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ABSTRACT

Recognizing out-of-distribution (OOD) samples is essential for deploying robust
machine learning systems in the open-world environments. Conventional OOD
detection approaches rely on feature representations from the final layer of neu-
ron networks, often neglecting the rich information encapsulated in shallow lay-
ers. Leveraging the strengths of transformer-based architectures, we introduce an
attention-based fusion module, which dynamically assigns importance weights to
representations learned by each Transformer layer and detects OOD samples using
the Mahalanobis distance. Compared to existing approaches, our method enables
a lightweight fine-tuning of pre-trained models, and retains all feature representa-
tions that are beneficial to the OOD detection. We also thoroughly study various
parameter-efficient fine-tuning strategies. Our experiments show the benefit of
using shallow features, and demonstrate the influence of different Transformer
layers. We fine-tune pre-trained models in both class-balanced and long-tailed in-
distribution classification tasks, and show that our method achieves state-of-the-art
OOD detection performance averaged across nine OOD datasets. The source code
is provided in the supplementary material.

1 INTRODUCTION

In recent years, deep learning models have made significant progress in various domains (Ramesh
et al., 2021; Jumper et al., 2021). However, a critical issue with these models is their tendency to be
overly confident in their predictions, even when the input deviates greatly from the data distribution
seen during training. This issue underscores the need for effective out-of-distribution (OOD) detec-
tion when training deep neural networks (DNNs). The detection of OODs is crucial to ensure the
safety of the model in many applications such as medical diagnostics (Schlegl et al., 2017), indus-
trial inspection (Bergmann et al., 2019), and autonomous driving (Kitt et al., 2010). For example,
in the field of medical imaging, DNNs may fail to provide an accurate diagnosis when presented
with data that fall outside the training data distribution, such as images from an unknown scanner.
Therefore, it is imperative for a reliable model not only to recognize in-distribution (ID) samples,
but also to flag any OOD input as “unknown”.

Existing OOD detection methods design various scoring functions to assign an input sample a likeli-
hood to be OOD, using 1) predicted probabilities Hendrycks et al. (2019b); Meinke & Hein (2020);
Liu et al. (2020); Fort et al. (2021a); Liu et al. (2023), 2) output logits Wang et al. (2022a); Ammar
et al. (2024), and 3) learned features Kamoi & Kobayashi (2020); Fort et al. (2021a); Ming et al.
(2022) by the model. However, these approaches neglect the rich information in the features learned
by the layers of shallow neural networks. Our motivation stems from the observation that while the
final features of a neural network are nonlinear transformations of shallow features and inherently
retain some information from earlier layers, features extracted from different layers provide diverse
representations of the data. Given that certain features may be particularly effective for distinguish-
ing between ID and OOD samples, it is crucial to comprehensively leverage the information from all
layers to enhance OOD detection performance. While the motivation is appealing, a core challenge
remains: how to effectively utilize shallow layer features for OOD detection?

To address the above issue, we propose a new OOD detection approach by leveraging features from
all layers with an attention-based fusion module. We draw inspiration from the geometric prop-
erties of “neural collapse” (Papyan et al., 2020), which states that the convergence of within-class
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(a) Features from the last layer (b) Our fused features (c) OOD detection (AUROC)

Figure 1: A two-dimensional PCA projection of features from the last layer of the feature extractor
and all Transformer layers fused by our approach, with examples of in-distribution (from CIFAR-
100) and out-of-distribution data (from Texture). The color coding shows the Mahalanobis outlier
score. The left panel shows that using the final learned features leads to overlapping clusters of
ID and OOD embeddings. The shallow-feature fusion (middle panel) is able to distinguish ID and
OOD data from each other well. By properly fusing shallow features, SFM achieves strong OOD
detection performance (right panel).

covariance approaches zero in the terminal phase of training as each activation collapses toward its
respective class mean. Therefore, we propose to measure the total variance of features across dif-
ferent layers of the neural network to describe their importance weights for OOD detection. Layers
with larger total variance have more influence, while the contribution of layers with smaller total
variance is down-weighted. The advantage of this method is that the weights of each layer are
computed adaptively based on the data, without the need for manual parameter tuning. Using the
weighted fused features, we calculate the Mahalanobis distance between the test sample and the
data distribution of each ID class to calculate its OOD score. Figure 1 visualizes two-dimensional
PCA projections of representations from the last layer of the feature extractor and all layers fused by
our approach; we can observe that representations obtained by fusing transformer layers are better
suited to OOD detection than representations from the last layer.

Additionally, we fine-tune the pre-trained visual models, including Vision Transformer (ViT) (Doso-
vitskiy et al., 2020) and CLIP (Radford et al., 2021), based on in-distribution data to achieve better
representation learning. We find that parameter-efficient fine-tuning strategies can outperform full
parameter fine-tuning (Ma et al., 2021; Long et al., 2022; Tian et al., 2022) and are more robust to
hyperparameter choice; specifically, by freezing the pre-trained model and adding a small number
of learnable parameters. Based on this finding, we develop a general fine-tuning framework and
implement all comparison methods within this framework in our experiments. We also conducted
an in-depth analysis of various fine-tuning strategies.

To evaluate our approach, we focus on both class-balanced ID datasets, which are commonly used
in existing OOD detection literature Liu et al. (2020); Wang et al. (2022a); Ammar et al. (2024), and
long-tailed ID datasets because the distribution of real-world data is often imbalanced and highly
skewed per class basis, with a majority of classes containing a small number of samples. Long-tailed
OOD detection has been studied in several recent works by improving 1) representation learning
(Wang et al., 2022b; Wei et al., 2024; 2022; Choi et al., 2023), and 2) probabilistic calibration (Jiang
et al., 2023; Miao et al., 2024). However, these methods often require the use of OOD data to train
the model. In contrast, our approach only requires fine-tuning the model using ID data, and more
importantly, with no changes needed for the shallow feature fusion module. Our contributions are
summarized as follows:

1. We propose a new OOD detection method that exploits features from shallow layers of
pre-trained Transformers to enhance OOD separation.

2. We propose a simple yet powerful way to fuse the shallow layer features with the impor-
tance weights by measuring the covariance of features in each layer.

3. Our method achieves state-of-the-art results on both class-balanced and long-tailed bench-
mark datasets. We achieve an absolute improvement of AUROC by 1.07% and a reduction
of FPR95 by 4.03% on average across benchmark ID and OOD datasets.
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2 RELATED WORKS

Out-of-distribution detection. In recent years, the field of OOD detection has gained considerable
attention. The Maximum Softmax Probability (MSP) method (Hendrycks & Gimpel, 2016) serves
as a foundational baseline, utilizing softmax predictions as OOD scores. Building on this, ODIN
(Liang et al., 2017) improves the softmax score by perturbing input data and rescaling logits, en-
hancing its effectiveness in distinguishing OOD samples. Further advancements explore alternative
scoring mechanisms, such as the energy score (Liu et al., 2020), which is further refined through
feature clipping in ReAct (Sun et al., 2021). Additionally, gradient-based approaches have been ex-
plored to differentiate between ID and OOD data (Huang et al., 2021; Agarwal et al., 2022). Among
previous studies, the use of the Mahalanobis distance has shown significant promise. Lee et al.
(2018) propose a method where an auxiliary OOD validation dataset is employed to determine the
optimal weighting for each layer in calculating the Mahalanobis distance score. Trusted (Colombo
et al., 2022) introduces a novel approach that combines feature fusion during training with the Ma-
halanobis distance during testing, guided by the optimal transport principle. On top of the CLIP
model, CLIPN Wang et al. (2023) learns a “no” prompt to capture the negation-semantic with im-
ages using an auxiliary dataset, and performs OOD detection depending on the similarity between
the input image and the “no” prompt. Similarly, NegLabel Jiang et al. (2024) extracts potential neg-
ative labels from a corpus database and employs zero-shot CLIP for OOD detection by combining
ID classes and negative labels.

Long-tailed out-of-distribution detection. In the context of long-tailed OOD detection, prior re-
search has examined several strategies to mitigate the challenges posed by class imbalance, includ-
ing the use of oversampling techniques and threshold adjustments to improve performance (Li et al.,
2022). Open Sampling (Wei et al., 2022) incorporates OOD data to address the class imbalance in
long-tailed datasets. PASCL (Wang et al., 2022b) focuses on enhancing representation learning for
tail classes by leveraging a contrastive learning method, helping to improve the separation between
minority classes and OODs. Jiang et al. (2023) identify several common scenarios where the OOD-
to-ID probabilities should be the ID-class-prior distribution and propose two strategies to modify
existing inference-time detection methods. EAT (Wei et al., 2024) proposes expanding the class
space of ID classes with virtual classes to tackle OOD data. COCL (Miao et al., 2024) introduces a
calibrated learning approach aimed at improving outlier class detection in long-tailed tasks.

Parameter-efficient fine-tuning. PEFT methods freeze the pre-trained model and introduce only
a few learnable parameters for adaptation, which can effectively reduce overfitting and accelerate
convergence. Adapter (Dosovitskiy et al., 2020) introduces a bottleneck module to optimize only a
small subset of parameters. BitFit (Zaken et al., 2021) focuses on fine-tuning only the bias terms of
the model, significantly reducing the number of parameters that need to be updated during training.
VPT (Jia et al., 2022) prepends learnable prompts at each layer, offering two versions: VPT-Shallow,
which uses prompts at shallow layers, and VPT-Deep, which applies them across deeper layers.
LoRA (Hu, 2022) further optimizes efficiency by applying low-rank adaptations, minimizing the
overall parameter count while retaining performance. AdaptFormer (Chen et al., 2022) builds on the
Adapter method by shifting from a sequential to a parallel design. LIFT (Shi et al., 2024) provides an
empirical analysis showing that the commonly used full fine-tuning strategy is prone to overfitting,
especially on long-tailed datasets.

3 METHOD

In this section, we present a simple yet effective OOD detection method by fusing features from
shallow Transformer layers based on importance weight.

3.1 PRELIMINARY

We first introduce the problem setting and notations used throughout this paper.

1. We denote the training set as Dtrain = {(xi, yi)}Ni=1, where xi ∈ Rd represents an input
image, yi ∈ [C] denotes its ground-truth class label, and C denotes the total number of
classes in the training set. At test time, our goal is to flag images that do not belong to any
of the training classes using our OOD detector.
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2. Without loss of generality, let the network be F = f ◦ g, where f(·) is known as the
feature exactor and g(·) is the classifier following f . For each layer ϕ(·) in f , we define
the transformation learned by the l-th layer as ϕl(·). For an instance xi, its output from the
l-th layer is denoted as xl = ϕl(x). Particularly, we have the final feature learned by the
model xL = ϕL(x), where L denotes the number of Transformer layers.

3. In this paper, we build our OOD detector based on the Mahalanobis distance. For any test
image x, we calculate the negative distance between the image feature f(x) and feature
distribution of each class as the scoring function:

M(x;µc,Σ) = − (f(x)− µc)
⊤
Σ−1 (f(x)− µc) (1)

where µc is the mean feature vector of class c and Σ is the covariance matrix of ID data.
4. To measure the Mahalanobis distance, we calculate the empirical class mean and covariance

matrix of training samples as follows:

µc =
1

Nc

∑
i:yi=c

f (xi) , Σ =
1

N

C∑
c=1

∑
i:yi=c

(f (xi)− µc) (f (xi)− µc)
⊤
, (2)

where Nc is the number of training samples with class c. This is equivalent to fitting the
class-conditional Gaussian distribution with a tied covariance to the training samples under
the maximum likelihood estimator (Lee et al., 2018).

