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ABSTRACT

In this work, we develop techniques for fast automatic selection of the best
forecasting model for a new unseen time-series dataset, without having to first
train (or evaluate) all the models on the new time-series data to select the best
one. In particular, we develop a forecasting meta-learning approach called
AUTOFORECAST that allows for the quick inference of the best time-series
forecasting model for an unseen dataset. Our approach learns both forecasting
models performances over time horizon of same dataset and task similarity across
different datasets. The experiments demonstrate the effectiveness of the approach
over state-of-the-art (SOTA) single and ensemble methods and several SOTA
meta-learners (adapted to our problem) in terms of selecting better forecasting
models (i.e., 2X gain) for unseen tasks for univariate and multivariate testbeds.

1 INTRODUCTION

Accurate time-series forecasting at scale is critical for several industrial domains such as cloud
computing Poghosyan et al. (2021), supply chain Abbasimehr et al. (2020), energy Abdallah et al.
(2021), and finance Oreshkin et al. (2020). Most of the current time-series forecasting solutions are
built by experts and require significant manual effort in model construction, feature engineering,
and hyper-parameter tuning Bergstra et al. (2011). Hence, they do not scale while generating
high-quality forecasts for a wide variety of applications. Moreover, there is no learning scheme
that is uniformly better than all other learning schemes for all problem instances Wolpert (1996)
(see Appendix A). A naı̈ve approach would be, given a new dataset, we search over thousands of
models to select the best forecasting model for the problem at hand. However, this approach is
practically infeasible due to the untenable time burden for every new problem.

In this work, we formulate the problem of automatic and fast selection of the best time-series
forecasting model as a meta-learning problem. Our solution avoids the infeasible burden of first
training each of the models and then evaluating each one to select the best model for a new unseen
time-series dataset, or even a new time window within a non-stationary dataset. A practically
important desideratum for any solution to this problem is that once the meta-learner L is trained
in an offline manner using a large corpus of time-series data, then we can use it to quickly infer the
best forecasting model. The quick inference requirement of this new problem, makes it challenging
to solve, yet practically important. Our meta-learner L is trained on the models’ performances on
historical datasets and the time-series meta-features of these datasets.

We emphasize that the new time-series forecasting model selection meta-learning problem
introduced in this paper has several unique characteristics and challenges compared to previous
related meta-learning problems, e.g., Finn et al. (2017); Rusu et al. (2019); Wistuba et al. (2018).
First, existing time-series forecasting models have different designs and different assumptions
around the characteristics of time-series (e.g., probabilistic, seasonal, traditional, etc.). Therefore,
different models perform differently depending on the characteristics that each dataset exhibits.
Thus, capturing the similarity among different datasets needs careful selection of representative
time-series meta-features. Second, the new meta-learning approach should capture the temporal
variations of the models’ performances over different time windows of the dataset, i.e., the best
time-series forecasting model for time window wt is not necessarily the best model for a subsequent
time window wt+k (see Figures 5-6 in Appendix B). Third, the number of available time-series
forecasting models is large and thus training each forecasting model and then evaluating the
suitability of each in inference leads to an unacceptable time burden for most real-world scenarios.
These challenges motivate the need for our proposed approach.
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To solve the problem of automatic time-series forecasting model selection, we propose a
temporal meta-learning approach, called AUTOFORECAST that makes time-series forecasting model
selection. The intuition of our approach is learning both models’ performance evolution over time
horizon for same dataset (via our “temporal meta-learner”) and task similarity across different
datasets (via our “general meta-learner” and proposing novel time-series meta-features that capture
their characteristics). In particular, we train our meta-learner using a large model space which has
over 320 forecasting models (Section 5.1). We also generate more than 800 meta-features that
represent five different types of meta-features which are (simple, statistical, information theoretic,
spectral-based, and landmarker), which reflect various characteristics of the time-series dataset
(Section 3). We also consider diverse datasets so our meta-learning model can be generalized
on new tasks (Table 1) and release the corpus of datasets, along with their meta-features and
the performances across hundreds of models. Given a new (unseen) dataset, AUTOFORECAST
automatically determines the best forecasting model among a large space of models, without the
need to train and evaluate any of the different forecasting models on this new dataset.

The experiments demonstrate the effectiveness of our proposed approach where we validate our
meta-learning approach on both univariate and multivariate testbeds. In particular, we show the
superiority of our approach over the state-of-the-art (SOTA) time series forecasting models Salinas
et al. (2020); Wang et al. (2019); Taylor & Letham (2018); Montero-Manso et al. (2020); Liaw et al.
(2002) and different meta-learning approaches Kadioglu et al. (2010); Nikolić et al. (2013); Zhao
et al. (2020). Across all datasets, AUTOFORECAST achieves 2X gain in selecting the best forecasting
model. Moreover, AUTOFORECAST yields a significant reduction in inference time over the naı̈ve
approach, i.e., across all datasets, AUTOFORECAST has a 42X median inference time reduction. We
find empirically that no single forecasting model triumphs in more than 0.7% of the datasets, thus
motivating the need for automatic model selection for new time-series datasets.

Summary of Main Contributions. The key contributions of this work are as follows:

1. Problem Formulation: We propose a novel meta-learning approach that predicts the best model
for new (unseen) forecasting tasks where each model is composed of time-series specific
parameters along with traditional meta-learning model components.

2. Temporal Learning of Performances: We propose a time-series meta-learner that learns the
models’ performances evolution over time windows of the datasets. Our meta-learner
has two main sub-learners — the time-series (temporal) meta-learner and the general
meta-learner that are designed for different data types with different time dependencies.

3. Specialized Meta-features for Time-series Forecasting: We design novel time-series
landmarker meta-features to capture the unique characteristics of a time-series dataset
toward effectively quantifying task similarity.

4. Efficiency and Effectiveness: Given a new time-series dataset, AUTOFORECAST selects
the best performing forecasting algorithm and its associated hyperparameters without
requiring any model evaluations, while incurring negligible run-time overhead. Through
extensive experiments on our benchmark testbeds, we show that selecting a model by
AUTOFORECAST outperforms SOTA meta-learners and popular forecasting models.

5. Benchmark Data: We release our meta-learning database corpus (348 datasets), performances of
the 322 forecasting models, and meta-features for the community to access it for forecasting
model selection and to build on it with new datasets and models.1

2 RELATED WORK

Meta-learning in Time-series Forecasting: There are few works that considered meta-learning for
time-series analysis Hooshmand & Sharma (2019); Ribeiro et al. (2018); Pan et al. (2020). The
works Hooshmand & Sharma (2019); Ribeiro et al. (2018) applied a neural network time-series
forecasting model trained on a source (energy) dataset and fine-tuned it on the target (energy)
dataset. However, these works did not consider using meta-learning for the general problem of
forecasting model selection that we consider in our current work. There also exist few works
that have explored model selection problem using ensemble learning Ye & Dai (2018); Talagala

1Anonymous URL for our database:
https://drive.google.com/drive/folders/1K1w1Ida5Cr15b5Fhidax-i-fNpWZjvet
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et al. (2018); Vaiciukynas et al. (2020). However, their problem domain of ensemble learning
is different from our problem of model selection. That is due to the fact that ensemble learning
constitutes building multiple models for the same task and does not in itself involve learning from
prior experience on other tasks. In contrast to those works, AUTOFORECAST can select among
any (heterogeneous) set of methods. Finally, there is a line of work that considered empirical
analysis for performance estimation Bergmeir & Benı́tez (2012); Cerqueira et al. (2020) and model
selection Cerqueira et al. (2021) in time-series forecasting. However, these works have several
distinctions from our work which are the need of evaluating all forecasting models in inference and
providing an analysis of the ranking ability of performance estimators without having a meta-learner
that learns how to automatically select the best model.

Few-shot Learning & Transfer Learning: Few-shot learning has been recently leveraged for
automating machine learning pipeline Ravi & Larochelle (2016); Snell et al. (2017); Oreshkin et al.
(2020). In particular, the works Ravi & Larochelle (2016); Snell et al. (2017) investigated different
problems outside the domain of time-series forecasting. The work Oreshkin et al. (2020) applied
meta-learning for zero-shot univariate time series forecasting. However, that work has the limitations
of focusing on solving the cold start problem (i.e., learning model parameter initialization that
generalizes better to similar tasks) which is different from our forecasting model selection problem,
considering different models from the same N-BEATS architecture Oreshkin et al. (2019), and
tackling only univariate time-series datasets. We emphasize that our framework can use N-BEATS
as one forecasting algorithm in our model space. Finally, there exist few works that applied transfer
learning for time series classification (TSC) Fawaz et al. (2018); Abdallah et al. (2021); Wen &
Keyes (2019); Narwariya et al. (2020). These works however have two distinctions from our work.
First, they transfer the learned network’s weights to another network that is also trained on a target
dataset. Second, the TSC problem is different from our forecasting problem that we consider here.

3 PROBLEM FORMULATION

Meta-learning Components: We address the problem of model selection for time-series forecasting
via the meta-learning approach. Our proposed meta-learner AUTOFORECAST depends on:

• A collection of historical time-series forecasting datasets Dtrain = {D1,D2, · · · ,Dn},
namely, a meta-train database, where n is the number of the historical datasets in Dtrain.
Note thatDi ∈ Rni×vi , where ni is the number of observations of the datasetDi and vi is
the number of variables inDi.

• The forecasting models that define the model space, denoted asM = {M1,M2, · · · ,Mm},
where m is the size of the model spaceM.

• For each datasetDi ∈ Dtrain, we sample T windows fromDi, where each sample window
wt from datasetDi has length |wt| ( smaller than the dataset length); See Appenidx C.1.

Model Design: For our forecasting model selection problem, we define our model as follows.
Definition 1. A modelMi ∈M is given by the tupleMi = (ai,hi, gi(·)),where ai is the forecasting
algorithm, hi is the hyperparameter vector for the forecasting algorithm ai, and gi(·) : Rni×vi →
Rni×vi is the time-series data representation.

We emphasize that hi consists of hyper-parameters of the forecasting algorithm (e.g., number
of RNN layers in DeepAR Salinas et al. (2020)) and that gi(·) represents time-series different
representations (e.g., the smoothing transformation Kalekar et al. (2004); see Table 9 in Appendix F).

Using the defined meta-train database, the model space, and the sampling windows, we now
introduce the performance tensor.
Definition 2. Given a meta-train databaseDtrain and a model spaceM, we define the performance
tensor P ∈ RT×n×m as

P = {P1,P2, · · · ,PT },
where Pk = (pi,jk ) ∈ Rn×m and the element pi,jk = Mj(wk(Di)) denotes the jth model Mj’s
performance on the time window wk of the ith meta-train dataset Di.2 We thus denote pik =[
pi,1k · · · pi,mk

]
as the performance vector of all models inM on time window wk ofDi.

2For each time window wt, we have the pair (xt−|wt|:t−1,yt:t+H), where the different models are trained on
xt−|wt|:t−1 and evaluated on yt:t+H , where H is the forecasting horizon.
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The performance tensor represents the prior experience that the meta-learner will build upon to
perform efficiently on the new unseen task (time-series). This motivates us to define our problem.
Definition 3. Time-series forecasting model selection problem. Given a new input task (dataset)
Dtest (i.e., unseen time-series forecasting task), the time-series forecasting model selection problem
is then stated as follows: for each time windowwt inDtest, select the best model M̂t ∈M to employ
on that window ofDtest. Formally, such selection problem is given by

M̂t ∈ arg max
Mj∈M

Mj(wt(Dtest)) ∀t ∈ {1, 2, . . . , T}. (1)

Time-series Meta-Features: A key component of AUTOFORECAST is the extraction of
meta-features that aims to capture the important characteristics of a time-series dataset. To achieve
such a goal, we extract meta-features for each time-series dataset which we define formally next.

Definition 4. Given a time-series dataset Di, we define the meta-features tensor Fi =
{F i1 , · · · ,F iT } ∈ RT×d×vi , where the meta-features matrix F ik ∈ Rd×vi denotes the set of the
meta features for the time window wk of the datasetDi, given by

F ik , {ψ(wk(Di)) :ψ : R|wi|×vi → Rd×vi}, (2)

where ψ(·) : R|wi|×vi → Rd×vi defines feature extraction module in AUTOFORECAST and d
denotes the number of the meta-features.3 We summarize our notations in Table 7 (Appendix C).

Meta-Features Categories: The set of meta features in our work that capture the main
characteristics of a dataset can be organized into five categories Vanschoren (2018): simple (general
task properties), statistical (properties of the underlying dataset distributions), information-theoretic
(entropy measures), spectral (frequency domain properties), and landmarker (forecasting models’
attributes on the task) features. The idea of the proposed landmarker features is to apply a few of the
fast, easy-to-construct time-series forecasting models on a dataset and extract features from (i) the
structure of the estimated forecasting model, and (ii) its output performance scores. The complete
meta-features list in AUTOFORECAST are explained in Appendix E (Table 8).

4 AUTOFORECAST SOLUTION

AUTOFORECAST consists of two-phases: offline training of the meta-learner and online inference
that aims at selecting the appropriate model at test time. We argue that running time of the offline
training phase is not critical since it is done only once. On the contrary, forecasting model selection
for a new time-series dataset should incur small run-time overhead since it is critical for quick
selection of the forecasting model. We now explain our meta-learning approach and its components.

4.1 META-LEARNING OBJECTIVE AND (OFFLINE) TRAINING

We show the overview of the major components of AUTOFORECAST in Figure 1. We highlight the
components transferred from offline to online stage (model selection) in blue; namely, meta-feature
extractors ψ, feature embedding, time-series meta-learner Θ, and general meta-learner Φ. The
meta-learner L has three main inputs; the performance tensor P, the meta-features tensor F, and
the loss function. In the offline training of the meta-learner L, it learns two components Θ and Φ,
where the former captures the temporal relationship between the meta-features of the consecutive
time windows within the same dataset and the evolution of the performances of the models on these
windows (i.e., the best candidate models on those time-windows). On the other hand, the general
meta-learner Φ predicts the best model for each task (window) without taking into account the
temporal relationship among different time windows within the same dataset.

