Hauptstr. 47-51, 69117 Heidelberg
andreas.voss@psychologie.uni-heidelberg.de

Lynton Ardizzone
Visual Learning Lab, IWR

Heidelberg University
Im Neuenheimer Feld 205, 69120 Heidelberg

lynton.ardizzone@iwr.uni-heidelberg.de

Ullrich Köthe
Visual Learning Lab, IWR

Heidelberg University
Im Neuenheimer Feld 205, 69120 Heidelberg
ullrich.koethe@iwr.uni-heidelberg.de

April 20, 2020

ABSTRACT

Estimating the parameters of mathematical models is a common problem in almost all branches of
science. However, this problem can prove notably difficult when processes and model descriptions
become increasingly complex and an explicit likelihood function is not available. With this work,
we propose a novel method for globally amortized Bayesian inference based on invertible neural
networks which we call BayesFlow. The method uses simulation to learn a global estimator for
the probabilistic mapping from observed data to underlying model parameters. A neural network
pre-trained in this way can then, without additional training or optimization, infer full posteriors on
arbitrary many real data sets involving the same model family. In addition, our method incorporates a
summary network trained to embed the observed data into maximally informative summary statistics.
Learning summary statistics from data makes the method applicable to modeling scenarios where
standard inference techniques with hand-crafted summary statistics fail. We demonstrate the utility
of BayesFlow on challenging intractable models from population dynamics, epidemiology, cognitive
science and ecology. We argue that BayesFlow provides a general framework for building reusable
Bayesian parameter estimation machines for any process model from which data can be simulated.

Keywords Deep learning · Generative learning · Bayesian inference · Parameter estimation · Stochastic models

1 Introduction

The goal of Bayesian analysis is to infer the underlying characteristics of some natural process of interest given
observable manifestations x. In a Bayesian setting, we assume that we already posses sufficient understanding of the
forward problem, that is, a suitable model of the mechanism that generates observations from a given configuration of
the hidden parameters θ. This knowledge can be available in two forms. In likelihood-based approaches, we are able to

ar
X

iv
:2

00
3.

06
28

1v
3

 [
st

at
.M

L
]

 1
7

A
pr

 2
02

0

A PREPRINT - APRIL 20, 2020

evaluate the likelihood function p(x |θ) analytically or numerically for any pair (x,θ). In contrast, likelihood-free
approaches only require the ability to sample from the likelihood. This can be done either directly or, equivalently, by
simulating data from some forward model, which generates instances of the observables via a deterministic function g
of parameters θ and independent noise ξ:

xi ∼ p(x |θ) ⇐⇒ xi = g(θ, ξi) with ξi ∼ p(ξ) (1)

In this case, the likelihood function is only defined implicitly, and we cannot calculate its actual numeric value for
the resulting instances xi, which, in turn, prohibits standard statistical inference. Likelihood-free problems arise,
for example, when p(x |θ) is not available in closed-form, or when the forward process is defined by a stochastic
differential equation, a computer simulation, or a complicated algorithm [32, 54, 53, 58]. In this paper, we propose a
new Bayesian solution to the likelihood-free setting in terms of invertible neural networks.

Bayesian modeling leverages the available knowledge about the forward problem to get the best possible estimate of the
posterior distribution of the inverse problem

p(θ |x1:N) =
p(x1:N |θ) p(θ)∫
p(x1:N |θ) p(θ) dθ

In Bayesian inference, the posterior encodes all information about θ obtainable from a set of observations x1:N =
{xi}Ni=1. The observations are assumed to arise from N runs of the forward process with fixed, but unknown, true
parameters θ∗. Bayesian inverse modeling is challenging for three reasons:

1. The RHS of Bayes’ formula above is always intractable in the likelihood-free case and must be approximated.
2. The forward process is usually non-deterministic, so that there is intrinsic uncertainty about the true value of θ.
3. The forward process is typically not information-preserving, so that there is ambiguity among possible values

of θ.

The standard solution to these problems is offered by approximate Bayesian computation (ABC) methods [51, 10, 44, 53].
ABC methods approximate the posterior by repeatedly sampling parameters from a proposal (prior) distribution
θ(l) ∼ p(θ) and then simulating multiple data sets by running the forward model xi ∼ p(x |θ(l)) for i = 1...N . If the
resulting data set is sufficiently similar to the actually observed data set xo1:N , the corresponding θk is retained as a
sample from the desired posterior, otherwise rejected. Stricter similarity criteria lead to more accurate approximations
of the desired posterior at the price of higher and oftentimes prohibitive rejection rates.

More efficient methods for approximate inference, such as sequential Monte Carlo (ABC-SMC), Markov-Chain Monte
Carlo variants [50], or the recent sequential neural posterior estimation methods (SNPE) [20, 43, 35], optimize sampling
from a proposal distribution in order to balance the speed-accuracy trade-off of vanilla ABC methods. More details
about these methods can be found in the section Related Work or in the excellent review by [9].

All sampling methods described above operate on the level of individual data sets: For each observation sequence x1:N ,
the entire estimation procedure for the posterior must be run again from scratch. Therefore, we refer to this approach
as case-based inference. Running estimation for each individual data set separately stands in contrast to amortized
inference, where estimation is split into a potentially expensive upfront training phase, followed by a much cheaper
inference phase. The goal of the upfront training phase is to learn an approximate posterior p̂(θ |x1:N) that works well
for any observation sequence x1:N . Evaluating this model for specific observations xo1:N is then very fast, so that the
training effort amortizes over repeated evaluations (see Figure 1 for a graphical illustration). The break-even between
case-based and amortized inference depends on the application and model types, and we will report comparisons in
the experimental section. Our main aim in this paper, however, is the introduction of a general approach to amortized
Bayesian inference and the demonstration of its excellent accuracy in posterior estimation for a variety of popular
forward models.

To make amortized inference feasible in practice, it must work well for arbitrary data set sizes N . Depending on
data acquisition circumstances, the number of available observations for a fixed model parameter setting may vary
considerably, ranging from N = 1 to several hundreds and beyond. This has not only consequences for the required
architecture of our density approximators, but also for their behavior: They must exhibit correct posterior contraction.
Accordingly, the estimated posterior p̂(θ |x1:N) should get sharper (i.e., more peaked) as the number N of available
observations increases. In the simplest case, the posterior variance should decrease at rate 1/N , but more complex
behavior can occur for difficult (e.g. multi-modal) true posteriors p(θ |x1:N).

We incorporate these considerations into our method by integrating two separate deep neural networks modules (detailed
in the Methods section; see also Figure 1), which are trained jointly on simulated data from the forward model: a
summary network and an inference network.

2

A PREPRINT - APRIL 20, 2020

(a) Case-based inference (b) Globally amortized inference with BayesFlow

Figure 1: Graphical illustration of the main differences between case-based (neural) density estimation methods and
BayesFlow. (a) Case-based methods require a separate optimization loop for each observed data set from a given
research domain. When case-based methods incorporate a training phase (e.g., SNPE with iterative proposal refinement),
it must be repeated for each new data set. Summary statistics are manually selected and may thus be sub-optimal; (b)
BayesFlow incorporates a global upfront training (before any real data are collected) via simulations from the forward
model (left panel). Summary and inference network are trained jointly, resulting in higher accuracy than hand-crafted
summary statistics. In the inference phase (right panel), BayesFlow works entirely in a feed-forward manner, that is, no
training or optimization happens in this phase. The upfront training effort is therefore amortized over arbitrary many
observed data sets from a research domain working on the same model family. Note that the solid and dashed plates are
swapped between case-based Bayesian inference and the training phase of BayesFlow.

The summary network is responsible for reducing a set of observations x1:N of variable size to a fixed-size vector of
learned summary statistics. In traditional likelihood-free approaches, the method designer is responsible for selecting
suitable statistics for each application a priori [38, 37, 48, 51]. In contrast, our summary networks learn the most
informative statistics directly from data, and we will show experimentally (see Experiment 3.7) that these statistics are
superior to manually constructed ones. Summary networks differ from standard feed-forward networks because they
should be independent of the input size N and respect the inherent functional and probabilistic symmetries of the data.
For example, permutation invariant networks are required for i.i.d. observations [5], and recurrent networks [17] or
convolutional networks [34] for data with temporal or spatial dependencies.

The inference network is responsible for learning the true posterior of model parameters given the summary statistics of
the observed data. Since it sees the data only through the lens of the summary network, all symmetries captured by the
latter are automatically inherited by the posterior. We implement the inference network as an invertible neural network.
Invertible neural networks are based on the recent theory and applications of normalizing flows [3, 31, 22, 14, 29].
Flow-based methods can perform asymptotically exact inference and scale favourably from simple low-dimensional
problems to high-dimensional distributions with complex dependencies, for instance, the pixels of an image [31]. For
each application/model of interest, we train an invertible network jointly with a corresponding summary network using
simulated data from the respective known forward process with reasonable priors. After convergence of this forward
training, the network’s invertibility ensures that a model for the inverse process is obtained for free, simply by running
inference through the model backwards. Thus, our networks can perform fast amortized Bayesian inference on arbitrary
many data sets from a given application domain without expensive case-based optimization. We call our method
BayesFlow, as it combines ideas from Bayesian inference and flow-based deep learning.

BayesFlow draws on major advances in modern deep probabilistic modeling, also referred to as deep generative
modeling [5, 31, 2, 30]. A hallmark idea in deep probabilistic modeling is to represent a complicated target distribution
as a non-linear bijective transformation of some simpler latent distribution (e.g., Gaussian or uniform), a so called
pushforward. Density estimation of the target distribution, a very complex problem, is thus reduced to learning
a non-linear transformation, a task that is ideally suited for gradient-based neural network training via standard
backpropagation. During the inference phase, samples from the target distribution are obtained by sampling from the
simpler latent distribution and applying the inverse transformation learned during the training phase (see Figure 1b
for a high-level overview). Using this approach, recent applications of deep probabilistic models have achieved
unprecedented performance on hitherto intractable high-dimensional problems [5, 31, 22].

3

A PREPRINT - APRIL 20, 2020

In the context of Bayesian inference, the target distribution is the posterior p(θ |x1:N) of model parameters given
observed data. We leverage the fact that we can simulate arbitrarily large amounts of training data from the forward
model in order to ensure that the summary and invertible networks approximate the true posterior as well as possible.
During the inference phase, our model can either numerically evaluate the posterior probability of any candidate
parameter θ, or can generate a posterior sample θ(1),θ(2), ...,θ(L) of likely parameters for the observed data xo1:N . In
the Methods section, we show that our networks indeed sample from the correct posterior under perfect convergence.
In summary, the contributions of our BayesFlow method are the following:

• Globally amortized approximate Bayesian inference with reusable invertible neural networks;

• Learning maximally informative summary statistics from raw data sets with variable number of observations
instead of relying on restrictive hand-crafted summary statistics;

• Asymptotic theoretical guarantee for sampling from the true posterior distribution without assumptions on the
distributional forms of the posterior and prior;

• Parallel computations applicable to both forward simulations and neural network optimization;

To illustrate the utility of BayesFlow, we first apply it to two toy models with analytically tractable posteriors. The first
is a multivariate Gaussian with a full covariance matrix and a unimodal posterior. The second is a Gaussian mixture
model with a multimodal posterior. Then, we present applications to challenging models with intractable likelihoods
from population dynamics, cognitive science, epidemiology, and ecology and demonstrate the utility of BayesFlow in
terms of speed, accuracy of recovery, and probabilistic calibration. Across the examples, we introduce multiple tools to
validate the performance of our method.