3.2 SFM: SHALLOW FEATURE MATTERS FOR OOD DETECTION

By default, the Mahalanobis distance in Eq. (1) uses the final output of the feature extractor, i.e.,
f(x), neglecting rich information in shallow layer features. Therefore, we now proceed to present
our approach to demonstrate that shallow features can help improve OOD detection performance.

For any test image x and a fine-tuned model, we first obtain its hidden representations xl
i of the

l-th layer, ∀1 ≤ l ≤ L. Notably, we may use “features” and “representations” interchangeably
throughout the paper. We then integrate features from all layers by different importance weights.
Formally, we compute the fused feature representation of x by:

Φ(x) =

L∑
l=1

αlxl, (3)

where αl is the weight of the l-th layer. To measure the Mahalanobis distance, we also calculate the
class mean feature vectors and global covariance matrix in the fused feature space. We reformulate
Eq. (2) by fusing shallow features as follows:

MSFM(x; µ̃c, Σ̃) = − (Φ(x)− µ̃c)
⊤
Σ̃−1 (Φ(x)− µ̃c) , (4)

where Σ̃ = 1
N

∑C
c=1

∑
i:yi=c (f (xi)− µ̃c) (f (xi)− µ̃c)

⊤ and µ̃c =
1
Nc

∑
i:yi=c Φ(xi).

To reflect the importance of each layer, we propose to calculate the weights by measuring the dis-
criminative capacity or variability of the features of each layer.
Definition 3.1 (Measure of Variablitiy). Given a collection of xl, we calculate the mean feature by
µl = 1

N

∑N
i=1 x

l
i, then and measure the feature variability of the l-th layer by:

αl = Tr((Al)⊤Al), (5)

where Al = (xl
1 − µl,xl

2 − µl, · · · ,xl
N − µl)

⊤ is the centralized feature matrix of the l-th layer,
and Tr(·) denotes the trance of a matrix, which is the sum of its diagonal elements. We normalize
the weights so that the sum of the weights across all layers is equal to 1.

Interpretation of the Trace (Trace as a Measure of Variability). The trace of the matrix,
Tr((Al)⊤Al), is the sum of the variances along each principal direction of the feature space in
the l-th layer. Essentially, it quantifies the overall variability or spread of the features across dif-
ferent samples. In the context of feature fusion, a higher trace value indicates that the features of
the l -th layer exhibit substantial variability among the samples, suggesting that these features have

4
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a strong discriminative capacity. Therefore, such layers should be assigned higher weights during
the fusion process. By using the trace as a measure of the variability of features, αl reflects the
importance of the features of the l th layer based on their ability to distinguish between different
classes. A higher trace value implies that the features can capture more discriminative information,
which is crucial for tasks such as ID classification and OOD detection. Intuitively, the last layer
of the feature extractor has the highest weight because the features learned from it exhibit the best
inter-class discriminative ability; however, the weight of the first layer is often smaller.

Remark. Our work differs from Mahalanobis (Lee et al., 2018) and Trusted (Colombo et al.,
2022) which also use features from multiple layers. 1) Mahalanobis calculates the OOD score using
each layer’s feature individually and weights them together by training a logistic regression model
using the validation set. Our approach computes importance weights from training data and does
not require any validation set. 2) Trusted treats every layer equally with the same importance and
averages the features. It is clear that certain layer features may be more effective for detecting
OODs, whereas others may bring noise. Our approach can prevent the degradation of the overall
OOD detection performance even in the case when the features from some layers are not effective:
the weights would be nearly zero for those ineffective layers.

3.3 NEW INSIGHTS ON FINE-TUNING PRE-TRAINED MODELS FOR OOD DETECTION

Parameter-efficient fine-tuning is more robust than fully fine-tuning. To adapt the pre-trained
models to downstream classification and OOD detection tasks, we learn a linear classifier and fine-
tune the feature extractor using ID training data. In this paper, we adopt the logit adjustment loss
(Menon et al., 2020) as the optimization objective for its simplicity and good generalization ability.
The key advantage of this choice is that, for class-balanced ID datasets, it simplifies to the con-
ventional cross-entropy loss; however, for long-tailed ID datasets, it allows the model to balance
predictive confidence across classes. Formally, the logit adjustment loss is defined as:

LLA(x, y = j) = − log
exp(zj + log P(y = j))∑

k∈[C] exp(zk + log P(y = k))
(6)

where y = j denotes the ground-truth label of the input x, and zj is the logit (pre-softmax activation)
for class j. The class-prior probability P(y = j) is estimated from the training distribution.

(a) ImageNet-LT ACC (b) ImageNet-LT AUROC

Figure 2: Comparison of the sensitivity of FFT
and PEFT to learning rates.

However, when choosing the fine-tuning strat-
egy, we observe that full parameter fine-tuning
(FFT) is significantly more sensitive to hyper-
parameters, such as learning rate, compared
to parameter-efficient fine-tuning (PEFT), espe-
cially when the ID data follows a long-tailed la-
bel distribution. Figure 2 highlights the impact
of learning rates on both fine-tuning strategies
in CIFAR-100 (ID) classification accuracy and
OOD detection AUROC, averaged on six OOD
datasets. The x-axis denotes the learning rate. The results indicate that FFT requires careful tuning of
learning rates to achieve optimal performance, while PEFT demonstrates more robust performance
across a wider range of hyperparameters. Moreover, FFT necessitates tuning hyperparameters like
the learning rate individually for each dataset, whereas PEFT allows for consistent hyperparameter
settings across multiple datasets, reducing the burden of hyperparameter search.

Extension of Our Approach to Vision-Language Models. Our empirical analysis indicates
that models pre-trained on large-scale supervised classification datasets (e.g., ViT pre-trained on
ImageNet-21k) tend to capture more discriminative deep and shallow features compared to models
pre-trained through self-supervised tasks (e.g., CLIP). To address this disparity, we extend SFM by
leveraging the alignment between image and text embeddings learned in the feature space of vision-
language models. Specifically, we calculate the cosine similarity between the image embedding and
ID class text prompt embeddings with minimal computational overhead. This similarity score is
integrated into SFM to enhance the effectiveness of OOD detection. Formally, the revised scoring
function is defined as:

G (x) = max
c∈[C]

MSFM(x; µ̃c, Σ̃) + λ · sim(v, tc) (7)
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where v denotes the image embedding of x extracted by the pre-trained image encoder, and tc rep-
resents the text prompt embedding of class c, i.e., both image and text embeddings are obtained from

pre-trained CLIP. The similarity measure sim(v, tc) is defined as: sim(v, tc) = ev
⊤tc∑

k ev
⊤tk

, where

we use the default prompt template “a photo of a {classname}” to obtain text embedding
tc in our experiments. The hyperparameter λ controls the relative influence of the predicted simi-
larity scores of the vision-language model. Notably, we set λ = 0 when using vision-only models.
A test image is classified as OOD if G (x) ≥ ρ, where ρ is selected such that a high proportion
of ID data exceeds this threshold. For samples classified as ID, the class label is determined as
ŷ = argmaxc∈[C] pc, where p = F (x) denotes the predicted class probabilities from the classifier.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

In this section, we compare our approach with the latest algorithms across both small- and large-
scale OOD detection benchmarks. In line with prior research, we utilize CIFAR-100 and ImageNet
as the in-distribution (ID) datasets. Additionally, we incorporate the more challenging long-tailed
variants, CIFAR-100-LT and ImageNet-LT, as ID training sets to further demonstrate the effective-
ness of our proposed method in OOD detection scenarios. The imbalance ratio for CIFAR-100-LT
is set to 100, reflecting a highly imbalanced class distribution.

OOD datasets. When CIFAR-100 or CIFAR-100-LT is used as the ID dataset, we evaluate OOD
detection performance on a range of diverse datasets, including Textures (Cimpoi et al., 2014),
SVHN (Yuval, 2011), CIFAR-10, Tiny ImageNet (Le & Yang, 2015), LSUN (Yu et al., 2015), and
Places365 (Zhou et al., 2016). For experiments with ImageNet and ImageNet-LT as the ID datasets,
we assess the model’s OOD detection capability using five benchmark OOD datasets: Textures
(Cimpoi et al., 2014), Places365 (Zhou et al., 2016), iNaturalist (Van Horn et al., 2018), ImageNet-
O (Hendrycks et al., 2021), and SUN (Xiao et al., 2010).

Evaluation metrics. We present our results using two widely adopted OOD evaluation metrics
(Yang et al., 2021). The first metric is the area under the receiver operating characteristic curve (AU-
ROC), which is threshold-independent and evaluates the trade-off between true positive rate (TPR)
and false positive rate (FPR). Higher AUROC values indicate better OOD detection performance.
The second metric is FPR95, which measures the false positive rate at a 95% TPR. Lower FPR95
values signify superior OOD detection capabilities. Both metrics are presented as percentages. The
highest AUROC (↑) and lowest FPR95 (↓) scores averaged on OOD datasets are highlighted in bold,
while the second-best results are underlined.

Implementation details. We implement our approach and all competing methods in the same frame-
work on top of the ImageNet-21k pre-trained Vision Transformer (ViT) (Dosovitskiy et al., 2020)
and the official pre-trained CLIP model1. We fine-tune the pre-trained models using in-distribution
data for downstream tasks. We employ a batch size of 64 for all experiments. For CIFAR-100 and
CIFAR-100-LT, we set the initial learning rate to 0.01 with a cosine annealing scheduler and fine-
tune for 10 epochs. For ImageNet and ImageNet-LT, the initial learning rate is set to 0.1, with a
cosine annealing scheduler, and the models are fine-tuned for 5 and 20 epochs, respectively. We
set λ = 1 on ImageNet and λ = 0.1 on CIFAR-100 for the CLIP model to calculate the scoring
function as defined in Eq. (7). For the Adapterformer module, we set the dimension to C

2L , where
C is the number of classes, and L is the number of blocks in the ViT model. Other hyperparameters
include a momentum of 0.9, and a weight decay of 5× 10−4, following LIFT (Shi et al., 2024). For
all baseline methods, we ensure a fair comparison by using the same hyperparameter settings. All
experiments are conducted on a single NVIDIA RTX 3090 GPU.

Baselines. We compare our method with eight baselines, including MSP (Hendrycks & Gimpel,
2016), MLS (Hendrycks et al., 2019a), Energy (Liu et al., 2020), Mahalanobis (Lee et al., 2018),
Residual and Vim (Wang et al., 2022a), NECO (Ammar et al., 2024), MCM (Ming et al., 2022),
Trusted (Colombo et al., 2022), and KL-matching (Hendrycks et al., 2019a). For Mahalanobis, we
follow the setting in (Fort et al., 2021b), which uses only the final feature instead of an ensemble of

1https://github.com/openai/CLIP
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Table 1: OOD detection performance on CIFAR-100 (ID) and six OOD datasets.