Rationale for Having both General and Time-series Meta-learners: The rationale of having both
meta-learners is the fact that the temporal dependency among different time windows depends on the
dataset type. Some datasets have strong temporal dependency which would be predicted efficiently
by the time-series meta-learner Θ while others datasets would have weak temporal dependence
among different windows performances in which the general meta-learner Φ is expected to perform
better. We show the results of such different datasets for our two testbeds in Table 12-13.
3Note that we do feature-embedding (PCA), as shown in Figure 1, to get the final meta-features tensor Fi.
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Figure 1: An overview of AUTOFORECAST; components that transfer from offline to online (model
selection) phase shown in blue. Given the two main inputs; the performance tensor P and the
meta-features tensor F, the meta-learner L learns two main components; general meta-learner (Φ)
and time-series meta-learner (Θ).

General Meta-learner Φ: We propose multi-output regression model for training our general
meta-learner Φ in Figure 1. From running all the models inM on different time windows wt with
t ∈ {1, . . . , T} for all datasets in the meta-train database Dtrain, we collect a set of N = T × n
distinct training samples (F it ,p

i
t), with t ∈ [1, T ] and i ∈ [1, n]. Recall that F it ∈ Rd×vi is the

meta-feature matrix of the window wt of dataset Di ∈ Dtrain and that pit ∈ R|M| (performance
vector on window wt ofDi). Thus, the multi-output regression model is given by

p̂it = Φ
(
F it ,β

)
; t ∈ [1, T ], i ∈ [1, n], (3)

where Φ denotes the regression function (e.g., linear, NN) and β are the unknown regression
parameters. Thus, the general meta-learner’s objective, denoted by the loss function LΦ, is given by

LΦ =

T∑
t=1

n∑
i=1

L(p̂it,p
i
t), (4)

where L is the loss metric (e.g., MSE, MAPE, etc). Therefore, Φ learns the mapping between the
meta-features of a time window in a dataset and the corresponding best model in the model space.

LSTM-based Time-series Meta-learner Θ: The goal of the time-series meta-learner Θ (in
Figure 1) is to learn how the models’ performances evolve with the time-series meta-feature
matrices over time. For such purpose, we propose time-series multi-regression model to learn
such performance evolution. For any dataset Di, given the time-series meta-feature matrices
F i1 , . . . ,F

i
t−1,F

i
t and the history of the performance vectors pi1, . . . ,p

i
t−1, we aim to predict

performance vector pit of current time window wt. The time-series regression equation would be

p̂it = Θ
(
F i1 ,F

i
2 , . . . ,F

i
t−1,F

i
t ,p

i
1,p

i
2, . . . ,p

i
t−1

)
, i ∈ [1, n], t ∈ [1, T ],

where Θ denotes the time-series regression function, and p̂it is the predicted performance vector.

We adapt long-short term memory (LSTM) inputs for our time-series meta-learner Θ. We denoteXt

as the input at the time window wt which is given by Xt =
[
F i1 ,p

i
1,F

i
2 ,p

i
2, · · · ,F it−1,p

i
t−1,F

i
t

]
.

The predicted LSTM’s output denoted by p̂it is a function ofXt; detailed equations of such relation
between p̂it and Xt in the LSTM are provided in Appendix D. During training, Θ learns the
parametersWf , bf ,Wl, bl,Wo, bo,Wu, bu,Wv, bv which are the weights and biases of the forget,
input, and output layers and cell updates, respectively. Thus, the objective of the LSTM time-series
meta-learner Θ, denoted by LΘ, would be given by

LΘ =

T∑
t=1

n∑
i=1

L(p̂it,p
i
t). (5)

We emphasize that Θ learns temporal relationships between the history of the meta-features and
performance vectors over time windows and the corresponding current best model in model space.
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Meta-learner Objective: Having established the two main components — the general meta-learner
Φ and the time-series meta-learner Θ) — we now define the objective of our meta-learner L, which
is given by a linear combination of the two components as follows:

min
β,Wf ,Wl,Wo,bf ,bl,bo,Wu,bu,Wv,bt

aLΦ(F,P) + bLΘ(F,P). (6)

The meta-learner L learns jointly general meta-learner Φ (equation 4) and time-series meta-learner
Θ (equation 5) given meta-learner inputs, the performance tensor P and the meta-features tensor F.
By definition, this meta-learner L optimizes the loss over all datasets and all time windows.

4.2 ONLINE INFERENCE AND MODEL SELECTION

In the online mode of AUTOFORECAST, we aim to make use of the trained meta-leaner L
to quickly infer the best model for the current task. Given a new time-series dataset Dtest,
AUTOFORECAST first computes the corresponding meta-features tensor by F̂test = ψ(Dtest).
Those time-series meta-features are then embedded (using PCA) to obtain the final meta-features
tensor Ftest. Then, in the model inference, as shown in Figure 1, the model set performances
are predicted for each available model in M. The model M̂t with the lowest predicted error
score by L on the time window wt of Dtest is chosen as the selected model for that window wt.
Now, we explain such model selection process for each time window across the time windows
w0, w1, . . . , wT of Dtest as follows. For the first window (w0), the inference is given by M̂0 ∈
arg minM̄∈M L(F test0 ). For any other window wt (with t > 0), the time-series meta-learner Θ
inference depends on the history of the meta-features and the history of the models’ performances as
follows M̂Θ

t ∈ arg minM̄∈MΘ(F test0 , . . . ,F testt−1 ,F
test
t , p̂test0 , . . . , p̂testt−1). On the other hand, the

general meta-learner Φ inference depends on the predicted (regression) output on the meta-features
of current time window where M̂Φ

t ∈ arg minM̄∈MΦ(F testt ). Thus, the final selected model is
given by

M̂t ∈ arg min
M̄∈{M̂Φ

t ,M̂
Θ
t }
p̂testt (M̄). (7)

We emphasize that tie between models can happen in online inference (i.e., two or more models can
have an identical predicted performance). We built upon the several tie breaking techniques that have
been examined in the literature Kalousis (2002); Brazdil et al. (2008), but usually such a choice does
not have a strong influence on the performance of a meta-learning system. For making the decision
between the model selected by the general meta-learner Φ and that selected by the time-series
meta-learner Θ, we choose the model with the least predicted error score (illustrated in equation 7).
We present the time complexity analysis of AUTOFORECAST’s inference in Appendix H.

5 EXPERIMENTS

We evaluate AUTOFORECAST by designing experiments to answer the following research questions:

• Does employing AUTOFORECAST for time-series forecasting model selection yield
improved performance, as compared to no model selection, as well as other selection
techniques (such as meta-learners adapted from the AutoML domain)?

• How much reduction in inference time does AUTOFORECAST give over the naı̈ve method?
• How does performance change with different datasets with different temporal dependence?

5.1 EXPERIMENTAL SETUP

Models and Performance Collection: By pairing seven SOTA time-series forecasting algorithms
(which are DeepAR Salinas et al. (2020), Deep Factors Wang et al. (2019), Prophet Taylor & Letham
(2018), Seasonal Naive Montero-Manso et al. (2020), Gaussian Process Yan et al. (2009), Vector
Auto Regression Lewis & Reinsel (1985), and Random Forest Regressor Liaw et al. (2002)) and
their corresponding hyperparameters, and using different data representation methods, we compose
a model set M with 322 unique models (see Table 9 for the complete list). For our testbeds, we
first generate the performance tensor P, by evaluating the models fromM against the benchmark
datasets in each testbed. For consistency, all models are built using the GluonTS Alexandrov et al.
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Table 1: Time-series dataset corpus statistics and properties.
# time-series datasets |D| # overall time-series (across all datasets) # of multivariate time-series datasets # of univariate time-series datasets

348 625 40 308

(2020), Scikit-learn Pedregosa et al. (2011), and Statsmodels Seabold & Perktold (2010) Python
libraries on an Intel i7 @2.60 GHz, 16GB RAM, 8-core workstation.

Meta-Train Testbed: Meta-learning works if the new task can leverage prior knowledge. We thus
create two testbeds with 348 public forecasting datasets. In particular, we collect 308 univariate
time-series datasets for the first testbed (Table 10 in Appendix G) and 40 multivariate datasets with
317 time-series for the second testbed (Table 11 in Appendix G). In total, we have 625 time-series
in our testbeds. We refer to Table 1 for a summary of the statistics of the corpus of time-series data
we used. For each dataset in the testbeds, we use different time windows selected randomly from
the dataset, where each time window has a length of 16 (i.e., |wt| = 16 ∀t ∈ {1, . . . , T}). We
emphasize that our approach has no restriction on the length of the time window.

Evaluation: For evaluating AUTOFORECAST, we split each testbed into 5 folds for cross-validation.
For each fold, after training the meta-learning approach, we use it to infer the best forecasting model
for the new unseen test datasets. Finally, we take the average performance of these five folds.
We mainly compare the Hit-at-k accuracy (which indicates whether the selected model is within
the actual top-k models), of AUTOFORECAST against different meta-learners baselines. We also
compare the performance of selected model by AUTOFORECAST against the performance of the
selected model by other meta-learners. This is measured by the mean square error (MSE) and the
average rank (for each testbed, the meta-learners are first ranked by the corresponding forecasting
MSE under the selected model for each dataset and then the rank is averaged across all datasets).

Time-series Meta-learner Setup: For our time-series meta-learner Θ explained in Section 4, we
used LSTM with 4 layers where each layer has 50 units. The training was with 50 epochs with
the Adam optimizer with a batch size of 25 and dropout rate of 0.2 to prevent over-fitting. The
evaluation of the effect of such parameters on Θ’s performance is shown in Appendix J.3.

5.2 BASELINES

We adapt leading methods from algorithm selection, and include additional baselines by creating a
variant of the proposed AUTOFORECAST (marked with TSL). All the baselines can be organized
into the following categories (the detailed description of each baseline is given in Appendix I).

No model selection: This category always employs either the same single model or the ensemble of
all the models, e.g., Random Forest (RF) Liaw et al. (2002).

Simple meta-learners: Meta-learners in this category pick the generally well-performing
forecasting model, globally or locally (via clustering or KNN): Global Best (GB), ISAC Kadioglu
et al. (2010), and ARGOSMART (AS) Nikolić et al. (2013).

Optimization-based meta-learners: These Meta-learners learn task similarities via
optimizing performance estimates on meta-features: Multi-layer Perceptron (MLP), and
AUTOFORECAST-TSL; a variant in which meta-learner L consists only of time-series learner Θ.

5.3 RESULTS

Now, we show our results to answer the aforementioned evaluation questions.

5.3.1 UNIVARIATE TESTBED RESULTS

To investigate the impact of the train/test similarity on meta-learning performance, we build the
univariate testbed that consists of 308 datasets (Appendix G Table 10) with diverse datastes.

Superiority of AUTOFORECAST compared to all baseline methods w.r.t. the Hit-at-k, average
rank, and MSE: The different results are provided in Table 2-4 where the best result for every
testbed is highlighted in bold. We observe that AUTOFORECAST outperforms previous SOTA
meta-learning methods adapted to our problem. For example, AUTOFORECAST has 79.20%,
171.86%, 423.17%, 375.61%, and 51.59% higher Hit-at-10 accuracy than GB, AS , ISAC, MLP,
and AUTOFORECAST-TSL, respectively. Full evaluation of univariate testbed is in Appendix J.
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Table 2: Hit-at-k Accuracy (the higher the better) comparison of AUTOFORECAST against the
different baseline meta-learners for both univariate and multivariate testbeds. AUTOFORECAST
outperforms all baselines for both testbeds.

Dataset Testbed k Global Best AS ISAC MLP AUTOFORECAST-TSL AUTOFORECAST
Univariate 1 2.46 2.15 0.82 0.62 2.67 3.95

5 7.18 4.92 2.67 1.13 9.04 14.57
10 11.97 7.89 4.10 4.51 14.15 21.45
50 37.40 28.00 11.45 22.25 35.28 52.05

Multivariate 1 6.78 2.26 4.19 0.43 5.16 5.87
5 12.18 4.73 5.69 1.51 9.03 13.86
10 16.21 9.03 7.31 4.06 11.39 20.91
50 41.72 24.73 14.64 20.86 35.06 51.67

Table 3: Average rank (the lower the better) comparison of AUTOFORECAST against the different
baseline meta-learners for both testbeds. AUTOFORECAST outperforms all baselines.

Dataset Testbed Global Best AS ISAC MLP AUTOFORECAST-TSL AUTOFORECAST
Univariate 2.5161 2.7965 2.9096 3.7072 2.5202 2.0571

Multivariate 2.3191 3.0851 2.3191 3.8723 2.3404 1.3191

Table 4: Results for one-step ahead forecasting (MSE) for both testbeds. The selected model by
AUTOFORECAST yields better performance (i.e., lower MSE) compared to baseline meta-learners.

Dataset Testbed Global Best AS ISAC MLP AUTOFORECAST-TSL AUTOFORECAST
Univariate 0.0065± 0.0199 0.0158± 0.0556 0.0071± 0.0145 0.0351± 0.1186 0.00463± 0.0138 0.00256± 0.0090

Multivariate 0.0046± 0.0099 0.0139± 0.0563 0.0046± 0.0099 0.0121± 0.2462 0.00541± 0.0186 0.00124± 0.0051

Statistical Significance of AUTOFORECAST: To compare two methods statistically, we use the
pairwise Wilcoxon rank test on performances (i.e., MSE of selected models) across datasets
(significance level p < 0.05). Table 5 shows that AUTOFORECAST is significantly better than
most of the baseline meta-learners, i.e., including GB (9.07 × 10−5), AS (1.07 × 10−37) and
AUTOFORECAST-TSL (8.16× 10−15). Appendix J.2 has full statistical significance tests.

