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ABSTRACT

The increased application of machine learning (ML) in sensitive domains requires
protecting the training data through privacy frameworks, such as differential pri-
vacy (DP). DP requires to specify a uniform privacy level ε that expresses the max-
imum privacy loss that each data point in the entire dataset is willing to tolerate.
Yet, in practice, different data points often have different privacy requirements.
Having to set one uniform privacy level is usually too restrictive, often forcing a
learner to guarantee the stringent privacy requirement, at a large cost to accuracy.
To overcome this limitation, we introduce our novel Personalized-DP Output Per-
turbation method (PDP-OP) that enables to train Ridge regression models with in-
dividual per data point privacy levels. We provide rigorous privacy proofs for our
PDP-OP as well as accuracy guarantees for the resulting model. This work is the
first to provide such theoretical accuracy guarantees when it comes to personalized
DP in machine learning, whereas previous work only provided empirical evalua-
tions. We empirically evaluate PDP-OP on synthetic and real datasets and with
diverse privacy distributions. We show that by enabling each data point to specify
their own privacy requirement, we can significantly improve the privacy-accuracy
trade-offs in DP. We also show that PDP-OP outperforms the personalized privacy
techniques of Jorgensen et al. (2015).

1 INTRODUCTION

Over the last decade, the amount of private data collected about individuals has experienced an
exponential growth. As the data is used for computing statistics, training recommender systems, and
automated decision-making in sensitive domains, such as medicine, privacy concerns around this
data are growing. The gold standard for analyzing the data with privacy guarantees is Differential
Privacy (DP) Dwork et al. (2006). DP allows to perform meaningful analyses of the entire dataset
while protecting the privacy of individuals. It guarantees that if any single individual in a dataset
were to change their data point, the (distribution of) outcomes of the differentially private mechanism
remains roughly the same. The closeness of the outcomes is parametrized by a privacy parameter
ε that captures the level of privacy. This ε represents the maximal privacy loss that any individual
contributing data to the dataset is willing to accept, with small ε indicating high levels of privacy.

However, DP comes with a major limitation: It requires to set the privacy level ε uniformly for the
entire dataset. Implicitly, this suggests that all individuals whose data is present in the dataset have
the same privacy requirements. Yet, this is not accurate as individuals were shown to have diverse
privacy requirements Jensen et al. (2005); Berendt et al. (2005); Acquisti & Grossklags (2005). By
setting a uniform privacy budget in DP, this budget must match the individual whose privacy re-
quirements are the strongest. This means that ε has to correspond to the highest privacy requirement
in the dataset. Thereby—since the implementation of DP usually relies on the addition of noise
with higher privacy requiring higher amounts of noise being added—DP often yields unfavorable
privacy-accuracy trade-offs Li & Li (2009); Tramer & Boneh (2020); Bagdasaryan et al. (2019).

In this paper, we argue standard DP is overly conservative and propose a new algorithm to train
ridge regression with per-individual personalized privacy guarantees.1 We provide rigorous privacy

1In the remainder of this work, we will, without loss of generality, assume that each data point is contributed
by a different individual.
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proofs and accuracy guarantees for our algorithm, thereby, distinguishing ourselves from prior work
on machine learning with personalized guarantees Alaggan et al. (2015); Jorgensen et al. (2015);
Boenisch et al. (2023b;a) that solely provides empirical evaluations. Our personalized privacy tech-
niques also differ from that of Boenisch et al. (2023b;a). A detailed discussion of related work is
available in AppendixB.

In summary, we make the following contributions:

• We propose the first personalized DP algorithm specialized to the case of Ridge regression
in Section 2, Algorithm (1).

• We provide rigorous privacy proofs in Section 2.1 and accuracy guarantees in Section 2.2.
• We perform extensive empirical evaluations in Section 3. We highlight that i) our algo-

rithm significantly outperforms standard output perturbation-based DP ridge regression in
terms of privacy-accuracy trade-offs on multiple datasets and diverse privacy distributions
in Section 3.1 and Appendix D.1. We also show that we outperform the personalized pri-
vacy technique of Jorgensen et al. (2015) in Section 3.2 and Appendix D.2. Figure 1 plots
the regularized test loss, while varying the fraction of high privacy data points (fc), on the
Medical cost dataset (Lantz, 2013). What we see is representative on all our experiments:
the loss and standard deviation of our personalized privacy estimator is lower than that of
Jorgensen et al. (2015).

Formally, the definition of personalized DP is the following:
Definition 1.1 (i-neighboring). Two datasets D and D′ are neighboring with respect to data point i
(or “i-neighbors”) if they differ only in data point i.
Definition 1.2 (Personalized DP). A randomized algorithm M is εi-differentially private with re-
spect to data point i, if for any outcome set O ⊂ Range (M) and for all i-neighboring databases
D,D′

Pr [M(D) ∈ O] ≤ exp(εi) Pr [M(D′) ∈ O] .

2 ALGORITHMS AND GUARANTEES FOR PERSONALIZED PRIVACY IN RIDGE
REGRESSION
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Figure 1: Mean (top) & std of the
test loss (bottom) for our private
estimator (in blue) vs Jorgensen
et al. (2015) while varying fc, reg-
ularization parameter λ = 0.7.

Our Setup. Consider a dataset D = {(xi, yi) ∈ X ×Y : i =
1, 2, · · · , n} consisting of a total n data points. We assume that
features are bounded; without loss of generality, we work with
xi ∈ [0, 1]d for all i ∈ [n]. We also assume that the labels are
bounded, and w.l.o.g. set yi ∈ [−1, 1] for all i ∈ [n]. Beyond
this, each data point i ∈ [n] has a privacy requirement, in the
form of a DP parameter εi > 0. The lower the value of εi, the
more stringent the privacy requirement of data point i, as per
Definition 1.2.

Our main focus is Ridge regression. I.e., we are aiming to
find a linear model x⊤θ̄, parametrized by θ̄, that predicts the
labels as accurately as possible. Our goal is to find the θ̄ that
minimizes the Ridge loss

L(θ, λ) =
1

n

n∑
i=1

(
yi − θ⊤xi

)2
+ λ∥θ∥22.

However, we cannot release θ̄, as it encodes information about
the dataset (xi, yi). Instead, we provide an estimator θ̂ whose
performance on our Ridge loss is good, while at the same
time ensuring that we satisfy DP with parameter εi for all data
points i ∈ [n] simultaneously.

Our Main Algorithm. The main idea of our algorithm,
“Personalized-Differentially-Private Output Perturbation” (or “PDP-OP”) is as follows: if we
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wanted to obtain traditional, non-personalized DP, we could first compute a non-private estimate
θ̄, then add well-chosen noise Z for privacy with density ν(b) ∝ exp(−η∥b∥2). This takes inspira-
tion from Chaudhuri & Monteleoni (2008); Chaudhuri et al. (2011); however, our analysis exhibits
differences due to differences in our estimators to incorporate personalized DP. Here, to instead ob-
tain personalized DP, we rely on an idea studied by Cummings & Durfee (2020): manipulating or
pre-processing the sensitivity (i.e., how much a given data point can change the outcome) of our
query with respect to each data point i. More precisely, our sensitivity pre-processing technique
re-weights each data point i by a weight wi. The smaller the weight wi, the smaller the impact the
i-th data point has on the output model. Intuitively, this means that lower wi’s correspond to less
information encoded in the output θ̂ about data point i, and better privacy for i. When giving differ-
ent wi to different data points, we can then ensure different, personalized privacy levels for different
data points. Our algorithm is given formally in Algorithm 1. We then show formally in Section 2.1
how to choose the weights wi and the noise parameter η in order to guarantee personalized DP with
respect to privacy preferences ε1, . . . , εn.

2.1 PRIVACY GUARANTEES

We now state the personalized privacy guarantee obtained by our algorithm. We remind the reader
that this privacy guarantee relies on the observations being normalized such that xi ∈ [0, 1]d and
yi ∈ [−1, 1] for all i ∈ [n]:

Theorem 2.1. Fix privacy specifications ε1, . . . , εn > 0. Let B(λ) = min
(

1√
λ
,
√
d

λ

)
. Algorithm 1

with parameters wi =
εi∑n

j=1 εj
for all i and η = λ

2
√
d(1+

√
dB(λ))

∑n
j=1 εj is εi-personalized differ-

entially private with respect to data point i for every i ∈ [n].

Additionally, we show another version of our privacy guarantee that uses additional assumptions
on the data and on the best regression parameter absent regularization, when such information is
available:

Assumption 2.2 (Bounded θ̄). Let θ̄0 = argminθ
∑n

i=1 wi

(
yi − θ⊤xi

)2
, when λ = 0. There is a

known constant B such that
∥∥θ̄0∥∥2 ≤ B.

We incorporate such boundedness assumptions as they have also been used in previous work, such
as Wang (2018); Arora et al. (2022). Our privacy guarantee, under additional Assumption 2.2, is
given by:

Theorem 2.3. Suppose Assumption 2.2 holds. Fix privacy specifications ε1, . . . , εn > 0. Algo-
rithm 1 with parameters wi =

εi∑n
j=1 εj

for all i and η = λ
2
√
d(B

√
d+1)

∑n
j=1 εj is εi-personalized

differentially private with respect to data point i for every i ∈ [n].