1.1 Related Work

BayesFlow incorporates ideas from previous machine learning and deep learning approaches to likelihood-free inference
[36, 46, 38, 48, 26]. The most common approach has been to cast the problem of parameter estimation as a supervised
learning task. In this setting, a large data set of the formD = {(ψ(x

(i)
1:N),θ(i))}Mi=1 is created by repeatedly sampling

from p(θ) and simulating an artificial datasets x1:N by running g(θ, ξ) with the sampled parameters. Usually, the
dimensionality of the simulated data is reduced by computing summary statistics with a fixed summary function
ψ(x1:N). Then, a supervised learning algorithm (e.g., random forest [48], or a neural network [46]) is trained on the
summary statistics of the simulated data to output an estimate of the true data generating parameters. Thus, an attempt
is made to learn the intractable inverse model θ = g−1(x, ξ). A main shortcoming of supervised approaches is that
they provide only limited information about the posterior (e.g., point-estimates, quantiles or variance estimates) or
impose restrictive distributional assumptions on the shape of the posterior (e.g., normality).

Our ideas are also closely related to the concept of optimal transport maps and its application in Bayesian inference
[13, 45, 7, 4]. A transport map defines a transformation between (probability) measures which can be constructed
in a way to warp a simple probability distribution into a more complex one. In the context of Bayesian inference,
transport maps have been applied to accelerate MCMC sampling [45], to perform sequential inference [13], and to solve
inference problems via direct optimization [4]. In fact, BayesFlow can be viewed as a parameterization of invertible
transport maps via invertible neural networks. An important distinction is that BayesFlow does not require an explicit
likelihood function for approximating the target posteriors and is capable of amortized inference.

Similar ideas for likelihood-free inference are incorporated in the recent automatic posterior transformation (APT)
[20], and the sequential neural likelihood (SNL) [43] methods. APT iteratively refines a proposal distribution via
an expressive neural density estimator (e.g., an autoregressive flow network) to generate parameter samples which
closely match a particular observed data set. SNL, in turn, trains a masked autoencoder density estimator (MADE)
neural network within an MCMC loop to increase proposal acceptance rates and thus speed-up convergence to the true
posterior. Even though these methods also entail a relatively expensive learning phase and a cheap inference phase,
posterior inference is amortized only for a single data set. Note, that APT can be applied in a single-round regime
which amortizes over multiple data sets, as in [18]. However, the learning phase for all neural density methods with
sequential proposal refinement needs to be repeated for each individual data set (see Figure 1a). In contrast, we propose
to learn the posterior globally over the entire range of plausible parameters and data sets by employing a conditional
invertible neural network (cINN) estimator (see Figure 1b). Previously, INNs have been successfully employed to
model data from astrophysics and medicine [2]. We adapt the model to suit the task of parameter estimation in the
context of mathematical modeling and develop a reusable probabilistic architecture for fully Bayesian and globally
amortized inference on complex mathematical models.

4

A PREPRINT - APRIL 20, 2020

2 Methods

2.1 Notation

In the following, the number of parameters of a mathematical model will be denoted as D, and the number of
observations in a data set as N . We denote data simulated from the mathematical model of interest as x1:N =
(x1,x2, ...,xN), where each individual xi can represent a scalar or a vector. Observed or test data will be marked with
a superscript o (i.e., xo1:N). . The parameters of a mathematical model are represented as a vector θ = (θ1, θ2, ..., θD),
and all trainable parameters of the invertible and summary neural networks as φ and ψ, respectively. When a data set
consists of observations over a period of time, the number of observations will be denotes as T .

2.2 Learning the Posterior

Assume that we have an invertible function fφ : RD → RD, parameterized by a vector of parameters φ, for which the
inverse f−1φ : RD → RD exists. For now, consider the case when raw simulated data x1:N of size N = 1 is entered
directly into the invertible network without using a summary network. Our goal is to train an invertible neural network
which approximates the true posterior as accurately as possible

pφ(θ |x) ≈ p(θ |x) (2)

for all θ and x. We reparameterize the approximate posterior pφ in terms of a conditional invertible neural network
(cINN) fφ which implements a normalizing flow between θ and a Gaussian latent variable z:

θ ∼ pφ(θ |x)⇐⇒ θ = f−1φ (z;x) with z ∼ ND(z |0, I) (3)

Accordingly, we need to ensure that outputs of f−1φ (z;x) follow the target posterior p(θ |x). Thus, we seek neural

network parameters φ̂ which minimize the Kullback-Leibler (KL) divergence between the true and the model-induced
posterior for all possible data sets x. Therefore, our objective becomes:

φ̂ = argmin
φ

Ex∼p(x) [KL(p(θ |x) || pφ(θ |x))] (4)

= argmin
φ

Ex∼p(x)
[
Eθ∼p(θ |x) [log p(θ |x)− log pφ(θ |x)]

]
(5)

= argmax
φ

Ex∼p(x)
[
Eθ∼p(θ |x) [log pφ(θ |x)]

]
(6)

= argmax
φ

∫ ∫
p(x,θ) log pφ(θ |x)dxdθ (7)

Note, that the log posterior density p(θ |x) can be dropped from the optimization objective in Eq.6, as it does not
depend on the neural network parameters φ. In other words, we seek neural network parameters φ̂ which maximize the
posterior probability of data-generating parameters θ given observed data x for all θ and x. Since fφ(θ;x) = z by
design, the change of variable rule of probability yields:

pφ(θ |x) = p(z = fφ(θ;x))

∣∣∣∣det

(
∂fφ(θ;x)

∂θ

)∣∣∣∣ (8)

Thus, we can re-write our objective as:

φ̂ = argmax
φ

∫ ∫
p(x,θ) log pφ(θ |x)dxdθ (9)

= argmax
φ

∫ ∫
p(x,θ)

(
log p(fφ(θ;x)) + log

∣∣detJfφ
∣∣) dxdθ (10)

where we have abbreviated ∂fφ(θ;x)/∂θ (the Jacobian of fφ evaluated at θ and x) as Jfφ . Due to the architecture of
our cINN, the log

∣∣detJfφ
∣∣ is easy to compute (see next section for details).

Utilizing simulations from the forward process (Eq.1), we can approximate the expectations by minimizing the
Monte-Carlo estimate of the negative of Eq.10. Accordingly, for a batch of m simulated data sets and data-generating

5

A PREPRINT - APRIL 20, 2020

parameters {(x(i),θ(i))}Mi=1 we have:

φ̂ = argmin
φ

1

M

M∑
i=1

− log pφ(θ(i) |x(i)) (11)

= argmin
φ

1

M

M∑
i=1

(
− log p(fφ(θ(i);x(i)))− log

∣∣∣detJ
(i)
fφ

∣∣∣) (12)

= argmin
φ

1

M

M∑
i=1


∥∥∥fφ(θ(i);x(i))

∥∥∥2
2

2
− log

∣∣∣detJ
(i)
fφ

∣∣∣
 (13)

We treat Eq.13 as a loss function L(φ) which can be minimized with any stochastic gradient descent method. The first
term follows from Eq.12 due to the fact that we have prescribed a unit Gaussian distribution to z and represents the
negative log of ND(z |0, I) ∝ exp(

∥∥− 1
2z
∥∥2
2
). The second term controls the rate of volume change induced by the

learned non-linear transformation from θ to z achieved by fφ. Thus, minimizing Eq.13 ensures that z follows the
prescribed unit Gaussian.

Our cINN is perfectly converged when KL(p(θ |x) || pφ(θ |x)) = 0 for all possible x. This, in turn, implies equality
in distributions p(θ |x) = pφ(θ |x). Following a similar line of reasoning as in [2], we can prove that samples from a
perfectly converged cINN follow the true posterior p(θ |x).

Proposition 1. Assume that we have a perfectly converged cINN fφ and an arbitrary but fixed observation x∗. If
fφ(·;x∗) transforms a probability density p(θ |x = x∗) into p(z), then the inverse f−1φ (·;x∗) transforms p(z) back
into p(θ |x = x∗). Therefore, repeatedly sampling z ∼ p(z) and applying f−1φ (z;x∗) to each z yields samples from
p(θ |x = x∗).

Proof. Denote the conditional probability density of θ obtained by inverse sampling as pφ(θ |x∗). We need to show
that pφ(θ |x∗) = p(θ |x∗). Applying the change of variable formula to the inverse transformation, we obtain:

pφ(θ |x∗) = p(z)
∣∣detJfφ

∣∣ with z = fφ(θ;x∗) (14)

Correspondingly, for the forward transformation we have:

p(z) = p(θ |x∗)
∣∣∣detJf−1

φ

∣∣∣ with θ = f−1φ (z;x∗) (15)

Substituting for p(z) into Eq.14 leads to:

pφ(θ |x∗) = p(θ |x∗)
∣∣∣detJf−1

φ

∣∣∣ ∣∣detJfφ
∣∣ (16)

= p(θ |x∗)
∣∣∣det

(
J−1fφ Jfφ

)∣∣∣ (17)

= p(θ |x∗) (18)

which is true for all possible x∗ due to the assumption of perfect convergence, that is, KL(p(θ |x) || pφ(θ |x)) = 0.
This completes the proof.

We now generalize our formulation to data sets with arbitrary numbers of observations. If we let the number of
observations N vary and train a summary network x̃ = fψ(x1:N) together with the cINN, our main objective changes
to:

φ̂, ψ̂ = argmax
φ,ψ

Ex1:N∼p(x,N)

[
Eθ∼p(θ |x1:N) [log pφ(θ | fψ(x1:N))]

]
(19)

and its Monte Carlo estimate to:

φ̂, ψ̂ = argmin
φ,ψ

1

M

M∑
i=1


∥∥∥fφ(θ(i); fψ(x

(i)
1:N)

∥∥∥2
2

2
− log

∣∣∣det
(
J

(i)
fφ

)∣∣∣
 (20)

6

A PREPRINT - APRIL 20, 2020

In order to make estimation of p(θ |x1:N) tractable, we assume that there exists a vector η of sufficient statistics that
captures all information about θ contained in x1:N in a fixed-size representation. For fψ(x1:N) to be a useful estimator
for η, both should convey the same information about θ, as measured by the mutual information:

MI(θ, fψ(x1:N)) ≈MI(θ,η) (21)

where the mutual information between θ and fψ(x1:N) (analogously, between θ and η) is defined as:

MI(θ, fψ(x1:N)) = KL(p(θ, fψ(x1:N)) || p(θ)p(fψ(x1:N))) (22)

Since we do not know η, we can enforce this requirement only indirectly by minimizing the Monte Carlo estimate of
Eq.19. The following proposition states that, under perfect convergence, samples from a cINN still follow the true
posterior given the outputs of a summary networks.
Proposition 2. Assume that we have a perfectly converged cINN fφ and a perfectly converged summary network fψ .
Assume also, that there exists a vector η of sufficient summary statistics for x1:N . Then, repeatedly sampling z ∼ p(z)
and applying f−1φ (z; fψ(x1:N)) to each z yields samples from p(θ |x1:N).