Meta-learners perform better than methods without model selection: As Table 14 (Appendix J)
shows, the meta-learners outperforms almost all models with no model selection. In particular,
three meta-learners (Global Best, ISAC, AUTOFORECAST) significantly outperform the baseline
time-series forecasting models. For instance, AUTOFORECAST respectively has 92.58%, 84.39%,
88.20%, 87.14%, 83.48%, 98.45%, and 95.75% lower MSE over Seasonal Naive, DeepAR, Deep
Factors, Random Forest, Prophet, Gaussian Process, and VAR, respectively. These results signify
the benefits of using meta-learning for model selection, specifically using AUTOFORECAST.

Optimization-based meta learners generally perform better than simple meta learners: Two
of the top-3 meta learners by average rank and MSE (AUTOFORECAST and AUTOFORECAST-TSL)
are all optimization-based and significantly outperform simple meta-learners such as ISAC and AS
as shown in Table 2 and Table 4. The interpretation is that simple meta-learners weigh meta-features
equally for task similarity, whereas optimization-based methods learn which meta-features matter
(e.g., time-series regression on meta-features in AUTOFORECAST-TSL), leading to better results.

Dataset-wise Performance: We present the detailed performances for each dataset by comparing
AUTOFORECAST with all baseline methods in Table 12. It is noted these results are averaged across
the different time windows for each dataset. The results shows that AUTOFORECAST achieves
the best MSE and average rank among all meta-learners. We note that AUTOFORECAST and
AUTOFORECAST-TSL have same performance for datasets with higher temporal dependency.

5.3.2 MULTIVARIATE TESTBED RESULTS

In this testbed, we simulate the case when there are similar meta-train tasks to the test task, where we
choose variables from the multivariate for training and the rest in testing. We build the multivariate
testbed that consists of 40 datasets (Table 11 in Appendix G).

For the Multivariate testbed, AUTOFORECAST still outperforms all baseline methods w.r.t.
average rank, MSE, and Hit-at-k accuracy as shown in Tables 2-4. Moreover, Figure 8
(Appendix J) shows that for the pool of multivariate datasets (across all time windows),
AUTOFORECAST gives a gain of 2X in selecting better models as compared to other meta-learning
baselines. Dataset-wise performance for the datasets in the multivariate testbed is shown in Table 13
in Appendix J. AUTOFORECAST has the lowest average MSE on most of the multivariate datasets.
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Table 5: Pairwise statistical test results between AUTOFORECAST and baselines by Wilcoxon signed
rank test. Statistically better method (p = 0.05) shown in bold (both marked bold if no significance).
In (left), Univariate testbed is shown. In (right), Multivariate testbed is shown. For both testbeds,
AUTOFORECAST is statistically better than most of the baseline meta-learners.

Ours Baseline p-value
AUTOFORECAST GB 9.0712× 10−5

AUTOFORECAST AS 1.0726× 10−37

AUTOFORECAST ISAC 0.1349
AUTOFORECAST MLP 0.0657
AUTOFORECAST AUTOFORECAST-TSL 8.1683× 10−15

Ours Baseline p-value
AUTOFORECAST GB 1.0
AUTOFORECAST AS 3.9399× 10−7

AUTOFORECAST ISAC 0.8240
AUTOFORECAST MLP 0.0004
AUTOFORECAST AUTOFORECAST-TSL 0.0025

Figure 2: Boxplot of AUTOFORECAST
inference time for univariate testbed (in sec.).
AUTOFORECAST takes less than 1.7 sec for
most datasets (median = 1.65).
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Figure 3: The inference time reduction of
AUTOFORECAST over the naı̈ve approach.
AUTOFORECAST gives a median reduction
of 42X over naı̈ve approach for both testbeds.

Table 6: Inference runtime performance (in seconds) for both univariate and multivariate testbeds.
Dataset Testbed Global Best AS ISAC MLP AUTOFORECAST-TSL AUTOFORECAST

Univariate 0.6259± 0.0964 0.8537± 0.1438 10.2480± 2.7182 1.2745± 0.5198 0.7962± 0.0436 1.6508± 0.0401
Multivariate 0.4151± 0.0403 1.3055± 0.2610 7.037± 1.6239 1.1461± 0.2176 0.682± 0.0372 1.1309± 0.1257

Statistical Significance of AUTOFORECAST: Table 5 shows that for the Multivariate testbed,
AUTOFORECAST is also significantly better than most of the baseline meta-learners, i.e., including
AS (3.94×10−7), MLP (0.0004) and AUTOFORECAST-TSL (0.0025) and has no significance from
GB and ISAC. For the full statistical significance results for all pairs see Table 15 in Appendix J.2.

5.3.3 RUNTIME ANALYSIS

Inference run time statistics of AUTOFORECAST: Figure 2 shows that AUTOFORECAST
(meta-feature generation and model selection) takes less than 1.7 seconds on most time series
datasets. Moreover, Figure 3 shows that AUTOFORECAST has significant reduction in inference
time compared to the naı̈ve approach, median is 42X on both testbeds (see also Appendix J.5).

Comparing AUTOFORECAST with baselines: In terms of inference, Table 6 shows that most of
the meta-learners are fast taking only a few seconds to infer the best forecasting model. Finally, we
compare the training cost of AUTOFORECAST against baseline meta-learners. Table 16 shows that
AUTOFORECAST has comparable computational training cost. While the training process is offline
and done only once and hence, not as important as the inference time cost, this experiment reassures
us that our better model selection performance does not entail a prohibitive training cost.

6 CONCLUSION

We introduced a meta-learning approach to automate the process of time-series forecasting by
automatically inferring the best time-series model on an unseen dataset, without needing exhaustive
evaluation of all existing models on this dataset. The problem arises because there are many possible
forecasting models with their associated hyperparameters, and different choices are optimal for
different datasets. Further, even within one non-stationary dataset, different models are appropriate
for different time windows. Our proposed solution AUTOFORECAST is a meta-learner, trained
on an extensive pool of historical time-series forecasting datasets and models. To effectively
capture task similarity, we designed novel problem-specific meta-features. Extensive experiments
on two large testbeds showed that AUTOFORECAST significantly improves time-series forecasting
model selection over directly using some of the most popular models as well as several SOTA
meta-learners. We showed that AUTOFORECAST gives a significant improvement in the inference
time compared to naı̈ve approaches. We release the benchmark data for the community to contribute
new datasets and models to stimulate further advances on automating time-series forecasting.
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Reproducibility Statement: To further research into the important problem introduced in our
work, we have publicly released our benchmark data to to enable others reproduce our work.
In particular, we are publicly releasing, with this submission, our meta-learning database corpus
of 348 datasets, containing 625 time series in all, performances of the 322 forecasting models,
and meta-features for the datasets. This resource will hopefully encourage the community
to standardize efforts at benchmarking time series forecasting model selection. We also
encourage the community to expand this resource by contributing their new datasets and models.
The anonymized website with our database is: https://drive.google.com/drive/
folders/1K1w1Ida5Cr15b5Fhidax-i-fNpWZjvet. The details of each dataset in the
two testbeds, univariate (308 datasets) and multivariate (40 datasets) are explained in Appendix G
(Table 10 and Table 11) and the complete list of meta-features is presented in Appendix E (Table 8).

The performance collection is difficult and time-consuming to obtain, yet fundamental for
researchers to begin studying the important problem formulated in our work, and developing better
approaches to solve it. Here, we give the result of that time consuming process of collecting the
performance of each of the 322 forecasting models on all the datasets (in the above link). In
particular, we collect this for the performance metrics of MSE, training time, and inference time.
This serves as the training data and ground truth evaluation data for AUTOFORECAST and all other
competing protocols. We refer the reader to Appendix F in which we provide complete description
of the algorithms, libraries, and hyper-parameter values used for this collection process.
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Mladen Nikolić, Filip Marić, and Predrag Janičić. Simple algorithm portfolio for sat. Artificial
Intelligence Review, 40(4):457–465, 2013.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437,
2019.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. Meta-learning framework
with applications to zero-shot time-series forecasting. arXiv:2002.02887, 2020.

Zheyi Pan, Wentao Zhang, Yuxuan Liang, Weinan Zhang, Yong Yu, Junbo Zhang, and Yu Zheng.
Spatio-temporal meta learning for urban traffic prediction. IEEE Transactions on Knowledge and
Data Engineering, pp. 1–1, 2020. doi: 10.1109/TKDE.2020.2995855.
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APPENDIX

A VALIDATION OF NO-SINGLE-MODEL HYPOTHESIS ON OUR TESTBEDS

Figure 4 shows a validation of the hypothesis that there is no unique single model that works well
on all datasets, where we show a histogram of the best models probability distribution across the
datasets of the training testbed where different datasets have different (best) models. That motivates
the need for our framework, AUTOFORECAST, for automating model selection via meta-learning.
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Figure 4: A histogram of the best forecasting model’s probability distribution across the datasets
of the training testbed. We observe that different datasets have different best models and no single
model triumphs across all datasets. This motivates our automatic model selection problem.

B VARIATION OF BEST MODEL ACROSS TIME WINDOWS

Figure 5 validate the no-free lunch theorem across different datasets (vertically) and across different
time windows within the same dataset (Horizontally). Figure 6 shows the aggregate statistics on
all datasets of the univariate testbed. This contradicts the claims that one forecasting algorithm can
work best for different datasets and motivates the need for an effective approach for learning such
both dimensions for selecting the best model for new tasks, which we propose in our current work.

Processed_S&P_
NASDAQ-F

Apple

Amazon.2

Adobe_15 days_
stageirl1–QA2usedcpu

Time Window 1 Time Window 2 Time Window 3

DeepAR
(no_cells = 30, no_rnn_layers=4)

DeepAR
(no_cells = 40, no_rnn_layers=1)

Vector Auto Regression
(cov_type = HC0, trend = ‘ct’)

)

Seasonal_Naive
(season_length = 5)  

Prophet
(changepoint_prior_scale= 0.1,         

seasonality_prior_scale = 0.01)

DeepAR
(no_cells = 20, no_rnn_layers=3)

Seasonal_Naive
(season_length = 5)  

DeepAR
(no_cells = 50, no_rnn_layers=1)

Random Forest Regressor
(n_estimators = 1000, max_depth=10)

Seasonal_Naive
(season_length = 1)  

DeepAR
(no_cells = 20, no_rnn_layers=5)

DeepAR
(no_cells = 50, no_rnn_layers=4)

Figure 5: The best forecasting model for each time window (across three consecutive time windows)
for different datasets. We observe that different time windows have different (best) models.

C SUMMARY OF NOTATION

We summarize the notation used in this paper in Table 7.

C.1 WINDOW NOTATION IN AUTOFORECAST

We now reemphasize the notation of time window we used in Section 4. In AUTOFORECAST, the
time window represents a sequence of time observations in the time series. In particular, wt denotes
the time window index, and |wt| is the length of that time window (e.g., |w10| = 16 means that the
10th time window of the dataset has a length of 16 observations). Notice that for each time window
wt, we have the pair (xt−|wt|:t−1, yt:t+H), where the different models are trained on xt−|wt|:t−1 and
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Figure 6: The aggregate statistics for similarity in the best forecasting model across three consecutive
time windows for univariate testbed. Most different time windows have different (best) models.

Table 7: A summary of our notation.
Symbol Description
Dtrain Meta-train database
n Meta-train database size
ni No. of observations inDi

vi No. of variables inDi

M Model space
Mj A forecasting model
m Size of the model space
hi Hyperparameter vector of ai
T Number of time windows
|wi| Window length
P Performance tensor
Pk Performance matrix of window wk
pi,jk Model Mj’s performance on time window wk ofDi

pik Models performances vector on time window wk forDi

gi(·) Data representation
Fi Meta-features tensor ofDi

F ik Meta-feature matrix of window wk inDi

ψ(·) Meta-features extraction module
d Number of meta-features
L Meta-learner
Φ General Meta-learner
Θ Time-series Meta-learner
M̂Θ
t , M̂Φ

t Selected model for time window wt by Θ and Φ, respectively
M̂t Selected model for window wt in inference by AUTOFORECAST

evaluated on yt:t+H , where H is the forecasting horizon. For example, for single-step forecasting
on a window wt with length 16, we would train the forecasting model on the first 15 observation
points of the window and do forecasting on the 16th observation. Second, we emphasize that we can
train a forecasting model on windows with any length, but the forecasting horizon may be limited
by the forecasting model parameters.

D ADDITIONAL DETAILS OF TIME-SERIES META-LEARNER

We now detail the equations of our LSTM-based time-series meta-learner Θ. The LSTM cell at
time t has two recurrent features, denoted by hit and cit, called the hidden state and the cell state,
respectively. The LSTM cell consists of three layers (forget gate layer, input gate layer, and output
gate layer). The activation of those layers is given by

f it = σ
(
Wf · [hit−1,Xt] + bf

)
, (8)

lit = σ
(
Wl · [hit−1,Xt] + bl

)
, (9)

oit = σ
(
Wo · [hit−1,Xt] + bo

)
. (10)

where Wf ,Wl,Wo and bf , bl, bo ∈ Rm denote the weights matrices and the biases of the three
layers, respectively. These are the parameters to be learned during the training of the time-series
meta-learner. The forget gate f it controls how much of the current cell state we should forget, the
input gate lit controls how much of the cell update is added to the cell state, and the output gate oi
controls how much of the modified cell state should leave the cell and become the next hidden state.
Moreover, the cell update uit is constructed with a tanh activation function as follows.

uit = tanh
(
Wu · [hit−1,Xt] + bu

)
, (11)
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whereWu and bu ∈ Rm are further weight parameters to be learned. Thus, the new cell and hidden
states at time t are given by

cit = f it · cit−1 + lit · uit (12)

ĥit = oit · tanh(cit) (13)

Finally, the output equations of the LSTM cell are given by

Vi
t = Wvĥ

i
t + bv (14)

p̂it = Softmax(Vi
t), (15)

where Wv and bv ∈ Rm are weight parameters to be learned. This gives the relationship between
input Xt and predicted performances output p̂it. For ease of notation, we considered a single layer
in the above analysis . However, we have used multiple layers with several units (see Section 5).