We can easily see that if B ≤ B(λ) = min
(

1√
λ
,
√
d

λ

)
, this bound adds noise Z with a bigger

parameter η compared to in Theorem 2.1, which corresponds to adding less noise. This will lead to
better accuracy guarantees in regimes in which we put little weight on the regularization parameter,
provided that we know or can estimate such a bound B. The proofs for Theorem 2.1 and 2.3 are
provided in Appendix C.1

2.2 ACCURACY GUARANTEES

We now provide theoretical bounds on the accuracy of our framework. We note that we are the
first to provide such theoretical accuracy bounds for ridge regression with personalized DP. The
framework of Jorgensen et al. (2015) is relatively general, but said generality prevents them from
obtaining worst-case theoretical accuracy bounds, and they focus on an empirical evaluation of the
performance (in terms of loss or accuracy) of their sampling framework.

We make the assumption that the label generating process is in fact approximately linear, which is
the main use case in which linear regression should be used in the first place (Vershynin, 2018). Im-
portantly, note that this assumption is only made in order to characterize the theoretical accuracy of
our framework. Our personalized DP bounds of Section 2.1 crucially do not rely on Assumption 2.4.
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Assumption 2.4. Given a feature vector xi, the label yi is given by yi = x⊤
i θ

∗+Zi where θ∗ ∈ Rd

and the Zi’s are independent and identically distributed Gaussian variables with mean 0 and standard
deviation σ > 0.

We now provide a bound on how well we recover θ∗, the true data generating process, as closely as
possible as a function of our dataset and our choice of privacy parameters.

Theorem 2.5 (Accuracy of θ̂). Let η be chosen as per Theorems 2.1 absent assumptions, and The-
orem 2.3 under Assumption 2.2. For any δ > 0, with probability at least 1− δ, we have that for any
λ > 0,

∥θ∗ − θ̂∥2 ≤ ∥θ∗∥

1 +
λmin(

∑n
i=1 wixix⊤

i )
λ

+
1

η

(
d+

√
2d

δ

)
+

σ

λ

√
2d

δ
∥w⃗∥

for all λ > 0, where w⃗ = (w1, . . . , wn).

The proof of Theorem 2.5 is in Appendix C.2. The interpretation is as follows: the distance between
our private estimate θ̂ and the true data generating parameter θ∗ is upper bounded by three terms, the
first is a bias term from ridge regresssion, ∥θ∗∥

/ (
1 + λmin

(∑n
i=1 wixix

⊤
i

)
/λ
)
. If the problem is

well conditioned 2 then as λ → 0 this first term vanishes. If the problem is not well conditioned

then the bias from ridge regression is unavoidable. The second term 1
η

(
d+

√
2d
δ

)
, is due to the

noise added for privacy with parameter η ∝
∑n

j=1 εj . Absent personalization, η ∝ nminj εj ,
which leads to significantly more noise addition for privacy. Further, in the second term, η is an
increasing function of λ, thus the second term is therefore decreasing in λ. This is in contrast with
the bias term, increasing λ increases the weight on the regularization hence increases the bias of our
estimator; however, at the same time, it decreases the amount of noise we need to add for privacy.

Finally, the third term σ
λ

√
2d
δ ∥w⃗∥ captures noise in the labels themselves.

3 EXPERIMENTS

In this section, we evaluate the performance of our algorithm experimentally. Importantly, we high-
light that our goal is not to evaluate the performance of “output perturbation” (which first computes
a non-private estimator then adds noise for privacy) for private regression, as this has been done
extensively in previous work Chaudhuri & Monteleoni (2008); Chaudhuri et al. (2011). Rather, we
highlight the performance of our re-weighting technique, in particular compared to the absence of
data reweighting (which gives the same level of privacy to all data points) and to the sampling-based
technique for personalized privacy of Jorgensen et al. (2015). For this reason and to isolate the per-
formance of our re-weighting technique versus the sampling of Jorgensen et al. (2015), we fix our
experimental evaluation to have all baselines be based on output perturbation techniques.

We divide this section into two parts: i) we show how much the addition of personalized privacy
improves accuracy compared to non-personalized privacy; ii) we compare our results to Jorgensen
et al. (2015), and show improvement both in terms of accuracy and variance of the estimator.

Choice of Privacy Budgets. To validate our personalized privacy setting, we follow a similar seg-
regation scheme as Alaggan et al. (2015); Jorgensen et al. (2015). We categorize data points into
3 segments, in order of most stringent to less stringent privacy requirements: conservatives (high
privacy), mediums or pragmatists (medium privacy), and liberals (low privacy). The fraction of
conservatives, mediums, and liberals in the population is denoted by fc, fm and fl = 1− (fc + fm)
respectively. Each segment has their own privacy parameter denoted respectively εc, εm and εl,
where εc < εm < εl (remember that lower ε, means stronger privacy requirement). In our experi-
ments, we assign the personalized privacy budgets to the conservatives and mediums by uniformly
sampling from the ranges [εc, εm], [εm, εl] respectively. As for the liberals, they all receive the same
single highest privacy budget εl. This follows Niu et al. (2020); Jorgensen et al. (2015).

2i.e., λmin

(∑n
i=1 wixix

⊤
i

)
> 0
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As default values, we set fc = 0.34, fm = 0.43, fl = 0.23, εc = 0.01, εm = 0.2, εl = 1.0 unless
otherwise specified. We provide experiments in Appendix D where we show how our insights
extend as we change these privacy parameters.

Synthetic Data Generation. For the synthetic data, we draw θ∗ uniformly over the unit
sphere Sd−1. Each feature x is drawn uniformly over support [0, 1]d, and its corresponding label
y = x⊤θ∗

√
d

: the label then satisfies |y| ≤ 1√
d
∥x∥2∥θ∗∥2 ≤ 1. We consider perfect linear relationships

between x and y with no noise in the labels (i.e., σ = 0 as per the notations of Section 2.2); we do so
to decouple the effect of linear models being an imperfect hypothesis class from the performance of
our method. We rely on our real dataset described below, both in the main body and in Appendix D,
for situations in which the relationship between features and labels can only approximately be
captured by a linear model.

Real Dataset. For our experiments on real data, we use the “Medical Cost” dataset (Lantz,
2013) which looks at an individual medical cost prediction task. Each individual’s features are split
into three numeric {age, BMI, #children} and three categorical features {sex, smoker,
region}. The dataset also has a real-valued medical charges column that we use as our label.
Data pre-processing. We use min-max scaling to normalize the numeric features as well as the
label to the range [0, 1]. For any categorical features, we use standard one-hot-encoding. To deal
with affine rather than simply linear relationships in the data, we add a d + 1-th feature to each
feature vector x, that corresponds to our model’s intercept.

Metrics. We evaluate the performance of θ̂ on a held-out test set of size Ntest, using the following
metrics : (1) Unregularized test loss:

∑Ntest

i=1
1

Ntest
(yi − x⊤

i θ̂)
2 and (2) Regularized test loss:∑Ntest

i=1
1

Ntest
(yi − x⊤

i θ̂)
2 + λ

∥∥∥θ̂∥∥∥2
2
. The λ we use in our evaluation is the same λ that we use in our

training loss and in Algorithm 1.

3.1 IMPROVEMENTS OVER STANDARD DIFFERENTIAL PRIVACY

Our first results show the improvements in accuracy when we use personalized DP as opposed to
standard (or non-personalized) DP. To do so, we compare to what we call the non-personalized
baseline which provides the same privacy level ε to all data points. We let ε∗ = mini εi is chosen
to satisfy the most stringent privacy preferences (remember that smaller ε means more privacy)
among all data points. To implement this baseline, we simply use Algorithm 1, but with the privacy
preference profile being (ε∗, . . . , ε∗). Note that the weights are all the same and equal to 1/n and the
added noise scales as a function of ε∗. Hence our baseline implementation just follows the standard
regression algorithm with output perturbation of Chaudhuri & Monteleoni (2008) and Chaudhuri
et al. (2011).

Table 1 shows the performance of our algorithm versus the non-personalized baseline across varying
regularization λ, while fixing the other parameters fc, fm, εc, εm. We note that we get consistent
improvements of several order of magnitudes across all values of λ. The improvement is, for exam-
ple, roughly of an order of magnitude of 100 when it comes to both unregularized and regularized
mean-squared error on the test set. This shows that leveraging differing privacy preferences across
differing data points can lead to huge improvements in terms of privacy-accuracy trade-offs for
differential privacy. Table 2 shows that significant improvements also occur on the real dataset. Ap-
pendix D.1 provides more experiments where we vary parameters fc, εc, εm, n on the synthetic
and real datasets.

3.2 COMPARISON TO JORGENSEN ET AL. (2015)

Experimental setup. We compare our approach to that of Jorgensen et al. (2015), who proposed
the first algorithm for personalized differential privacy in the central privacy model. Their approach
is the following: first, they pick a threshold t. Then, they sample each data point i in D with
probability exp{εi}−1

exp{t}−1 if εi < t, and probability 1 otherwise. Lastly, they run a standard non-
personalized algorithm that is t-differentially private. We fix the non-personalized algorithm to
follow the output perturbation technique described in Chaudhuri & Monteleoni (2008); Chaudhuri
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et al. (2011) to keep comparisons apple-to-apple and only compare the impact of our re-weighting
versus the thresholding then sub-sampling approach of Jorgensen et al. (2015). We implement the
non-personalized estimator as per the baseline described in Section 3.1. For the choice of t, we try
out both t = maxi εi (that we refer to as “Jorgensen max” or “max threshold”) and t = 1

n

∑
i εi

(that refer to as “Jorgensen mean” or “mean threshold”). Both these choices of t were proposed
by Jorgensen et al. (2015) itself.