Proof. Perfect convergence of the networks under Eq.18 implies KL(p(θ |x1:N) || pφ(θ | fψ(x1:N))) = 0. This, in
turn, implies that MI(θ, fψ(x1:N)) = MI(θ,η), because a perfect match of the densities would be impossible if
fψ(x1:N) contained less information about θ than η. Therefore, the proof reduces to that of Proposition 1. Note, that
whenever the KL divergence is driven to a minimum, fψ(x1:N) is a maximally informative statistic [12].

In summary, the approximate posteriors obtained by the BayesFlow method are correct if the summary and invertible
networks are perfectly converged. In practice, however, perfect convergence is unrealistic, and there are three sources
of error which can lead to incorrect posteriors. The first is the Monte Carlo error introduced by using simulations
from g(θ, ξ) to approximate the expectation in Eq.19. The second is due to a summary network which may not fully
capture the relevant structure of the data or when sufficient summary statistics do not exist. The third is due to an
invertible network which does not accurately transform the true posterior into the prescribed Gaussian latent space.
Even though we can mitigate the Monte Carlo error by running the simulator g(θ, ξ) for a longer time, the latter two
can be harder to detect and alleviate in a principled way. Nevertheless, recent work on probabilistic symmetry [5] and
algorithmic alignment [59] can provide some guidelines on how to choose the right summary network for a particular
problem. Additionally, the number as well as the structure of ACBs in an invertible chain can be tuned to increase the
expressiveness of the learned transformation from θ-space to z-space. The benefits of neural network depth has been
confirmed both in theory [33] and practice [19], so we expect better performance in complex settings with increasing
number of ACBs.

2.3 Composing Invertible Networks

The basic building block of our cINN is the affine coupling block (ACB) [14]. Each ACB consists of four separate fully
connected neural networks denoted as s1(·), s2(·), t1(·), t2(·). An ACB performs an invertible non-linear transformation,
which means that in addition to a parametric mapping fφ : RD → RD it also learns the inverse mapping f−1φ : RD →
RD for free. Denoting the input vector of fφ as u and the output vector as v, it follows that fφ(u) = v and f−1φ (v) = u.
Invertibility is achieved by splitting the input vector into two parts u = (u1,u2) with u1 = u1:D/2 and u2 = uD/2+1:D

and performing the following operations on the split input:

v1 = u1 � exp(s1(u2)) + t1(u2) (23)
v2 = u2 � exp(s2(v1)) + t2(v1) (24)

where � denotes element-wise multiplication. The outputs v = (v1,v2) are then concatenated again and passed to the
next ACB. The inverse operation is given by:

u2 = (v2 − t2(v1))� exp(−s2(v1)) (25)
u1 = (v1 − t1(u2))� exp(−s1(u2)) (26)

This formulation ensures that the Jacobian of the affine transformation is a strictly upper or a lower triangular matrix
and therefore its determinant is very cheap to compute. Furthermore, the internal functions s1(·), s2(·), t1(·), t2(·) can
be represented by arbitrarily complex neural networks, which themselves need not be invertible, since they are only ever
evaluated in the forward direction during both the forward and the inverse pass through the ACBs. In our applications,
we parameterize the internal functions as fully connected neural networks with exponential linear units (ELU).

7

A PREPRINT - APRIL 20, 2020

In order to ensure that the neural network architecture is expressive enough to represent complex distributions, we chain
multiple ACBs, so that the output of each ACB becomes the input to the next one. In this way, the whole chain remains
invertible from the first input to the last output and can be viewed as a single function parameterized by trainable
parameters φ.

In our applications, the input to the first ACB is the parameter vector θ, and the output of the final ACB is a d-
dimensional vector z representing the non-linear transformation of the parameters. As described in the previous section,
we ensure that z follows a unit Gaussian distribution via optimization, that is, p(z) = ND(z |0, I). Fixed permutation
matrices are used before each ACB to ensure that each axis of the transformed parameter space z encodes information
from all components of θ.

In order to account for the observed data, we feed the learned summary vectors into each internal network of each ACB
(explained shortly). Intuitively, in this way we realize the following process: the forward pass maps data-generating
parameters θ to z-space using conditional information from the data x1:N , while the inverse pass maps data points
from z-space to the data-generating parameters of interest using the same conditional information.

2.4 Summary Network

Since the number of observations usually varies in practical scenarios (e.g., different number of measurements or time
points) and since data sets might exhibit various redundancies, the cINN can profit from some form of dimensionality
reduction. As previously mentioned, we want to avoid information loss through restrictive hand-crafted summary
statistics and, instead, learn the most informative summary statistics directly from data. Therefore, instead of feeding
the raw simulated or observed data to each ACB, we pass the data through an additional summary network to obtain a
fixed-sized vector of learned summary statistics x̃ = fψ(x1:N).

The architecture of the summary network should be aligned with the structure of the observed data. An obvious choice
for time series-data is an LSTM-network [17], since recurrent networks can naturally deal with long sequences of
variable size. Another choice might be a 1D fully convolutional network [34], which has already been applied in the
context of likelihood-free inference [46]. A different architecture is needed when dealing with i.i.d. samples of variable
size. Such data are often referred to as exchangeable, or permutation invariant, since changing the order of individual
elements does not change the associated likelihood or posterior. In other words, if SN (·) is an arbitrary permutation of
N elements, the following should hold for the posterior:

p(θ |x1:N) = p(θ |SN (x1:N)) (27)

Following [5], we encode probabilistic permutation invariance by implementing a permutation invariant function
through an equivariant non-linear transformation followed by a pooling operator (e.g., sum or mean) and another
non-linear transformation:

x̃ = fψ1

(
N∑
i=1

fψ2
(xi)

)
(28)

where fψ1
and fψ2

are two different fully connected neural networks. In practice, we stack multiple equivariant and
invariant functions into an invariant network in order to achieve higher expressiveness [5]. Additionally, we use an
attention mechanism which computes learnable weights to each individual sample:

w̃i = fψ3
(xi) (29)

wi = exp(w̃i)�
N∑
j=1

exp(w̃j) (30)

x̃ = fψ1

(
N∑
i=1

wi � fψ2
(xi)

)
(31)

where Eq.30 performs an element-wise softmax operation to ensure that the weight vectors sum to 1 across each
dimension. Note, that the function remains permutation invariant. The computation of attention weights is optional and
introduces some computational overhead, but we observe much faster convergence and better performance when the
summary network implements it.

We optimize the parameters ψ of the summary network jointly with those of the cINN chain via backpropagation.
Thus, the method remains completely end-to-end and is capable of generalizing to data of variable size (within a given
domain, by applying the same network) and structure (between different domains, by changing the architecture of the
summary network).

8

A PREPRINT - APRIL 20, 2020

To incorporate the observed or simulated data x1:N , each of the internal networks of each ACB is augmented to take
the learned summary vector x̃ of the data as an additional input. The output of each ACB then becomes:

v1 = u1 � exp(s1(u2, x̃)) + t1(u2, x̃) (32)
v2 = u2 � exp(s2(v1, x̃)) + t2(v1, x̃) (33)

Thus, a complete pass through the entire conditional invertible chain can be expressed as fφ(θ; x̃) = z together with
the inverse operation f−1φ (z; x̃) = θ. The inverse transformation during inference is depicted in Figure 2.

2.5 Putting It All Together

Algorithm 1 describes the essential steps of the BayesFlow method using an arbitrary summary network and employing
an online learning approach.

Algorithm 1 Bayesian inference with the BayesFlow method

1: Training (via online learning):
2: repeat
3: Sample number of observations N ∼ U(Nmin, Nmax)

4: Sample a batch of parameters {θ(i)}Mi=1 from prior p(θ)

5: Simulate M data sets of size N via Eq.1 to get {x(i)
1:N}Mi=1

6: Pass {x(i)
1:N}Mi=1 through summary network to obtain {x̃(i) = fψ(x

(i)
1:N) }Mi=1

7: Pass {(θ(i), x̃(i))}Mi=1 through inference network to obtain {z(i) = fφ(θ(i); x̃(i)) }Mi=1
8: Compute loss according to Eq.20
9: Update neural network parameters φ,ψ via backpropagation

10: until convergence to φ̂, ψ̂
11:
12: Inference (given observed or test data xo):
13: Compute learned summary of the data x̃o = fψ̂(xo1:N)

14: for l = 1, ..., L do
15: Sample z(l) ∼ ND(0, I)
16: Compute inverse θ(l) = f−1

φ̂
(z(l); x̃o)

17: end for
18: Return {θ(l)}Ll=1 as a sample from p(θ |xo)

The backpropagation algorithm works by computing the gradients of the loss function with respect to the parameters of
the neural networks and then adjusting the parameters, so as to drive the loss function to a minimum. We experienced
no instability or convergence issues during training with the loss function given by Eq.19. Note, that steps 2-10 and
13-17 of Algorithm 1 can be executed in parallel with GPU support in order to dramatically accelerate convergence
and inference. Moreover, steps 13-17 can be applied in parallel to an arbitrary number of observed data sets after
convergence of the networks (see Figure 2 for a graphical illustration).

In what follows, we apply BayesFlow to two toy models with a unimodal and multimodal posteriors, respectively,
and then use it to perform Bayesian inference on challenging models from population dynamics, cognitive science,
epidemiology, and ecology.1 We deem these models suitable for an initial validation, since they differ widely in the
generative mechanisms they implement and the observed data they model. Therefore, good performance on these
disparate examples underlines the broad empirical utility of the BayesFlow method. Details for models’ setup can be
found in Appendix B.

3 Experiments

3.1 Training the Networks

We train all invertible and summary networks described in this paper jointly via backpropagation. For all following
experiments, we use the Adam optimizer with a starter learning rate of 10−3 and an exponential decay rate of .95.

1Code and simulation scripts for all current applications are available at https://github.com/stefanradev93/cINN.

9

https://github.com/stefanradev93/cINN

A PREPRINT - APRIL 20, 2020

Figure 2: Inference with pre-trained summary and inference networks. The posterior is approximated given real
observed data via independent samples from a learned pushforward distribution. Thus, knowledge about the mapping
between data and parameters (the inverse model) is compactly encoded within the weights of the two networks.

We perform 50 000 to 100 000 iterations (i.e., mini-batch update steps) for each experiment, and report the results
obtained by the converged networks. Note, that we did not perform an extensive search for optimal values of network
hyperparameters, but use a default BayesFlow with 5 to 10 ACBs and a summary vector of size 128 for all examples in
this paper (see Appendix B for more details on summary network architectures). All networks were implemented in
Python using the TensorFlow library [1] and trained on a single-GPU machine equipped with NVIDIA R© GTX1060
graphics card. Regarding the data generation step, we take an approach which incorporates ideas from online learning
[41] where data are stimulated by Eq.1 on demand.