E TIME-SERIES META FEATURES

There are prior works that generated standard time-series features Franceschi et al. (2019),
tsfresh Christ et al. (2018) (that we used for generating part of our meta-features). We now provide
details of our meta-features and their different categories.

E.1 META-FEATURES CATEGORIES:

For each dataset, we generate a meta-feature vector that consists of more than 800 meta-features.
This meta-features vector includes different components that capture various properties of the
time-series dataset, e.g., the statistical features (number of crossings, count of observations
above/below the mean value, quantiles, etc.), the data trend (linear, non-linear, dynamics, etc.), data
interdependence (lag autocorrelation, difference features, etc.), information-theoretic features that
are typically based on entropy measures, and the frequency (FFT, wavelet, etc.). Our meta-features
vector also includes landmarker features, which are problem-specific, and aim to capture the unique
characteristics of a dataset. The idea is to apply a few of the fast, easy-to-construct time-series
forecasting models on a dataset and extract features from (i) the structure of the estimated forecasting
model, and (ii) its output performance scores.

Multivariate meta-features: For this time-series dataset type, we have two types (explained in
Appendix G). For both types, we generate a single meta-features vector of the multivariate dataset
by averaging the meta-features vectors of all variables within the dataset.

E.2 COMPLETE LIST OF FEATURES

We summarize the meta-features used by AUTOFORECAST in Table 8. When applicable, we provide
the formula for computing the meta-feature(s) and corresponding variants we used for generating the
meta-features, and the corresponding number of features. Some are based on Vanschoren (2018).
Specifically, our meta-features can be categorized into (1) simple features, (2) statistical features,
(3) information-theoretic features, (4) Spectral features, and (5) landmarker features. Broadly
speaking, the statistical features captures statistical properties of the underlying data distributions;
e.g., min, max, variance, skewness, covariance, etc. of the features and feature combinations.
The information-theoretic features capture information-theoretic underlying characteristics in the
time-series; e.g., entropy, trend, non-linearity, change statistics, etc. Most of those meta-features
have been commonly used in the AutoML literature Vanschoren (2018). To the best of our
knowledge, we emphasize that our landmarker meta-features (detailed below) are novel and that
some components of the spectral meta-features have not been used in any related work.

E.3 LANDMARKER META-FEATURE GENERATION

In addition to simple, statistical, and information-theoretic meta-features, we use three time-series
forecasting landmarker algorithms for computing forecasting-specific landmarker meta-features,
Auto Regression Lewis & Reinsel (1985), Random Forest Liaw et al. (2002), and Bayesian Ridge
Regression Shi et al. (2016) to capture landmarker characteristics of a time-series dataset.
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We now provide a quick overview of each algorithm and then discuss how we are using them for
building meta-features. The algorithms are executed with the default parameter.

Auto Regression Lewis & Reinsel (1985): In this landamarker feature, we fits the unconditional
maximum likelihood of an autoregressive process. The k parameter represents the maximum lag of
the process

Xt = ϕ0 +

k∑
i=1

ϕiXt−i + εt

Then, we extract the coefficients ϕi whose index i ∈ {0, · · · , k}.
Random Forest Liaw et al. (2002): is a tree-based ensemble method that builds a collection
of base trees using the subsampled unlabeled data, splitting on (randomly selected) features as
nodes. Random Forest grows internal nodes until the terminal leaves contain only one sample or
the predefined max depth is reached.

For Random Forest, we use the balance of base trees (i.e., depth of trees and number of leaves per
tree) and additional information (e.g., feature importance of each base tree). It is noted that feature
importance information is available for each base tree—we therefore analyze the statistic of mean
and max of base tree feature importance. The following information of base trees are used:

• Tree depth: min, max, mean, std, skewness, and kurtosis
• Number of leaves: min, max, mean, std, skewness, and kurtosis
• Mean of base tree feature importance: min, max, mean, std, skewness, and kurtosis
• Max of base tree feature importance: min, max, mean, std, skewness, and kurtosis
• Out-of-bag estimate score.

Bayesian Ridge Regression Shi et al. (2016): it estimates a Gaussian probabilistic model of the
regression problem using Bayesian regression. The prior for the coefficient is given by a spherical
Gaussian distribution.

For Bayesian Ridge Regression, we use the following information of the probabilistic model (fitted
using the dataset) as landmarker features:

• Mean of the distribution
• Log marginal Likelihood score
• The precision of the estimated weights
• The noise precision
• The actual number of iterations to achieve the stopping criterion

F MODEL SPACE

We now provide details on the model space used to study the meta-learning problem formulated in
our work. Recall that a model in the context of our problem is a time-series forecasting algorithm
and the hyperparameters used.

DeepAR Salinas et al. (2020): DeepAR experiments are using the model implementation provided
by GluonTS version 1.7. We did grid search on different values of number of cells and the
number of RNN layers hyperparameters of DeepAR since the defaults provided in GluonTS
would often lead to apparently suboptimal performance on many of the datasets. The training
parameters for each dataset are described in Table 9. All other parameters are defaults of
gluonts.model.deepar.DeepAREstimator.

Deep Factors Wang et al. (2019): Deep Factors experiments are using the model implementation
provided by GluonTS version 1.7. We did grid search over the number of units per hidden layer
for the global RNN model and the number of global factors hyperparameters of Deep Factors. The
training parameters for each dataset are described in Table 9. All other parameters are defaults of
gluonts.model.deep factor.DeepFactorEstimator.
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Table 8: Time-series meta-features for characterizing an arbitrary time-series dataset. We extracts
a comprehensive number of meta-features. The extracted meta-features are five categories: simple,
statistical, information-theoretic meta-features, spectral, and landmarker meta-features. To the
best of our knowledge, we emphasize that our landmarker meta-features are novel and that some
components of spectral meta-features have not been used in any related work.

Name Formula Property Variants No. of Features
Window Length |wi| Speed/Scalability N/A 1

Number of Time-series variables vi Type N/A 1
Lag Autocorrelation ρn Feature Interdependence ρ0 − ρ9 10

Lag Partial Autocorrelation αk Feature Interdependence acf agg 15
Standard Deviation Range σ > r(max−min) Dispersion r ∈ [0.05, 0.95] 20

Maximum maxX Data Range max duplicates 2
Minimum minX Data Range min duplicates 2

Peaks peakX Data Range peaks supports, no peaks 6
Reoccurence Statistics X Data Range reocc sum,reocc count,reocc ratio 5

Median µ Concentration rms 2
Mean X̄ Concentration rms 2

Variance σ2 Dispersion std dev 2
Covariance Cov Dispersion benford corr 8
Quantiles q0.1 − q0.9 Dispersion diff quantiles 10

Mass Quantiles q%0.1 − q%0.9 Dispersion diff quantiles 10
Count below Mean

∑
1(X < µ) Statistics min,max,σ,µ 5

Count Above Mean
∑

1(X > µ) Statistics min,max,σ,µ 5
Number of Crossings

∑n
i=1 1[X==val] Statistics zero cross, one cross, minus cross, root hyp test 5

Kurtosis µ4

σ4 Feature normality sample kurt 2
Skewness Skw Feature normality sample skew 2

Symm looking |µX −medianX | < r ∗ (maxX −minX) Symmetry r ∈ [0.05, 0.95] 12
Reversal Asymmetry E[L2(X)2 · L(X)− L(X) ·X2] Reversal Asymmetry lag L 12

Absolute Sum of Change
∑n
i=1 |xi+1 − xi| Difference mean chg, mean abs chg, cid 5

Change Quantiles Corridor Quantiles Difference ql ∈ [0, 1], qh ∈ [ql, 1] 60
Entropy D Regularity approx entropy, sample entropy 21

Linear Trend Linear reg chunks Trend {“pvalue”, “rvalue”, “intercept”, “slope”, “stderr”} 50
Non-Linearity c3 Non-linearity ` ∈ {1, 2, 3}, matrix profile feat 9

Friedrich Coefficients x′ = h(x) Dynamics Langevin Coeffs 5
Wavelet Transform Coefficients Mexican hat wavelet Time-Freq “widths”, “coeffs” 60

Fast Fourier Transform Coeeficients FFT(X) Frequency {“real”, “imag”, ’agg metrics’} 201
Polar Fast Fourier Transform Coeeficients FFT(X) Frequency {“abs”, “angle”, ’agg metrics’} 201

Absolute Energy E Spectral Energy ratio chunks, cross pw spect dens 15
Fourier Entropy DF Spectral Regularity binned entropy 1

(1) Auto Regeression
Regression Coefficients See Appendix E Landmarker ` ∈ {1, · · · , 10} 10

(2) Random Forest
Number of Leaves See Appendix E Landmarker max, min, mean, std, skew, kurtosis 6

Tree depth See Appendix E Landmarker max, min, mean, std, skew, and kurtosis 6
Mean of Base Tree Feature Importance See Appendix E Landmarker max, min, mean, std, skew, and kurtosis 6
Max of Base Tree Feature Importance See Appendix E Landmarker max, min, mean, std, skew, and kurtosis 6

Out-of-bag estimate score See Appendix E Landmarker N/A 1

(3) Bayesian Ridge Regression
Mean of Distribution See Appendix E Landmarker N/A 1

Log Marginal Likelihood See Appendix E Landmarker N/A 1
Estimated Weights’ Precision See Appendix E Landmarker N/A 1

Estimated Noise Precision See Appendix E Landmarker N/A 1
Stopping Number of Iterations See Appendix E Landmarker N/A 1
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Table 9: Time-Series Forecasting Model Space. See hyperparameter definitions for various
algorithms from GluonTS (Alexandrov et al., 2020) and statsmodels (Seabold & Perktold, 2010).

Forecasting Algorithm HyperParameter 1 HyperParameter 2 Data Representation Total
DeepAR num cells = [10,20,30,40,50] num rnn layers = [1,2,3,4,5] {Exp smoothing, Raw} 50

DeepFactor num hidden global = [10,20,30,40,50] num global factors = [1,5,10,15,20] {Exp smoothing, Raw} 50
Prophet changepoint prior scale = [0.001, 0.01, 0.1, 0.2, 0.5] seasonality prior scale = [0.01, 0.1, 1.0, 5.0, 10.0] {Exp smoothing, Raw} 50

Seasonal Naive season length = [1,5,7,10,30] N/A {Exp smoothing, Raw} 10
Gaussian Process cardinality = [2,4,6,8,10] max iter jitter = [5,10,15,20,25] {Exp smoothing, Raw} 50

Vector Auto Regression cov type= {“HC0”,“HC1”,“HC2”,“HC3”,“nonrobust”} trend = {‘n’, ‘c’, ‘t’, ‘ct’ } {Exp smoothing, Raw} 40
Random Forest Regressor n estimators = [10,50,100,250,500,1000] max depth = [2,5,10,25,50,’None’] {Exp smoothing, Raw} 72

322

Prophet Taylor & Letham (2018): Prophet experiments are using the model python
implementation provided by Facebook (fbprophet) version 0.7.1. We did grid search over the change
point prior scale and the seasonality prior scale hyperparameters of Prophet. The training parameters
for each dataset are described in Table 9. All other parameters are defaults of fbprophet.Prophet.

Seasonal Naive Montero-Manso et al. (2020): Seasonal Naive experiments are using the model
implementation provided by GluonTS version 1.7. We did grid search over the length of seasonality
pattern, since it is different unknown for each, dataset hyperparameter of Seasonal Naive. The
training parameters for each dataset are described in Table 9. All other parameters are defaults of
gluonts.model.seasonal naive.SeasonalNaivePredictor.

Gaussian Process Yan et al. (2009): Gaussian Process experiments are using the model
implementation provided by GluonTS version 1.7. We did grid search over the cardinality
of the time-series and the maximum number of iterations for jitter to iteratively make
the matrix positive definite hyperparameter of Gaussian Proces. The training parameters
for each dataset are described in Table 9. All other parameters are defaults of
gluonts.model.gp forecaster.GaussianProcessEstimator.
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Vector Auto Regression Lewis & Reinsel (1985): Vector Auto Regression experiments are using
the model implementation provided by statsmodels python library version 0.12.2. We did grid
search over the loss covariance type and the trend hyperparameter of Vector Auto Regression. The
training parameters for each dataset are described in Table 9. All other parameters are defaults of
statsmodels.tsa.var model.

Random Forest Liaw et al. (2002): Random Forest models’ experiments are using the model
implementation provided by sklearn python library version 0.24.2. We did grid search over the the
number of estimators (trees) and the max depth (i.e., the longest path between the root node and the
leaf node in a tree) hyperparameter of Random Forest. The training parameters for each dataset are
described in Table 9. All other parameters are defaults of sklearn.ensemble.RandomForestRegressor.

Exponential Smoothing Data Representation Kalekar et al. (2004): We use the exponential
smoothing from the statsmodels python library version 0.12.2. We optimized the smoothing level
for the exponential smoothing (which controls the weights given for the history samples). All other
parameters are defaults of statsmodels.tsa.api.ExponentialSmoothing.

G DATASET DESCRIPTION

G.1 DATASET TYPES IN AUTOFORECAST

In our work, we consider two general types of time-series datasets depending on the number of the
variables vi in the time-series dataset. Now, we detail the different dataset types.

Univariate Time-series Datasets: This kind of datasets is the traditional single time-series which
usually consists of single variable that need to be predicted (this variable is likely numerical, but can
also be categorical in rare cases). Formally, a time-series datasetDi is single-variate if vi = 1.

Multivariate Time-series Datasets: In our work, we consider two main types (subcategories) of
the Multivariate datasets that we define below. We define the Multivariate Homogeneous dataset
as the multivariate dataset that consists of multiple time-series in which each time-series represents
the same metric (e.g., collection of r time-series representing CPU usage of r different machines).
In this type, vi = r (the number of different time-series for that same measurement). Also, we
define the Multivariate Heterogeneous dataset as multivariate time-series where each time-series
column represents a different measurement (e.g., wind speed, humidity, temperature). In this type,
vi = |columns(Di)| (the number of the different variables for the time-series dataset).