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
MSP 97.65 11.81 94.91 28.17 94.92 26.32 88.58 44.50 86.75 64.21 92.23 41.41 92.51 36.07
MLS 99.79 0.83 97.38 10.31 97.07 13.42 93.28 25.16 98.09 10.93 98.98 5.39 97.43 11.01
Energy 99.86 0.57 97.48 9.47 97.09 12.88 93.51 23.61 98.59 7.58 99.26 3.78 97.63 9.65
Mahalanobis 99.97 0.12 99.16 3.92 97.09 16.49 97.99 8.96 99.61 1.07 99.67 1.33 98.92 5.32
Residual 99.99 0.02 97.66 12.81 92.08 41.38 99.10 3.68 99.93 0.00 99.92 0.08 98.12 9.66
Vim 99.89 0.44 97.68 8.63 97.13 12.73 94.09 21.96 98.85 5.72 99.39 2.94 97.84 8.74
NECO 99.83 0.83 97.95 8.70 97.31 13.98 94.25 21.93 98.29 10.77 99.08 5.35 97.78 10.26
Trusted 100.0 0.00 98.78 5.77 93.35 33.51 98.09 9.76 100.0 0.01 100.0 0.00 98.37 8.17
KL-matching 98.60 6.10 96.66 14.93 96.34 17.12 90.05 34.17 88.15 49.34 93.67 28.21 93.91 24.98
SFM (ours) 100.0 0.00 99.50 1.91 96.47 19.52 99.80 1.11 100.0 0.00 100.0 0.00 99.29 3.76

CLIP-VIT-B/16
MSP 91.14 41.33 86.22 57.75 87.35 53.18 82.11 62.50 74.83 80.64 84.02 60.61 84.28 59.33
MLS 96.11 20.73 91.58 41.81 93.32 30.69 88.58 45.86 88.49 51.20 93.15 33.12 91.87 37.23
Energy 96.56 18.03 91.85 41.92 93.77 28.89 89.06 44.49 89.66 45.66 93.92 29.21 92.47 34.70
Mahalanobis 99.23 1.68 96.89 23.27 89.01 52.26 93.75 32.28 98.81 6.44 99.29 3.13 96.16 19.84
Residual 99.05 1.86 95.61 31.96 82.22 67.74 94.48 31.92 99.19 3.05 99.36 2.03 94.98 23.09
Vim 97.23 14.33 92.88 36.41 93.82 28.66 89.94 41.40 91.58 38.73 95.13 23.97 93.43 30.58
NECO 97.67 12.20 94.04 33.31 93.57 31.58 90.25 41.08 92.65 34.50 95.90 21.27 94.02 28.99
MCM 72.98 92.09 90.75 63.39 75.53 88.66 65.54 93.36 50.79 99.11 60.97 97.79 69.43 89.06
Trusted 99.98 0.04 97.21 17.80 86.32 61.45 97.13 15.68 99.95 0.03 99.96 0.08 96.76 15.85
KL-matching 94.32 25.12 90.69 38.25 90.69 38.52 84.16 52.94 77.85 70.96 86.99 47.80 87.45 45.60
SFM (ours) 99.95 0.02 98.31 8.62 88.56 53.97 97.54 12.91 99.93 0.06 99.95 0.02 97.37 12.60

Table 2: OOD detection performance on CIFAR-100-LT (ID) and six OOD datasets.

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
MSP 97.21 13.12 95.52 24.13 91.92 38.50 85.27 48.02 84.06 64.81 90.47 43.10 90.75 38.61
MLS 99.83 0.62 96.38 18.35 94.94 25.58 90.36 34.08 98.58 7.52 99.26 3.06 96.56 14.87
Energy 99.89 0.43 95.65 24.00 94.49 29.42 90.38 34.32 99.09 4.00 99.52 1.62 96.50 15.63
Mahalanobis 99.96 0.20 99.33 2.51 95.09 25.98 97.63 9.26 99.48 2.26 99.57 1.71 98.51 6.99
Residual 99.98 0.05 97.33 17.74 86.41 62.76 98.52 6.90 99.83 0.47 99.80 0.45 96.98 14.73
Vim 99.91 0.28 96.18 20.72 94.56 29.01 91.27 31.59 99.25 3.20 99.60 1.23 96.80 14.34
NECO 99.86 0.64 97.37 13.58 94.91 24.62 91.22 29.21 98.39 10.21 99.22 3.78 96.83 13.67
Trusted 100.0 0.00 99.12 3.60 87.34 52.84 97.67 10.37 99.97 0.00 99.98 0.00 97.35 11.13
KL-matching 98.48 6.40 97.44 12.11 94.00 26.88 87.56 38.91 86.65 52.78 92.94 31.01 92.84 28.02
SFM (ours) 100.0 0.00 99.75 0.43 94.22 29.86 99.75 1.12 99.99 0.00 99.99 0.01 98.95 5.24

CLIP-VIT-B/16
MSP 91.05 39.34 86.13 48.73 85.33 55.47 78.22 68.10 73.52 76.50 83.16 57.92 82.90 57.68
MLS 96.76 16.95 88.44 49.78 91.85 36.84 87.05 47.53 90.35 36.77 94.29 25.52 91.46 35.57
Energy 97.31 13.09 86.40 59.64 92.37 34.15 88.01 43.79 92.25 28.45 95.49 19.49 91.97 33.10
Mahalanobis 99.11 1.03 95.92 29.87 84.76 60.58 90.97 43.83 99.08 4.07 99.28 1.99 94.85 23.56
Residual 98.90 1.42 94.83 33.99 77.19 73.51 91.24 48.57 99.28 1.94 99.34 0.87 93.46 26.72
Vim 98.12 9.17 88.61 52.92 92.19 35.68 88.97 41.63 94.26 21.87 96.76 14.76 93.15 29.34
NECO 98.00 9.57 91.32 41.13 91.11 40.21 87.51 46.54 93.99 23.37 96.71 16.22 93.11 29.51
Trusted 99.97 0.11 93.57 43.80 80.76 70.36 95.46 25.58 99.95 0.10 99.95 0.08 94.94 23.34
KL-matching 95.01 21.76 90.76 31.69 88.87 44.17 81.68 57.93 79.31 63.65 87.64 43.21 87.21 43.73
SFM (ours) 99.92 0.02 97.50 15.65 85.20 60.41 95.05 26.05 99.92 0.04 99.93 0.01 96.25 17.03

multiple layers (Huang & Li, 2021; Lee et al., 2018). It is worth noting that all these baselines are
reimplemented based on our fine-tuned models, except that MCM uses zero-shot CLIP.

4.2 MAIN RESULTS

Result on CIFAR-100 and CIFAR-100-LT. As shown in Table 1, our proposed method, SFM,
outperforms state-of-the-art approaches across multiple OOD datasets. In particular, the average
performance of SFM on both the CLIP model and the ImageNet-21k pre-trained ViT significantly
surpasses previous methods. SFM achieves perfect separation of ID and OOD data on Texture,
LSUN, and Places365 datasets. However, we observe a decrease in the performance when using
CIFAR-10 as the OOD data. This reduction can be attributed to the high similarity between CIFAR-
10 and CIFAR-100 in terms of characteristics, resolution, and visual style—both datasets consist of
low-resolution, 32×32 images with somewhat blurred features, making certain samples challenging
to differentiate, even for human observers. This resemblance leads to overlapping feature represen-
tations in the shallow layers, resulting in relatively diminished performance. Notably, MCM (Ming
et al., 2022) is a zero-shot CLIP-based OOD detection method, and its performance is significantly
inferior to other methods, highlighting the necessity of fine-tuning for downstream tasks.

Additionally, Table 2 presents the results on the long-tailed in-distribution dataset. It can be seen
that our method consistently outperforms previous approaches. When using the CLIP model, our
method effectively reduces the FPR95 by an average of 6.53% (from 23.56% to 17.03%).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: OOD detection performance on ImageNet (ID) and five OOD datasets. † indicates the
results are taken from their papers, except that results for MCM on ImageNet-O are reproduced
using official codebase.

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
MSP 84.89 51.88 84.52 59.44 85.31 56.52 95.86 18.73 82.24 60.00 86.56 49.31
MLS 90.12 37.80 88.01 51.67 89.72 47.21 97.98 8.75 89.79 44.65 91.12 38.02
Energy 90.72 34.65 88.15 50.40 90.06 45.31 98.23 7.41 90.73 41.00 91.58 35.75
Mahalanobis 92.93 26.31 89.27 47.56 91.53 39.82 99.33 2.72 92.12 37.50 93.03 30.78
Residual 92.84 30.66 84.80 61.14 88.34 50.14 98.02 9.51 87.11 52.50 90.22 40.79
Vim 91.04 33.33 88.37 49.82 90.30 44.34 98.37 6.86 90.92 40.20 91.80 34.91
NECO 92.13 30.16 89.92 46.49 91.95 40.11 98.99 4.12 91.45 39.80 92.89 32.14
NECO† 92.86 32.44 90.38 42.66 93.15 33.98 99.34 3.26 94.53 25.20 94.05 27.51
Trusted 43.56 86.45 46.82 96.95 50.95 94.75 49.36 91.48 39.15 95.45 45.97 93.02
KL-matching 87.85 40.92 86.76 53.02 87.89 49.19 97.84 8.84 86.25 49.20 89.32 40.23
SFM (ours) 96.65 11.70 89.64 46.00 92.04 37.78 99.40 2.26 93.76 29.80 94.30 25.51

CLIP-VIT-B/16
MSP 83.05 57.59 79.83 68.39 79.33 70.29 89.74 41.95 78.60 71.00 82.11 61.84
MLS 88.76 45.43 86.02 57.05 86.39 58.28 95.57 23.45 86.53 61.15 88.65 49.07
Energy 89.26 44.01 86.59 54.39 87.12 54.85 96.38 17.67 87.32 58.30 89.33 45.84
Mahalanobis 85.05 66.49 84.34 72.06 85.15 75.37 90.35 65.00 80.71 79.00 85.12 71.58
Residual 76.25 80.05 75.64 88.95 75.40 91.87 71.20 94.15 67.87 88.10 73.27 88.62
Vim 89.30 44.20 86.70 54.49 87.22 55.21 96.17 18.83 87.17 59.25 89.31 46.40
NECO 88.77 47.02 87.86 52.40 88.61 53.92 95.24 25.30 85.29 64.00 89.15 48.53
MCM† 86.11 57.77 89.77 44.69 92.57 37.59 94.61 30.91 79.51 75.70 88.51 49.33
Trusted 95.87 19.80 74.59 78.06 76.71 76.42 84.61 72.77 84.12 62.40 83.18 61.89
KL-matching 86.64 46.45 83.28 59.25 83.21 61.23 94.18 24.99 83.19 62.45 86.10 50.87
SFM (ours) 89.16 48.44 91.88 36.46 93.24 34.87 95.47 23.49 82.27 70.35 90.41 42.72

Table 4: OOD detection performance on ImageNet-LT (ID) and five OOD datasets.