In the rest of this section, we present our experimental results. We note that our framework con-
sistently leads to improved performance over Jorgensen et al. (2015). This is seen in two ways:
first, our unregularized and regularized losses are consistently lower than those of Jorgensen for the
vast majority of choices of instance parameters and of regularization parameter λ. This show that
our re-weighting method is consistently more accurate compared to the subsampling method of Jor-
gensen et al. (2015) when it comes to accuracy. Beyond this, we also note that our results are more
consistent: the standard deviation of the loss of our technique is also lower than that of Jorgensen
et al. (2015). I.e., our results are more consistent across different runs of the algorithms and different
realizations of the noise.

Intuitively, one of the advantages of our technique over that of Jorgensen et al. (2015) is that by re-
weighting instead of sampling, we do not discard any of our dataset; we believe this is one potential
source of improvement. Another, more subtle reason, may be that our framework adds all noise Z
centrally, at the end of the computation, while Jorgensen et al. (2015) adds noise both locally (when
sub-sampling data points) and centrally. It is well understood that adding noise centrally (i.e., within
the computation) in differential privacy leads to better privacy-accuracy trade-offs than adding noise
locally (i.e., at the level of each data point), which may be another reason for our improvements.

Improvements in loss. Table 11 provides a snapshot of our performance versus that of the baseline
of Jorgensen et al. (2015), for our default choice of privacy parameters. We perform consistently
better than Jorgensen et al. (2015) across both our metrics (unregularized and regularized loss), with
improvements in loss of up to roughly 20 percent under the max threshold. Jorgensen et al. (2015)’s
results when using the mean threshold instead are consistently worse. Table 12 shows that similar
insights hold on our real dataset.

Improvements in variability of the results. Figure 10 and 11 show the standard deviation of our
loss compared to that of Jorgensen et al. (2015), estimated across 10, 000 runs for each technique on
the synthetic and real datasets respectively. The figure clearly highlights how our method exhibits
less variability, leading to more consistent results across different runs and realizations of the noise.

We also provide additional experiments where we change the parameters of the problem such as
fc, εc, εm, n and when we consider our real dataset in Appendix D.2, and note there that our
insights still hold across these experiments.

4 CONCLUSION AND FUTURE WORK

We proposed a new algorithm, Personalized-DP Output Perturbation (PDP-OP), which allows to
train Ridge regression models with individual per-data point privacy requirements. We formally
prove PDP-OP’s personalized privacy guarantees and provide rigorous and theoretical results for
the accuracy guarantees of our framework. We are in fact the first to provide a theoretical accuracy
guarantee for personalized-DP methods in machine learning, to the best of our knowledge. Our
empirical evaluation on synthetic and real datasets highlights that PDP-OP significantly outperforms
non-personalized DP, highlighting the need for personalized DP to vastly improve privacy-accuracy
trade-offs in private ML. We also show that we outperform previous techniques for personalized DP,
showing the advantages of using re-weighting over sub-sampling techniques.

The current paper aims to provide initial algorithms for personalized DP tailored to the case of Ridge
regression. We chose to use output perturbation as a simple starting point to provide initial insights
and algorithms into personalized DP, and the benefits of data re-weighting over data sub-sampling.
We, however, believe that there is still some leeway to improve the privacy-accuracy trade-offs
of linear regression with personalized DP. In future work, we will incorporate our re-weighting
technique with more advanced techniques for private regression, such as objective perturbation,
summary statistic perturbation, or private gradient descent (see Appendix B for more details and
examples).
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Algorithm 1 Personalized-Differentially-Private Output Perturbation (PDP-OP)
Inputs: Dataset D = {(xi, yi) for i ∈ [n]}; weights vector w ≥ 0 with

∑n
i=1 wi = 1; noise

parameter η.
Output: Private estimator θ̂

1: Compute non-private estimate θ̄ as follows:

θ̄ = argmin
θ

n∑
i=1

wi

(
yi − θ⊤xi

)2
+ λ∥θ∥22. (1)

2: Sample Z as a random variable with probability density function ∝ exp(−η∥b∥2)
3: Return private estimate θ̂ = θ̄ + Z

Remark .1 (How to sample Z). It is known that for probability density function ν(b) ∝
exp(−η∥b∥2) for Z:

• ∥Z∥2 follows a Gamma(α, β) distribution with α = d and β = η, which has density
f(r) ∝ rd−1 exp{−ηr}.3

• For any given value r ≜ ∥Z∥2, Z is uniform on the ℓ2-sphere of radius r. This can be seen
immediately as the density only depends on ∥Z∥, so all realizations z with the same norm
have the same density.

In turn, to sample Z, it suffices to i) sample the radius R from Gamma(d, η), then ii) sample Y
uniformly at random from the ℓ2-sphere of radius 1, and set Z = RY .

A A POTENTIAL LIMITATION: THE PRIVACY OF PRIVACY COSTS

In certain sensitive applications, an individual’s choice of privacy budget can reflect some sensitive
information. Imagine a medical context with a dataset that consists of individuals that do and indi-
viduals that do not have a rare disease. The latter ones might prefer higher privacy protection to hide
their condition. If an attacker with access to the trained model was able to deduce the individual’s
privacy budget, they might, in turn, be able to draw conclusions on the individual’s medical state.
This provides a point of attack towards our privacy guarantees.

We note, however, that deducing privacy budgets is generally a hard problem, alleviating our con-
cerns when it comes to data–privacy budget correlations. Theoretical results from ML, e.g., Gilbert
& McMillan (2018), have shown that one cannot currently perform sample-efficient black-box audits
to determine the privacy-budget of a trained model.

B RELATED WORK

Personalized Privacy. Personalizing privacy guarantees are highly relevant, given that studies
showed how society consists at least of three different groups of individuals, requiring strong, aver-
age, or weak privacy protection Jensen et al. (2005); Berendt et al. (2005); Acquisti & Grossklags
(2005). Without personalization, when applying DP to datasets that hold data from individuals with
different privacy requirements, ε needs to be set to the lowest ε encountered among all individuals
whose data we choose to use in our computation. This can often yield unfavorable privacy-utility
trade-offs, due to having to throw away too much data or to have to use a stringent value of ε for
everyone. Instead, several previous works concurrently introduced the concept of personalized DP.
It was introduced formally in Alaggan et al. (2015) and Jorgensen et al. (2015) in the context of

3An easy way to see this informally is the following: the total mass on ∥Z∥2 = r is proportional to the
total mass on all Z’s with norm r—which is proportional to 2πd/2

Γ(d/2)
rd−1 (the surface area of the d-dimensional

ℓ2-sphere)—multiplied by the mass on any single Z of norm r—which is proportional to exp{−ηr}. A more
formal proof, omitted here, consists in writing the integration for P [∥Z∥2 ≤ R], then doing a change of variable
to hyper-spherical coordinates in the corresponding integral.

9
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central DP; it was also used informally by Cummings et al. (2015) in the context of mechanism
design for data acquisition with local DP.

Two of the most prevalent techniques for personalized DP are personalized data sampling and sen-
sitivity pre-processing.

Both methods change how much the output of a computation depends on a particular data point:
the lesser the dependency on a given data point, the more privacy this point gets. The idea of data
sampling for personalized privacy was introduced by Jorgensen et al. (2015), and later used in the
works of Niu et al. (2021); Boenisch et al. (2023b;a). Data sampling introduces randomness in the
dataset: each data point can be sub-sampled or up-sampled before being fed into a standard DP
algorithm.

Sensitivity pre-processing, which is the approach used in this work, in contrast, can be implemented
deterministically. It modifies the query of interest to have different sensitivities for different data
points, where sensitivity is a standard notion in DP on how much a computation can change across
neighbouring datasets.

Sensitivity pre-processing for personalized privacy was originally introduced by Alaggan et al.
(2015) through linear pre-processing or “stretching” of the input data; a caveat of this method is that
it requires strong assumptions on how changing the data changes per-user sensitivity. A general-
purpose method for manipulating the sensitivity of a query while maintaining accuracy is provided
by Cummings & Durfee (2020), but is unfortunately NP-hard to implement in the general case and
is constructive, rather than given in closed form. Specializations of this method for the case of
moment estimation have been recently used in Fallah et al. (2022); Cummings et al. (2023): both
papers rely on weighted moment estimation, where the weight is lower for data points with stronger
privacy requirements. A difficulty with such re-weightings is that they often need to be tailored to
the specific learning task at hand. This is the approach we take and challenge we face in this work.
Finally, Li et al. (2017) proposed two partitioning algorithms that first separate the data in different
groups according to privacy requirements, and then process these groups separately. This approach
was shown sub-optimal for learning-based applications Boenisch et al. (2023b).

Private Empirical Risk Minimization. There has been a significant line of work on making lin-
ear regression, generalized linear models, and empirical risk minimization (ERM) differentially-
private (Chaudhuri & Monteleoni, 2008; Chaudhuri et al., 2011; Kifer et al., 2012; Bassily et al.,
2014; Jain & Thakurta, 2014; Wang, 2018; Bassily et al., 2019; Chen et al., 2020; Song et al., 2020;
Cai et al., 2021; Song et al., 2021; Alabi et al.; Arora et al., 2022). These papers focus on standard
DP, as opposed to personalized DP, and span a relatively large number of different techniques. Most
relevant to us are the initial works in this space by Chaudhuri & Monteleoni (2008); Chaudhuri et al.
(2011). In particular, they analyze obtaining DP in regression and ERM through an output perturba-
tion technique: ERM is first performed non-privately, then noise is added directly to the non-private
estimator. We similarly rely on output perturbation in this paper, noting that this is a good starting
point to the study of personalized DP in the context of regression. Most recently, output perturbation
saw a new analysis for generalized linear models by Arora et al. (2022).