G.2 DATASET TESTBEDS IN AUTOFORECAST

Dataset Sources: Our testbeds are built to simulate the testbed when meta-train comes from many
different distributions. This diversity makes the meta-learning model learn from such diversity.
Model selection on test data can thus benefit from the prior experience on the train set. For this
purpose, we use benchmark datasets from Kaggle Kaggle (2021), Adobe real traces, and other open
source repositories. In particular, the Adobe trace datasets records CPU and Memory usage for 50
different services running in Adobe production clusters collected for 15 days from May 1 to May 15
in 2021. Such traces are shared for the first time in our current work.

Testbeds Summary: In short, we have collected 308 univariate datasets from such different sources.
The details of the datasets (i.e., the dataset name, and the number of points in the dataset) are shown
in Table 10. We also collected 40 multivariate datasets, where each dataset can have different number
of variables and different type. For instance, Adobe service CPU and memory 15 days utilization
is a Homogeneous multivariate dataset that has r = 100. Most of the datasets are from different
application domains (e.g., finance, IoT, energy, storage, etc.). The details of the datasets (i.e., the
dataset name, the variate name, and the number of points for each variate the dataset) are detailed in
Table 11. For robustness, for each testbed, we split its datasets into 5 folds for cross-validation. We
build the train/test testbed by each time selecting four folds from the datasets for training and the
remaining fifth fold for testing. We re-emphasize that we released the datastes for the community
for future usage (link is in Section 1).
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Table 10: Univariate Time-series dataset corpus description and details. The details of the datasets
(i.e., the dataset name, and number of points in the dataset) are shown.

Time-series Name # pts Time-series Name # pts Time-series Name # pts Time-series Name # pts Time-series Name # pts
OLDMANT.1 1461 ATT.1 97 NONEMERG.1 319 IV.1 44 HOPEDALE.1 101

WOLF.1 71 FRASER.1 946 EGDEMAN.2 100 IBM.1 87 LACSTJIN.1 1440
HARBOR.1 157 SERIESK.3 192 PORKH.1 99 construction 319 ESPANOLA.1 668
RIOTIETE.1 372 gdp croatia 24 MINIMUM.1 848 TURTLE.1 672 OLDMAN.1 1470
THAMES.1 71 SERIESE.1 100 sp500 price 123 SP500.1 99 US.1 100

Y.1 44 BIGCONE.1 509 LACSTJRA.1 1440 FEEDH.1 95 SERIESG.1 153
FISHER.1 1470 GLOBWARM.1 129 TBILLS.1 102 CCPI.1 102 CAMPITO.1 5405

JOE.3 1294 CN.1 44 SERIESJY.1 307 bank 581 PRECIP.1 1096
GNPR.1 85 businv 330 MISINAB.1 672 JUDITH.1 492 TEMPER.1 1096
RING.1 66 LAKEVIEW.1 544 DAILYSAP.1 3333 GEODUCK.1 97 HALSEY.1 108
DAL.1 70 SALESX.1 93 AMAZON.2 55 IP.1 111 well log 675

PCRGNP.1 62 DS Store 137 FEEDL.1 95 DAILYIBM.1 3333 SERIESC.1 228
FRNCHB.1 45 MAD.1 552 UN.1 81 JAMES.1 600 CPI.1 288
LYNDPIN.2 136 OZONE.1 228 GRANT.1 151 SUNSPOTS.1 289 KIEWA.1 72

NEUMUNAS.1 132 YD.1 44 CHICKNYC.1 498 NILEJJ.1 75 robocalls 52
AMERICAN.1 660 RHINE.1 150 USM1.1 398 PORKL.1 99 ENGINES.1 188
NIAGARA.1 1861 YULE1.1 106 SERIESA.1 200 ASKEW4.1 660 homeruns 118

SKUNK.1 71 stocks price 560 PRGNP.1 82 OLDMANP.1 1507 OOSTANAU.1 816
DANUBE.1 120 LACSTJSN.1 1440 EMERGING.1 319 CAFFEINE.1 178 us population 816
PLSUPER.1 104 CIG.3 138 SIMAR4.1 818 SUNSPTMO.1 2820 ENGLISH.1 660
SERIESF.1 70 BOISE.1 588 FREEDMAN.1 58 ASKEW3.1 708 global co2 104
WHEAT.1 370 EGGS.1 319 VATNSD.1 1098 SERIESJX.1 312 QBIRTHS.1 5117

MARTEN.1 71 FOOD.1 178 CONSUM.1 147 FEED.1 95 EXSHAW.1 506
WHITEMTN.1 1164 centralia 15 TSEOIL.1 361 BRYCE.1 625 MADISON.1 456

apple 622 GOLDH.1 97 MUSKRAT.1 71 BAYDU.1 358 jfk passengers 468
SFSKYKOM.1 456 SERIESD.1 312 LOGISTIC.1 200 VELMON.1 86 PEAS.1 768

OTTER L.1 71 METALS.1 178 BIRTHS.1 59 CURRENT.1 468 ASKEW5.1 108
ASKEW13.1 372 ELBE.1 300 FRNCHA.1 70 PLHURON.1 104 TOTAL.1 319

unemployment nl 214 BEARDS.1 67 RIOGRAND.1 576 occupancy 509 COLUM.1 444
EMP.1 81 RGNP.1 85 rail lines 37 PIPER.1 348 GNPN.1 85

SPIRITS.3 254 NIGERIA.1 123 MBOULDER.1 588 debt ireland 21 IPI.1 85
CIGB.2 128 GOLDL.1 97 CMINEF.1 96 NILE2.1 100 ozone 54

ASKEW7.1 600 GLOBTP.1 136 gdp iran 58 TIOGA.1 661 SERIESB.1 385
G.1 46 MCKEN.1 55 children per woman 301 YULE2.1 107 ISH66.1 163

GOTA.1 150 iot temp 8402 PPHIL.1 1572 WOODS.1 629 DJWEEK.1 186
SAUGEEN.1 1403 USH.1 100 nile 100 co2 canada 215 NAVAJO.1 700

TRADE.1 178 GRUEN.1 53 PACK.2 344 bee waggle 6 609 ARCTIC.1 66
whin temp 6074 shanghai license 205 WG.1 71 NYSE.1 87 AZUSA.1 180
SERIESL.2 549 SOY.1 99 FORTALEZ.1 150 NMAGNET.1 732 AROSA.1 480

FURNAS.DAT 576 LAKEMICH.1 115 MCKENZIE.1 600 ROCKY.1 122 SNOW.1 54
GUELPH.1 72 gdp argentina 59 SOYL.1 99 SAUGEENP.1 1412 PORK.1 99

uk coal employ 105 ASKEW9.1 588 ASKEW14.1 588 TRINITY.1 588 OGDEN.1 97
TPMON.1 2976 I.1 44 DEATHS.1 319 SSASK.1 780 SOYH.1 99

SAUGEENT.1 1412 SKIRTS.1 69 M.1 85 OKAK.1 109 EAGLECOL.1 858
ASKEW10.1 600 WOLVEREN.1 71 SCHOLES.1 114 KINGS.1 49 STJOHNS.1 600
SERIESJ.2 616 NILEMON.1 910 BOXHU1.1 48 YEAR.1 208 BOXHUN.1 217
CORN.2 76 GNP.1 62 SUMMER.1 208 BLUME.1 64 NARAMATA.1 515

HURON.1 157 USM2.1 398 CRYER.1 43 usd isk 247 MSTOUIS.1 96
MEASLNYC.1 534 seatbelts 192 ASKEW12.1 456 NILE.1 75 ALIGN.1 55

USL.1 100 ELECUS.1 51 SERIESB2.1 271 brent spot 500 measles 991
RWG.1 71 SNAKE.1 669 REDDEER.1 396 MUMPS.1 534 CANFIRE.1 71

CMINER.1 528 CLEARWAT.1 600 bitcoin 774 NYWATER.1 71 ASKEW15.1 432
ASKEW.1 264 NECHES.1 564 RACOON.1 71 ASKEW8.1 456 CD.1 44

RAPPAHAN.1 600 AARIVINT.1 213 gdp japan 58 WBDELAWA.1 540 TPYR.1 248
VEL.1 102 TRANEQ.1 178 NINEMILE.1 771 HEBRON.1 109 NAMAKAN.1 648

DELL.1 655 PLMICH.1 104 SERIESM.2 300 MINK.1 71 run log 376
SUNSPT.1 261 CO2.1 192 PAPER.2 320 FEATHER.1 708 FLOW.1 468
FISHERT.1 1471 PREC.1 136 JOKULSA.1 1096 HBCO.1 66 WINTER.1 208

NAIN.1 109 CMINET.1 528 WATERQ.1 147 MEASLBAL.1 402 BND.1 71
LYNX.1 154 GOLD.1 97 lga passengers 468 PIGEON.1 636 USM3.1 398

FISHERP.1 1471 IRONSU.3 143 BWATER.1 79 HANKOU.1 1368 DVI.1 470
RICHELU.1 468 DJ.1 157 U.1 85

H DISCUSSION ON INFERENCE TIME COMPLEXITY

Recall that the number of meta-features is d, the number of models is m. The time complexity for
the inference part of the general meta-learner Φ is O(d). On the other hand, the time complexity
of the time-series LSTM meta-learner Θ is given by O(|Xt|), where |Xt| is the length of the
input sequence. Thus, AUTOFORECAST’s inference time is given by max{O(d),O(|Xt|)}. We
emphasize that the inference time of the naı̈ve method is much larger since it is given byO(

∑m
i=1 Ii),

where Ii is the inference time of forecasting algorithm ai. The aggregate statistics for reduction
in inference time across both testbeds is shown in Appendix J.5. Moreover, Figure 7 shows that
AUTOFORECAST yields significant reduction in inference time (68X reduction) over the naı̈ve
approach on the Adobe trace CPU and Memory 15 days usage dataset.
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Table 11: Multivariate Time-series dataset corpus description and details (i.e., the dataset name, the
variate name, and the number of points for each variate of the dataset).

Dataset Name Variable Name # pts Dataset Name Variable Name # pts Dataset Name Variable Name # pts
Processed S&P Oil 1984 Processed S&P Nikkei-F 1984 Processed S&P ROC 5 1984
Processed S&P NASDAQ-F 1984 Processed S&P mom1 1984 Processed S&P mom3 1984
Processed S&P mom2 1984 Processed S&P MSFT 1984 Processed S&P NZD 1984
Processed S&P NYSE 1984 Processed S&P ROC 10 1984

ozone onehr T9 2536 ozone onehr T8 2536 ozone onehr T1 2536
ozone onehr T3 2536 ozone onehr T2 2536 ozone onehr T6 2536
ozone onehr T7 2536 ozone onehr T5 2536 ozone onehr T4 2536
ozone onehr T12 2536 ozone onehr T11 2536 ozone onehr T10 2536

energydata complete RH 1 19735 energydata complete Press mm hg 19735 energydata complete lights 19735
energydata complete Appliances 19735 energydata complete RH 2 19735 energydata complete RH 3 19735
energydata complete RH 1 19735 energydata complete Visibility 19735 energydata complete Windspeed 19735
Sales Transactions p19 52 Sales Transactions p18 52 Sales Transactions p20 52
Sales Transactions p1 52 Sales Transactions p2 52 Sales Transactions p3 52
Sales Transactions p7 52 Sales Transactions p6 52 Sales Transactions p4 52
Sales Transactions p5 52 Sales Transactions p8 52 Sales Transactions p9 52
Sales Transactions p10 52 Sales Transactions p11 52 Sales Transactions p13 52
Sales Transactions p12 52 Sales Transactions p16 52 Sales Transactions p17 52
Sales Transactions p15 52 Sales Transactions p14 52

AdobeAveCPU 96x3270 S40 96 AdobeAveCPU 96x3270 S36 96 AdobeAveCPU 96x3270 S37 96
AdobeAveCPU 96x3270 S31 96 AdobeAveCPU 96x3270 S33 96 AdobeAveCPU 96x3270 S32 96
AdobeAveCPU 96x3270 S4 96 AdobeAveCPU 96x3270 S6 96 AdobeAveCPU 96x3270 S38 96
AdobeAveCPU 96x3270 S1 96 AdobeAveCPU 96x3270 S20 96

fast-storage-20 Memory capacity provisioned 8615 fast-storage-20 Network received throughput 8615 fast-storage-20 Network transmitted throughput 8615
fast-storage-20 Disk write throughput 8615 fast-storage-20 CPU capacity provisioned 8615 fast-storage-20 CPU cores 8615
fast-storage-20 Timestamp 8615 fast-storage-20 CPU usage 8615 fast-storage-20 Disk read throughput 8615
fast-storage-20 Memory usage 8615

knoy mpu 3 300 Y 599 knoy mpu 3 300 X 599 knoy mpu 1 400 Y 1230
knoy mpu 1 400 X 1230 knoy mpu 1 340 Y 1709 knoy mpu 1 340 X 1709

Scanline scanline 42049 481 Scanline scanline 126007 481
iowa-electricity net generation 51 iowa-electricity local generation 51