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
MSP 86.04 47.50 85.20 56.52 86.36 53.07 97.17 11.97 83.68 57.40 87.69 45.29
MLS 90.18 38.71 88.76 49.34 90.39 45.44 98.47 6.71 88.91 47.90 91.34 37.62
Energy 90.87 35.51 89.29 45.97 91.05 41.04 98.78 5.06 89.83 42.80 91.96 34.08
Mahalanobis 92.99 26.95 89.48 46.34 91.71 38.35 99.28 2.84 91.66 38.85 93.02 30.67
Residual 91.60 35.74 82.23 65.71 86.58 55.54 97.44 12.67 84.05 59.05 88.38 45.74
Vim 91.23 34.10 89.47 45.23 91.27 39.83 98.88 4.77 90.05 41.70 92.18 33.13
NECO 91.66 31.44 89.21 43.71 91.44 37.07 98.93 4.09 89.64 42.70 92.18 31.80
Trusted 91.98 32.36 82.11 66.31 85.72 58.34 98.09 9.29 90.91 40.15 89.76 41.29
KL-matching 88.72 38.71 87.41 50.03 89.14 45.83 98.44 6.19 87.24 47.50 90.19 37.65
SFM (ours) 96.92 11.79 89.82 45.36 92.18 36.16 99.33 2.51 93.46 31.10 94.34 25.38

CLIP-VIT-B/16
MSP 81.55 60.34 79.32 65.16 78.44 66.53 90.60 38.49 78.37 71.60 81.66 60.42
MLS 87.00 52.27 85.31 56.20 85.47 57.19 95.03 25.21 84.33 65.10 87.43 51.19
Energy 87.81 50.07 86.37 51.85 86.76 53.08 95.94 19.61 85.12 63.65 88.40 47.65
Mahalanobis 83.81 67.64 84.44 66.85 85.50 69.58 87.49 72.57 78.82 80.20 84.01 71.37
Residual 74.81 80.71 75.62 86.49 76.56 87.93 63.27 96.67 64.43 89.30 70.94 88.22
Vim 87.90 49.72 86.52 51.32 86.96 52.47 95.55 21.06 84.96 63.90 88.38 47.69
NECO 86.67 53.67 86.71 53.11 87.17 54.63 94.08 29.95 82.90 67.60 87.51 51.79
Trusted 71.96 70.46 44.51 97.89 49.78 97.77 49.44 98.59 48.79 89.05 52.90 90.75
KL-matching 85.35 51.56 82.84 57.00 82.51 57.56 94.54 23.36 82.52 64.00 85.55 50.70
SFM (ours) 90.95 43.10 92.43 34.80 92.62 39.07 94.59 28.54 83.62 68.90 90.84 42.88

Result on ImageNet and ImageNet-LT. Table 3 summarizes the performance of our proposed
method, SFM, on the ImageNet dataset. Across both pre-trained models, namely, the ImageNet-21k
pre-trained ViT and CLIP-ViT-B/16, SFM consistently outperforms existing methods. Specifically,
when using the ImageNet-21k pre-trained ViT, SFM improves the FPR95 by more than 5% on
average compared to the second-best method Mahalanobis (Lee et al., 2018). Notably, while MCM
Ming et al. (2022) does not require fine-tuning, it achieves competitive performance across four
OOD datasets, except ImageNet-O. Its overall average performance is on par with the Vim (Wang
et al., 2022a) and NECO (Ammar et al., 2024) methods. However, SFM still outperforms MCM by
∼ 2% in AUROC and ∼ 7% in FPR95.

Additionally, Table 4 presents the results on the long-tailed in-distribution dataset. It can be seen that
our method consistently outperforms previous approaches. On average, our method reduces FPR95
by 5.29% and 4.77% for ImageNet-21k pre-trained ViT and CLIP, respectively. The AUROC also
improves by 2.44% when using the CLIP model.
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Figure 3: Comparisons of OOD score distribution before and after applying our SFM method.
CIFAR-100 is used as the ID dataset and the OOD dataset from left to right is Texture, Tiny Im-
ageNet, LSUN, and Places365. The horizontal axis represents the OOD score (small values indicate
a high likelihood of being OOD samples).

4.3 ABLATION STUDIES

Why SFM works? Unless otherwise specified, in this subsection, we use the ImageNet-21k pre-
trained ViT as the default base model. Figure 3 presents a comparison of OOD score distributions
with and without the application of our proposed SFM method. When SFM is not applied, only
the final layer features are used to compute the Mahalanobis distance as a scoring function. It can
be seen that the score distributions for ID samples remain largely consistent, whether or not the
SFM method is applied. However, the use of SFM causes a significant leftward shift in the score
distribution for OOD samples. This shift occurs because the features in the final layer of unseen
OOD samples are not effectively captured. Furthermore, re-weighted information from the shallow
layers amplifies this shift, resulting in better discrimination. As a result, the SFM method enhances
the separation between ID and OOD samples in the embedding space. This improvement is critical
for more accurate identification and differentiation of ID and OOD samples, thus boosting the overall
performance and reliability of the detection process.

Importance weights of each layer. As depicted in Figure 4, our proposed method can adaptively
assign importance weights to different layers. Overall, the first 4 layers are assigned relatively
lower weights compared to the rest of the Transformer layers. Notably, the final layer’s weight
is particularly prominent. This is because the last layer of the feature extractor learns the most
discriminative features for in-distribution classes and is important for OOD detection. As shown
in the figure, rather than relying solely on the last layer’s features, our method effectively utilizes
shallow layer features as well.

Figure 4: Distribution of layer-specific weights for CIFAR-100, ImageNet, ImageNet (CLIP), and
ImageNet-LT where the y-axis denotes AUROC (%).

Impact of features from shallow layers. Figure 5 illustrates the effect of fusing features from
varying numbers of layers. The x-axis represents the number of layers counted from the last layer
towards the first, while the y-axis indicates the average OOD detection AUROC. As shown in the
figures, using only the last layer’s features yields decent results, but fusing the last 6 layers of the
Transformer achieves the best performance, highlighting the importance of shallow features. For
features from the sixth layer and beyond, their impact on the results is minimal. As discussed in the
previous analysis, our method assigns lower weights to these layers accordingly.

Way to fuse shallow features. Certain methods of feature fusion have been implemented by modif-
ing neural networks, like (Dai et al., 2021), (Li et al., 2020), and (Wei et al., 2021). (Xu et al., 2020)
proposed to use different enhancements for feature fusion We compare our proposed attention-based
feature fusion method with other fusion strategies including 1) Trusted (Colombo et al., 2022) which
directly employs the arithmetic mean to fuse features from each layer during both the training and
test phases; 2) Score Aggregation (SA) (Lee et al., 2018) which calculates the OOD score via Ma-
halanobis distance using features from each layer separately and weighted them together. Since SA

9
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Figure 5: Impact of the number of layers used for feature fusion on OOD detection performance.
The ID dataset from left to right is CIFAR-100, ImageNet, ImageNet (CLIP), and ImageNet-LT,
where the vertical axis represents AUROC.

Table 5: Comparisons of different feature fusion strategies. ‘In21k’ denotes ViT pre-trained on
ImageNet-21k.

CIFAR-100 ImageNet

Method CLIP In21k CLIP In21k Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

Trusted 96.76 15.85 98.37 8.17 83.18 61.89 45.97 93.02 81.49 44.73
SA 96.53 13.19 98.77 6.58 82.68 64.59 94.01 27.62 93.00 28.00
PM 96.15 18.13 98.16 10.05 91.03 77.59 81.86 27.47 91.80 33.31
Flatten12 42.10 89.67 29.00 90.93 - - - - 34.05 90.15
Flatten6 93.31 15.99 81.75 49.33 - - - - 87.53 32.66
Ours 97.28 13.34 99.29 3.76 89.79 45.30 94.30 25.51 95.17 21.98

requires a validation set containing both ID and OOD data, we use the weights derived from our
method to calculate the weighted sum of scores; 3) Power Mean (PM) (Rücklé et al., 2018) pro-
poses to reweight each layer’s feature based on feature norms; 4) Flatten12 concatenates all layers’
features into a single vector, while Flatten6 concatenates the last six layers’ features. The results
are presented in Table 5. It can be seen that our proposed attention-based fusion method achieves a
significant advantage in aggregating shallow features, further confirming its effectiveness.

Additional time consumption analysis. Unlike the direct Mahalanobis distance, which considers
only the final layer of features, our approach necessitates the integration of features across all layers.
This inevitably leads to additional time consumption. Table 6 presents the time consumption at
different stages of the test phase, measured in seconds, on the ImageNet-LT dataset (ID) and the
fine-tuned ViT model. “Pre-process” represents the process of pre-processing the ID training set,
including the calculation of the mean and covariance matrix required for Mahalanobis distance, with
additional importance weights α for SFM. Each subsequent column represents the time required to
process each dataset including the ID test set and OOD datasets, and the last column represents the
total time consumed. From the results, we observe that our approach only brings about an additional
10% total time consumption, but results in an improvement of AUROC by 2.39% and a reduction of
FPR95 by 7.66% on average, demonstrating the efficacy of our approach.

Table 6: Time consumption comparison between Mahalanobis and SFM.

Dataset Pre-process ID test set Texture Places SUN iNaturalist Imagenet-O Total
Mahalanobis 685 238 36 61 56 59 14 1149

SFM 748 291 38 62 60 61 15 1275

5 CONCLUSION

In this paper, we propose a simple, yet effective attention-based feature fusion module for out-of-
distribution detection. Our method calculates the importance of features of each layer from data,
and weights them together accordingly. The OOD detection is achieved by calculating our proposed
scoring function based on the Mahalanobis distance in the new feature space. To boost the features
learned from pre-trained models, we also present a parameter-efficient fine-tuning framework and
implement various OOD detection methods on top of it. Additionally, we extend our method to
the commonly used vision-language model CLIP by incorporating image-text similarity score in the
aligned space. The effectiveness of our method is shown by the fact that it achieves state-of-the-art
results in both class-balanced and long-tailed out-of-distribution detection tasks.
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Ethics Statement. This study introduces shallow feature matters (SFM) as an efficient tool for
facilitating out-ofdistribution (OOD) solutions. By improving OOD detection, SFM has the potential
to significantly enhance the dependability and safety of modern machine learning models. Thus, the
social impact of this research can be far-reaching, spanning consumer and business applications
in digital content understanding, transportation systems including driver assistance and autonomous
vehicles, as well as healthcare applications such as identifying unseen diseases. Moreover, by openly
sharing our code, we strive to offer machine learning practitioners a readily available resource for
responsible AI development, ultimately benefiting society as a whole.

Reproducibility Statement. We have made significant efforts to ensure the reproducibility of our
results. The source code used in our experiments is included in the supplementary materials, along
with a detailed README file that provides step-by-step instructions and the necessary commands to
reproduce the experiments. All the hyperparameters and experimental settings are clearly specified
to facilitate replication.
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A ADDITIONAL EXPERIMENT RESULTS

In-distribution classification accuracy. Our fine-tuned model also shows strong ID classification
performance, as detailed in Table 7. In terms of overall accuracy, both CIFAR-100 and ImageNet-
1k perform better with balanced data compared to long-tailed data. This indicates that data balance
positively impacts model performance, facilitating more accurate classification tasks.