C PROOF OF MAIN RESULTS

C.1 FULL PROOF OF THEOREMS 2.1 AND 2.3

Preliminaries: Bound on ∥θ̄∥ for Algorithm 1 First, we show that the norm of θ̄ is bounded for
Algorithm 1. This bound will be useful in bounding the gradient difference across two neighbouring
databases in the proof of the privacy guarantee of Algorithm 1.
Lemma C.1. For any

∑n
i=1 wi = 1, wi ≥ 0, the unconstrained minimizer of (1), θ̄, satisfies:∥∥θ̄∥∥

2
≤ 1√

λ
.

Proof. Let the weighted loss be defined as:

Lw(θ) ≜
n∑

i=1

wi

(
yi − θ⊤xi

)2
+ λ∥θ∥22.
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For any θ ∈ Rd, Lw(θ̄) ≤ Lw(θ). Therefore,

λ
∥∥θ̄∥∥2 ≤ Lw(θ̄) ≤ Lw(0) =

n∑
i=1

wiy
2
i ≤ 1.

Lemma C.2. For any
∑n

i=1 wi = 1, wi ≥ 0, the unconstrained minimizer of (1), θ̄, satisfies∥∥θ̄∥∥
2
≤

√
d

λ .

Proof. We first find the closed form for θ̄. θ̄ is simply the unique solution to the unconstrained
minimization problem

argmin
θ∈Rd

n∑
i=1

wi

(
yi − θ⊤xi

)2
+ λ∥θ∥22.

Therefore,

θ̄ = argmin
θ∈Rd

n∑
i=1

wi

(
yi − θ⊤xi

)2
+ λ∥θ∥22.

Taking the first order-condition, we note that we must have

−2

n∑
i=1

wixi

(
yi − x⊤

i θ̄
)
+ 2λθ = 0.

This can be rewritten as

2

(
n∑

i=1

wixix
⊤
i + λI

)
θ̄ = 2

n∑
i=1

wixiyi.

Because λ > 0 and
∑n

i=1 wixix
⊤
i is positive semi-definite,

∑n
i=1 wixix

⊤
i + λI is invertible, and

we obtain the following closed-form expression for θ̄:

θ̄ =

(
n∑

i=1

wixix
⊤
i + λI

)−1 n∑
i=1

wixiyi.

Taking the ℓ2-norm of both sides, we obtain, letting λmin(M), λmax(M) respectively denote the
lowest and highest eigenvalues of any given matrix M :

∥∥θ̄∥∥
2
≤ λmax

(λI + n∑
i=1

wixix
⊤
i

)−1
∥∥∥∥∥

n∑
i=1

wiyixi

∥∥∥∥∥
2

(2)

≤ λmax

(λI + n∑
i=1

wixix
⊤
i

)−1
 ·

√
d (3)

≤ 1

λmin

(
λI +

∑n
i=1 wixix⊤

i

) · √d (4)

≤
√
d

λ
, (5)

where the second inequality follows from ∥xi∥2 ≤
√
d

Under additional Assumption 2.2, note that
∥∥θ̄∥∥ ≤

∥∥θ̄0∥∥: indeed, if not, θ̄0 is a better solution
to the Ridge problem with parameter λ, noting that it has both i) lower—and in fact optimal—
unregularized loss and ii) lower ℓ2-penalization. Then, we have ∥θ̄∥ ≤ B. In the rest of the proof,
we let B(λ) ≜ min

(
1√
λ
,
√
d

λ

)
absent assumptions, and B(λ) ≜ B under Assumption 2.2. Now, in

both cases, we have
∥∥θ̄∥∥ ≤ B(λ).

11



Under review as a workshop paper at ICLR 2024

Sensitivity analysis of θ̄ through strong convexity and bounded gradients We start with the
following lemma that will help us bound the gradient different over two minimization problem: one
over loss function G(θ) and one over modified loss function G(θ) + g(θ), corresponding to the
losses on neighboring databases X ′ and X . The lemma is a slight modification from Lemma 7
of Chaudhuri et al. (2011) that works with the gradient of g(θ) evaluated at a specific well-chosen
point, instead of the maximum norm for the gradient of g(θ) over Rd

Lemma C.3. Let G(θ) and g(θ) be two vector valued, continuous, differentiable functions with G(θ)
and G(θ)+g(θ) both γ-strongly convex. Let θ1 = argminθ G(θ)+g(θ), θ2 = argminθ G(θ), then

∥θ1 − θ2∥2 ≤ 1

γ
∥∇g(θ1)∥2.

Proof. Note that θ1 and θ2 must satisfy the first order conditions, i.e.

∇G(θ2) = 0 = ∇G(θ1) +∇g(θ1). (6)

Further, by strong convexity of G with parameter γ, we have

γ∥θ1 − θ2∥2 ≤ (∇G(θ2)−∇G(θ1))
⊤
(θ2 − θ1)

= ∇g(θ1)
⊤(θ2 − θ1)

≤ ∥∇g(θ1)∥ · ∥θ1 − θ2∥,
where line 2 follows from Equation (6) and line 3 follows from Cauchy-Schwarz.

This allows us to bound the sensitivity with respect to agent i of the non-private Ridge regression
minimizer θ̄ as a function of wi. Note that we define the ℓ2 sensitivity of θ̄ with respect to agent i as

∆iθ̄ = max
D,D′ i-neighboring

∥θ̄(D)− θ̄(D′)∥2,

where θ̄(D) = argminθ
∑n

i=1 wi(yi − θ⊤xi)
2 + λ∥θ∥22. The sensitivity bound is then given by:

Theorem C.4. Let θ̄ = argminθ∈Rd

∑n
i=1 wi

(
yi − θ⊤xi

)2
+ λ∥θ∥22. θ̄ has ℓ2-sensitivity (∆θ)i

with respect to agent i that satisfies ∆iθ̄ ≤ 2
√
dwi

λ

(√
dB(λ) + 1

)
.

Proof. Consider two neighbouring databases X = ((x1, y1), . . . , (xn, yn)) and X =
((x1, y1), . . . , (x

′
i, y

′
i), . . . , (xn, yn)) that only differ in the data of agent i. Let G(θ) + g(θ) =∑n

j=1 wj

(
yj − θ⊤xj

)2
+ λ∥θ∥22, and g(θ) = wi

(
yi − θ⊤xi

)2 − wi

(
y′i − θ⊤x′

i

)2
.

First, we note that
G(θ) + g(θ) =

∑
j

wj

(
yj − θ⊤xj

)2
+ λ∥θ∥22

is the Ridge loss on database D, while

G(θ) =
∑
j

wj

(
yj − θ⊤xj

)2
+ λ∥θ∥22 − g(θ)

=
∑
j

wj

(
yj − θ⊤xj

)2 − wi

(
yi − θ⊤xi

)2
+ wi

(
y′i − θ⊤x′

i

)2
+ λ∥θ∥22

=
∑
j ̸=i

wj

(
yj − θ⊤xj

)2
+ wi

(
y′i − θ⊤x′

i

)2
+ λ∥θ∥22.

is the loss on database D′. Further, both objectives are 2λ-strongly convex due to ℓ2-
norm penalty term. Now, we have that ∇g(θ) = 2wi

(
(θ⊤xi − yi)xi − (θ⊤x′

i − y′i)x
′
i

)
=

2wi

(
θ⊤xixi − θ⊤x′

ix
′
i − yixi + y′ix

′
i

)
. Since |y| ≤ 1 per our model, we have

∥∇g(θ)∥2 ≤ 2wi(|θ⊤x′
i|∥x′

i∥+ |θ⊤xi|∥xi∥+ 2
√
d).

By the preliminaries section of this proof, we have that θ̄(D), the minimizer of G(θ) + g(θ), has
norm at most B(λ). On top of this, per our model, we have ∥x∥ ≤

√
d (since x ∈ [0, 1]d). Therefore,

|θ̄(D)⊤xi|, |θ̄(D′)⊤x′
i| ≤

√
dB(λ) by Cauchy–Schwarz, and we have:

12
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∥∥∇g(θ̄)
∥∥
2
≤ 2wi

(
2dB(λ) + 2

√
d
)
. (7)

From lemma C.3, we have that

∆iθ̄ ≤ 1

2λ

∥∥∇g(θ̄)
∥∥
2
.

which becomes ∆iθ̄ ≤ 2wi

√
d

λ

(√
dB(λ) + 1

)
.

Implications for privacy
Lemma C.5. Algorithms 1 is εi-differentially private for agent i for all i with

εi =
2wiη

√
d

λ
(
√
dB(λ) + 1).

Proof. Let D,D′ be two datasets differing only in agent i’s data. Let us call out mechanism
M . Let L(θ,D) be the Ridge regression loss on database D evaluated at θ, and let θ̄(D) =
argminθ L(θ,D). For any given outcome o, we have that

P [M(D) = o]

P [M(D′) = o]
=

P
[
θ̄(D) + Z = o

]
P
[
θ̄(D′) + Z = o

] = P
[
Z = o− θ̄(D)

]
P
[
Z = o− θ̄(D′)

] .
Noting that the probability density function is proportional to f(z) ∝ exp (−η∥z∥2), this can be
written as

P [M(D) = o]

P [M(D′) = o]
= exp

(
−η
∥∥o− θ̄(D)

∥∥+ η
∥∥o− θ̄(D′)

∥∥
2

)
≤ exp

(
η
∥∥θ̄(D′)− θ̄(D)

∥∥
2

)
≤ exp

(
η ·∆iθ̄

)
.

where the second-to-last step comes from the triangle inequality and the last step comes from the
definition of ℓ2-sensitivity with respect to agent i.

We can now conclude the proof. Picking wi =
εi∑n

j=1 εj
and η = λ

2
√
d(

√
dB(λ)+1)

∑n
j=1 εj , we get

the result. Indeed:

• The weights are positive and immediately satisfy,
∑

i wi = 1, as required per our algo-
rithm.