Adobe CPU Mem 15d stageva6–STGusedcpu 2016 Adobe CPU Mem 15d stageirl1–QA2usedcpu 2016 Adobe CPU Mem 15d stageirl1–QA2usedmem 2016
Adobe CPU Mem 15d stageva6–STG1usedmem 2016 Adobe CPU Mem 15d stageirl1–QAusedcpu 2016 Adobe CPU Mem 15d stageirl1–QA2usedcpu 2016
Adobe CPU Mem 15d stageirl1–QA2usedmem 2016 Adobe CPU Mem 15d stageirl1–QAusedmem 2016 Adobe CPU Mem 15d stageva6–STG1usedcpu 2016
Adobe CPU Mem 15d prodjpn3–PRODusedcpu 2014 Adobe CPU Mem 15d stageirl1–Stageusedmem 2016 Adobe CPU Mem 15d stageva6–QAusedmem 2016
Adobe CPU Mem 15d stageirl1–QAusedcpu 2016 Adobe CPU Mem 15d stageirl1–STG10usedcpu 2016 Adobe CPU Mem 15d stageirl1–STG10usedmem 2016
Adobe CPU Mem 15d stageirl1–QAusedmem 2016 Adobe CPU Mem 15d stageva6–QAusedcpu 2016 Adobe CPU Mem 15d prodjpn3–PRODusedmem 2014
Adobe CPU Mem 15d stageirl1–Stageusedcpu 2016 Adobe CPU Mem 15d prodjpn3–PROD1usedmem 2014 Adobe CPU Mem 15d prodjpn3–Productionusedmem 2014
Adobe CPU Mem 15d stageva6–STG1usedmem 2016 Adobe CPU Mem 15d prodirl1–PRODusedcpu 2016 Adobe CPU Mem 15d prodva6–PROD10usedmem 2016
Adobe CPU Mem 15d prodva6–PROD10usedcpu 2016 Adobe CPU Mem 15d prodjpn3–Productionusedcpu 2014 Adobe CPU Mem 15d prodjpn3–PROD1usedcpu 2014
Adobe CPU Mem 15d prodirl1–PRODusedmem 2016 Adobe CPU Mem 15d stageva6–STG1usedcpu 2016 Adobe CPU Mem 15d stageva6–QAusedmem 2016
Adobe CPU Mem 15d prodirl1–PROD1usedcpu 2016 Adobe CPU Mem 15d prodirl1–PRODusedcpu 2016 Adobe CPU Mem 15d stageirl1–QAusedmem 2016
Adobe CPU Mem 15d stageirl1–QAusedcpu 2016 Adobe CPU Mem 15d stageva6–QAusedcpu 2016 Adobe CPU Mem 15d prodirl1–PROD1usedmem 2016
Adobe CPU Mem 15d prodirl1–PRODusedmem 2016 Adobe CPU Mem 15d prodjpn3–PRODusedcpu 2014 Adobe CPU Mem 15d stageirl1–QA2usedcpu 2016
Adobe CPU Mem 15d stageva6–QAusedmem 2016 Adobe CPU Mem 15d prodjpn3–PROD10usedcpu 2014 Adobe CPU Mem 15d prodjpn3–PROD10usedmem 2014
Adobe CPU Mem 15d stageva6–QAusedcpu 2016 Adobe CPU Mem 15d stageirl1–QA2usedmem 2016 Adobe CPU Mem 15d prodjpn3–PRODusedmem 2014
Adobe CPU Mem 15d stageirl1–QA2usedcpu 2016 Adobe CPU Mem 15d stageirl1–QA2usedmem 2016 Adobe CPU Mem 15d stageva6–QAusedcpu 2016
Adobe CPU Mem 15d stageirl1–QA2usedmem 2016 Adobe CPU Mem 15d stageirl1–QAusedcpu 2016 Adobe CPU Mem 15d stageva6–QA1usedmem 2016
Adobe CPU Mem 15d stageva6–QAusedmem 2016 Adobe CPU Mem 15d stageirl1–QAusedmem 2016 Adobe CPU Mem 15d stageirl1–QA2usedcpu 2016
Adobe CPU Mem 15d stageva6–QA1usedcpu 2016 Adobe CPU Mem 15d prodva6–PROD1usedcpu 2016 Adobe CPU Mem 15d prodirl1–PROD10usedcpu 2016
Adobe CPU Mem 15d stageva6–QAusedmem 2016 Adobe CPU Mem 15d stageva6–QAusedcpu 2016 Adobe CPU Mem 15d stageva6–QAusedcpu 2016
Adobe CPU Mem 15d stageva6–QAusedmem 2016 Adobe CPU Mem 15d prodva6–PROD1usedmem 2016 Adobe CPU Mem 15d prodirl1–PROD10usedmem 2016
Adobe CPU Mem 15d stageirl1–QAusedcpu 2016 Adobe CPU Mem 15d stageirl1–QAusedcpu 2016 Adobe CPU Mem 15d stageirl1–QAusedmem 2016
Adobe CPU Mem 15d stageirl1–QAusedmem 2016 Adobe CPU Mem 15d stageirl1–QA2usedcpu 2016 Adobe CPU Mem 15d stageirl1–QA2usedcpu 2016
Adobe CPU Mem 15d stageirl1–QA2usedmem 2016 Adobe CPU Mem 15d stageirl1–QA2usedmem 2016 Adobe CPU Mem 15d stageirl1–STGusedmem 2016
Adobe CPU Mem 15d stageva6–QAusedcpu 2016 Adobe CPU Mem 15d stageirl1–STGusedcpu 2016 Adobe CPU Mem 15d stageva6–QAusedmem 2016
Adobe CPU Mem 15d prodva6–PRODusedmem 2016 Adobe CPU Mem 15d stageirl1–STGusedmem 2016 Adobe CPU Mem 15d stageirl1–QA10usedmem 2016
Adobe CPU Mem 15d stageirl1–STGusedcpu 2016 Adobe CPU Mem 15d stageirl1–QA10usedcpu 2016 Adobe CPU Mem 15d prodva6–PRODusedcpu 2016
Adobe CPU Mem 15d prodirl1–Productionusedmem 2016 Adobe CPU Mem 15d stageirl1–QA10usedmem 2016 Adobe CPU Mem 15d stageva6–STGusedmem 2016
Adobe CPU Mem 15d stageirl1–STG1usedmem 2016 Adobe CPU Mem 15d prodva6–Productionusedmem 2016 Adobe CPU Mem 15d stageva6–STGusedcpu 2016
Adobe CPU Mem 15d prodva6–Productionusedcpu 2016 Adobe CPU Mem 15d stageirl1–STG1usedcpu 2016 Adobe CPU Mem 15d prodirl1–Productionusedcpu 2016
Adobe CPU Mem 15d stageirl1–QA10usedcpu 2016 Adobe CPU Mem 15d stageirl1–STG1usedcpu 2016 Adobe CPU Mem 15d stageirl1–QAusedcpu 2016
Adobe CPU Mem 15d prodva6–PRODusedmem 2016 Adobe CPU Mem 15d stageirl1–STGusedmem 2016 Adobe CPU Mem 15d stageirl1–STGusedcpu 2016
Adobe CPU Mem 15d prodva6–PRODusedcpu 2016 Adobe CPU Mem 15d stageirl1–STG1usedmem 2016 Adobe CPU Mem 15d stageirl1–QAusedmem 2016
Adobe CPU Mem 15d stageva6–STGusedmem 2016

ozone eighthr HT70 2534 ozone eighthr SLP 2534 ozone eighthr Precp 2534
ozone eighthr RH70 2534 ozone eighthr RH85 2534 ozone eighthr RH50 2534
ozone eighthr KI 2534 ozone eighthr SLP 2534 ozone eighthr HT85 2534
ozone eighthr HT50 2534
quality control 4 500 quality control 5 325 quality control 2 283
quality control 3 366 quality control 1 313

knoy mpu 3 400 X 720 knoy mpu 3 400 Y 720 knoy mpu 2 400 X 1546
knoy mpu 2 400 Y 1546 knoy mpu 1 500 Y 2871 knoy mpu 1 500 X 2871
knoy mpu 3 100 Y 824 knoy mpu 3 100 X 824 knoy mpu 1 360 Y 1252
knoy mpu 1 360 X 1252 knoy mpu 2 100 Y 757 knoy mpu 2 100 X 757
knoy mpu 2 500 X 1605 knoy mpu 2 500 Y 1605 knoy mpu 1 100 X 1215
knoy mpu 1 100 Y 1215 knoy mpu 3 380 X 574 knoy mpu 3 380 Y 574
knoy mpu 2 320 Y 887 knoy mpu 2 320 X 887 knoy mpu 2 380 X 848
knoy mpu 2 380 Y 848 knoy mpu 1 380 Y 1499 knoy mpu 1 380 X 1499
Processed NASD DTB4WK 1984 Processed NASD EMA 50 1984 Processed NASD DTB3 1984
Processed NASD DTB6 1984 Processed NASD EMA 20 1984 Processed NASD FCHI 1984
Processed NASD FTSE-F 1984 Processed NASD EMA 10 1984 Processed NASD EMA 200 1984
Processed NASD EUR 1984
Occupancy CO2 Occupancy 8143 Occupancy CO2 Temperature 8143 Occupancy CO2 CO2 8143
Occupancy CO2 Humidity 8143 Occupancy CO2 Light 8143
us-employment financial activities 120 us-employment nonfarm change 120 us-employment construction 120
us-employment mining and logging 120 us-employment information 120 us-employment professional and business services 120
us-employment durable goods 120

Occ train txt Light 8143 Occ train txt CO2 8143 Occ train txt Humidity 8143
Occ train txt HumidityRatio 8143 Occ train txt Temperature 8143 Occ train txt Occupancy 8143

Processed DJI DAX-F 1984 Processed DJI DE6 1984 Processed DJI DGS10 1984
Processed DJI DE5 1984 Processed DJI DE4 1984 Processed DJI DE1 1984
Processed DJI DE2 1984 Processed DJI DAAA 1984 Processed DJI DGS5 1984
Processed DJI DBAA 1984

Processed RUSS Brent 1984 Processed RUSS AUD 1984 Processed RUSS AAPL 1984
Processed RUSS CNY 1984 Processed RUSS Close 1984 Processed RUSS CAD 1984
Processed RUSS copper-F 1984 Processed RUSS CHF 1984 Processed RUSS AMZN 1984
Processed RUSS CAC-F 1984
Processed NYSE IXIC 1984 Processed NYSE JNJ 1984 Processed NYSE gold-F 1984
Processed NYSE Gold 1984 Processed NYSE JPM 1984 Processed NYSE GBP 1984
Processed NYSE GE 1984 Processed NYSE GDAXI 1984 Processed NYSE HSI-F 1984
Processed NYSE HSI 1984
knoy mpu 3 600 X 876 knoy mpu 3 600 Y 876 knoy mpu 2 600 X 342
knoy mpu 2 600 Y 344 knoy mpu 2 200 Y 765 knoy mpu 2 200 X 765
knoy mpu 1 600 Y 2321 knoy mpu 1 600 X 2321 knoy mpu 3 200 Y 845
knoy mpu 3 200 X 845
co2-concentration CO2 741 co2-concentration adjusted CO2 741

fast-storage-1 Disk write throughput 8634 fast-storage-1 Network received throughput 8634 fast-storage-1 Memory capacity provisioned 8634
fast-storage-1 Memory usage 8634 fast-storage-1 CPU capacity provisioned 8634 fast-storage-1 CPU cores 8634
fast-storage-1 Disk read throughput 8634 fast-storage-1 Network transmitted throughput 8634 fast-storage-1 CPU usage 8634

I BASELINES DETAILS

Meta-learning has recently received a significant attention for automating ML pipelines for a
variety of different problems outside the domain of time-series forecasting including supervised
learning Feurer et al. (2015); Wistuba et al. (2018), classification and regression Finn et al. (2017);
Rusu et al. (2019), unsupervised learning Abdulrahman et al. (2018), outlier detection Zhao et al.
(2020) and other applications Mittal et al. (2020); Vinyals et al. (2016).
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In particular, meta-learning has been leveraged for such automation by designing models for new
tasks based on prior experience Vanschoren (2018); Yao et al. (2018); Raghu et al. (2020).

I.1 BASELINE CATEGORIES

We now detail each such baseline. Most of the methods proposed in these works can be categorized
into the following three main categories.4

No model selection: This category always employs either the same single model or the ensemble of
all the models:

• Random Forest (RF) Liaw et al. (2002): is a SOTA tree ensemble that combines the
predictions made by many decision trees into a single model. In prediction, the random
forest regression model takes the average of all the individual decision tree estimates.

Simple meta-learners: Meta-learners in this category pick the generally well-performing
forecasting model, globally or locally:

• Global Best (GB): is the simplest meta-learner that selects the forecasting model with the
largest average performance across all train datasets (across all time windows), without
using any meta-features.

• ISAC Kadioglu et al. (2010): clusters the meta-train datasets based on meta-features.
Given a new test time-series dataset, it identifies its closest cluster and selects the best
model with largest average performance on the cluster’s datasets.

• ARGOSMART (AS) Nikolić et al. (2013): finds the closest meta-train time-series dataset
(1NN) to a given test time-series dataset, based on meta-feature similarity, and selects the
model with the best performance on the 1NN dataset.

Optimization-based meta-learners: Meta-learners in this category learn meta-feature by task
similarities toward optimizing performance estimates:

• Multi-layer Perceptron (MLP): Given the meta-train datasets and selected time window,
the MLP regressor directly maps the meta-features onto model performances by regression.
However, such baseline does not learn temporal dependence within datasets.

• AUTOFORECAST-TSL: is a variant in which the meta-learner L consists only of the
time-series learner Θ.

I.2 USAGE OF META-LEARNING IN AUTOFORECAST

We emphasize that we use the term “meta-learning” in the context of traditional principle of
meta-learning which is building upon prior experience on a set of historical tasks to “do better” on
a new task. We build the experience across different datasets using our “general meta-learner” and
build experience on the sequential dependence among the same dataset using the “LSTM time-series
meta-learner”. We also capture task similarity between a new input task (dataset) and historical
datasets using the “meta-features”.

We also emphasize that our proposed method is faster compared to gradient-descent-based bi-level
meta-learners, e.g., on our univariate tesbed N-Beats has significantly slower training (average
= 3600 seconds) and inference time (average = 101 seconds) compared to AUTOFORECAST
(average = 670 seconds for training and 1.13 seconds for inference). We emphasize that enhancing
gradient-descent-based bi-level meta-learners for our new problem is an avenue for future work.