Correspondingly, a data set x1:N , or a batch of M data sets {x(i)
1:N}Mi=1, is generated on the fly and then passed through

the neural network. This training approach has the advantage that the network never experiences the same input data
twice. Moreover, training can continue as long as the network keeps improving (i.e., the loss keeps decreasing), since
overfitting in the classical sense is nearly impossible. However, if simulations are computationally expensive and
researchers need to experiment with different networks or training hyperparameters, it might be beneficial to store and
re-use simulations, since simulation and training in online learning are tightly intertwined.

Once the networks have converged, we store the trained networks and re-use them to perform amortized inference on a
separate validation set of data sets. The pre-trained networks can also be shared among a research community so that
multiple researchers/labs can benefit from the amortization of inference.

3.2 Performance Validation

To evaluate the performance of BayesFlow in the following application examples, we consider a number of different
metrics:

• Normalized root mean squared error (NRMSE) - to asses accuracy of point-estimates in recovering ground-truth
parameter values;

• Coefficient of determination (R2) - to asses the proportion of variance in ground-truth parameters that is
captured by the point estimates;

• Re-simulation error (Errsim) - to asses the predictive mismatch between the true data distribution and the
data distribution generated with the estimated parameters (i.e., posterior predictive check);

10

A PREPRINT - APRIL 20, 2020

(a) Analytic vs. estimated posteriors on the 5-D MVN model. (b) Performance metrics on the 500-D MVN model.

Figure 3: Results on the MVN toy examples. (a) Pair-plots of the analytic vs. estimated posterior means on the 5-D
Gaussian example. The main diagonal represents histograms of the analytic and approximate means. The lower and
upper portions of the figure represent bivariate KDE estimates and scatter plots, respectively. We observe a near-perfect
overlap between analytic and approximate posteriors. Further, the model correctly captures the true posterior covariance;
(b) NRMSE and R2 performance metrics on the 500-D MVN model for all 500 Gaussian mean parameters.

• Calibration error (Errcal, [2]) - to asses the coverage of the approximate posteriors (i.e., whether credibility
intervals are indeed credible);

• Simulation-based calibration (SBC, [52]) - to visually detect systematic biases in the approximate posteriors;

Details for computing all metrics can be found in Appendix A.

3.3 Proof of Concept: Multivariate Normal Distribution

As a proof-of-concept, we apply the BayesFlow method to recover the posterior mean vector of a toy multivariate
normal (MVN) example. For a D-dimensional MVN vector, the forward model is given by:

µ(i) ∼ ND(µ |0, I) (34)

x(i) ∼ ND(x |µ(i),Σ) (35)

If the covariance matrix Σ is known, the posterior of the mean vector µ has a closed-form which is also a MVN
p(µ |x,Σ) = Nd(µ |m,Λ) with posterior precision matrix given by Λ−1 = I + Σ−1 and posterior mean given by
m = ΛΣ−1x [6]. We can thus generate multiple batches of the form {(x(i),µ(i))}Mi=1 and pass them directly through
an invertible network. Since the ground-truth posterior is Gaussian, we can compute the KL divergence as a measure of
mismatch between the true and approximate posteriors in closed form:

KL(p(µ |x,Λ) || pφ(µ |x)) = KL(ND(µ |m,Λ) || ND(µ |mφ,Λφ)) (36)

=
1

2

[
log

det Λφ
det Λ

+ Tr(Λ−1φ Λ)−D + (m−mφ)TΛ−1φ (m−mφ)

]
(37)

where Λφ andmφ denote the covariance matrix and mean vector computed from samples obtained by BayesFlow. We
run three experiments with D ∈ {5, 50, 500} where the size of the ACB blocks was doubled for each successive D.
To asses results, we compute the R2 and NRMSE between approximate and true means as well as the KL divergence
between approximate and true distributions on 100 test datasets. To compute the approximate covariance matrix, we
draw 5000 samples from the approximate posteriors for D = 5 and D = 50 and 50000 samples for D = 500.

The KL divergence for the 5-D and 50-D MVNs reached 0 after 2-3 epochs of 1000 iterations indicating perfect recovery
of the true posteriors. The results on the 5-D MVN are illustrated in Figure 3a. We observe that BayesFlow is able to
capture the true covariance of the posterior. The same applies for the 50-D model. The KL divergence for the 500-D
MVN model reached 0.37 after 50 epochs, indicating very good approximation with respect to the high dimensionality
of the problem. Figure 3b depicts the recovery of the true posterior means. We observe low NRMSE scores and high
R2 across all 500 mean parameters (x-axes).

11

A PREPRINT - APRIL 20, 2020

Figure 4: Results on the GMM toy example with colors indicating cluster assignment. Approximation of the multimodal
posterior become closer to the ground truth distribution with increasing depth (number of ACBs) of the conditional
invertible network.

3.4 Multimodal Posterior: Gaussian Mixture Model

In order to test whether the BayesFlow method can recover multimodal posteriors, we apply it to a generative Gaussian
mixture model (GMM). Multimodal posteriors arise in practice, for example, when forward models are defined as
mixtures between different processes, or when models exhibit large multivariate trade-offs in their parameter space
(e.g., there are multiple separate regions of posterior density with plausible parameter values). Therefore, it is important
to show that our method is able to capture such behavior and does not suffer from mode collapse.

Following [2], we construct a scenario in which the observed data x is a one-hot encoded vector representing one of the
labels red, green, blue, or yellow (hard assignment of labels). The parameters θ = (θ1, θ2) are the 2D coordinates 2

of points drawn from a mixture of eight Gaussian clusters with centers distributed around the origin in a clockwise
manner and unit variance (Figure 4). The first four clusters are assigned the label red, the next two the label green,
and the remaining two the labels blue and yellow. The posterior p(θ |x) is composed of the clusters indexed by the
corresponding label. We perform the experiment multiple times by increasing the depth of the BayesFlow starting
from 1 ACB block up to 5 ACB blocks. In this way, we can investigate the effects of cINN depth on the quality of
the approximate multimodal posteriors. We train each BayesFlow for 50 epochs and draw 8000 samples from the
approximate posteriors obtained by the trained models.

Results for all BayesFlows are depicted in Figure 4. We observe that approximations profit from having a deeper cINN
chain, with cluster separation becoming clearer when using more ACBs. This confirms that our method is capable of
recovering multimodal posteriors.

3.5 Stochastic Time-Series Model: The Ricker Model

In the following, we estimate the parameters of a well-known discrete stochastic population dynamics model [58].
With this example, we are pursuing several goals: First, we want to demonstrate that the BayesFlow method is able to
accurately recover the parameters of an actual model with intractable likelihood by learning summary statistics from
raw data. Second, we show that BayesFlow can deal adequately with parameters that are completely unrelated to the
data by reducing estimates to the corresponding parameters’ prior. Third, we compare the global performance of the
BayesFlow method to that of related methods capable of amortized likelihood-free inference. Finally, we demonstrate
the desired posterior contraction and improvement in estimation with increasing number of observations.

Discrete population dynamics models describe how the number of individuals in a population changes over discrete
units of time [58]. In particular, the Ricker model describes the number of individuals xt in generation t as a function
of the expected number of individuals in the previous generation by the following non-linear equations:

xt ∼ Pois(ρNt) (38)

ξt ∼ N (0, σ2) (39)

Nt+1 = rNte
−Nt+ξt (40)

for t = 1, ..., T where Nt is the expected number of individuals at time t, r is the growth rate, ρ is a scaling parameter
and ξt is random Gaussian noise. The likelihood function for the Ricker model is not available in closed form, and
the model is known to exhibit chaotic behavior [38]. Thus, it is a suitable candidate for likelihood-free inference. The
parameter estimation task consists of recovering θ = (ρ, r, σ) from the observed one-dimensional time-series data x1:T

where each xt ∈ N.

What if the data does not contain any information about a particular parameter? In this case, any good estimation
method should detect this, and return the prior of the particular parameter. To test this, we append a random uniform

2Note that this is not the typical GMM setup, as we construct the example such that the mixture assignments (labels) are observed
and the data coordinates are the latent parameters.

12

A PREPRINT - APRIL 20, 2020

(a) Full posteriors from all methods for an example Ricker dataset.

(b) Performance over all T s

(c) Parameter recovery (T = 500)

(d) Posterior contraction with increasing T

Figure 5: Results on the Ricker model. (a) Approximate posteriors obtained by all implemented methods on a single
Ricker dataset. Note that only BayesFlow and ABC-NN are able to approximate the uniform posterior of u; (b) NRMSE
and R2 performance metrics over all T s obtained by the BayesFlow method. We observe that parameter estimation
remains good over all T s, and becomes progressively better as more data is available (shaded regions indicate bootstrap
95% CIs); (c) Parameter recovery with BayesFlow for the maximum number of generations used during training
(T = 500); (d) Posterior contraction in terms of posterior standard deviation for each parameter across increasing
number of available generations (shaded regions indicate bootstrap 95% CIs).

variable u ∼ U(0, 1) to the parameter vector θ and train BayesFlow with this additional dummy parameter. We expect
that the networks ignore this dummy parameter, that is, we assume that the estimated posterior of u resembles the
uniform prior.

We compare the performance of BayesFlow to the following recent methods capable of amortized likelihood-free
inference: conditional variational autoencoder (cVAE) [40], cVAE with autoregressive flow (cVAE-IAF) [29], DeepIn-
ference with heteroscedastic loss [46], approximate Bayesian computation with an LSTM neural network for learning
informative summary statistics (ABC-NN) [26] and quantile random forest (ABC-RF) [48]. For training the models, we
simulate time-series from the Ricker model with varying lengths. The number of time points T is drawn from a uniform
distribution T ∼ U(100, 500) at each training iteration. All neural network methods were trained for 100 epochs with
1000 iterations each on simulated data from the Ricker model. The ABC-RF method was fitted on a reference table with
200 000 datasets, since the method does not allow for online learning and increasing the reference table did not seem
to improve performance. In order to avoid using hand-crafted summary statistics for the ABC-RF method, we input
summary vectors obtained by applying the summary network trained jointly with the cINN. Thus, the ABC-RF method
has the advantage of using maximally informative statistics as input. We validate the performance of all methods on an
independent test set of 500 datasets generated with T = 500. We report performance metrics for each method and each
parameter in Table 1.