• The level of privacy obtained by agent i is

2wiη

λ

√
d(
√
dB(λ)+1) =

2

λ

εi∑n
j=1 εj

· λ

2
√
d(
√
dB(λ) + 1)

 n∑
j=1

εj

·
√
d(
√
dB(λ)+1) = εi.

C.2 PROOF OF THEOREM 2.5

We start by deriving a closed-form expression for θ̄. Note that for Algorithm 1, θ̄ is simply the
unique solution to the unconstrained minimization problem

argmin
θ∈Rd

n∑
i=1

wi

(
yi − θ⊤xi

)2
+ λ∥θ∥22.

Therefore,

θ̄ = argmin
θ∈Rd

n∑
i=1

wi

(
yi − θ⊤xi

)2
+ λ∥θ∥22.

13
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Taking the first order-condition, we note that we must have

−2

n∑
i=1

wixi

(
yi − x⊤

i θ̄
)
+ 2λθ = 0.

This can be rewritten as

2

(
n∑

i=1

wixix
⊤
i + λI

)
θ̄ = 2

n∑
i=1

wixiyi.

Because λ > 0 and
∑n

i=1 wixix
⊤
i is positive semi-definite,

∑n
i=1 wixix

⊤
i + λI is invertible, and

we obtain the following closed-form expression for θ̄:

θ̄ =

(
n∑

i=1

wixix
⊤
i + λI

)−1 n∑
i=1

wixiyi.

We now rewrite this closed-form expression as a function of θ∗, leveraging the fact that yi = x⊤
i θ

∗+
Zi for Zi ∼ N(0, σ2) for all observations i ∈ [n]. This yields:

θ̄ =

(
λI +

n∑
i=1

wixix
⊤
i

)−1 n∑
i=1

wixiyi

=

(
λI +

n∑
i=1

wixix
⊤
i

)−1 n∑
i=1

wixi(x
⊤
i θ

∗ + Zi)

=

(
λI +

n∑
i=1

wixix
⊤
i

)−1( n∑
i=1

wixix
⊤
i θ

∗ +

n∑
i=1

wixiZi

)

=

(
λI +

n∑
i=1

wixix
⊤
i

)−1((
λI +

n∑
i=1

wixix
⊤
i

)
θ∗ +

n∑
i=1

wixiZi − λθ∗

)

= θ∗ +

(
λI +

n∑
i=1

wixix
⊤
i

)−1( n∑
i=1

wixiZi − λθ∗

)
.

In turn, we have that the distance between θ∗ and θ̂ satisfies, where Z is the random variable added
for privacy as per Algorithms 1:∥∥∥θ̂ − θ∗

∥∥∥ =

∥∥∥∥∥∥
(
λI +

n∑
i=1

wixix
⊤
i

)−1( n∑
i=1

wixiZi − λθ∗

)
+ Z

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
(
λI +

n∑
i=1

wixix
⊤
i

)−1( n∑
i=1

wixiZi − λθ∗

)∥∥∥∥∥∥+ ∥Z∥

≤ 1

λ+ λmin

(∑n
i=1 wixix⊤

i

) ∥∥∥∥∥
(

n∑
i=1

wixiZi − λθ∗

)∥∥∥∥∥+ ∥Z∥

≤ 1

1 +
λmin(

∑n
i=1 wixix⊤

i )
λ

· ∥θ∗∥+ 1

λ

∥∥∥∥∥
n∑

i=1

wixiZi

∥∥∥∥∥+ ∥Z∥ .

To conclude the proof, we write concentration inequalities on ∥
∑n

i=1 wixiZi∥ and on ∥Z∥:

• For Z: we know per Remark .1 that ∥Z∥2 follows a gamma distribution with parameters
d and η; therefore, it has mean d

η and variance d
η2 . By Chebyshev, we obtain that with

probability at most δ/2, ∥Z∥ ≥ d
η +

√
2
δ ·

√
d
η
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• For ∥
∑n

i=1 wixiZi∥: first note that S =
∑n

i=1 wixiZi is a multivariate Gaussian random
variable. It has mean 0 since the Zi’s have mean 0, and covariance

Σ =

n∑
i=1

∑
j

wiwjCov(Zi, Zj)xix
⊤
j = σ2

n∑
i=1

w2
i xix

⊤
i ,

where the equality comes from Cov(Zi, Zi) = σ2 and Cov(Zi, Zj) = 0 for i ̸= j by
independence. Note that then since S(k) has mean 0 for all k ∈ [d],

E
[
∥S∥2

]
=

d∑
k=1

E
[
S(k)2

]
=

d∑
k=1

Cov(S(k), S(k)) =

d∑
k=1

Σkk = Tr(Σ).

Now, by Markov’s inequality, we have that P
[
∥S∥2 ≥ 2Tr(Σ)

δ

]
≤ δ/2, or equivalently

P

[
∥S∥ ≥

√
2Tr(Σ)

δ

]
≤ δ/2. To conclude the proof, we simply need to compute the trace

of covariance matrix Σ. We have that

Tr(Σ) = σ2
n∑

i=1

w2
i Tr(xix

⊤
i ) = σ2

n∑
i=1

w2
i

d∑
k=1

x2
ik = σ2

n∑
i=1

w2
i ∥xi∥2 ≤ dσ2

n∑
i=1

w2
i ,

using that ∥x∥ ≤
√
d. This directly implies that

P

[
∥S∥ ≥

√
2dσ2∥w⃗∥2

δ

]
≤ P

[
∥S∥ ≥

√
2Tr(Σ)

δ

]
≤ δ/2.

Therefore, we have that 1
λ∥
∑n

i=1 wixiZi∥ ≥ σ
λ

√
2d
δ ∥w⃗∥ with probability at most δ/2.

The result follows by union bound over the randomness of both Z and
∑n

i=1 wixiZi.

D ADDITIONAL EXPERIMENTS

D.1 COMPARISON TO NON-PERSONALIZED DIFFERENTIAL PRIVACY

In Tables 3 and 4 (respectively on our synthetic and real dataset) where we change the privacy level
εc for the conservative users. We observe that using personalized privacy still performs significantly
better, but the performance improvements diminish as εc increases. This is not surprising: as εc
increases, there is less and less variability across users’ privacy levels, leading to less of a need for
personalized privacy. Non-personalized privacy estimators start working better as the amount of
noise they must add, which scales as a function of εc, starts largely decreasing.

In Tables 5 and 6, we change the privacy level εm for the pragmatist (or medium privacy) users. We
observe once again that using personalized privacy performs significantly better. The performance
improvements are consistent across the board, noting that there is still a need for personalized privacy
as we still have significant variability across user privacy preferences, with 34 percent of users
requiring a stringent privacy level of 0.01 and 23 percent a privacy level of 1.

In Tables 7 and 8, we change the fraction of conservative users fc. We note that even then,
our personalized privacy framework still yields consistent and significant improvements over non-
personalized privacy. This is because the existence of users with εc = 0.01 forces the non-
personalized privacy estimate to still add noise that scales with this most stringent privacy require-
ment.

Finally, in Tables 9 and 10, we fix a single value of the regularization parameter λ and of the dis-
tribution of privacy requirements of the users and show how our results evolve as the number of
samples we feed our algorithm increases. Unsurprisingly, the more samples we have access to, the
better the performance of both our personalized privacy approach as well as the non-personalized
baseline. Our approach continues to see significant and consistent improvements compared to the
non-personalized baseline.
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Regularization
parameter

Lambda (λ)

Unregularized
test loss

(PDP-OP)

Unregularized
test loss

(non-personalized)

Regularized
test loss

(PDP-OP)

Regularized
test loss

(non-personalized)
1.00 8.54× 102 4.60× 105 3.32× 103 1.77× 106

3.00 3.88× 101 2.08× 104 3.82× 102 2.03× 105

5.00 9.78 5.20× 103 1.50× 102 8.08× 104

7.00 3.81 2.06× 103 8.36× 101 4.46× 104

10.00 1.49 8.18× 102 4.58× 101 2.45× 104

15.00 5.30× 10−1 2.75× 102 2.34× 101 1.26× 104

20.00 2.54× 10−1 1.29× 102 1.49× 101 8.01× 103

25.00 1.44× 10−1 7.45× 101 1.07× 101 5.63× 103

50.00 2.28× 10−2 1.11× 101 3.06 1.64× 103

75.00 9.35× 10−3 3.78 1.56 8.29× 102

100.00 5.82× 10−3 1.80 1.01 5.36× 102

125.00 4.39× 10−3 1.06 7.37× 10−1 3.91× 102

150.00 3.68× 10−3 6.79× 10−1 5.73× 10−1 3.05× 102

175.00 3.33× 10−3 4.76× 10−1 4.67× 10−1 2.49× 102

200.00 3.09× 10−3 3.64× 10−1 3.97× 10−1 2.10× 102

Table 1: Loss of PDP-OP compared to standard DP on the synthetic dataset with d = 30, n = 100,
keeping εc = 0.01, εm = 0.2, εl = 1.0, fc = 0.34, fm = 0.43, fl = 0.23.