When comparing different models, the pre-trained ViT consistently outperform CLIP-ViT-B/16 in
most scenarios. This indicates that the pre-trained ViT has specific advantages for these data sets
and tasks, suggesting that its pre-training approach is more suitable for these classification tasks,
thereby also enhancing its efficacy in OOD detection tasks.

Table 7: Top 1% accuracy on ID data for the original classification task, for the models.

ID dataset Label distribution Model Accuracy (%)

Zero-shot CLIP-ViT-B/16 66.69

CLIP-ViT-B/16 82.87
CIFAR-100 Long-tailed Pre-trained ViT 89.99

CLIP-ViT-B/16 88.59
Balanced Pre-trained ViT 93.47

Zero-shot CLIP-ViT-B/16 67.12

CLIP-ViT-B/16 75.82
ImageNet-1k Long-tailed Pre-trained ViT 81.79

CLIP-ViT-B/16 79.08
Balanced Pre-trained ViT 83.50

Impact of hyper-parameter λ in Eq. (7). To demonstrate the effect of the hyper-parameter λ,
Table 8 showcases the OOD detection performance (AUROC) on the CLIP model with ImageNet-
LT as the ID dataset. From the results, we observe that the performance is relatively poor when the
scoring function does not integrate the zero-shot CLIP similarity score, i.e., λ = 0, decreasing from
90.84 to 86.75. Conversely, when λ ̸= 0, our method demonstrates robustness to different values of
λ. In our experiments, we directly set λ = 1 on the ImageNet dataset for simplicity.

Table 8: Sensitivity analysis of hyperparameter λ.

λ 0 0.2 0.5 0.8 1 1.2 1.5 2

AUROC 86.75 89.31 90.52 90.81 90.84 90.81 90.72 90.52

Fair comparsion with MCM. The MCM method is naturally better suited for zero-shot OOD
tasks compared to fine-tuning tasks. The prevalent fine-tuning approach, which mainly targets the
visual encoder, tends to disrupt the initial alignment between the visual and text components after
fine-tuning, resulting in less effective outcomes. Our goal in including the MCM method in our ex-
periment was not to make a direct comparison but to empirically showcase that our proposed method
enhances OOD detection performance. Conversely, methods like ViM and NECO are methodolog-
ically and conceptually more similar to our approach and, therefore, require a more thorough com-
parison. Moreover, we present the results of MCM on the fine-tuned model (i.e. MCM-tuned) in the
table below for comparison.

Ablation studies on weights of different layers. To further emphasize the importance of differ-
entiated layer weighting, we provide experimental tables (i.e., Table 10, 11, 12). In these table, we
test different scenarios where the final layer is given weights of 0.083 (i.e., uniform), 0.5, 0.75, and 1
(which are represented by W0.083,W0.5,W0.75,W1.0), while the other layers receive the remaining
weights evenly. These experiments clearly highlight the vital role different layer weightings play
in boosting OOD detection performance and the potency of our proposed method. The findings
demonstrate that the SFM approach consistently achieves either the top (bold) or the second-best
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Table 9: Fair comparsion with MCM on CIFAR-100 and CIFAR-100-LT (ID).

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

CIFAR-100
MCM-untuned 72.98 92.09 90.75 63.39 75.53 88.66 65.54 93.36 50.79 99.11 60.97 97.79 69.43 89.06
MCM-tuned 75.33 91.38 91.55 60.96 75.60 91.03 64.07 95.40 55.14 98.93 63.71 97.67 70.90 89.23
SFM (ours) 99.95 0.02 98.31 8.62 88.56 53.97 97.54 12.91 99.93 0.06 99.95 0.02 97.37 12.60

CIFAR-100-LT
MCM-untuned 72.98 92.09 90.75 63.39 75.53 88.66 65.54 93.36 50.79 99.11 60.97 97.79 69.43 89.06
MCM-tuned 75.33 91.38 91.55 60.96 75.60 91.03 64.07 95.40 55.14 98.93 63.71 97.67 70.90 89.23
SFM (ours) 99.92 0.02 97.50 15.65 85.20 60.41 95.05 26.05 99.92 0.04 99.93 0.01 96.25 17.03

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-1K-LT
MCM-untuned 86.11 57.77 89.77 44.69 92.57 37.59 94.61 30.91 79.51 75.70 88.51 49.33
MCM-tuned 85.64 60.11 89.82 44.32 92.92 36.25 94.26 32.01 79.26 76.10 88.38 49.76
SFM (ours) 90.95 43.10 92.43 34.80 92.62 39.07 94.59 28.54 83.62 68.90 90.84 42.88

Table 10: Ablation studies on weights of different layers on CIFAR-100 (ID).

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
W0.083 100.0 0.00 99.61 0.28 90.02 51.14 100.0 0.00 100.0 0.00 100.0 0.00 98.27 8.57
W0.5 100.0 0.00 99.43 2.36 96.76 18.26 99.62 1.81 100.0 0.00 99.99 0.01 99.30 3.74
W0.75 99.99 0.04 99.27 3.33 96.99 16.82 98.83 5.22 99.89 0.06 99.89 0.26 99.14 4.29
W1.0 99.97 0.12 99.16 3.92 97.09 16.49 97.99 8.96 99.61 1.07 99.67 1.33 98.92 5.32
SFM (ours) 100.0 0.00 99.50 1.91 96.47 19.52 99.80 1.11 100.0 0.00 100.0 0.00 99.29 3.76

CLIP-VIT-B/16
W0.083 100.0 0.00 99.05 2.82 83.92 65.74 99.94 0.08 100.0 0.00 100.0 0.00 97.15 11.44
W0.5 99.92 0.07 98.00 10.27 89.15 51.09 96.49 17.36 99.88 0.21 99.91 0.12 97.22 13.19
W0.75 99.61 0.85 97.84 12.34 89.36 50.66 94.38 26.56 99.24 3.85 99.55 1.68 96.66 15.99
W1.0 99.23 1.68 96.89 23.27 89.01 52.26 93.75 32.28 98.81 6.44 99.29 3.13 96.16 19.84
SFM (ours) 99.95 0.02 98.31 8.62 88.56 53.97 97.54 12.91 99.93 0.06 99.95 0.02 97.37 12.60

(underlined) position across all contexts. Remarkably, when ranked second, our method’s perfor-
mance closely rivals that of the first-place finisher. Specifically, our approach attains 96.17 and
17.82, whereas the uniform weight variant W0.083 records 95.52 and 19.71, and W0.05 achieves
95.82 and 19.04, on AUROC and FPR95 respectively.

Ablation studies on smaller pre-trained transformers. As depicted in Table 13, 14, and 15, we
have included models like vit tiny patch16 224 and vit small patch16 224, shown in the upper and
lower sections of each table. The outcomes from these smaller models provide further confirmation
that our OOD score remains robust and effective across various model scales, thereby enhancing the
generalizability and reliability of our proposed approach.

Ablation studies on OpenOOD v1.5 benchmark. We conducted our experiment again using the
Openood v1.5 (Zhang et al., 2023) benchmark and chose Imagenet-1K-LT as the ID dataset, as
shown in Table 16. From our experience, this approach is comparable to using ImageNet-1k while
being more time-efficient. Our results surpassed those of all other methods by a significant margin
on average, highlighting the success of our SFM strategy.

Ablation studies on varying parameter-efficient fine-tuning methods. SFM is a general frame-
work in which many lightweight fine-tuning methods can be integrated. In addition to Adaptformer

Table 11: Ablation studies on weights of different layers on CIFAR-100-LT (ID).

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
W0.083 100.0 0.00 99.85 0.01 85.54 68.56 100.0 0.00 100.0 0.00 100.0 0.00 97.57 11.43
W0.5 100.0 0.00 99.68 0.68 94.56 27.90 99.58 1.68 99.99 0.00 99.98 0.01 98.97 5.05
W0.75 99.99 0.05 99.49 1.66 94.93 26.42 98.67 5.57 99.81 0.39 99.83 0.53 98.79 5.77
W1.0 99.96 0.20 99.33 2.51 95.09 25.98 97.63 9.26 99.48 2.26 99.57 1.71 98.51 6.99
SFM (ours) 100.0 0.00 99.75 0.43 94.22 29.86 99.75 1.12 99.99 0.00 99.99 0.01 98.95 5.24

CLIP-VIT-B/16
W0.083 100.0 0.00 98.76 5.09 80.77 68.39 99.89 0.20 100.0 0.00 100.0 0.00 96.57 12.28
W0.5 99.88 0.04 97.37 16.90 85.52 58.97 94.36 28.65 99.87 0.11 99.89 0.05 96.15 17.45
W0.75 99.52 0.55 97.15 19.66 85.73 58.99 91.58 39.22 99.36 2.63 99.52 1.20 95.48 20.38
W1.0 99.11 1.03 95.92 29.87 84.76 60.58 90.97 43.83 99.08 4.07 99.28 1.99 94.85 23.5
SFM (ours) 99.92 0.02 97.50 15.65 85.20 60.41 95.05 26.05 99.92 0.04 99.93 0.01 96.25 17.03
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Table 12: Ablation studies on weights of different layers on ImageNet-1k-LT (ID).

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
W0.083 98.55 6.45 86.32 60.57 88.92 49.25 98.02 9.42 91.72 37.05 92.71 32.55
W0.5 95.02 17.96 89.76 44.79 92.08 36.60 99.36 2.63 92.68 34.30 93.78 27.26
W0.75 93.78 23.39 89.62 45.54 91.88 37.22 99.32 2.74 92.06 36.75 93.33 29.13
W1.0 92.99 26.95 89.48 46.34 91.71 38.35 99.28 2.84 91.66 38.85 93.02 30.67
SFM (ours) 96.92 11.79 89.82 45.36 92.18 36.16 99.33 2.51 93.46 31.10 94.34 25.38

CLIP-VIT-B/16
W0.083 92.23 36.76 91.11 39.65 93.02 36.38 94.62 29.54 83.30 67.45 90.86 41.96
W0.5 88.52 52.23 89.87 45.47 92.21 40.58 94.54 28.45 82.56 71.00 89.54 47.55
W0.75 87.68 55.39 89.69 46.37 92.08 41.23 94.41 29.30 82.23 72.40 89.22 48.94
W1.0 83.81 67.64 84.44 66.85 85.50 69.58 87.49 72.57 78.82 80.20 84.01 71.37
SFM (ours) 90.95 43.10 92.43 34.80 92.62 39.07 94.59 28.54 83.62 68.90 90.84 42.88

Table 13: OOD detection performance on CIFAR-100 (ID) on smaller transformers.