4As will be shown in Table 14, we emphasize that we did a model selection on seven popular time series
forecasting models as well (including the recent works DeepAR Salinas et al. (2020), DeepFactors Wang et al.
(2019), and Prophet Taylor & Letham (2018)) as baselines where we chose the model with the best average
performance across all windows for each dataset from all model variants.
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Inference Time

 Example: 
 322 forecasting models

 Our approach yields significant reduction in inference time (68X reduction)
 Naïve approach: Doing inference on all models and select the best candidate

0

20

40

60

80

100

120

In
fe

re
n

ce
 T

im
e

Model Selection Methods

Inference Time Comparison on Adobe CPU/MEM Dataset

AutoForecast Naïve

112.72 sec

1.65 sec

Figure 7: A comparison of inference time between AUTOFORECAST and Naı̈ve approach (running
inference on all 322 models and selecting the best candidate) on Adobe CPU/Mem trace 15 days.
AUTOFORECAST yields significant reduction in inference time (68X reduction).
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Figure 8: The number of the best model selections by each meta-learning approach for multivariate
testbed. AUTOFORECAST has 2X gain in selecting best model compared to other baselines.

J EXTENDED RESULTS

J.1 FULL EVALUATION ON DATASETS PER TESTBED

Univariate Testbed: We now present the full evaluation of univariate testbed. Such evaluation
is shown in Table 12 (we show one fold in that table in the interest of space). We note similar
performances for the rest of the folds (as reflected in the average MSE and average rank for all
datasets shown in Table 3-4). AUTOFORECAST outperforms the meta-learner baselines for most
datasets. Moreover, AUTOFORECAST has the lowest average MSE, and the lowest average rank.

Multivariate Testbed: We here present the full evaluation of multivariate testbed. Such evaluation
is shown in Table 13. It is clear that AUTOFORECAST ouperforms the meta-learner baselines for
most datasets (best for 28 out of the 40 datasets). Again, we note that AUTOFORECAST has the
lowest average MSE, and the lowest average rank. In particular, AUTOFORECAST (MSE = 0.12)
gives a gain of 50% over the best baseline (MSE = 0.26) on the Adobe CPU Mem 15d dataset.

Meta-learners perform better than methods without model selection: Table 14 shows
that meta-learners outperforms almost all models with no model selection. In particular,
three meta-learners (Global Best, ISAC, AUTOFORECAST) significantly outperform the baseline
time-series forecasting models. For instance, Global Best respectively has 79.42%, 56.71%, 67.28%,
64.32%, 54.19%,95.73%, and 88.21% lower MSE over Seasonal Naive, DeepAR, Deep Factors,
Random Forest, Prophet, Gaussian Process, and VAR. These results signify the benefits of model
selection (specifically using AUTOFORECAST).

Prophet and DeepAR have the best performance across the baseline forecasting algorithms:
Table 14 shows that Prophet model has the best average MSE across the baseline forecasting
algorithms. Notably, DeepAR has the second best average MSE across them.

Gain in Selecting better models using AUTOFORECAST: Figure 8 shows that across the pool of the
multivariate testbed (across all time windows), AUTOFORECAST has superiority in selecting better
models compared to the baseline meta-learners (2X gain in selecting better forecasting models).
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Table 12: Method evaluation in Univariate testbed (one fold is shown in the interest of space). The
most performing (lowest MSE) method is highlighted in bold. The rank is provided in parenthesis
(lower ranks denote better performance). AUTOFORECAST achieves the best average MSE and
average rank among all meta-learners.

Dataset Global Best AS ISAC MLP AUTOFORECAST-TSL AUTOFORECAST
FEATHER.1 0.003429 (4) 0.000916 (3) 0.036634 (6) 0.013679 (5) 0.000716 (1) 0.000716 (1)
FURNAS.DAT 0.017221 (4) 0.081947 (5) 0.085216 (6) 0.004338 (3) 0.000177 (1) 0.000177 (1)
EGGS.1 0.0005 (3) 0.000732 (4) 0.006797 (5) 0.02572 (6) 0.000392 (2) 0.000096 (1)
NYSE.1 0.041847 (4) 0.011433 (1) 0.035967 (2) 0.109728 (6) 0.083661 (5) 0.036996 (3)
apple 0.000071 (3) 0.000727 (5) 0.000256 (4) 0.000842 (6) 0.000038 (1) 0.000038 (1)
STJOHNS.1 0.015178 (4) 0.152463 (5) 0.000281 (1) 0.51043 (6) 0.010065 (3) 0.009741 (2)
SERIESM.2 0.00011 (3) 0.000031 (1) 0.000081 (2) 0.000254 (6) 0.000197 (5) 0.000184 (4)
ALIGN.1 0.116045 (5) 0.020837 (1) 0.158484 (6) 0.10843 (4) 0.07156 (3) 0.031977 (2)
LYNX.1 0.029034 (3) 0.036677 (4) 0.204602 (5) 0.076905 (6) 0.021614 (2) 0.012232 (1)
ARCTIC.1 0.002078 (4) 0.013534 (5) 0.001891 (3) 0.029793 (6) 0.001175 (2) 0.0006 (1)
RHINE.1 0.000992 (1) 0.030022 (6) 0.026165 (5) 0.011251 (3) 0.013101 (4) 0.008896 (2)
ASKEW15.1 0.002235 (5) 0.00036 (2) 0.001733 (4) 0.084906 (6) 0.000881 (3) 0.000182 (1)
MEASLBAL.1 0.000007 (2) 0.012992 (5) 0.000068 (3) 0.073299 (6) 0.00038 (4) 0.000002 (1)
REDDEER.1 0.091479 (3) 0.031401 (2) 0.134347 (4) 0.910554 (5) 0.044033 (1) 0.044033 (1)
rail lines 0.000043 (1) 0.105375 (5) 0.001864 (4) 0.1923 (6) 0.000289 (2) 0.000289 (2)
data temp dev 0.00011 (2) 0.000145 (3) 0.000096 (1) 0.03142 (6) 0.000335 (4) 0.000335 (4)
DELL.1 0.005872 (3) 0.008785 (4) 0.013155 (5) 0.196153 (6) 0.00209 (1) 0.00209 (1)
TEMPER.1 0.015079 (4) 0.011044 (3) 0.015079 (5) 0.489135 (6) 0.006356 (1) 0.006356 (1)
SERIESB.1 0.005424 (3) 0.0321 (6) 0.005424 (3) 0.006143 (5) 0.000104 (1) 0.000104 (1)
LACSTJRA.1 0.022971 (5) 0.012493 (3) 0.016164 (4) 0.261073 (6) 0.010394 (1) 0.010394 (1)
Ozone 0.004042 (4) 0.03911 (5) 0.00079 (2) 0.131998 (6) 0.005935 (3) 0.000706 (1)
RAPPAHAN.1 0.006714 (3) 0.014144 (5) 0.006714 (3) 0.048011 (6) 0.001641 (1) 0.001641 (1)
HBCO.1 0.077075 (5) 0.014459 (3) 0.077075 (5) 0.021279 (4) 0.000486 (1) 0.000486 (1)
CURRENT.1 0.005603 (1) 0.007585 (2) 0.031418 (5) 0.050923 (6) 0.010159 (4) 0.00879 (3)
ASKEW7.1 0.118959 (5) 0.003655 (1) 0.118959 (5) 0.080627 (4) 0.03322 (3) 0.012513 (2)
SIMAR4.1 0.05864 (4) 0.010436 (3) 0.05864 (4) 0.097847 (6) 0.000093 (1) 0.000093 (1)
NYWATER.1 0.000024 (1) 0.008165 (3) 0.000024 (1) 0.108533 (6) 0.021238 (4) 0.021238 (4)
CONSUM.1 0.006701 (3) 0.192148 (5) 0.006701 (3) 0.410414 (6) 0.003062 (2) 0.001941 (1)
children per woman 0.000027 (1) 0.408328 (5) 0.000027 (1) 1.65767 (6) 0.013115 (3) 0.013115 (3)
AMERICAN.1 0.099565 (4) 0.006172 (3) 0.099565 (4) 0.27694 (6) 0.000867 (1) 0.000867 (1)
SERIESJ.2 0.000311 (1) 0.021111 (3) 0.000311 (1) 0.867712 (6) 0.0531 (4) 0.0531 (4)
FRNCHB.1 0.031783 (4) 0.103844 (2) 0.032671 (4) 0.235725 (6) 0.013224 (3) 0.008845 (1)
OTTER L.1 0.000697 (1) 0.154446 (5) 0.003607 (4) 0.228931 (6) 0.001445 (3) 0.001383 (2)
IBM.1 0.099506 (3) 0.007062 (1) 0.029243 (2) 1.192122 (6) 0.181934 (5) 0.150301 (4)
IV.1 0.053671 (4) 0.01878 (3) 0.053671 (4) 0.479534 (6) 0.000081 (1) 0.000081 (1)
HANKOU.1 0.005295 (4) 0.000199 (1) 0.085691 (5) 0.427704 (6) 0.001 (2) 0.001 (2)
ESPANOLA.1 0.107704 (5) 0.063331 (3) 0.107704 (5) 0.069497 (4) 0.038676 (2) 0.03053 (1)
NEUMUNAS.1 0.019752 (2) 0.05087 (5) 0.019752 (2) 0.039879 (4) 0.074946 (6) 0.018099 (1)
NINEMILE.1 0.034372 (2) 0.150897 (6) 0.034372 (2) 0.038648 (4) 0.084953 (5) 0.021218 (1)
NAVAJO.1 0.025011 (3) 0.045677 (4) 0.053738 (5) 0.124633 (6) 0.005094 (1) 0.005094 (1)
BLUME.1 0.002218 (2) 0.107086 (6) 0.001929 (1) 0.049793 (5) 0.003823 (3) 0.003519 (3)
NILE2.1 0.00137 (1) 0.001152 (3) 0.00137 (1) 0.193211 (6) 0.054431 (5) 0.014202 (4)
LOGISTIC.1 0.080491 (3) 0.200174 (6) 0.080491 (3) 0.16654 (5) 0.000003 (1) 0.000003 (1)
Y.1 0.010648 (3) 0.00421 (2) 0.002022 (1) 0.722437 (6) 0.065461 (5) 0.061986 (4)
WBDELAWA.1 0.050875 (4) 0.017499 (3) 0.050875 (4) 0.094832 (6) 0.003033 (1) 0.003033 (1)
AMAZON.2 0.000339 (2) 0.001309 (2) 0.000156 (1) 0.219018 (6) 0.051773 (4) 0.051773 (4)
CN.1 0.015912 0.079448 0.012808 0.007689 0.00342 0.00067 (1)
ASKEW14.1 0.021909 (4) 0.000364 (1) 0.021909 (4) 0.046782 (6) 0.004908 (2) 0.004908 (2)
LACSTJIN.1 0.000059 (1) 0.043367 (4) 0.029783 (5) 0.094873 (6) 0.001409 (2) 0.001409 (2)
CD.1 0.004928 (1) 0.139645 (5) 0.041752 (4) 0.476946 (6) 0.010701 (2) 0.010701 (2)
FISHERT.1 0.023112 (3) 0.117186 (6) 0.033638 (4) 0.08318 (5) 0.008069 (1) 0.008069 (1)
RGNP.1 0.000071 (2) 0.034112 (5) 0.000009 (1) 0.079975 (6) 0.01095 (4) 0.00114 (3)
AROSA.1 0.007575042 (1) 0.010614463 (2) 0.242362866 (5) 0.285212298 (6) 0.01804633 (3) 0.01804633 (3)
U.1 0.005295366 (4) 0.000199081 (1) 0.085691031 (5) 0.427703736 (6) 0.000999952 (2) 0.000999952 (2)
RACOON.1 0.001346976 (3) 0.060859373 (5) 0.001346976 (3) 0.293946208 (6) 0.000630665 (1) 0.000630665 (1)
BND.1 0.00047181 0.111166889 0.0000889 (1) 0.043800188 0.002446093 0.000256424 (2)

Average 0.0065 (2.4693) 0.0158 (3.3663) 0.0071 (2.5742) 0.0351 (4.5742) 0.00463 (2.8019) 0.00256 (2.0571)
STD 0.028074 0.063828 0.043792 0.274294 0.028135 0.020976

J.2 STATISTICAL SIGNIFICANCE OF AUTOFORECAST

We now show the pairwise statistical test results between every pair of methods by Wilcoxon
signed rank test in Table 15. Statistically better method shown in bold (both marked bold if no
significance). We re-emphasize that we use the pairwise Wilcoxon signed rank test on performances
(MSE) across datasets (significance level p < 0.05). In the left, univariate testbed is shown
where AUTOFORECAST is statistically significantly better than most baselines including GB, AS,
and AUTOFORECAST-TSL. In the right, multivariate testbed is shown where AUTOFORECAST is
statistically significantly better than AS, MLP, and AUTOFORECAST-TSL.

We next turn our attention to the tuning of the time-series meta-learner and the timing of
AUTOFORECAST, respectively. In particular, we show both the computational cost and the inference
time for AUTOFORECAST and compare it with our different baselines.
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Table 13: Method evaluation in multivariate testbed (average MSE). The most performing (lowest
MSE) method is highlighted in bold. The rank is provided in parenthesis (lower ranks denote
better performance). AUTOFORECAST achieves the best average MSE and average rank among
all meta-learners. In particular, it has the best performance (lowest average MSE) on 28 datasets out
of the 40 multivariate datasets and has comparable performance for remaining datasets.