13

A PREPRINT - APRIL 20, 2020

Table 1: Performance results on the Ricker model across all estimation methods
BayesFlow cVAE cVAE-IAF DeepInference ABC-NN ABC-RF

Errcal r 0.017 ± 0.007 0.014 ± 0.007 0.058 ± 0.017 0.122 ± 0.016 0.164 ± 0.015 -
σ 0.013 ± 0.007 0.419 ± 0.011 0.382 ± 0.013 0.184 ± 0.021 0.119 ± 0.014 -
ρ 0.084 ± 0.018 0.121 ± 0.017 0.188 ± 0.018 0.111 ± 0.019 0.283 ± 0.012 -

NRMSE r 0.041 ± 0.002 0.047 ± 0.004 0.047 ± 0.006 0.052 ± 0.003 0.053 ± 0.003 0.044 ± 0.004
σ 0.077 ± 0.005 0.137 ± 0.004 0.124 ± 0.006 0.108 ± 0.004 0.077 ± 0.004 0.081 ± 0.005
ρ 0.018 ± 0.001 0.016 ± 0.002 0.019 ± 0.002 0.019 ± 0.002 0.033 ± 0.002 0.021 ± 0.001

R2 r 0.980 ± 0.003 0.973 ± 0.005 0.973 ± 0.007 0.968 ± 0.005 0.966 ± 0.004 0.977 ± 0.004
σ 0.919 ± 0.011 0.745 ± 0.020 0.792 ± 0.020 0.841 ± 0.014 0.919 ± 0.010 0.912 ± 0.011
ρ 0.996 ± 0.001 0.997 ± 0.001 0.996 ± 0.001 0.996 ± 0.001 0.986 ± 0.002 0.994 ± 0.001

Errsim - 0.038 ± 0.001 0.041 ± 0.001 0.042 ± 0.001 0.041 ± 0.001 0.048 ± 0.002 0.041 ± 0.002

Note: For each parameter, bootstrapped means (±1 standard error) of different performance metrics are displayed for all tested
methods. For each metric and each parameter, the best performance across methods is printed in bold font.

Parameters r and ρ seem to be well recoverable by all methods considered here. The σ parameter turns out to be
harder to estimate, with BayesFlow and the ABC-NN method performing best. Further, BayesFlow performs very
well across all parameters and metrics. Importantly, the calibration error Errcal obtained by BayesFlow is always low,
indicating that the shape of the approximate posterior closely matches that of the true posteriors. Variational methods
(cVAE, cVAE-IAF) experience some problems recovering the posterior of σ. The ABC-NN and ABC-RF methods
seem to recover point estimates with high accuracy but the approximate posteriors of the former exhibit relatively high
calibration error. The ABC-RF method can only estimate posterior quantiles, so no comparable calibration metric could
be computed.

Further results are depicted in Figure 5. Inspecting the full posteriors obtained by all methods on an example test dataset,
we note that only BayesFlow and the ABC-NN methods are able to recover the uninformative posterior distribution
of the dummy noise variable u (Figure 5a). Moreover, the importance of a Bayesian treatment of the Ricker model
becomes clear when looking at the posteriors of σ. On most test datasets, the posterior density spreads over the entire
prior range (high posterior variance) indicating large uncertainty in the obtained estimates. Some datasets even resulted
in bimodal posteriors for σ, which highlight the importance of imposing no ad hoc restrictions on the posteriors. We
also observe that parameter estimation with BayesFlow becomes increasingly accurate when more time points are
available (Figure 5b). Parameter recovery is especially good with the maximum number of time points (see Figure 5c).
Finally, (Figure 5d) reveals a notable posterior contraction across increasing number of time points available to the
summary network.

3.6 A Model of Perceptual Decision Making: The Lévy-Flight Model

In the following, we estimate the parameters of a stochastic differential equation model of human decision making. We
perform the first Bayesian treatment of the recently proposed Lévy-Flight Model (LFM), as its intractability has so far
rendered traditional non-amortized Bayesian inference methods prohibitively slow [56].

With this example, we first want to show empirically that BayesFlow is able to deal with i.i.d. data sets of variable
size arising from N independent runs of a complex stochastic simulator. For this, we inspect global performance of
BayesFlow over a wide range of data set sizes. Additionally, we want to show the advantage of amortized inference
compared to case-based inference in terms of efficiency and recovery. For this, we apply BayesFlow along with four
other recent methods for likelihood-free inference to a single data set and show that in some cases the speed advantage
of amortized inference becomes noticeable even after as few as 5 data sets. Crucially, researchers often fit the same
models to different datasets, so if a pre-trained model exists, it would present a huge advantage in terms of efficiency
and productivity.

We focus on the family of evidence accumulator models (EAMs) which describe human decision making by a set of
neurocognitively motivated parameters [47]. EAMs are most often applied to choice reaction times (RT) data to obtain
an estimate of the underlying processes governing categorization and (perceptual) decision making. In its most general
formulation, the forward model of EAMs takes the form of a stochastic ordinary differential equation (ODE) given by
[54]:

dx = vdt+ ξ
√
dt (41)

14

A PREPRINT - APRIL 20, 2020

where dx denotes a change in activation of an accumulator, v denotes the average speed of information accumulation
(often termed the drift rate), and ξ represents a stochastic additive component, usually modeled as coming from a
Gaussian distribution centered around 0: ξ ∼ N (0, c2).

EAMs are particularly amenable for likelihood-free inference, since the likelihood of most interesting members of
this model family turn out to be intractable [39]. This intractability has precluded many interesting applications and
empirically driven model refinements. Here, we apply BayesFlow to estimate the parameters of the recently proposed
Lévy-Flight Model (LFM) [56]. The LFM assumes an α-stable noise distribution of the evidence accumulation process
which allows to model discontinuities in the decision process. However, the inclusion of α-stable noise (instead of the
typically assumed Gaussian noise) leads to a model with intractable likelihood:

dx = vdt+ ξdt1/α (42)
ξ ∼ AlphaStable(α, 0, 1, 0) (43)

where α controls the probability of outliers in the noise distribution. The LFM has three additional parameters: the
threshold a determining the amount of evidence needed for the termination of a decision process; a relative starting point,
zr, determining the amount of starting evidence available to the accumulator before the actual decision alternatives are
presented; and an additive non-decision time t0.

During training of the networks, we simulate response times data from two experimental conditions with two different
drift rates, since such a design is often encountered in psychological research. The parameter estimation task is
thus to recover the parameters θ = (v0, v1, a, t0, zr, α) from two-dimensional i.i.d. RT data x1:N where each
xi ∈ R2 represents RTs obtained in the two conditions. The number of trials is drawn from a uniform distribution
N ∼ U(100, 1000) at each training iteration. Training the networks took a little less than a day with the online learning
approach. Inference on 1000 datasets with 2000 posterior samples per parameter took approximately 7.39 seconds.

In order to investigate whether amortized inference is advantageous for this model, we additionally apply a version of
the SMC-ABC algorithm available in the pyABC package [32] to a single data set with N = 500. Since no sufficient
summary statistics are available for EAM data, we apply the maximum mean discrepancy (MMD) metric as a distance
between the full raw empirical RT distributions, in order to prevent information loss [44]. Since the MMD is expensive
to compute, we use a GPU implementation to ensure that computation of MMD is not a bottleneck for the comparison.
In order to achieve good approximation with 2000 samples from the SMC-MMD approximate posterior, we run the
algorithm for 20 populations with a final rejection threshold ε = 0.04. We also draw 2000 samples from the approximate
posterior obtained by applying our pre-trained BayesFlow networks to the same data set.

Along SMC-MMD, we apply three recent methods for neural density estimation, SNPE-A [42], SNPE-B [35], and
SNPE-C ([20], also dubbed APT). Since these methods all depend on summary statistics of the data, we compute
the first 6 moments of each empirical response time distribution as well as the fractions of correct/wrong responses.
We train each method for a single round with 100 epochs and 5000 simulated datasets, in order to keep running time
at a minimum. Also, we did not observe improvement in performance when training for more than one round. For
each model, we sample 2000 samples from the approximate joint posterior to align the number of samples with those
obtained via SMC-MMD.

The comparison results are depicted in Figure 6. We first focus on the comparison with SMC-MMD on the single data
set. Figure 6a depicts marginal and bivariate posteriors obtained by BayesFlow and SMC-MMD. The approximate
posteriors of BayesFlow appear noticeably sharper. Observing the SCB plots (Figure 7b), we can conclude that
the approximate posteriors of BayesFlow mirror the sharpness of the true posterior, since otherwise the SCB plots
would show marked deviations from uniformity. Further, Figure 6b depicts the marginal posteriors obtained from the
application of each method. Noticeably, performance and sharpness varies across the methods and parameters, with all
methods yielding good point-estimate recovery via posterior means in terms of the NRMSE and R2 metrics.

Importantly, Table 2 lists the advantage of amortized inference for the LFM model. For instance, compared to SMC-
MMD, the extra effort of learning a global BayesFlow model upfront is worthwhile even after as few as 5 datasets,
as inference with SMC-MMD would have taken more than a day to finish. On the other hand, the break-even for
SNPE-C/APT occurs after 75 datasets, so in cases where only a few dozens of data sets are considered, case-based
inference might be preferable. However, the difficulties in manually finding meaningful and efficiently computable
summary statistics may eat up possible savings even in this situation. We acknowledge that our choices in this respect
might be sub-optimal, so performance comparisons should be treated with some caution.

We note, that after a day of training, the pre-trained networks of BayesFlow take less than 5 seconds to perform inference
on 500 datasets even with maximum number of trials N = 1000. Using the case-based SMC-MMD algorithm, 500
inference runs would have taken more than half a year to complete. We also note, that parallelizing separate inference
threads across multiple cores or across nodes of a (GPU) computing cluster can dramatically increase the wall-clock

15

A PREPRINT - APRIL 20, 2020

(a) Joint posteriors from BayesFlow and SMC-MMD

(b) Marginal posteriors from all methods

Figure 6: Comparison results on the LFM model. (a) Marginal and bivariate posteriors obtained by BayesFlow and
SMC-MMD on the single validation dataset. We observe markedly better sharpness in the BayesFlow posteriors; (b)
Marginal posteriors obtained from all methods under comparison.

16

A PREPRINT - APRIL 20, 2020

(a) Performance over all trial numbers (b) Simulation-based calibration (SBC)

Figure 7: Results on the LFM model. (a) NRMSE and R2 over all N trials used during training. Again, we observe
that recovery remains very good overall, and becomes progressively better as more data becomes available; (b) Plots of
the rank statistics suggesting no systematic deviations in the approximate posteriors (the shaded gray region indicates a
99% confidence bound);

Table 2: Speed of inference and break-even for amortized inference for the LFM model
Upfront Training Inference (1 data set) Inference (500 data sets) Break-even after

BayesFlow 23.2 h 60 ms 3.7 s -
SMC-MMD - 5.5 h 2700 h 5 data sets
SNPE-A - 0.65 h 325 h 37 data sets
SNPE-B - 0.65 h 325 h 37 data sets
SNPE-C - 0.35 h 175 h 75 data sets

Note: Inference times for 500 datasets as well as the number of data sets for break-even with BayesFlow for the SMC-MMD,
SNPE-A, SNPE-B, and SNPE-C methods are extrapolated from the wall-clock running time on a single data set, so these are
approximate quantities.

speed of the case-based methods considered here. However, the same applies to BayesFlow training, since its most
expensive part, the simulation from the forward model, would profit the most from parallel computing.