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

VIT TINY PATCH16 224
MSP 92.09 35.34 83.28 61.28 83.30 63.73 79.89 69.73 72.86 84.07 82.13 65.55 82.26 63.28
MLS 98.62 6.13 92.09 35.85 87.39 54.92 87.71 52.79 88.92 57.57 94.27 30.32 91.50 39.60
Energy 99.03 4.26 92.78 32.41 87.28 55.96 88.18 51.27 90.32 51.04 95.25 24.94 92.14 36.65
Mahalanobis 99.90 0.35 96.28 15.78 87.78 56.67 92.48 33.81 98.20 9.10 98.77 6.27 95.57 20.33
Residual 99.71 0.85 86.24 52.70 76.86 72.72 90.89 42.55 97.46 14.02 97.25 13.66 91.40 32.75
Vim 99.19 3.62 92.99 31.18 87.49 54.90 88.70 48.96 91.14 47.63 95.67 22.63 92.53 34.82
NECO 99.17 3.83 92.34 34.24 87.85 53.47 89.47 46.45 92.38 43.05 96.06 21.11 92.88 33.69
KL-matching 95.41 18.40 87.58 45.71 86.32 53.75 82.47 60.45 75.28 79.24 85.65 52.82 85.45 51.73
SFM (ours) 100.0 0.02 96.85 14.13 86.48 60.56 97.00 15.34 99.98 0.01 99.96 0.10 96.71 15.03

VIT SMALL PATCH16 224
MSP 95.98 19.17 92.29 38.18 90.82 39.01 85.95 52.36 82.84 68.92 89.31 47.87 89.53 44.25
MLS 99.28 3.16 96.35 18.16 95.22 24.90 92.18 32.72 96.21 25.40 97.71 13.44 96.16 19.63
Energy 99.48 2.29 96.54 16.55 95.42 23.24 92.59 29.99 97.12 18.57 98.25 10.09 96.57 16.79
Mahalanobis 99.91 0.59 99.05 4.72 94.65 28.65 97.53 11.36 99.60 1.78 99.54 2.52 98.38 8.27
Residual 99.96 0.11 98.60 7.06 88.66 52.27 98.09 9.68 99.65 0.75 99.67 1.14 97.44 11.83
Vim 99.56 1.99 96.88 14.63 95.46 23.06 93.17 27.68 97.52 16.28 98.47 8.82 96.84 15.41
NECO 99.50 2.16 96.76 15.91 95.33 24.33 93.49 26.62 97.26 17.04 98.29 9.75 96.77 15.97
KL-matching 97.66 9.24 94.75 22.21 93.18 28.02 88.04 40.26 85.27 55.47 91.73 33.41 91.77 31.43
SFM (ours) 100.0 0.00 99.36 3.16 94.09 31.35 99.47 2.69 99.99 0.01 99.99 0.01 98.82 6.20

(Chen et al., 2022) which is used in our experiments by default, we test SFM with another 5
parameter-efficient fine-tuning (PEFT) methods as well as full fine-tuning. Specifically, we com-
bine SFM with Bias-tuning (Zaken et al., 2021), VPT-shallow (Jia et al., 2022), VPT-deep (Jia et al.,
2022), LoRA (Hu et al., 2022), and Adapter (Houlsby et al., 2019). We report the empirical results
for CIFAR-100 in Table 17, CIFAR-100-LT in Table 18, and ImageNet-LT in Table 19. From the
results, we observe that SFM consistently improves the baselines by a large margin, showing its
robustness to the PEFT methods.

Table 14: OOD detection performance on CIFAR-100-LT (ID) on smaller transformers.

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

VIT TINY PATCH16 224
MSP 90.08 43.37 81.70 67.65 79.48 71.62 75.96 75.24 71.36 84.26 79.41 71.40 79.66 68.92
MLS 99.12 3.60 93.33 33.93 79.87 74.86 85.81 56.68 93.82 33.03 96.58 18.97 91.42 36.85
Energy 99.38 2.13 93.83 31.25 78.33 78.86 86.24 56.10 95.32 24.89 97.50 13.26 91.77 34.42
Mahalanobis 99.85 0.53 97.29 12.80 85.08 63.78 91.26 35.45 98.44 8.10 98.67 6.67 95.10 21.22
Residual 99.36 2.70 85.09 63.99 63.92 86.08 86.92 56.50 95.55 23.38 95.84 23.68 88.68 42.72
Vim 99.48 1.86 94.02 30.06 78.59 78.29 86.75 53.95 95.67 22.96 97.70 12.17 92.03 33.21
NECO 99.43 2.16 93.71 31.78 80.42 73.09 87.26 50.52 95.19 24.22 97.42 14.01 92.24 32.63
KL-matching 94.50 23.48 86.54 55.21 82.74 62.81 79.16 66.66 74.56 80.30 83.53 60.59 83.51 58.18
SFM (ours) 99.99 0.04 97.77 10.81 83.67 66.99 96.31 16.67 99.97 0.01 99.95 0.14 96.28 15.78

VIT SMALL PATCH16 224
MSP 96.39 16.72 92.72 37.39 87.58 49.60 82.39 57.10 80.54 68.09 87.52 49.64 87.85 46.42
MLS 99.69 1.44 95.97 21.84 91.96 41.67 92.62 29.45 97.66 14.61 98.77 6.74 96.11 19.29
Energy 99.80 1.13 95.29 27.28 91.55 45.20 93.37 25.75 98.58 8.86 99.28 3.78 96.31 18.67
Mahalanobis 99.91 0.53 99.43 2.35 93.02 35.98 97.15 12.93 99.59 2.35 99.65 1.67 98.12 9.30
Residual 99.93 0.25 96.22 24.49 83.28 64.13 95.96 21.20 99.26 3.78 99.37 2.78 95.67 19.44
Vim 99.84 0.96 95.74 25.12 91.69 44.68 93.78 24.60 98.77 7.65 99.38 3.29 96.53 17.72
NECO 99.77 1.13 96.30 20.92 91.64 41.49 92.86 27.03 97.67 14.01 98.92 5.90 96.19 18.41
KL-matching 98.12 7.73 95.63 20.27 90.16 37.62 85.25 46.40 83.94 56.00 90.77 36.06 90.65 34.01
SFM (ours) 100.0 0.00 99.68 1.05 92.24 39.11 99.48 2.44 100.0 0.00 100.0 0.00 98.57 7.10

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 15: OOD detection performance on ImageNet-LT (ID) on smaller transformers.

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

VIT TINY PATCH16 224
MSP 78.01 73.35 75.50 78.45 75.30 79.07 87.21 54.52 67.95 87.70 76.80 74.62
MLS 84.44 65.73 78.50 75.84 79.44 75.44 91.83 46.49 76.83 84.55 82.21 69.61
Energy 85.85 60.04 78.76 74.90 80.02 74.11 92.72 42.10 78.73 81.55 83.22 66.54
Mahalanobis 89.61 41.86 79.27 67.26 82.44 63.88 97.62 11.83 80.09 77.30 85.81 52.43
Residual 84.86 56.21 68.21 86.03 69.96 84.55 88.63 49.79 73.94 77.95 77.12 70.91
Vim 86.49 57.06 78.97 74.35 80.27 73.02 93.25 38.66 79.22 80.85 83.64 64.79
NECO 86.84 56.44 79.03 73.47 80.61 72.26 94.78 30.01 79.54 79.75 84.16 52.39
KL-matching 81.97 67.22 77.80 74.27 78.06 73.72 91.59 41.18 72.78 84.35 80.44 68.15
SFM (ours) 92.21 29.84 78.40 68.87 81.25 66.86 97.72 11.30 82.43 69.90 86.40 49.35

VIT SMALL PATCH16 224
MSP 82.60 60.11 81.41 66.59 81.97 63.84 94.31 25.69 77.74 73.60 83.61 57.97
MLS 87.94 50.51 84.97 60.73 86.46 56.44 96.63 17.04 84.64 65.40 88.13 50.02
Energy 88.96 46.03 85.45 58.10 87.20 53.27 97.09 14.06 85.91 60.85 88.92 46.46
Mahalanobis 91.13 36.06 86.30 54.87 89.54 46.81 99.03 4.49 87.74 55.45 90.75 39.54
Residual 88.66 45.11 79.43 70.30 84.29 60.89 96.18 20.30 82.07 65.85 86.12 52.49
Vim 89.38 44.08 85.72 56.97 87.57 52.06 97.39 12.38 86.29 59.25 89.27 44.95
NECO 89.72 43.40 85.86 56.63 88.18 51.50 98.07 9.36 87.00 58.40 89.77 43.86
KL-matching 86.01 50.67 83.63 60.68 84.80 56.71 96.68 14.62 81.90 65.35 86.60 49.61
SFM (ours) 93.35 25.94 86.18 55.21 89.52 46.74 99.13 3.99 89.13 50.20 91.46 36.42

Table 16: OOD detection performance on ImageNet-LT (ID) on OpenOOD v1.5.

Method Ninco Openimage-o Ssb-hard iImageNet-c ImageNet-es iImageNet-r ImageNet-v2 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
MSP 87.81 50.02 93.72 27.51 76.72 68.43 67.91 78.58 69.35 69.26 79.73 59.15 57.57 89.92 76.12 63.27
MLS 91.59 42.80 96.28 18.65 81.25 63.86 70.54 76.77 72.11 66.79 83.65 53.22 57.86 90.09 79.04 58.88
Energy 92.12 39.62 96.80 16.02 81.87 61.53 70.80 76.02 72.44 66.06 84.25 50.52 57.79 90.19 79.44 57.14
Mahalanobis 94.00 32.51 97.58 12.61 85.01 52.17 73.93 72.64 73.04 67.08 85.32 48.95 58.02 90.81 80.99 53.83
Residual 83.87 62.45 92.41 33.88 84.87 56.19 74.96 78.03 65.25 82.87 75.05 76.46 53.03 94.38 75.63 69.18
Vim 92.29 38.65 96.94 15.32 82.36 60.40 71.19 75.39 72.47 65.98 84.37 50.20 57.79 90.15 79.63 56.58
NECO 91.97 38.09 96.90 15.19 84.81 54.96 70.55 75.48 72.01 67.61 82.43 53.86 56.86 90.44 79.36 56.52
KL-matching 90.53 41.63 95.95 18.15 79.52 63.02 70.03 75.91 71.54 66.35 82.56 52.60 58.33 89.85 78.35 58.22
SFM (ours) 94.98 26.74 98.21 9.72 86.34 49.46 83.96 53.57 76.78 63.45 88.49 42.85 58.36 91.36 83.88 48.16

CLIP-VIT-B/16
MSP 80.11 68.94 88.22 46.72 68.06 83.66 73.44 70.44 70.31 68.46 77.27 64.00 57.12 90.78 73.50 70.43
MLS 84.17 67.11 92.93 35.17 71.99 82.44 77.66 67.65 75.66 64.21 84.61 55.96 58.24 90.38 77.89 66.13
Energy 84.15 67.78 93.73 30.59 72.25 82.43 78.02 67.13 76.51 62.51 85.87 52.26 58.22 90.28 78.39 64.71
Mahalanobis 75.13 83.28 86.95 63.82 66.11 89.49 82.68 62.64 84.27 52.46 90.02 47.33 58.18 90.31 77.62 69.90
Residual 61.56 91.54 70.43 81.35 61.00 92.63 82.86 68.28 86.30 54.65 86.28 57.41 56.47 92.06 72.13 76.85
Vim 83.91 68.20 93.57 31.15 72.28 82.57 78.85 65.06 77.52 60.34 86.73 49.79 58.35 89.88 78.74 63.86
NECO 880.96 71.90 92.48 37.13 69.22 85.10 77.84 68.17 78.69 61.76 86.00 54.92 58.18 89.83 77.63 66.97
KL-matching 83.21 66.88 92.13 34.08 70.63 81.75 76.09 67.07 72.92 64.25 81.70 55.46 57.83 90.51 76.36 65.71
SFM (ours) 8.30 74.67 92.90 36.93 71.64 81.79 85.49 50.94 87.84 43.49 88.76 50.31 58.22 89.50 80.45 61.09
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Table 17: OOD detection performance in terms of AUROC (↑) and FPR95 (↓) for different PEFT
methods, and full fine-tuning on CIFAR-100 dataset.

