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Abstract
Spectral graph convolution, an important tool
of data filtering on graphs, relies on two essen-
tial decisions: selecting spectral bases for sig-
nal transformation and parameterizing the ker-
nel for frequency analysis. While recent tech-
niques mainly focus on standard Fourier trans-
form and vector-valued spectral functions, they
fall short in flexibility to model signal distribu-
tions over large spatial ranges, and capacity of
spectral function. In this paper, we present a novel
wavelet-based graph convolution network, namely
WaveGC, which integrates multi-resolution spec-
tral bases and a matrix-valued filter kernel. The-
oretically, we establish that WaveGC can effec-
tively capture and decouple short-range and long-
range information, providing superior filtering
flexibility, surpassing existing graph wavelet neu-
ral networks. To instantiate WaveGC, we in-
troduce a novel technique for learning general
graph wavelets by separately combining odd and
even terms of Chebyshev polynomials. This ap-
proach strictly satisfies wavelet admissibility cri-
teria. Our numerical experiments showcase the
consistent improvements in both short-range and
long-range tasks. This underscores the effective-
ness of the proposed model in handling differ-
ent scenarios. Our code is available at https:
//github.com/liun-online/WaveGC.

1. Introduction
Spectral graph theory (SGT) (Chung, 1997), which enables
analysis and learning on graph data, has firmly established
itself as a pivotal methodology in graph machine learn-
ing. A significant milestone in SGT is the generalization
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of the convolution operation to graphs, as convolution for
grid-structured data, i.e. sequences and images, has demon-
strated remarkable success (LeCun et al., 1998; Hinton et al.,
2012; Krizhevsky et al., 2012). Significant research interests
in graph convolution revolve around two key factors: (1) de-
signing diverse bases for spectral transform, and (2) param-
eterizing powerful graph kernel. For (1), the commonly used
graph Fourier basis, consisting of the eigenvectors of the
graph Laplacian (Shuman et al., 2013), stands as a prevalent
choice. However, graph wavelets (Hammond et al., 2011)
offer enhanced flexibility by constructing adaptable bases.
For (2), classic approaches involve diagonalizing the kernel
with fully free parameters (Bruna et al., 2013) or employing
various polynomial approximations such as Chebyshev (Def-
ferrard et al., 2016) and Cayley (Levie et al., 2018) polyno-
mials. Additionally, convolution with a tensor-valued kernel
serves as the spectral function of Transformer (Vaswani
et al., 2017) under the shift-invariant condition (Li et al.,
2021; Guibas et al., 2021).

Despite the existence of techniques in each aspect, the inte-
gration of these two lines into a unified framework remains
challenging, impeding the full potential of graph convolu-
tion. In an effort to unravel this challenge, we introduce
a novel operation — Wavelet-based Graph Convolution
(WaveGC), which seamlessly incorporates both spectral ba-
sis and kernel considerations. In terms of spectral basis
design, WaveGC is built upon graph wavelets, allowing it to
capture information across the entire graph through a multi-
resolution approach from highly adaptive construction of
multiple graph wavelet bases. For filter parameterization, we
opt for a matrix-valued spectral kernel with weight-sharing.
The matrix-valued kernel offers greater flexibility to filter
wavelet signals, thanks to its larger parameter space.

To comprehensively explore WaveGC, we theoretically anal-
yse and assess its information-capturing capabilities. In
contrast to the K-hop basic message-passing framework,
WaveGC is demonstrated to exhibit both significantly larger
and smaller receptive fields concurrently, achieved through
the manipulation of scales. Previous graph wavelet the-
ory (Hammond et al., 2011) only verifies the localization in
small scale limit. Instead, our proof is complete as it covers
both extremely small and large scales from the perspective
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of information mixing (Di Giovanni et al., 2023). Moreover,
our proof also implies that WaveGC is capable of simultane-
ously capturing both short-range and long-range information
for each node, which facilitate global node interaction.