The global performance of BayesFlow over all validation data sets and all trial sizes N is depicted in (Figure 7). First,
we observe excellent recovery of all LFM parameters with NRMSEs ranging between 0.008 and 0.048 and R2 between
0.972 for the maximum number of trials. Importantly, estimation remains very good across all trial numbers, and
improves as more trials become available (Figure 7a). The parameter α appears to be most challenging to estimate,
requiring more data for good estimation, whereas the non-decision time parameter t0 can be recovered almost perfectly
for all trial sizes. Last, the SCB histograms indicate no systematic deviations across the marginal posteriors (Figure 7b).

3.7 Stochastic Differential Equations: The SIR Epidemiology Model

With this example, we want to further corroborate the excellent global performance and probabilistic calibration
observed for the LFM model on a non-i.i.d. stochastic ODE model. Even though the generative mechanism of the LFM
is formulated as a stochastic ODE, its output consists of i.i.d. data sets comprising multiple runs of the simulator. Here,
we study a compartmental model from epidemiology, whose output comprises variable-sized multidimensional and
inter-dependent time-series. It is therefore of interest to investigate whether our method is applicable to data which is
the direct output of an ODE simulator.

Compartmental models in epidemiology describe the stochastic dynamics of infectious diseases as they spread over a
population of individuals [49, 27, 24]. The parameters of compartmental models encode important characteristics of
diseases, such as the rates of infection or recovery from the disease. The stochastic SIR model describes the transition
dynamics of N individuals between three discrete states: susceptible (S), infected (I), and recovered (R). The transition

17

A PREPRINT - APRIL 20, 2020

(a) Parameter recovery (T = 500) (b) Performance over all Ts

(c) Simulation-based calibration (SBC) (d) Posterior contraction over T

Figure 8: Results obtained on the stochastic SIR model. (a) Parameter recovery depicting also NRMSE and R2 metrics;
(b) NRMSE and R2 performance over all T s seen by the networks during training; (c) Plots of the rank statistics
suggesting a slight overestimation by posterior mean of β in the lower range (the shaded gray region indicates a 99%
confidence bound); (d) Reduction in posterior variance (posterior contraction) over increasing T .

dynamics are given by the following equations:

4S = −4NSI (44)
4I = 4NSI −4NIR (45)
4R = 4NIR (46)

4NSI ∼ Binomial(S, 1− exp

(
−β I

N
4t
)

) (47)

4NIR ∼ Binomial(I, 1− exp (−γ4t)) (48)

where S + I +R = N give the number of susceptible, infected, and recovered individuals, respectively. The parameter
β controls the transition rate from being susceptible to infected, and γ controls the transition rate from being infected
to recovered. The number of individuals moving from S to I , given by 4NSI , and the number of people moving
from I to R, given by 4NIR, over a time interval 4t are modeled as binomial random variables. The above listed
stochastic system has no analytic solution and thus requires numerical simulation methods for recovering parameter
values from data. Cast as a parameter estimation task, the challenge is to recover θ = {β, γ} from three dimensional
time-series data x1:T where each xt ∈ N3 is a triple containing the number of susceptible (S), number of infected (I),
and recovered (R) individuals at time t.

During training of the networks, we simulate time-series from the stochastic SIR model with varying lengths. The
number of time points T is drawn from a uniform distribution T ∼ U(200, 500) at each training iteration. Usually, at
lower T s, the system has not converged to an equilibrium (i.e., not all individuals have transitioned from being I to
R). Thus, it is especially interesting to see if BayesFlow can recover the rate parameters, even if the process dynamics
are still unfolding over time. Training the networks took approximately two hours with the online learning approach.
Inference on 1000 datasets with 2000 posterior samples per parameter took approximately 1.1 seconds.

The results on the SIR model are depicted in Figure 8. In line with the previous examples, we observe very good
recovery of the true parameters, with NRMSE at T = 500 around 0.03, and R2s around 0.99. Further, we observe
decent performance even at smaller T s, with better recovery performance as T increases. We also observe that the
posterior variance shrinks, as T increases, Finally, the SCB plots indicate that the approximate posteriors are well

18

A PREPRINT - APRIL 20, 2020

(a) Parameter recovery with learned summary statistics (b) Calibration with learned summary statistics

(c) Parameter recovery with hand-crafted summary statistics (d) Calibration with hand-crafted summary statistics

(e) Full posterior with learned summary statistics (f) Full posterior with hand-crafted summary statistics

Figure 9: Comparison of recovery/calibration on the LV model with learned vs. hand-crafted summary statistics (a)
Simulation-based calibration (SBC) with learned summary statistics; (b) Parameter recovery with learned summary
statistics; (c) Parameter recovery with hand-crafted summary statistics; (d) Simulation-based calibration (SBC) with
hand-crafted summary statistics; (e) Example full posteriors obtained on a single dataset with ground-truth rate
parameters θ = (1, 1, 1, 1) obtained with learned summaries; (f) The posterior obtained from the same dataset using
hand-crafted summary statistics.

calibrated, with the approximate posterior mean of β slightly overestimating the true parameter values in the lower
range.

3.8 Learned vs. Hand-Crafted Summaries: The Lotka-Volterra Population Model

With this final examples, we want to compare the performance of our method with an LSTM summary network vs.
performance obtained with a standard set of hand-crafted summary statistics. For this, we focus on the well-studied
Lotka-Volterra (LV) model. The LV model describes the dynamics of biological systems in which a population of
predators interacts with a population of prey [57]. It involves a pair of first order, non-linear, differential equations given
by:

d

dt
= αu− βuv (49)

d

dt
= −γv + δβuv (50)

where u denotes the number of preys, v denotes the number of predators, and the parameter vector controlling the
interaction between the species is θ = (α, β, γ, δ).

During training of the networks, we set the initial conditions as u0 = 10 and v0 = 5 and consider an interval IT = 15
of discrete time units with T = 500 time steps (samples) in between. Each sample xt in each LV time-series x1:T is
thus a 2-dimensional vector containing the number of prey and predators in the population at time unit t.

We train two invertible neural networks. The first is trained jointly with an LSTM summary network which outputs a
9-dimensional learned summary statistic fψ(x1:T). The second uses a set of 9 typically used, hand-crafted summary
statistics [42, 43], which include: the mean of the time series; the log variance of the time-series; the auto-correlation
of each timeseries at lags 0.2 and 0.4 time units; the cross-correlation between the two time series. The same cINN
architecture with 5 ACBs is used for both training scenarios. For each scenario, we perform the same number of
iterations and epochs. Online learning for each training scenario took approximately 4 hours in total wall-clock time.

19

A PREPRINT - APRIL 20, 2020

The results obtained on the LV model are depicted in Figure 9. We observe notably better recovery of the true parameter
estimates when performing inference with the learned summary statistics. The approximate posteriors are also better
calibrated when conditioned on the set of 9 learned summary statistics. These results highlight the advantages of
using a summary networks when no sufficient summary statistics are available. Finally, Figure 9e and Figure 9f depict
the posteriors obtained by the two different INNs on a single dataset with ground-truth parameters θ = (1, 1, 1, 1).
Evidently, learning the summary statistics leads to much sharper posteriors and better point-estimate recovery.

4 Discussion

In the current work, we proposed and explored a novel method which uses invertible neural networks to perform globally
amortized approximate Bayesian inference. The method, which we named BayesFlow, requires only simulations from a
forward model to learn a reusable probabilistic mapping between data and parameters. We demonstrated the utility of
BayesFlow by applying it to models and data from various research domains. Further, we explored an online learning
approach with variable number of observations per iteration. We demonstrated that this approach leads to excellent
parameter estimation throughout the examples considered in the current work. In theory, BayesFlow is applicable to
any mathematical process model which can be implemented as a computer simulation

BayesFlow combines the universal approximation capacity of deep learning methods [19] with the crucial uncertainty
quantification assets of Bayesian inference [28, 16]. Besides being capable of performing fully Bayesian inference on
intractable mathematical models, BayesFlow provides a general framework for designing reusable Bayesian parameter
estimation machines for various research domains. Moreover, it could also prove as a viable alternative in modeling
contexts where standard inference methods are available, but inference is nevertheless prohibitively slow. In the
following, we highlight the main advantages of BayesFlow.

First, the introduction of separate summary and inference networks renders the method independent of the shape or the
size of the observed data. The summary network learns a fixed-size vector representation of the data in an automatic,
data-driven manner. Since the summary network is optimized jointly with the inference network, the learned data
representation is encouraged to be maximally informative for inferring the parameters’ posterior. This is particularly
useful in settings where appropriate summary statistics are not known and, as a consequence, relevant information
is lost through the choice of sub-optimal summary functions. However, if sufficient statistics are available in a given
domain, one might omit the summary network altogether and feed these statistics directly to the invertible network.

Second, we showed that BayesFlow generates samples from the correct posterior under perfect convergence without
distributional assumptions on the shape of the posterior. This is in contrast to variational methods which optimize a
lower-bound on the posterior [29, 30], and oftentimes assume Gaussian approximate posteriors. Additionally, we also
showed throughout all examples that the posterior means generated by the BayesFlow method are mostly excellent
estimates for the true values. Beyond this, the fact that the BayesFlow method recovers the full posterior does not
necessitate the usage of point estimates or summary statistics of the posterior. Further, we observe the desired posterior
contraction (posterior variance decreases with increasing number of observations) and better recovery with increasing
number of observations. These are indispensable properties of any Bayesian parameter estimation method, as they
mirror the decrease in epistemic uncertainty and simultaneous increase in information due to availability of more data.

Third, the largest computational cost of BayesFlow is paid during the training phase. Once trained, the networks can be
used and reused to perform inference on large numbers of data sets from a given research domain within seconds, given
the same priors. Indeed, there are many instances of research domains where a single model is extensively explored and
independently fitted by multiple researches to test scientific hypotheses [56, 60, 47, 11]. These research domains are
expected to benefit the most from learning the model universe once and then inverting the model multiple times for fast
inference on multiple data sets. In this regard, BayesFlow is similar to the recently introduced prepaid method [38]
which uses a database of pre-computed summary statistics and nearest-neighbors for inference. Note, however, that
BayesFlow does not need to store training data, since the knowledge about the relationship between data and parameters
is compressed into the networks’ weights. This not only makes the global sharing of pre-trained parameter estimation
networks across researchers extremely easy, but also makes their local storage very efficient. Finally, all computations
involved in the BayesFlow method benefit from a high degree of parallelism and can thus utilize the advantages of
modern GPU acceleration.

These advantages notwithstanding, limitations of the BayesFlow method should also be mentioned. Although we could
provide an asymptotic theoretical guarantee that BayesFlow recovers the true posteriors under perfect convergence, this
might not be achieved in practice. Therefore, is it essential that proper calibration of point estimates and estimated
posteriors is performed for each application of the method. Below, we discuss potential challenges and limitations of
the method.

20

A PREPRINT - APRIL 20, 2020

A first challenge is the Monte Carlo error introduced by approximating the mathematical expectations in our optimization
objective (Eq.19) with a finite sum. The fact that we can loop through the training phase for a potentially unlimited
amount of data should mitigate the Monte Carlo error. However, this would only apply to the online learning approach
which is preferable when simulations are computationally cheap to perform. Approximation error remains a potential
issue for the offline learning approach with a fixed grid or reference table of simulated data. Note, that this is a potential
shortcoming of all methods for approximate inference using the reference table approach.