Dataset Global Best AS ISAC MLP AUTOFORECAST-TSL AUTOFORECAST
Processed S&P 0.137347 (2) 0.455675 (5) 0.137347 (2) 4.936163 (6) 0.158537 (4) 0.071178 (1)
ozone onehr 0.780519 (5) 0.364615 (3) 0.780519 (5) 0.765257 (4) 0.189151 (2) 0.042093 (1)
Occ Train 0.000106 (1) 0.66462 (5) 0.000106 (1) 0.717224 6) 0.303732 (4) 0.072843 (3)
Scanline 0.00811 (2) 0.627556 (5) 0.00811 (2) 1.292029 (6) 0.064343 (4) 0.005702 (1)
knoy mpu 3 300 0.009803 (1) 0.176418 (6) 0.009803 (1) 0.04145 (3) 0.10648 (5) 0.043316 (4)
energydata complete 0.273006 (3) 0.298254 (5) 0.273006 (3) 3.02911 (6) 0.145331 (2) 0.065071 (1)
Adobe Service CPU Mem 15d 0.264722 (2) 0.813373 (5) 0.264722 (2) 10.782728 (6) 0.581017 (4) 0.120063 (1)
knoy mpu 1 340 0.009342 (4) 0.005052 (3) 0.009342 (4) 0.239649 (6) 0.001921 (2) 0.000374 (1)
iowa-electricity 0.003171 (3) 0.025284 (5) 0.003171 (3) 0.966798 (6) 0.000001 (1) 0.000001 (1)
knoy mpu 1 400 0.077215 (4) 0.020974 (3) 0.077215 (4) 0.101848 (6) 0.000009 (1) 0.000009 (1)
knoy mpu 2 400 0.132552 (4) 0.005615 (1) 0.132552 (4) 2.452516 (6) 0.011195 (3) 0.00656 (2)
Occupancy 0.000097 (1) 0.056036 (4) 0.000097 (1) 2.821039 (6) 0.253453 (5) 0.022591 (3)
ozone eighthr 0.131161 (2) 0.286562 (5) 0.131161 (2) 4.974266 (6) 0.151916 (4) 0.090387 (1)
knoy mpu 3 400 0.024336 (4) 0.005892 (3) 0.024336 (4) 0.083823 (6) 0.001408 (2) 0.000618 (1)
quality control 0.028198 (4) 0.027566 (3) 0.028198 (4) 4.303693 (6) 0.025724 (2) 0.006722 (1)
knoy mpu 1 500 0.022832 (4) 0.015874 (3) 0.022832 (4) 0.063941 (6) 0.000024 (2) 0.000005 (1)
knoy mpu 3 100 0.008206 (1) 0.014191 (3) 0.008206 (1) 0.021298 (4) 0.025675 (5) 0.025675 (5)
knoy mpu 1 360 0.023268 (5) 0.018886 (4) 0.023268 (5) 0.001753 (3) 0.001025 (2) 0.000034 (1)
knoy mpu 2 100 0.005647 (3) 0.009183 (5) 0.005647 (3) 1.82924 (6) 0.000588 (1) 0.000588 (1)
knoy mpu 2 500 0.042863 (3) 0.450295 (5) 0.042863 (3) 0.703812 (6) 0.042598 (2) 0.001608 (1)
Sales Transactions 0.068063 (2) 0.122557 (5) 0.068063 (2) 0.57930 (6) 0.074798 (4) 0.005779 (1)
co2-concentration 0.001174 (1) 0.044724 (5) 0.001174 (1) 0.613426 (6) 0.006403 (4) 0.001976 (3)
knoy mpu 1 100 0.00652 (2) 0.123459 (6) 0.00652 (2) 0.064915 (5) 0.006806 (4) 0.002683 (1)
Processed NASD 0.037896 (2) 0.255123 (5) 0.037896 (2) 0.6712377 (6) 0.117047 (4) 0.020919 (1)
knoy mpu 3 380 0.081679 (3) 0.103497 (5) 0.081679 (3) 0.627697 (6) 0.023772 (2) 0.005902 (1)
knoy mpu 2 320 0.036278 (3) 0.014435 (2) 0.036278 (3) 0.193747 (6) 0.069011 (5) 0.01057 (1)
knoy mpu 2 380 0.000959 (1) 0.009084 (4) 0.000959 (1) 1.172323 (6) 0.025441 (5) 0.001284 (3)
us-employment 0.005489 (1) 0.578479 (5) 0.005489 (1) 4.724258 (6) 0.046471 (4) 0.009717 (3)
knoy mpu 1 380 0.052463 (4) 0.131345 (6) 0.052463 (4) 0.000476 (2) 0.008725 (3) 0.000013 (1)
knoy mpu 2 200 0.021158 (3) 0.021852 (5) 0.021158 (3) 0.692687 (6) 0.002585 (2) 0.000488 (1)
fast-storage-1 0.113182 (2) 0.69159 (5) 0.113182 (2) 2.765069 (6) 0.130727 (4) 0.032013 (1)
knoy mpu 1 600 0.103141 (5) 0.014413 (3) 0.103141 (5) 0.034072 (4) 0.002585 (2) 0.000359 (1)
knoy mpu 3 200 0.011019 (4) 0.006598 (3) 0.011019 (4) 0.463735 (6) 0.002928 (2) 0.002038 (1)
Processed DJI 0.002731 (1) 0.407639 (5) 0.002731 (1) 6.420626 (6) 0.110294 (4) 0.027849 (3)
Processed RUSS 0.109793 (3) 0.159702 (5) 0.109793 (3) 2.493557 (6) 0.072741 (2) 0.026686 (1)
knoy mpu 3 600 0.006719 (3) 0.024021 (6) 0.006719 (3) 0.000626 (1) 0.011989 (5) 0.003086 (2)
knoy mpu 2 600 0.072972 (4) 0.031156 (3) 0.072972 (4) 1.704111 (6) 0.005216 (1) 0.005216 (1)
Processed NYSE 0.099705 (3) 0.50898 (5) 0.099705 (3) 2.794788 (6) 0.073811 (2) 0.029246 (1)

Average 0.0584 (2.3191) 0.1683 (3.0851) 0.0584 (2.3191) 1.6938 (3.8723) 0.065 (2.3404) 0.0163 (1.3191)
STD 0.1252 0.2295 0.1252 2.3421 0.1068 0.0271

Table 14: Results for one-step ahead forecasting (Average MSE across all datasets) for both testbeds.
The seven SOTA forecasting models have worse performance (higher MSE) compared to most of
the meta-learners. For each SOTA, we chose the model with the best average performance from all
model variants. Moreover, AUTOFORECAST has the best performance for both testbeds.

Testbed Seasonal Naive DeepAR Deep Factors Random Forest Prophet Gaussian Process VAR

Univariate 0.0345 0.0164 0.0217 0.0199 0.0155 0.1661 0.0602
Multivariate 0.0149 0.0085 0.0135 0.0071 0.0065 0.2576 0.9865

Global Best AS ISAC MLP AUTOFORECAST-TSL AUTOFORECAST
Univariate 0.0065 0.0158 0.0071 0.0351 0.00463 0.00256

Multivariate 0.0050 0.0139 0.0046 0.0121 0.00541 0.00124

Table 15: Pairwise statistical test results between every pair of methods by Wilcoxon signed rank
test. Statistically better method shown in bold (both marked bold if no significance). In the left,
univariate testbed is shown where AUTOFORECAST is statistically significantly better than GB, AS,
and AUTOFORECAST-TSL. In the right, multivariate testbed is shown where AUTOFORECAST is
statistically significantly better than AS, MLP, and AUTOFORECAST-TSL.

Ours Baseline p-value
AUTOFORECAST GB 9.0712× 10−5

AUTOFORECAST AS 1.0726× 10−37

AUTOFORECAST ISAC 0.1349
AUTOFORECAST MLP 0.0657
AUTOFORECAST AUTOFORECAST-TSL 8.1683× 10−15

AUTOFORECAST-TSL GB 2.2611× 10−8

AUTOFORECAST-TSL AS 1.5760× 10−14

AUTOFORECAST-TSL ISAC 2.3843× 10−16

AUTOFORECAST-TSL MLP 1.1658× 10−26

GB AS 9.4952× 10−33

GB ISAC 0.0322
GB MLP 4.5489× 10−9

AS ISAC 1.7842× 10−37

AS MLP 4.4658× 10−54

ISAC MLP 2.2062× 10−31

Ours Baseline p-value
AUTOFORECAST GB 1.0
AUTOFORECAST AS 3.9399× 10−7

AUTOFORECAST ISAC 0.8240
AUTOFORECAST MLP 0.0004
AUTOFORECAST AUTOFORECAST-TSL 0.0025
AUTOFORECAST-TSL GB 0.00254
AUTOFORECAST-TSL AS 5.8013× 10−7

AUTOFORECAST-TSL ISAC 1.5598× 10−5

AUTOFORECAST-TSL MLP 3.4572× 10−8

GB AS 3.9399× 10−7

GB ISAC 0.8240
GB MLP 0.0004
AS ISAC 1.4217× 10−7

AS MLP 6.6612× 10−8

ISAC MLP 3.7789× 10−8
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Figure 9: The performance of the time-series
meta-learner Θ vs. number of the LSTM layers
of Θ for the univariate testbed. LSTM with 4
layers gives the best performance (lowest MSE).
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Figure 10: The performance of the time-series
meta-learner Θ vs. number of units per layer of
Θ for the univariate testbed. LSTM with 50 units
per layer gives the best performance.
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Figure 11: The performance of the time-series
meta-learner Θ vs. the training batch size of Θ
for the univariate testbed. A batch with size = 25
instances gives the best performance.
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Figure 12: The performance of the time-series
meta-learner Θ vs. number of training epochs of
Θ for the univariate testbed. Training with 50
epochs gives the best performance.

J.3 TUNING OF TIME-SERIES META-LEARNER Θ

We show the effect of different hyper-parameters used in the training of the time-series meta-learner
Θ on the performance (in terms of MSE under the selected model by Θ). For searching on each
parameter, we fix the other parameters on their best values. In the interest of space, we show full
details for the univariate testbed. Figure 9 shows the effect of the number of the LSTM layers
of the time-series meta-learner. We observe that LSTM with 4 layers gives the best performance
(lowest MSE). Second, Figure 10 shows the effect of the number of the units in the LSTM layer
of the time-series meta-learner. We observe that LSTM with 50 units per layer gives the best
performance (lowest MSE). Third, Figure 11 shows the effect of the training batch size of the
time-series meta-learner. A batch with size = 25 instances gives the best performance (lowest
MSE). Finally, Figure 12 illustrates the effect of the number of training epochs of the time-series
meta-learner. We note that training with 50 epochs gives the best performance (lowest MSE). We
have also used dropout rate of 0.2 to prevent over-fitting.

J.4 COMPARING COMPUTATIONAL COST OF AUTOFORECAST

Table 16 shows that AUTOFORECAST has comparable computational training cost compared to the
other meta-learners baselines. We re-emphasize that the running time of such offline training phase
is less critical since it is done only once. However, this experiment shows that our better time series
model selection performance does not entail a prohibitive training cost.

Table 16: Computational cost for training (in seconds) for both univariate and multivariate testbeds.
AUTOFORECAST has comparable computational cost compared to other meta-learners baselines.

Dataset Testbed Global Best AS ISAC MLP AUTOFORECAST-TSL AUTOFORECAST

Univariate N/A 308.9301± 46.1968 278.8083± 57.9900 705.2908± 123.3715 334.8091± 31.6808 670.5855± 31.5465
Multivariate N/A 194.3877± 39.7441 182.4753± 34.3238 411.9337± 41.7406 178.1978± 18.0098 376.3956± 40.0195

26



Under review as a conference paper at ICLR 2022

J.5 INFERENCE RUN TIME STATISTICS

Comparison between AUTOFORECAST and naı̈ve approach: We compare the inference time
that AUTOFORECAST versus the inference time of the naı̈ve approach, i.e., doing inference over
all possible models. We first show the aggregate statistics for the gain across all datasets for each
testbed. Figure 3 illustrates the reduction in inference time for using AUTOFORECAST over the
naı̈ve approach for both univariate and multivariate testbeds. In particular, AUTOFORECAST gives
a median gain of at least 42X over the naı̈ve approach for both testbeds.

Dataset-wise inference time comparison: Next, we pick several random groups of 10 datasets each
and show the time (in seconds) that AUTOFORECAST takes versus the time the naı̈ve approach takes
for forecasting model selection. Figures 13-14 shows such comparison for the univariate testbed. It
is noted the higher reduction of inference time for larger datasets (i.e., with more data points).
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Figure 13: Inference time comparison between
AUTOFORECAST and naı̈ve approach.
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Figure 14: Inference time comparison between
AUTOFORECAST and naı̈ve approach.

Multivariate testbed: We also observe that AUTOFORECAST (meta-feature generation and model
selection) takes less than 1.2 second on most time series datasets for multivariate testbed.

Time overhead of AUTOFORECAST relative to training of selected model: Figure 15 shows that
it incurs only negligible overhead relative to actual training of the selected model (with median =
0.1%). Similarly, AUTOFORECAST incurs only negligible overhead relative to actual training of the
selected model for the multivariate testbed (with median = 0.3%) (Figure is omitted for multivariate
testbed). This shows that AUTOFORECAST is lightweight, incurring small selection time overhead.

Figure 15: Boxplot of time AUTOFORECAST takes relative to training of selected model in univariate
testbed. AUTOFORECAST incurs negligible overhead, (median = 0.1%).

K INTERPRETABLE FEATURES OF DATASETS

Now, we show some of the interpretable input feature values for all datasets in the univariate
testbed. In particular, we show mean, median, variance, skeweness, kutosis, absolute energy,
and benford correlation for each of the individual time series in that testbed. Such features are
shown in Figures 16-23. Note that time-series datasets have standard normalization before feature
extraction. Such features values show the diversity in the datasets, where each dataset has different
characteristics. We emphasize that in the interest of space, we show sample of these interpretable
features.

27



Under review as a conference paper at ICLR 2022

0 50 100 150 200 250 300
Dataset Index

0.0

0.2

0.4

0.6

0.8
M
ea

n

Figure 16: Mean
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Figure 17: Median
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Figure 18: Variance
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Figure 19: Skeweness
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Figure 20: Kurtosis
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Figure 21: Absolute Energy
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Figure 22: Benford Correlation
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Figure 23: Existence of duplicates (binary)
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