Regularization
parameter

Lambda (λ)

Unregularized
test loss

(PDP-OP)

Unregularized
test loss

(non-personalized)

Regularized
test loss

(PDP-OP)

Regularized
test loss

(non-personalized)
0.01 1.19× 105 2.18× 108 1.22× 105 2.31× 108

0.05 1.03× 103 1.89× 106 1.16× 103 2.12× 106

0.10 1.34× 102 2.49× 105 1.70× 102 3.08× 105

0.50 1.30 2.40× 103 3.03 5.52× 103

0.60 8.10× 10−1 1.47× 103 2.02 3.65× 103

0.70 5.29× 10−1 9.26× 102 1.47 2.61× 103

0.80 3.78× 10−1 6.36× 102 1.11 1.98× 103

0.90 2.78× 10−1 4.59× 102 8.79× 10−1 1.54× 103

1.00 2.15× 10−1 3.45× 102 7.12× 10−1 1.24× 103

2.00 6.80× 10−2 5.18× 101 2.26× 10−1 3.19× 102

3.00 5.52× 10−2 1.73× 101 1.39× 10−1 1.52× 102

5.00 5.54× 10−2 4.49 9.65× 10−2 6.25× 101

Table 2: Loss of PDP-OP compared to standard DP on the Medical cost dataset, keeping εc =
0.01, εm = 0.2, εl = 1.0, fc = 0.34, fm = 0.43, fl = 0.23.

Privacy level
of Conservatives

(εc)

Unregularized
test loss

(PDP-OP)

Unregularized
test loss

(non-personalized)

Regularized
test loss

(PDP-OP)

Regularized
test loss

(non-personalized)
0.01 1.44× 10−2 3.38 1.15 1.05× 103

0.05 1.41× 10−2 2.09× 10−1 1.05 6.08× 101

0.10 1.39× 10−2 4.76× 10−2 1.00 1.16× 101

0.20 1.41× 10−2 3.40× 10−2 1.03 7.21
0.30 1.34× 10−2 2.08× 10−2 8.74× 10−1 1.20
0.40 1.32× 10−2 1.65× 10−2 8.29× 10−1 1.84
0.50 1.29× 10−2 1.45× 10−2 7.26× 10−1 1.20

Table 3: Lower loss compared to standard DP on the synthetic dataset, while varying εc (privacy
level of the conservative users), keeping fc = 0.54, fm = 0.37, εm = 0.5 (same parameters as
shown in Jorgensen et al. (2015)) and λ = 100.

D.2 COMPARISON TO JORGENSEN ET AL. (2015)

We provide additional experimental results that further the comparison of our PDP-OP algorithm
with that of Jorgensen et al. (2015).
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Privacy level
of Conservatives

(εc)

Unregularized
test loss

(PDP-OP)

Unregularized
test loss

(non-personalized)

Regularized
test loss

(PDP-OP)

Regularized
test loss

(non-personalized)
0.01 2.27× 10−1 2.76× 102 7.43× 10−1 9.87× 102

0.05 2.28× 10−1 2.00× 101 7.32× 10−1 7.19× 101

0.10 2.12× 10−1 5.05 6.92× 10−1 1.80× 101

0.20 1.97× 10−1 1.28 6.42× 10−1 4.54
0.30 1.83× 10−1 5.84× 10−1 5.75× 10−1 2.06
0.40 1.66× 10−1 3.48× 10−1 5.26× 10−1 1.17
0.50 1.55× 10−1 2.33× 10−1 4.90× 10−1 7.61× 10−1

Table 4: Lower loss compared to standard DP on the Medical cost dataset while varying εc (privacy
level of the conservative users), keeping fc = 0.54, fm = 0.37, εm = 0.5 (same parameters as
shown in Jorgensen et al. (2015)) and λ = 1(analogous to Table 3)

Privacy level
of pragmatists

(εm)

Unregularized
test loss

(PDP-OP)

Unregularized
test loss

(non-personalized)

Regularized
test loss

(PDP-OP)

Regularized
test loss

(non-personalized)
0.05 2.11× 10−2 9.68 3.23 2.95× 103

0.10 1.88× 10−2 5.76 2.55 1.76× 103

0.15 1.89× 10−2 8.46 2.56 2.60× 103

0.20 1.79× 10−2 4.84 2.25 1.49× 103

0.25 1.66× 10−2 3.17 1.83 9.78× 102

0.30 1.57× 10−2 1.48 1.53 4.52× 102

0.35 1.58× 10−2 6.45× 10−1 1.61 1.97× 102

0.40 1.48× 10−2 2.44 1.33 7.56× 102

0.45 1.47× 10−2 3.21 1.25 9.86× 102

0.50 1.44× 10−2 3.38 1.15 1.05× 103

Table 5: Lower loss compared to standard DP on the synthetic dataset, while varying εm (privacy
level of the pragmatists), keeping fc = 0.54, fm = 0.37, εc = 0.01 (same parameters as shown
in Jorgensen et al. (2015)) and λ = 100.

Privacy level
of Conservatives

(εm)

Unregularized
test loss

(PDP-OP)

Unregularized
test loss

(non-personalized)

Regularized
test loss

(PDP-OP)

Regularized
test loss

(non-personalized)
0.05 5.66× 10−1 4.99× 102 1.94 1.75× 103

0.10 5.18× 10−1 4.99× 102 1.76 1.78× 103

0.15 4.50× 10−1 5.02× 102 1.55 1.76× 103

0.20 4.00× 10−1 4.81× 102 1.38 1.71× 103

0.25 3.60× 10−1 4.80× 102 1.22 1.70× 103

0.30 3.27× 10−1 3.94× 102 1.10 1.43× 103

0.35 2.85× 10−1 4.82× 102 9.75× 10−1 1.75× 103

0.40 2.69× 10−1 4.83× 102 9.05× 10−1 1.71× 103

0.45 2.53× 10−1 4.36× 102 8.28× 10−1 1.61× 103

0.50 2.27× 10−1 2.76× 102 7.43× 10−1 9.87× 102

Table 6: Lower loss compared to standard DP on the Medical cost dataset, while varying εm (privacy
level of the pragmatists), keeping fc = 0.54, fm = 0.37, εc = 0.01 (same parameters as shown
in Jorgensen et al. (2015)) and λ = 1. (analogous to Table 5)

Fraction of
Conservative

Users
(fc)

Unregularized
test loss

(PDP-OP)

Unregularized
test loss

(non-personalized)

Regularized
test loss

(PDP-OP)

Regularized
test loss

(non-personalized)

0.1 9.02× 10−3 7.87× 10−1 4.91× 10−1 2.43× 102

0.2 9.41× 10−3 3.80× 10−1 6.51× 10−1 1.14× 102

0.3 1.02× 10−2 4.56 8.76× 10−1 1.41× 103

0.4 1.14× 10−2 3.82 1.27 1.17× 103

0.5 1.30× 10−2 7.00 1.75 2.14× 103

0.6 1.69× 10−2 9.59 2.92 2.90× 103

Table 7: Lower loss compared to standard DP on the synthetic dataset, while varying fc (fraction of
conservative users) for fm = 0.37, fl = 1− fc − fm, εc = 0.01, εm = 0.2, εl = 1.0, λ = 100
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Fraction of
Conservative

Users
(fc)

Unregularized
test loss

(PDP-OP)

Unregularized
test loss

(non-personalized)

Regularized
test loss

(PDP-OP)

Regularized
test loss

(non-personalized)

0.1 1.17× 10−1 4.95× 102 3.47× 10−1 1.77× 103

0.2 1.45× 10−1 4.89× 102 4.46× 10−1 1.74× 103

0.3 1.82× 10−1 5.00× 102 5.78× 10−1 1.79× 103

0.4 2.35× 10−1 4.80× 102 7.71× 10−1 1.73× 103

0.5 3.45× 10−1 4.93× 102 1.16 1.80× 103

0.6 5.61× 10−1 4.19× 102 1.92 1.51× 103

Table 8: Lower loss compared to standard DP on the Medical cost dataset, while varying fc(fraction
of conservative users) fm = 0.37, fl = 1−fc−fm, εc = 0.01, εm = 0.2, εl = 1.0, λ = 1.

Fraction of
training samples

(n)

Unregularized
test loss

(PDP-OP)

Unregularized
test loss

(non-personalized)

Regularized
test loss

(PDP-OP)

Regularized
test loss

(non-personalized)
0.1 4.28× 10−1 1.22× 101 1.32× 102 3.73× 103

0.2 1.41× 10−1 1.15× 102 4.02× 101 3.45× 104

0.3 5.01× 10−2 8.97 1.46× 101 2.89× 103

0.4 4.64× 10−2 2.37 1.27× 101 7.24× 102

0.5 3.49× 10−2 2.14× 101 8.11 6.61× 103

0.6 2.12× 10−2 1.59× 101 5.16 5.06× 103

0.7 2.00× 10−2 7.97 4.66 2.52× 103

0.8 1.64× 10−2 1.03× 101 3.36 2.95× 103

0.9 1.10× 10−2 6.36 2.52 1.93× 103

1.0 1.01× 10−2 1.98 2.16 6.17× 102

Table 9: Lower loss compared to standard DP on the synthetic dataset, while varying the fraction of
the training set samples we use. For example, here n = 0.3 means that we use a 0.3 fraction of the
training set. We fix fc = 0.34, fm = 0.43, fl = 0.23, εc = 0.01, εm = 0.2, εl = 1.0 and λ = 100.

Fraction of
training samples

(n)

Unregularized
test loss

(PDP-OP)

Unregularized
test loss

(non-personalized)

Regularized
test loss

(PDP-OP)

Regularized
test loss

(non-personalized)
0.1 1.83× 101 1.45× 104 6.64× 101 5.21× 104

0.2 4.63 6.62× 103 1.65× 101 2.37× 104

0.3 2.05 5.23× 103 7.29 1.85× 104

0.4 1.21 1.60× 103 4.28 5.77× 103

0.5 7.85× 10−1 1.96× 103 2.75 6.98× 103

0.6 5.40× 10−1 1.36× 103 1.84 4.91× 103

0.7 4.02× 10−1 9.64× 102 1.38 3.47× 103

0.8 3.16× 10−1 7.26× 102 1.06 2.60× 103

0.9 2.53× 10−1 6.15× 102 8.56× 10−1 2.24× 103

1.0 2.14× 10−1 3.82× 102 6.99× 10−1 1.36× 103

Table 10: Lower loss compared to standard DP on the Medical cost dataset, while varying the
number of samples we use. For example, here n = 0.3 means that we use a 0.3 fraction of the
training set. We fix fc = 0.34, fm = 0.43, fl = 0.23, εc = 0.01, εm = 0.2, εl = 1.0 and λ = 1.