Second, the design of the summary network and invertible networks is a crucial choice for achieving optimal performance
of the method. As already mentioned, the summary network should be able to represent the observed data without losing
essential information and the invertible network should be powerful enough to encode the relevant data-generating
process. Nevertheless, in some real-world scenarios there might be little guidance on how to actually construct suitable
summary networks. Recent work on probabilistic symmetry [5] and algorithmic alignment [59] as well as our current
experiments do, however, provide some insights about the design of summary networks. For instance, i.i.d. data induce
a permutation invariant distribution which is well modeled with a deep invariant network [5]. Data with temporal or
spatial dependencies are best modeled with recurrent [25], or convolutional [46] networks. When pairwise or multi-way
relationships are particularly informative, attention [55] or graph networks [59] appear as reasonable choices. On the
other hand, the depth of the invertible network should be tailored to the complexity of the mathematical model of
interest. More ACBs will enable the network to encode more complex distributions but will increase training time.
Very high-dimensional problems might also require very large networks with millions of parameters, up to a point
where estimation becomes practically unfeasible. However, most mathematical models in the life sciences prioritize
parsimony and interpretability, so they do not contain hundreds or thousands of latent parameters. In any case, future
applications might require novel network architectures and solutions which go beyond our initial recommendations.

A third potential issue is the large number of neural network and optimization hyperparameters that might require
fine-tuning by the user for optimal performance on a given task. However, we observe that many of the default
hyperparameter values are sufficient to achieve excellent performance, and starting with a relatively large network
consisting of 5 to 10 ACBs does not appear to hurt performance or destabilize training, even if the model to be learned
is relatively simple. Based on our results, we expect that a single architecture should be able to perform well on models
from a given domain. Future research should investigate this question of generality by applying the method to different
or even competing models within different research domains. Future research should investigate the impact of modern
hyperparameter optimization methods such as Bayesian optimization [15].

Finally, even though modern libraries such as TensorFlow [1] or Torch [8] allow for rapid and relatively straightforward
development of various neural network architectures, the implementational burden associated with the current method
is still reasonably high. In order to ease the understanding and independent application of the method, we provide
fully functioning code to reproduce and study all of the examples tackled in this paper. In addition, we provide
implementation of all metrics and visualization tools for performance validation used throughout the paper. Moreover,
we are currently developing a general user-friendly software, which should abstract away most intricacies from the user
of the method.

We hope that the new BayesFlow method will enable researchers from a variety of fields to accelerate model-based
inference and will further prove its utility beyond the examples considered in this paper.

Acknowledgements

We thank Paul Bürkner, Manuel Haussmann, Jeffrey Rouder, Raphael Hartmann, David Izydorczyk, Hannes Wendler,
Chris Wendler, and Karin Prillinger for their invaluable comments and suggestions that greatly improved the manuscript.
We also thank Francis Tuerlinckx and Stijn Verdonck for their support and thought-provoking ideas.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), pages 265–283, 2016.

[2] Lynton Ardizzone, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W Pellegrini, Ralf S Klessen, Lena
Maier-Hein, Carsten Rother, and Ullrich Köthe. Analyzing inverse problems with invertible neural networks.
Proceedings ICLR 2019, 2018.

[3] Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten Rother, and Ullrich Köthe. Guided image generation with
conditional invertible neural networks. arXiv preprint arXiv:1907.02392, 2019.

21

A PREPRINT - APRIL 20, 2020

[4] Daniele Bigoni, Olivier Zahm, Alessio Spantini, and Youssef Marzouk. Greedy inference with layers of lazy
maps. arXiv preprint arXiv:1906.00031, 2019.

[5] Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetry and invariant neural networks. arXiv preprint
arXiv:1901.06082, 2019.

[6] William M Bolstad and James M Curran. Introduction to Bayesian statistics. John Wiley & Sons, 2016.

[7] Laming Chen, Guoxin Zhang, and Eric Zhou. Fast greedy map inference for determinantal point process to
improve recommendation diversity. In Advances in Neural Information Processing Systems, pages 5622–5633,
2018.

[8] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a modular machine learning software library.
Technical report, Idiap, 2002.

[9] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. arXiv preprint
arXiv:1911.01429, 2019.

[10] Katalin Csilléry, Michael GB Blum, Oscar E Gaggiotti, and Olivier François. Approximate bayesian computation
(abc) in practice. Trends in ecology & evolution, 25(7):410–418, 2010.

[11] Perry De Valpine and Alan Hastings. Fitting population models incorporating process noise and observation error.
Ecological Monographs, 72(1):57–76, 2002.

[12] Matthew C Deans. Maximally informative statistics for localization and mapping. In Proceedings 2002 IEEE
International Conference on Robotics and Automation (Cat. No. 02CH37292), volume 2, pages 1824–1829. IEEE,
2002.

[13] Gianluca Detommaso, Jakob Kruse, Lynton Ardizzone, Carsten Rother, Ullrich Köthe, and Robert Scheichl.
Hint: Hierarchical invertible neural transport for general and sequential bayesian inference. arXiv preprint
arXiv:1905.10687, 2019.

[14] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

[15] Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek, Holger Hoos, and Kevin
Leyton-Brown. Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In
NIPS workshop on Bayesian Optimization in Theory and Practice, volume 10, page 3, 2013.

[16] Andrew Gelman, Hal S Stern, John B Carlin, David B Dunson, Aki Vehtari, and Donald B Rubin. Bayesian data
analysis. Chapman and Hall/CRC, 2013.

[17] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with lstm. 1999.

[18] Pedro J Gonçalves, Jan-Matthis Lueckmann, Michael Deistler, Marcel Nonnenmacher, Kaan Öcal, Giacomo
Bassetto, Chaitanya Chintaluri, William F Podlaski, Sara A Haddad, Tim P Vogels, et al. Training deep neural
density estimators to identify mechanistic models of neural dynamics. bioRxiv, page 838383, 2019.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[20] David S Greenberg, Marcel Nonnenmacher, and Jakob H Macke. Automatic posterior transformation for
likelihood-free inference. arXiv preprint arXiv:1905.07488, 2019.

[21] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel
two-sample test. Journal of Machine Learning Research, 13(Mar):723–773, 2012.

[22] Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan: Combining maximum likelihood and adversarial
learning in generative models. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[23] John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between gaussian mixture
models. In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07,
volume 4, pages IV–317. IEEE, 2007.

[24] Herbert W Hethcote. The mathematics of infectious diseases. SIAM review, 42(4):599–653, 2000.

[25] Seong Jae Hwang, Zirui Tao, Won Hwa Kim, and Vikas Singh. Conditional recurrent flow: Conditional generation
of longitudinal samples with applications to neuroimaging. arXiv preprint arXiv:1811.09897, 2018.

[26] Bai Jiang, Tung-yu Wu, Charles Zheng, and Wing H Wong. Learning summary statistic for approximate bayesian
computation via deep neural network. Statistica Sinica, pages 1595–1618, 2017.

[27] Matt J Keeling and Pejman Rohani. Modeling infectious diseases in humans and animals. Princeton University
Press, 2011.

22

A PREPRINT - APRIL 20, 2020

[28] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer vision? In
Advances in neural information processing systems, pages 5574–5584, 2017.

[29] D Kingma, Tim Salimans, R Josefowicz, Xi Chen, Ilya Sutskever, Max Welling, et al. Improving variational
autoencoders with inverse autoregressive flow. 2017.

[30] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. stat, 1050:1, 2014.
[31] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In Advances in

Neural Information Processing Systems, pages 10215–10224, 2018.
[32] Emmanuel Klinger, Dennis Rickert, and Jan Hasenauer. pyabc: distributed, likelihood-free inference. Bioinfor-

matics, 34(20):3591–3593, 2018.
[33] Hongzhou Lin and Stefanie Jegelka. Resnet with one-neuron hidden layers is a universal approximator. In

Advances in Neural Information Processing Systems, pages 6169–6178, 2018.
[34] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3431–3440, 2015.
[35] Jan-Matthis Lueckmann, Pedro J Goncalves, Giacomo Bassetto, Kaan Öcal, Marcel Nonnenmacher, and Jakob H

Macke. Flexible statistical inference for mechanistic models of neural dynamics. In Advances in Neural
Information Processing Systems, pages 1289–1299, 2017.

[36] Ulf Kai Mertens. Deep learning methods for likelihood-free inference: approximating the posterior distribution
with convolutional neural networks. PhD thesis, 2019.

[37] Ulf Kai Mertens, Andreas Voss, and Stefan Radev. Abrox—a user-friendly python module for approximate
bayesian computation with a focus on model comparison. PloS one, 13(3):e0193981, 2018.

[38] Merijn Mestdagh, Stijn Verdonck, Kristof Meers, Tim Loossens, and Francis Tuerlinckx. Prepaid parameter
estimation without likelihoods. PLoS computational biology, 15(9):e1007181, 2019.

[39] Steven Miletić, Brandon M Turner, Birte U Forstmann, and Leendert van Maanen. Parameter recovery for the
leaky competing accumulator model. Journal of Mathematical Psychology, 76:25–50, 2017.

[40] Ashish Mishra, Shiva Krishna Reddy, Anurag Mittal, and Hema A Murthy. A generative model for zero shot
learning using conditional variational autoencoders. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 2188–2196, 2018.

[41] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[42] George Papamakarios and Iain Murray. Fast ε-free inference of simulation models with bayesian conditional
density estimation. In Advances in Neural Information Processing Systems, pages 1028–1036, 2016.

[43] George Papamakarios, David C Sterratt, and Iain Murray. Sequential neural likelihood: Fast likelihood-free
inference with autoregressive flows. arXiv preprint arXiv:1805.07226, 2018.

[44] Mijung Park, Wittawat Jitkrittum, and Dino Sejdinovic. K2-abc: Approximate bayesian computation with kernel
embeddings. 2016.

[45] Matthew D Parno and Youssef M Marzouk. Transport map accelerated markov chain monte carlo. SIAM/ASA
Journal on Uncertainty Quantification, 6(2):645–682, 2018.

[46] Stefan T Radev, Ulf K Mertens, Andreas Voss, and Ullrich Köthe. Towards end-to-end likelihood-free inference
with convolutional neural networks. British Journal of Mathematical and Statistical Psychology, 2019.

[47] Roger Ratcliff and Gail McKoon. The diffusion decision model: theory and data for two-choice decision tasks.
Neural computation, 20(4):873–922, 2008.

[48] Louis Raynal, Jean-Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P Robert, and Arnaud Estoup. Abc
random forests for bayesian parameter inference. Bioinformatics, 35(10):1720–1728, 2018.

[49] Faryad Darabi Sahneh, Aram Vajdi, Heman Shakeri, Futing Fan, and Caterina Scoglio. Gemfsim: a stochastic
simulator for the generalized epidemic modeling framework. Journal of computational science, 22:36–44, 2017.