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

Bias-tuning
+ MSP 97.46 12.77 94.72 27.13 94.19 29.44 88.42 44.58 86.25 64.76 91.93 41.80 92.16 36.75
+ MLS 99.71 1.24 96.60 13.31 96.96 14.23 94.69 22.00 98.07 10.86 98.73 6.84 97.46 11.41
+ Energy 99.82 0.87 96.62 12.60 97.07 13.58 95.10 20.07 98.72 6.86 99.11 4.74 97.74 9.79
+ Mahalanobis 99.93 0.34 98.80 5.32 96.18 20.60 97.31 10.71 99.58 1.32 99.45 2.68 98.54 6.83
+ Residual 99.98 0.04 97.20 16.92 90.96 49.13 98.46 6.69 99.90 0.14 99.81 0.59 97.72 12.25
+ Vim 99.85 0.74 96.84 11.84 97.09 13.58 95.48 18.94 98.96 5.21 99.24 3.90 97.91 9.04
+ NECO 99.77 1.21 97.03 12.42 96.95 15.77 94.97 20.55 98.34 10.19 98.84 6.58 97.65 11.12
+ SFM (ours) 100.0 0.00 99.44 2.29 95.32 25.35 99.68 1.52 99.99 0.01 99.99 0.02 99.07 4.87

VPT-shallow
+ MSP 95.84 18.09 93.78 34.50 92.09 37.35 85.90 49.15 79.15 78.05 87.17 54.51 88.99 45.27
+ MLS 98.77 5.28 96.55 18.36 94.42 25.10 86.29 47.31 88.68 59.55 92.94 35.22 92.24 31.81
+ Energy 99.04 4.57 96.58 15.87 94.42 24.75 85.83 51.00 89.64 55.53 93.47 32.64 93.16 30.73
+ Mahalanobis 99.97 0.18 92.41 44.63 93.84 32.15 98.04 9.23 99.86 0.18 99.77 0.88 97.31 14.54
+ Residual 99.98 0.05 80.46 67.16 86.92 55.54 99.02 5.17 99.95 0.10 99.89 0.37 94.37 21.40
+ Vim 99.29 3.62 96.71 15.16 94.57 24.64 87.34 45.83 91.64 46.32 94.70 26.97 94.04 27.09
+ NECO 99.30 3.56 95.99 25.70 95.02 24.55 90.59 34.88 94.24 34.05 96.17 20.60 95.22 23.89
+ SFM (ours) 100.0 0.00 94.28 36.41 92.37 38.48 99.78 1.15 99.99 0.01 99.98 0.06 97.73 12.68

VPT-deep
+ MSP 97.43 13.49 91.72 44.53 94.33 30.07 86.93 48.16 84.23 69.02 91.10 47.98 90.79 42.21
+ MLS 99.69 12.49 96.55 15.98 91.21 30.65 95.81 25.68 97.51 13.26 97.51 13.26 96.34 16.59
+ Energy 99.79 1.12 97.59 10.49 96.53 15.82 91.43 29.60 96.53 21.24 97.95 11.21 96.64 14.91
+ Mahalanobis 99.94 0.30 94.27 39.67 96.08 22.59 97.10 162.99 99.08 4.88 99.16 4.47 97.60 14.15
+ Residual 99.97 0.04 91.25 53.35 89.88 50.67 98.07 10.16 99.69 0.74 99.58 1.64 96.41 19.43
+ Vim 99.83 0.83 97.68 10.13 96.57 15.91 92.09 27.75 97.05 18.26 98.22 9.96 96.91 13.81
+ NECO 99.72 1.44 96.53 17.02 96.71 17.06 92.73 26.10 96.80 20.68 98.03 11.12 96.75 15.57
+ SFM (ours) 99.99 0.02 96.36 25.31 95.33 26.39 99.59 2.03 99.95 0.00 99.93 0.18 98.52 8.99

LoRA
+ MSP 97.36 12.77 94.85 29.23 94.36 29.49 87.26 46.89 84.76 68.83 90.95 45.35 91.59 38.76
+ MLS 99.57 1.91 97.88 8.89 96.98 14.76 89.51 34.34 95.70 27.11 97.68 12.53 96.22 16.59
+ Energy 99.68 1.38 98.09 7.79 97.09 14.28 89.57 34.75 96.37 23.26 98.09 10.67 96.48 15.36
+ Mahalanobis 99.96 0.11 99.33 2.69 96.65 17.98 97.72 9.47 99.39 2.07 99.47 2.35 98.76 5.78
+ Residual 99.99 0.02 98.15 9.65 91.25 44.12 98.85 4.83 99.84 0.14 99.80 0.45 97.98 9.87
+ Vim 99.75 1.13 98.29 6.91 97.121 14.25 90.50 32.38 96.96 20.00 98.38 9.27 96.83 13.99
+ NECO 99.69 1.67 98.43 6.15 96.98 15.96 91.95 27.74 96.66 21.84 98.17 9.97 96.98 13.89
+ SFM (ours) 100.0 0.00 99.78 0.88 95.99 21.52 99.82 0.96 99.99 0.00 99.99 0.01 99.26 3.89

Adapter
+ MSP 97.34 12.54 95.56 23.93 91.73 38.80 85.30 48.04 84.70 62.47 90.66 42.81 90.88 38.10
+ MLS 99.90 0.32 98.31 8.01 94.26 29.06 92.18 29.58 99.10 3.69 99.50 1.51 97.21 12.03
+ Energy 99.93 0.18 98.28 7.56 93.67 34.00 92.43 28.42 99.48 1.43 99.71 0.61 97.25 12.03
+ Mahalanobis 99.97 0.12 99.44 1.82 95.04 26.43 97.58 9.60 99.55 1.76 99.63 1.36 98.53 6.85
+ Residual 99.98 0.02 97.78 14.80 86.21 64.68 98.51 6.91 99.85 0.47 99.84 0.36 97.03 14.54
+ Vim 99.95 0.16 98.48 6.36 93.77 33.18 93.09 26.10 99.57 0.98 99.75 0.45 97.44 11.20
+ NECO 99.90 0.30 98.60 6.92 94.41 27.76 92.31 26.44 98.91 6.70 99.45 2.68 97.26 11.82

+ SFM (ours) 100.0 0.00 99.50 2.54 96.79 18.07 99.72 1.50 100.0 0.00 100.0 0.00 99.33 3.68
Full fine-tuning

+ MSP 97.24 15.39 91.45 46.78 93.64 33.62 87.79 48.74 85.44 72.87 91.58 48.41 91.19 44.30
+ MLS 99.72 1.12 90.65 36.84 96.55 16.03 90.43 30.61 97.84 11.13 98.97 3.63 95.69 15.56
+ Energy 99.76 0.89 90.44 38.61 96.57 15.89 90.47 30.36 98.11 9.60 99.13 3.08 95.75 16.40
+ Mahalanobis 99.87 0.55 96.80 16.06 96.87 15.38 97.46 13.26 97.69 16.25 98.96 6.61 97.94 11.35
+ Residual 99.98 0.12 98.13 9.62 95.11 26.57 99.13 4.86 99.70 1.04 99.86 0.54 98.65 7.13
+ Vim 99.82 0.57 91.57 34.06 96.64 15.50 91.95 25.90 98.39 7.19 99.28 2.27 96.27 14.25
+ NECO 99.71 1.33 93.01 31.88 96.96 15.53 92.41 26.21 97.35 17.86 98.78 6.72 96.37 16.59

+ SFM (ours) 99.93 0.32 97.12 14.56 96.91 15.18 97.92 11.72 98.64 8.87 99.40 3.41 98.32 9.01
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Table 18: OOD detection performance in terms of AUROC (↑) and FPR95 (↓) for different PEFT
methods, and full fine-tuning on CIFAR-100-LT dataset.

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

Bias-tuning
+ MSP 97.23 12.91 95.68 23.01 91.66 38.32 85.10 49.19 83.91 65.44 89.82 45.37 90.56 39.04
+ MLS 99.89 0.37 97.73 10.36 94.29 28.15 93.67 24.36 98.87 5.06 99.29 2.91 97.29 11.87
+ Energy 99.93 0.25 97.42 13.18 93.78 33.19 94.14 22.64 99.38 2.08 99.59 1.38 97.37 12.12
+ Mahalanobis 99.96 0.20 99.58 1.27 94.59 28.56 97.26 10.39 99.54 2.14 99.55 1.84 98.40 7.40
+ Residual 99.97 0.05 97.98 11.87 85.50 67.10 98.00 9.44 99.77 0.53 99.74 0.71 96.83 14.95
+ Vim 99.95 0.16 97.74 10.84 93.87 32.51 94.67 20.93 99.50 1.49 99.66 0.99 97.57 11.15
+ NECO 99.89 0.51 98.15 8.82 94.32 27.12 93.33 22.52 98.59 9.34 99.23 4.02 97.25 12.06
+ SFM (ours) 100.0 0.00 99.91 0.08 93.33 35.86 99.76 1.18 100.0 0.00 100.0 0.00 98.83 6.19

VPT-shallow
+ MSP 94.99 22.66 94.31 32.06 88.65 52.40 82.64 58.58 78.45 82.38 85.96 59.76 87.50 51.31
+ MLS 99.43 2.85 96.76 18.52 87.77 54.41 81.14 64.50 93.33 40.85 95.01 27.59 92.24 34.79
+ Energy 99.61 1.72 96.05 24.39 86.05 62.46 79.32 73.40 94.82 31.44 95.72 23.16 91.93 36.09
+ Mahalanobis 99.92 0.37 93.09 38.88 91.12 42.84 96.48 14.27 99.64 1.34 99.57 1.82 96.64 16.59
+ Residual 99.92 0.28 84.78 53.96 80.83 70.84 97.42 13.56 99.75 0.76 99.61 1.35 93.72 23.46
+ Vim 99.72 1.40 96.26 22.38 86.39 60.61 81.39 67.38 95.97 24.05 96.55 18.72 92.72 32.42
+ NECO 99.70 1.37 96.04 24.00 89.82 43.79 86.69 43.97 95.27 24.19 97.75 16.80 94.05 25.69
+ SFM (ours) 100.0 0.02 95.65 25.96 88.82 50.14 99.72 1.36 99.98 0.00 99.97 0.04 97.36 12.92