Improvements in loss. In Figure 2 and Figure 3 we vary the privacy level εc for the conservative
users, and observe that our algorithm always leads to a lower loss compared to Jorgensen et al.
(2015). We further note that the performance improvements diminish as εc increases, as there is less
variability in the users’ privacy levels and we get closer to the non-personalized case.

Figures 4 and 5 show similar insights when varying the parameter εm, that controls the privacy level
of medium-privacy (or pragmatic) users.

In Figures 6 and 7 we vary the fraction of users with strong privacy requirements. We remark that
our relative performance improvement compared to Jorgensen et al. (2015) becomes bigger as a
larger fraction of users has high privacy requirements, highlighting the benefit of our framework in
stringent privacy regimes.

Finally, Figures 8 and 9 vary the fraction of the training set used. We note that our loss improve-
ments compared to Jorgensen et al. (2015) become less noticeable as n increases. This is perhaps
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Regularization
parameter

Lambda (λ)

Unregularized
test loss

(PDP-OP)

Unregularized
test loss

(Jorgensen max)

Unregularized
test loss

(Jorgensen mean)

Unregularized
non-private

test loss

Regularized
test loss

(PDP-OP)

Regularized
test loss

(Jorgensen max)

Regularized
test loss

(Jorgensen mean)

Regularized
non-private

test loss
1.00 8.54× 102 1.09× 103 1.89× 103 5.73× 10−32 3.32× 103 4.16× 103 7.55× 103 2.01× 10−3

3.00 3.88× 101 4.82× 101 8.64× 101 5.73× 10−32 3.82× 102 4.79× 102 8.64× 102 2.11× 10−3

5.00 9.78 1.21× 101 2.15× 101 5.73× 10−32 1.50× 102 1.89× 102 3.40× 102 2.17× 10−3

7.00 3.81 4.81 8.85 5.73× 10−32 8.36× 101 1.05× 102 1.89× 102 2.20× 10−3

10.00 1.49 1.88 3.44 5.73× 10−32 4.58× 101 5.75× 101 1.03× 102 2.24× 10−3

15.00 5.30× 10−1 6.61× 10−1 1.16 5.73× 10−32 2.34× 101 2.97× 101 5.33× 101 2.28× 10−3

20.00 2.54× 10−1 3.12× 10−1 5.64× 10−1 5.73× 10−32 1.49× 101 1.87× 101 3.39× 101 2.31× 10−3

25.00 1.44× 10−1 1.81× 10−2 3.27× 10−1 5.73× 10−32 1.07× 101 1.31× 101 2.39× 101 2.33× 10−3

50.00 2.28× 10−2 2.82× 10−2 4.92× 10−2 5.73× 10−32 3.06 3.83 6.95 2.37× 10−3

75.00 9.35× 10−3 1.12× 10−2 1.81× 10−2 5.73× 10−32 1.56 1.95 3.56 2.39× 10−3

100.00 5.82× 10−3 6.61× 10−3 1.01× 10−2 5.73× 10−32 1.01 1.26 2.28 2.40× 10−3

200.00 3.09× 10−3 3.25× 10−3 3.92× 10−3 5.73× 10−32 3.97× 10−1 4.97× 10−1 9.02× 10−1 2.42× 10−3

300.00 2.68× 10−3 2.76× 10−3 3.04× 10−3 5.73× 10−32 2.42× 10−1 3.02× 10−1 5.46× 10−1 2.42× 10−3

400.00 2.56× 10−3 2.60× 10−3 2.76× 10−3 5.73× 10−32 1.75× 10−1 2.16× 10−1 3.92× 10−1 2.42× 10−3

500.00 2.51× 10−3 2.54× 10−3 2.62× 10−3 5.73× 10−32 1.36× 10−1 1.70× 10−1 3.06× 10−1 2.43× 10−3

Table 11: Lower loss compared to Jorgensen et al. (2015) on the synthetic dataset with d = 30, n =
100, keeping εc = 0.01, εm = 0.2, εl = 1.0, fc = 0.34, fm = 0.43, fl = 0.23.

Regularization
parameter

Lambda (λ)

Unregularized
test loss

(PDP-OP)

Unregularized
test loss

(Jorgensen max)

Unregularized
test loss

(Jorgensen mean)

Unregularized
non-private

test loss

Regularized
test loss

(PDP-OP)

Regularized
test loss

(Jorgensen max)

Regularized
test loss

(Jorgensen mean)

Regularized
non-private

test loss
0.01 1.19× 105 1.50× 105 2.87× 105 9.43× 10−3 1.22× 105 1.52× 105 2.93× 105 1.08× 10−2

0.05 1.03× 103 1.26× 103 2.43× 103 9.43× 10−3 1.16× 103 1.42× 103 2.75× 103 1.51× 10−2

0.10 1.34× 102 1.66× 102 3.14× 102 9.43× 10−3 1.70× 102 2.11× 102 4.00× 102 1.90× 10−2

0.50 1.30 1.67 3.10 9.43× 10−3 3.03 3.80 7.19 3.46× 10−2

0.60 8.10× 10−1 9.89× 10−1 1.85 9.43× 10−3 2.02 2.50 4.76 3.67× 10−2

0.70 5.29× 10−1 6.55× 10−1 1.23 9.43× 10−3 1.47 1.80 3.43 3.86× 10−2

0.80 3.78× 10−1 4.65× 10−1 8.71× 10−1 9.43× 10−3 1.11 1.39 2.63 4.02× 10−2

0.90 2.78× 10−1 3.42× 10−1 6.30× 10−1 9.43× 10−3 8.79× 10−1 1.08 2.03 4.17× 10−2

1.00 2.15× 10−1 2.61× 10−1 4.76× 10−1 9.43× 10−3 7.12× 10−1 8.70× 10−1 1.62 4.30× 10−2

2.00 6.80× 10−2 7.53× 10−2 1.06× 10−1 9.43× 10−3 2.26× 10−1 2.65× 10−1 4.59× 10−1 5.19× 10−2

3.00 5.52× 10−2 5.72× 10−2 6.87× 10−2 9.43× 10−3 1.39× 10−1 1.59× 10−1 2.52× 10−1 5.69× 10−2

5.00 5.54× 10−2 5.61× 10−2 5.89× 10−2 9.43× 10−3 9.65× 10−2 1.05× 10−1 1.43× 10−1 6.27× 10−2

Table 12: Lower loss compared to Jorgensen et al. (2015) on the MedicalCost dataset, keeping
εc = 0.01, εm = 0.2, εl = 1.0, fc = 0.34, fm = 0.43, fl = 0.23.
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(a) Unregularized Loss (λ = 50)
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(b) Regularized Loss (λ = 50)

Figure 2: Lower loss compared to Jorgensen et al. (2015) on the synthetic dataset while varying εc
(privacy level of the conservative users) , keeping εm = 0.5, εl = 1.0, fc = 0.54, fm = 0.37, fl =
0.09.

unsurprising, as the more data points we use, the lesser the impact of adding noise for privacy is,
and there is much less leeway for improvement across different techniques for privacy.

Improvements in variability. We start with Figures 12 and 13 where we vary the privacy level
εc for the conservative users. Then, on Figures 14 and 15, we focus on the case of varying εm. On
Figures 16 and 17, we vary the fraction of users that have high privacy requirements. Finally, on
Figures 18 and 19, we vary the fraction of the training set used. On all figures, we note that the
standard deviation of the loss of our PDP-OP algorithm is lower than Jorgensen et al. (2015).
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(a) Unregularized Loss (λ = 1)
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(b) Regularized Loss (λ = 1)

Figure 3: Lower loss compared to Jorgensen et al. (2015) on the Medical costs dataset while varying
εc (privacy level of the conservative users), keeping εm = 0.5, εl = 1.0, fc = 0.54, fm = 0.37, fl =
0.09.
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(a) Unregularized Loss (λ = 50)
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(b) Regularized Loss (λ = 50)

Figure 4: Lower loss compared to Jorgensen et al. (2015) on the synthetic dataset while varying εm
(privacy level of pragmatists), keeping εc = 0.01, εl = 1.0, fc = 0.54, fm = 0.37, fl = 0.09.