[50] Scott A Sisson and Yanan Fan. Likelihood-free MCMC. Chapman & Hall/CRC, New York.[839], 2011.
[51] Mikael Sunnåker, Alberto Giovanni Busetto, Elina Numminen, Jukka Corander, Matthieu Foll, and Christophe

Dessimoz. Approximate bayesian computation. PLoS computational biology, 9(1):e1002803, 2013.
[52] Sean Talts, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman. Validating bayesian inference

algorithms with simulation-based calibration. arXiv preprint arXiv:1804.06788, 2018.

23

A PREPRINT - APRIL 20, 2020

[53] Brandon M Turner and Per B Sederberg. A generalized, likelihood-free method for posterior estimation. Psycho-
nomic bulletin & review, 21(2):227–250, 2014.

[54] Marius Usher and James L McClelland. The time course of perceptual choice: the leaky, competing accumulator
model. Psychological review, 108(3):550, 2001.

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages
5998–6008, 2017.

[56] Andreas Voss, Veronika Lerche, Ulf Mertens, and Jochen Voss. Sequential sampling models with variable
boundaries and non-normal noise: A comparison of six models. Psychonomic bulletin & review, pages 1–20,
2019.

[57] Darren J Wilkinson. Stochastic modelling for systems biology. CRC press, 2011.
[58] Simon N Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature, 466(7310):1102,

2010.
[59] Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. What can

neural networks reason about? arXiv preprint arXiv:1905.13211, 2019.
[60] Luke Zappia, Belinda Phipson, and Alicia Oshlack. Splatter: simulation of single-cell rna sequencing data.

Genome biology, 18(1):174, 2017.

24

A PREPRINT - APRIL 20, 2020

Appendix

A Computation of Validation Metrics

Normalized Root Mean Squared Error

The normalized root mean squared error (NRMSE) between a sample of true parameters {θ(i)}Mi=1 and a sample of
estimated parameters {θ̂(i)}Mi=1 is given by:

NRMSE =

√√√√√ M∑
i=1

(
θ(i) − θ̂(i)

)2
θmax − θmin

(1)

Due to the normalization factor θmax − θmin, the NRMSE is scale-independent, and thus suitable for comparing the
recovery across parameters with different numerical ranges. The NRMSE equals zero when the estimates are exactly
equal to the true values.

Coefficient of Determination

The coefficient of determination R2 measures the proportion of variance in a sample of true parameters {θ(i)}Mi=1 that
is explained by a sample of estimated parameters {θ̂(i)}Mi=1. It is computed as:

R2 = 1−
M∑
i=1

(
θ(i) − θ̂(i)

)2
(
θ(i) − θ̄(i)

)2 (2)

where θ̄ denotes the mean of the true parameter samples. When R2 equals 1, the estimates are perfect reconstructions
of the true parameters.

Re-simulation Error

To compute the re-simulation error Errsim, we first obtain an estimate of the true parameter value given an observed
(validations) data set xo1:N by computing the mean of the approximate posterior θ̃. Then, we run the mathematical
model to obtain a simulated dataset xs1:N = S(θ̃, ξ). Finally, we compute the maximum mean discrepancy (MMD,
[21]) between the observed and the simulated dataset MMD(xo1:N ,x

s
1:N). The MMD is a kernel-based metric which

estimates the mismatch between two distributions given samples from the distributions by comparing all of their
moments. It equals zero when the two distributions are equal almost everywhere [21]). Thus, a low MMD indicates that
the distribution of xs1:N is close to the distribution of xo1:N . Conversely, a high MMD indicates that the distribution of
xs1:N is far from the distribution of xo1:N . We report the median MMD computed over all validation data sets.

Calibration Error

The calibration error Errcal quantifies how well the coverage of an approximate posterior matches the coverage of an
unknown true posterior. Let αθ be the fraction of true parameter values lying in a corresponding α-credible interval of
the approximate posterior. Thus, for a perfectly calibrated approximate posterior, αθ should equal α for all α ∈ (0, 1).
We compute the calibration error for each marginal posterior as the median absolute deviation |αθ−α | for 100 equally
spaced values of α ∈ (0, 1). Therefore, the calibration error ranges between 0 and 1 with 0 indicating perfect calibration
and 1 indicating complete miscalibration of the approximate posterior.

Kullback-Leibler Divergence

The Kullback-Leibler divergence (KL) quantifies the increase in entropy incurred by approximating a target probability
distribution P with a distribution Q. Its general form for absolutely continuous distributions is given by

KL(P ||Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx (3)

1

A PREPRINT - APRIL 20, 2020

where p and q denote the pdfs of P and Q. In the case where P and Q are both multivariate Gaussian distributions, the
KL divergence can be computed in closed form [23]:

KL(P ||Q) =
1

2

[
log

det Σq

det Σp
+ Tr(Σ−1q Σp)− d+ (µp − µq)TΣ−1q (µp − µq)

]
(4)

where Σp and Σq denote the covariance matrices of p and q, µp and µq the respective mean vectors, and d the number
of dimensions of the Gaussian. In the case of diagonal Gaussian distributions, Eq.4 reduces to:

KL(P ||Q) =

d∑
i=1

(
log

σq,i
σp,i

+
σ2
p,i + (µq,i − µp,i)2

2σ2
q,i

− 1

2

)
(5)

Even though the KL divergence is not a proper distance metric, as it is not symmetric in its arguments, it can be used to
quantify the error of approximation when a closed-form solution is available.

Simulation-Based Calibration

Simulation-based calibration is a method to detect systematic biases in any Bayesian posterior sampling method [52]. It
is based on the self-consistency of the Bayesian joint distribution. Given a sample from the prior distribution θ̃ ∼ p(θ)
and a sample from the data-generating process x̃ ∼ p(x | θ̃), one can integrate θ̃ and x̃ out of joint distribution and
recover back the prior of θ:

p(θ) =

∫
p(θ, θ̃, x̃)dx̃dθ̃ (6)

=

∫
p(θ, x̃ | θ̃)p(θ̃)dx̃dθ̃ (7)

=

∫
p(θ | x̃)p(x̃ | θ̃)p(θ̃)dx̃dθ̃ (8)

If the Bayesian sampling method produces samples from the exact posterior, the equality implied by Eq.8 should hold
regardless of the particular form of the posterior. Thus, any violation of this equality indicates some error incurred by
the sampling method. The authors of [52] propose Algorithm 2 for visually detecting such violations:

Algorithm 2 Simulation-based calibration (SBC) for a single parameter θ

1: for i = 1, ...,m do
2: Sample θ̃(i) ∼ p(θ)
3: Simulate a data set x(i)

1:N = S(θ̃(i), ξ)

4: Draw posterior samples {θ(l)}Ll=1 ∼ pφ(θ |x(i)
1:N)

5: Compute rank statistic r(i) =
∑L
l=1 1[θ(l)<θ̃(i)]

6: Store r(i)
7: end for
8: Create a histogram of {r(i)}Mi=1 and inspect it for uniformity

Algorithm 2 is correct, since Eq.8 implies that the rank statistic defined in line 5 should be uniformly distributed.
Hence, any deviations from uniformity indicate some interpretable error in the approximate posterior [52].

B Model Details

The Ricker Model

Summary Network. We use a bidirectional long short-term memory (LSTM) recurrent neural network [17] for the
raw Ricker time-series. The LSTM network architecture is a reasonable choice for this example, as it is able to

2

A PREPRINT - APRIL 20, 2020

capture long-term dependencies in datasets with temporal or spatial autocorrelations. LSTMs can also easily deal with
variable-length time-series.

Simulation. We place the following uniform priors over the Ricker model parameters:

ρ ∼ U(0, 15) (9)
r ∼ U(1, 90) (10)
σ ∼ U(0.05, 0.7) (11)

These ranges appear to be very broad, as datasets generated by extreme parameter values appear implausible in
real-world scenarios. Nevertheless, we stick to broad priors for training, even though parameter recovery might degrade
at the extremes.

Figure 1 depicts different simulated Ricker timeseries generated via draws from the prior.

Figure 1: Example Ricket data sets generated with different parameters.

The Lévy-Flight Model

Summary Network. We use a permutation invariant neural network [5] for the i.i.d. reaction times (RT) data. Similarly to
the toy Regression example, each response in an RT data set is assumed to be independent of all others, so permutations
of the data set must lead to the same parameter estimates.

Simulation. We place the following uniform priors over the LFM parameters, since they are broad enough to cover the
range of realistic RT distributions encountered in empirical choice RT scenarios:

v0 ∼ U(0, 6) (12)
v1 ∼ U(−6, 0) (13)
zr ∼ U(0.3, 0.7) (14)
a ∼ U(0.6, 3) (15)
t0 ∼ U(0.3, 1) (16)
α ∼ U(1, 2) (17)

Figure 2 depitcs different simulated RT distributions generated via draws from the prior.

3

A PREPRINT - APRIL 20, 2020

Figure 2: Example RT distributions generated with different parameters.

The Stochastic SIR Model

Summary Network. We use a 1D fully convolutional neural network [34] for the raw SIR time-series into fixed-size
vectors. Here, we choose a convolutional network architecture over the previously mentioned LSTM, as convolutional
networks are more computationally efficient. Further, we wanted to underline the utility of 1D convolutional networks
for multidimensional time-series data. Finally, convolutional networks can also deal with variable input sizes.

Simulation. We place the following uniform priors over the two rate parameters of the stochastic SIR model:

β ∼ U(0.01, 1) (18)
γ ∼ U(0.01, β) (19)

These ranges were chosen based on empirical plausibility of the generated SIR time-series.

Figure 3 depicts different SIR timeseries generated via draws from the prior.

Figure 3: Example SIR timeseries generated with different parameters.

The Lotka-Volterra Model

Summary Network. We use a bidirectional long short-term memory (LSTM) recurrent neural network [17] for the raw
LV time-series (as in the Ricker example).

Simulation. We place the following broad uniform priors over the LV parameters. Some of the parameter combinations
produced divergent simulations, which we removed during online learning.

4

A PREPRINT - APRIL 20, 2020

α ∼ U(exp (−2), exp (2)) (20)
β ∼ U(exp (−2), exp (2)) (21)
γ ∼ U(exp (−2), exp (2)) (22)
δ ∼ U(exp (−2), exp (2)) (23)

5

	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Notation
	2.2 Learning the Posterior
	2.3 Composing Invertible Networks
	2.4 Summary Network
	2.5 Putting It All Together

	3 Experiments
	3.1 Training the Networks
	3.2 Performance Validation
	3.3 Proof of Concept: Multivariate Normal Distribution
	3.4 Multimodal Posterior: Gaussian Mixture Model
	3.5 Stochastic Time-Series Model: The Ricker Model
	3.6 A Model of Perceptual Decision Making: The Lévy-Flight Model
	3.7 Stochastic Differential Equations: The SIR Epidemiology Model
	3.8 Learned vs. Hand-Crafted Summaries: The Lotka-Volterra Population Model

	4 Discussion
	A Computation of Validation Metrics
	B Model Details