VPT-deep
+ MSP 96.78 14.73 92.13 38.71 90.87 42.17 83.57 53.66 81.08 72.16 87.71 52.15 88.69 45.60
+ MLS 99.78 0.87 97.63 11.72 90.42 44.26 87.38 45.51 96.43 22.13 97.87 12.18 94.92 22.78
+ Energy 99.86 0.55 97.75 10.55 88.92 54.12 87.04 49.12 97.25 16.66 98.35 9.25 94.86 23.37
+ Mahalanobis 99.88 0.39 98.22 10.49 92.63 40.93 95.85 16.72 98.81 6.74 98.94 5.10 97.39 13.39
+ Residual 99.90 0.30 95.61 23.77 82.05 73.28 96.25 18.13 99.23 3.43 99.11 3.77 95.36 20.45
+ Vim 99.89 0.50 98.00 9.27 89.13 53.34 88.05 45.00 97.68 14.16 98.58 7.80 95.22 21.68
+ NECO 99.82 0.78 97.78 11.74 91.39 39.08 89.00 35.93 96.60 18.40 98.14 10.10 95.45 19.34
+ SFM (ours) 99.99 0.00 99.32 2.97 91.05 46.61 99.56 2.10 99.94 0.00 99.92 0.07 98.30 8.62

LoRA
+ MSP 96.77 15.05 94.10 32.79 91.25 41.07 84.06 51.62 81.70 71.24 88.80 49.24 89.45 43.50
+ MLS 99.78 0.85 96.95 16.78 93.06 32.74 87.54 43.19 97.66 14.45 98.75 6.61 95.62 19.10
+ Energy 99.84 0.44 96.51 20.22 92.28 39.13 87.19 47.63 98.31 9.71 99.09 4.23 95.54 20.23
+ Mahalanobis 99.97 0.09 99.59 1.12 94.16 30.32 97.26 10.76 99.47 2.15 99.59 1.55 98.34 7.66
+ Residual 99.98 0.07 98.04 11.86 84.77 66.35 98.08 8.99 99.74 0.77 99.72 0.70 96.72 14.79
+ Vim 99.89 0.39 97.00 16.42 92.41 38.74 88.48 42.91 98.63 7.75 99.25 3.28 95.95 18.25
+ NECO 99.84 0.69 97.89 11.25 93.25 31.42 89.67 33.65 97.47 15.13 98.84 6.11 96.16 16.38
+ SFM (ours) 100.0 0.00 99.96 0.01 92.62 38.01 99.87 0.59 100.0 0.00 100.0 0.00 98.74 6.43

Adapter
+ MSP 97.34 12.54 95.56 23.93 91.73 38.80 85.30 48.04 84.70 62.47 90.66 42.81 90.88 38.10
+ MLS 99.90 0.32 98.31 8.01 94.26 29.06 92.18 29.58 99.10 3.69 99.50 1.51 97.21 12.03
+ Energy 99.93 0.18 98.28 7.56 93.67 34.00 92.43 28.42 99.48 1.43 99.71 0.61 97.25 12.03
+ Mahalanobis 99.97 0.12 99.44 1.82 95.04 26.43 97.58 9.60 99.55 1.76 99.63 1.36 98.53 6.85
+ Residual 99.98 0.02 97.78 14.80 86.21 64.68 98.51 6.91 99.85 0.47 99.84 0.36 97.03 14.54
+ Vim 99.95 0.16 98.48 6.36 93.77 33.18 93.09 26.10 99.57 0.98 99.75 0.45 97.44 11.20
+ NECO 99.90 0.30 98.60 6.92 94.41 27.76 92.31 26.44 98.91 6.70 99.45 2.68 97.26 11.82

+ SFM (ours) 100.0 0.00 99.92 0.09 94.12 30.70 99.80 0.92 100.0 0.00 100.0 0.00 98.97 5.28
Full fine-tuning

+ MSP 96.93 14.29 93.98 32.33 90.46 46.33 83.91 53.60 85.16 66.75 90.43 46.44 90.14 43.29
+ MLS 99.86 0.50 94.01 33.58 93.96 28.83 88.43 37.80 99.16 1.93 99.41 1.80 95.81 17.41
+ Energy 99.91 0.34 92.59 47.61 93.84 29.66 88.46 37.68 99.53 0.71 99.64 0.97 95.66 19.49
+ Mahalanobis 99.95 0.27 97.08 16.06 95.14 23.82 97.04 13.62 99.18 5.22 99.52 2.62 97.99 10.27
+ Residual 99.99 0.02 97.71 13.20 90.08 49.81 98.89 5.16 99.86 0.35 99.91 0.26 97.74 11.47
+ Vim 99.94 0.25 93.63 40.38 93.98 29.20 90.18 32.65 99.65 0.41 99.73 0.65 96.18 17.26
+ NECO 99.87 0.57 94.73 29.96 94.34 25.66 90.05 31.81 98.75 8.39 99.27 3.89 96.17 16.71

+ SFM (ours) 99.99 0.02 97.86 10.72 95.20 23.66 98.50 38.37 99.81 80.77 99.87 0.58 98.54 7.35
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Table 19: OOD detection performance in terms of AUROC (↑) and FPR95 (↓) for different PEFT
methods, and full fine-tuning on ImageNet-LT dataset.

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

Bias-tuning
+ MSP 83.92 58.30 80.95 67.86 81.16 66.33 94.31 26.99 75.83 77.60 83.23 59.42
+ MLS 88.71 49.75 84.46 61.47 85.84 58.57 96.93 16.31 82.68 71.40 87.72 51.50
+ Energy 89.93 43.48 85.15 57.30 86.97 52.85 97.84 10.11 84.22 66.95 88.82 46.14
+ Mahalanobis 87.55 59.63 82.72 61.63 86.38 51.55 97.89 10.89 85.03 62.65 87.92 49.27
+ Residual 73.74 81.88 68.43 82.87 75.65 73.07 88.27 48.56 72.40 80.00 75.70 73.28
+ Vim 90.06 42.68 85.22 57.05 87.16 52.08 97.92 9.83 84.39 66.60 88.95 45.65
+ NECO 88.38 50.51 84.00 60.84 86.25 57.23 97.65 12.16 83.85 67.40 88.03 49.63
+ SFM (ours) 90.95 41.45 81.67 63.98 85.48 54.88 97.75 11.44 86.58 56.70 88.48 45.69

VPT-shallow
+ MSP 85.58 49.11 85.44 55.99 86.38 52.79 97.53 10.26 83.79 57.95 87.74 45.22
+ MLS 89.30 41.47 88.52 49.37 90.05 45.47 98.64 5.90 88.74 48.50 91.05 38.14
+ Energy 90.00 37.94 89.01 46.13 90.73 41.65 98.95 4.31 89.69 44.20 91.68 34.85
+ Mahalanobis 92.07 29.52 86.20 58.31 88.98 49.94 99.19 3.10 91.51 38.95 91.59 35.96
+ Residual 88.37 49.73 73.68 80.55 79.27 72.40 96.66 16.66 84.03 60.05 84.40 55.88
+ Vim 90.32 36.33 89.04 46.03 90.82 41.24 99.02 4.11 89.93 42.75 91.83 34.09
+ NECO 91.15 33.32 87.20 49.53 89.67 44.33 99.01 3.86 89.98 43.80 91.40 34.97
+ SFM (ours) 95.93 14.54 85.98 57.66 89.03 47.59 99.18 3.17 93.34 32.30 92.69 31.05

VPT-deep
+ MSP 85.28 49.27 84.75 57.12 85.92 53.82 97.13 11.51 83.13 58.20 87.24 45.98
+ MLS 89.57 40.30 88.37 49.82 89.97 45.76 98.42 6.61 88.35 49.70 90.93 38.44
+ Energy 90.32 37.02 88.92 46.67 90.65 42.09 98.72 5.21 89.23 45.60 91.57 35.32
+ Mahalanobis 92.06 29.38 89.41 46.03 91.53 39.21 99.20 3.07 90.76 41.65 92.59 31.87
+ Residual 89.31 43.60 82.48 65.82 86.52 56.29 97.04 14.73 82.29 62.05 87.53 48.50
+ Vim 90.62 35.25 89.11 45.87 90.88 41.07 98.81 4.86 89.42 44.15 91.77 34.24
+ NECO 90.47 35.04 88.46 46.25 90.73 39.93 98.82 4.56 88.81 45.15 91.46 34.19
+ SFM (ours) 95.52 16.03 89.27 46.36 91.57 38.40 99.25 3.07 92.55 35.25 93.63 27.82

LoRA
+ MSP 85.99 47.75 85.29 56.70 86.36 53.65 97.14 11.87 83.59 58.30 87.67 45.65
+ MLS 90.06 39.08 88.56 50.13 90.17 45.98 98.41 6.79 88.82 48.35 91.20 38.07
+ Energy 90.81 35.80 89.03 47.35 90.81 42.37 98.70 5.17 89.78 43.35 91.93 34.81
+ Mahalanobis 93.12 25.78 88.31 50.24 90.92 41.66 99.28 2.84 91.57 39.00 92.64 31.90
+ Residual 91.25 37.61 78.95 71.78 84.13 61.05 97.08 14.96 83.92 59.10 87.07 48.90
+ Vim 91.18 33.92 89.16 46.63 91.01 41.06 98.81 4.81 90.01 42.30 92.03 33.74
+ NECO 91.80 30.76 88.35 47.11 90.79 40.31 98.93 4.07 89.71 43.80 91.92 33.21
+ SFM (ours) 96.85 11.28 88.36 49.55 91.06 40.36 99.26 2.84 93.58 30.70 93.82 26.95

Adapter
+ MSP 85.48 49.04 84.97 56.62 86.28 53.16 96.97 12.59 83.56 57.50 87.45 45.78
+ MLS 89.75 40.18 88.51 49.51 90.28 44.91 98.34 6.89 88.88 48.10 91.15 37.92
+ Energy 90.47 37.02 89.01 46.88 90.93 41.73 98.65 5.59 89.79 42.90 91.77 34.82
+ Mahalanobis 92.61 28.32 89.17 47.15 91.47 39.20 99.24 3.00 91.35 39.95 92.77 31.52
+ Residual 91.32 37.02 82.47 65.59 86.63 55.03 97.42 12.88 83.67 60.25 88.30 46.15
+ Vim 90.83 35.55 89.20 45.93 91.15 40.46 98.76 5.14 90.00 42.05 91.99 33.83
+ NECO 91.13 33.10 88.91 44.55 91.23 37.50 98.84 4.33 89.49 43.10 91.92 32.52
+ SFM (ours) 96.71 12.48 89.35 46.41 91.87 37.28 99.28 2.77 93.41 31.90 94.12 26.17

Full fine-tuning
+ MSP 82.21 56.24 81.12 65.98 81.83 62.82 93.92 24.60 78.67 64.85 83.55 54.90
+ MLS 87.34 48.72 84.31 60.57 85.87 57.24 96.04 18.77 86.30 56.00 87.97 48.26
+ Energy 87.32 49.65 84.07 61.19 85.70 58.51 95.57 22.25 86.55 55.45 87.84 49.41
+ Mahalanobis 89.84 37.94 85.82 56.61 87.51 53.62 98.21 7.27 87.21 52.45 89.72 41.28
+ Residual 81.65 65.37 71.82 83.97 75.22 78.32 92.41 38.93 70.36 79.90 78.29 69.30
+ Vim 87.56 48.42 84.12 60.91 85.80 58.11 95.81 20.61 86.53 55.70 87.97 48.75
+ NECO 87.56 43.74 83.30 57.95 85.99 53.72 97.11 11.76 85.76 52.20 87.95 43.87
+ SFM (ours) 93.28 25.05 86.17 55.15 87.90 51.41 98.54 5.99 88.87 46.35 90.95 36.79
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