Regularization
parameter

Lambda (λ)

Unregularized
test loss

(PDP-OP)

Unregularized
test loss

(Jorgensen max)

Unregularized
test loss

(Jorgensen mean)

Regularized
test loss

(PDP-OP)

Regularized
test loss

(Jorgensen max)

Regularized
test loss

(Jorgensen mean)
1.00 9.69× 102 1.34× 103 2.19× 103 1.53× 103 2.01× 103 3.47× 103

3.00 4.33× 101 5.63× 101 9.98× 101 1.45× 102 1.99× 102 3.39× 102

5.00 1.13× 101 1.41× 101 2.52× 101 5.65× 101 7.69× 101 1.30× 102

7.00 4.43 5.50 1.02× 101 3.15× 101 4.20× 101 7.14× 101

10.00 1.74 2.18 4.09 1.72× 101 2.32× 101 3.98× 101

15.00 6.14× 10−1 7.69× 10−1 1.30 8.73 1.20× 101 2.03× 101

20.00 2.88× 10−1 3.66× 10−1 6.44× 10−1 5.52 7.43 1.29× 101

25.00 1.59× 10−1 2.15× 10−1 3.79× 10−1 3.91 5.22 9.15
50.00 2.37× 10−2 3.10× 10−2 5.50× 10−2 1.13 1.53 2.62
75.00 8.54× 10−3 1.11× 10−2 1.88× 10−2 5.73× 10−1 7.85× 10−1 1.34
100.00 4.70× 10−3 5.64× 10−3 9.85× 10−3 3.72× 10−1 5.08× 10−1 8.75× 10−1

200.00 1.33× 10−3 1.56× 10−3 2.40× 10−3 1.45× 10−1 1.99× 10−1 3.41× 10−1

300.00 7.59× 10−4 8.62× 10−4 1.26× 10−3 8.77× 10−2 1.21× 10−1 2.07× 10−1

400.00 5.41× 10−4 6.14× 10−4 8.72× 10−4 6.38× 10−2 8.48× 10−2 1.48× 10−1

500.00 4.23× 10−4 4.79× 10−4 6.45× 10−4 4.92× 10−2 6.74× 10−2 1.16× 10−1

Table 13: Improvements in variability of the test loss: Standard deviation of our algorithm is always
lower, results on synthetic dataset with d = 30, n = 100), while varying the regularization param-
eter λ, keeping εc = 0.01, εm = 0.2, εl = 1.0, fc = 0.34, fm = 0.43.
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(b) Regularized Loss (λ = 1)

Figure 5: Lower loss compared to Jorgensen et al. (2015) for the Medical costs dataset while varying
εm (privacy level of pragmatists), keeping εc = 0.01, εl = 1.0, fc = 0.54, fm = 0.37, fl = 0.09.
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(a) Unregularized Loss (λ = 100)
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(b) Regularized Loss (λ = 100)

Figure 6: Lower loss compared to Jorgensen et al. (2015) on the synthetic dataset while varying
fc(fraction of conservative users), keeping εc = 0.01, εm = 0.2, εl = 1.0, fm = 0.37, fl = 1 −
fm − fc = 0.63− fc.
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(a) Unregularized Loss (λ = 0.5)
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(b) Regularized Loss (λ = 0.5)

Figure 7: Lower loss compared to Jorgensen et al. (2015) on the Medical costs dataset while fc
(fraction of conservative users), keeping εc = 0.01, εm = 0.2, εl = 1.0, fm = 0.37, fl = 1− fm −
fc = 0.63− fc.
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(a) Unregularized Loss (λ = 100)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Impact of n

0

5

10

15

20

25

30

35

M
ea

n 
un

we
ig

ht
ed

 te
st

 lo
ss

Weighted (ours)
Jorgensen max threshold
Jorgensen mean threshold
Non-private solution

(b) Regularized Loss (λ = 100))

Figure 8: Lower loss compared to Jorgensen et al. (2015) on the synthetic dataset while varying the
parameter n (the fraction of training samples used), keeping εc = 0.01, εm = 0.2, εc = 1.0, fc =
0.34, fm = 0.43, fl = 0.23.
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(a) Unregularized Loss (λ = 1)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Impact of n

0

2

4

6

8

M
ea

n 
un

we
ig

ht
ed

 te
st

 lo
ss

Weighted (ours)
Jorgensen max threshold
Jorgensen mean threshold
Non-private solution

(b) Regularized Loss (λ = 1))

Figure 9: Lower loss compared to Jorgensen et al. (2015) on the Medical costs dataset while varying
n (the fraction of training samples used), keeping εc = 0.01, εm = 0.2, εc = 1.0, fc = 0.34, fm =
0.43.
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(a) Unregularized Loss (d = 30, n = 100)
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(b) Regularized Loss (d = 30, n = 100)

Figure 10: Lower standard deviation compared to Jorgensen et al. (2015) on the synthetic dataset,
while varying the regularization parameter λ, keeping εc = 0.01, εm = 0.2, εl = 1.0, fc =
0.34, fm = 0.43, fl = 0.23.
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Figure 11: Lower standard deviation compared to Jorgensen et al. (2015) on the Medical cost
dataset, while varying the regularization parameter λ, keeping εc = 0.01, εm = 0.2, εl = 1.0, fc =
0.34, fm = 0.43, fl = 0.23.
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(a) Unregularized Loss (λ = 50)
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(b) Regularized Loss (λ = 50)

Figure 12: Lower standard deviation compared to Jorgensen et al. (2015) on the synthetic dataset,
while varying the εc (the privacy level of conservative users), keeping εm = 0.5, εl = 1.0, fc =
0.54, fm = 0.37, fl = 0.09.
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(a) Unregularized Loss (λ = 1)
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(b) Regularized Loss (λ = 1)

Figure 13: Lower standard deviation compared to Jorgensen et al. (2015) on the Medical cost dataset,
while varying the εc (the privacy level of conservative users), keeping εm = 0.5, εl = 1.0, fc =
0.54, fm = 0.37, fl = 0.09.
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Figure 14: Lower standard deviation compared to Jorgensen et al. (2015) on the synthetic dataset,
while varying εm (privacy level privacy level of the pragmatists), keeping εc = 0.01, εl = 1.0, fc =
0.54, fm = 0.37, fl = 0.09.
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Figure 15: Lower standard deviation compared to Jorgensen et al. (2015) on the Medical cost dataset,
while varying εm (privacy level privacy level of the pragmatists), keeping εc = 0.01, εl = 1.0, fc =
0.54, fm = 0.37, fl = 0.09.
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(a) Unregularized Loss (λ = 100)
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(b) Regularized Loss (λ = 100)

Figure 16: Lower standard deviation compared to Jorgensen et al. (2015) on the synthetic dataset,
while varying fc (the fraction of conservative users), keeping εc = 0.01, εm = 0.2, εl = 1.0, fm =
0.37, fl = 1− fc − fm = 0.63− fc.

24



Under review as a workshop paper at ICLR 2024

0.1 0.2 0.3 0.4 0.5 0.6
Impact of fc

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

St
d 

de
v 

un
we

ig
ht

ed
 te

st
 lo

ss

Weighted (ours)
Jorgensen max threshold
Jorgensen mean threshold

(a) Unregularized Loss (λ = 1)

0.1 0.2 0.3 0.4 0.5 0.6
Impact of fc

0.5

1.0

1.5

2.0

2.5

3.0

3.5

St
d 

de
v 

un
we

ig
ht

ed
 te

st
 lo

ss

Weighted (ours)
Jorgensen max threshold
Jorgensen mean threshold

(b) Regularized Loss (λ = 1)

Figure 17: Lower standard deviation compared to Jorgensen et al. (2015) on the Medical cost dataset,
while varying fc (the fraction of conservative users), keeping εc = 0.01, εm = 0.2, εl = 1.0, fm =
0.37, fl = 1− fc − fm = 0.63− fc.
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(b) Regularized Loss (λ = 100)

Figure 18: Lower standard deviation compared to Jorgensen et al. (2015) on the synthetic dataset,
while varying the parameter n (the fraction of training samples used), keeping εc = 0.01, εm =
0.2, εl = 1.0, fc = 0.34, fm = 0.43, fl = 0.23.
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(a) Unregularized Loss (λ = 1)
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(b) Regularized Loss (λ = 1)

Figure 19: Lower standard deviation compared to Jorgensen et al. (2015) on the Medical cost dataset,
while varying the parameter n (the fraction of training samples used), keeping εc = 0.01, εm =
0.2, εl = 1.0, fc = 0.34, fm = 0.43, fl = 0.23.
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Regularization
parameter

Lambda (λ)

Unregularized
test loss

(PDP-OP)

Unregularized
test loss

(Jorgensen max)

Unregularized
test loss

(Jorgensen mean)

Regularized
test loss

(PDP-OP)

Regularized
test loss

(Jorgensen max)

Regularized
test loss

(Jorgensen mean)
0.01 1.25× 105 1.58× 105 3.12× 105 1.25× 105 1.56× 105 3.01× 105

0.05 1.08× 103 1.32× 103 2.60× 103 1.13× 103 1.37× 103 2.76× 103

0.10 1.38× 102 1.75× 102 3.28× 102 1.54× 102 1.96× 102 3.75× 102

0.50 1.35 1.78 3.26 2.10 2.73 4.99
0.60 8.33× 10−1 1.02 1.96 1.36 1.63 3.21
0.70 5.31× 10−1 6.89× 10−1 1.26 9.54× 10−1 1.16 2.25
0.80 3.64× 10−1 4.66× 10−1 8.96× 10−1 6.93× 10−1 9.05× 10−1 1.73
0.90 2.67× 10−1 3.43× 10−1 6.46× 10−1 5.39× 10−1 6.82× 10−1 1.28
1.00 1.98× 10−1 2.45× 10−1 4.71× 10−1 4.35× 10−1 5.27× 10−1 1.00
2.00 3.96× 10−2 5.00× 10−2 8.04× 10−2 1.06× 10−1 1.28× 10−1 2.43× 10−1

3.00 2.11× 10−2 2.33× 10−2 3.84× 10−2 4.80× 10−2 6.15× 10−2 1.17× 10−1

5.00 1.11× 10−2 1.27× 10−2 1.78× 10−2 2.02× 10−2 2.50× 10−2 4.77× 10−2

Table 14: Improvements in variability of the test loss: Standard deviation of our algorithm is always
lower, results on Medical cost dataset, while varying the regularization parameter λ, keeping εc =
0.01, εm = 0.2, εl = 1.0, fc = 0.34, fm = 0.43.
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