To implement WaveGC, a critical step lies in constructing
graph wavelet bases that satisfy two fundamental criteria:
(1) meeting the wavelet admissibility criteria (Mallat, 1999)
and (2) showing adaptability to different graphs. Exist-
ing designs of graph wavelets face limitations, with some
falling short in ensuring the criteria (Xu et al., 2019a; 2022),
while others having fixed wavelet forms, lacking adapt-
ability (Zheng et al., 2021; Cho et al., 2023). To address
these limitations, we propose an innovative and general
implementation of graph wavelets. Our solution involves
approximating scaling function basis and multiple wavelet
bases using odd and even terms of Chebyshev polynomials,
respectively. This approach is inspired by our observation
that, after a certain transformation, even terms of Cheby-
shev polynomials strictly satisfy the admissibility criteria,
while odd terms supplement direct current signals. Through
the combination of these terms via learnable coefficients,
we aim to theoretically approximate scaling function and
multiple wavelets with arbitrary complexity and flexibility.
Our contributions are:

• We derive a new wavelet-based graph convolution
(WaveGC), which integrates multi-resolution bases and
matrix-valued kernel, enhancing spectral convolution
on large spatial ranges.

• We theoretically prove that WaveGC can capture and
distinguish the information from short and long ranges,
surpassing conventional graph wavelet techniques.

• We pioneer an implementation of learnable graph
wavelets, employing odd terms and even terms of
Chebyshev polynomials individually. This implementa-
tion strictly satisfies the wavelet admissibility criteria.

• Our approach consistently outperforms baseline meth-
ods on both short-range and long-range tasks, achiev-
ing up to 15.7% improvement on VOC dataset.

2. Preliminaries
An undirected graph can be presented as G = (V, E),
where V is the set of N nodes and E ⊆ V × V is
the set of edges. The adjacency matrix of this graph is
A ∈ {0, 1}N×N , where Aij ∈ {0, 1} denotes the rela-
tion between nodes i and j in V . The degree matrix is
D = diag(d1, . . . .dN ) ∈ RN×N , where di =

∑
j∈V Aij

is the degree of node i ∈ V . The node feature matrix is
X = [x1, x2, . . . , xN ] ∈ RN×d0 , where xi is a d0 dimen-
sional feature vector of node i ∈ V . Let Â = D− 1

2AD− 1
2

be the symmetric normalized adjacency matrix, then L̂ =
IN−Â = D− 1

2 (D−A)D− 1
2 is the symmetric normalized

graph Laplacian. With eigen-decomposition, L̂ = UΛU⊤,
where Λ = diag(λ1, . . . , λN ) ∈ RN×N , λi ∈ [0, 2] and
U = [u⊤

1 , . . . ,u⊤
N ] ∈ RN×N are the eigenvalues and

eigenvectors of L̂, respectively. Given a signal f ∈ RN on
G, the graph Fourier transform (Shuman et al., 2013) is de-
fined as f̂ = U⊤f ∈ RN , and its inverse is f = U f̂ ∈ RN .

Spectral graph wavelet transform (SGWT). Hammond
et al. (2011) redefine the wavelet basis (Mallat, 1999) on ver-
tices in the spectral graph domain. Specifically, the SGWT
is composed of three components: (1) Unit wavelet basis,
denoted as Ψ such that Ψ = g(L̂) = Ug(Λ)U⊤, where
g acts as a band-pass filter g : R+ → R+ meeting the
following wavelet admissibility criteria (Mallat, 1999):

CΨ =

∫ ∞

−∞

|g(λ)|2

|λ|
dλ < ∞. (1)

To meet this requirement, g(λ = 0) = 0 and
limλ→∞ g(λ) = 0 are two essential prerequisites. (2) Spa-
tial scales, a series of positive real values {sj} where dis-
tinct values of sj with Ψsj = Ug(sjΛ)U⊤ can control
different size of neighbors. (3) Scaling function basis, de-
noted as Φ such that Φ = Uh(λ)U⊤. Here, the function
of h : R+ → R+ is to supplement direct current (DC)
signals at λ = 0, which is omitted by all wavelets g(sjλ)
since g(0) = 0. Next, given a signal f ∈ RN , the formal
SGWT (Hammond et al., 2011) is:

Wf (sj) = Ψsjf = Ug(sjΛ)U⊤f ∈ RN , (2)

where Wf (sj) is the wavelet coefficients of f under scale
sj . Similarly, scaling function coefficients are given by
Sf = Φf = Uh(Λ)U⊤f ∈ RN . Let G(λ) = h(λ)2 +∑

j g(sjλ)
2, then if G(λ) ≡ 1, ∀λ ∈ Λ, the constructed

graph wavelets are known as tight frames, which guarantee
energy conservation of the given signal between the original
and the transformed domains (Shuman et al., 2015). More
spectral graph wavelets are introduced in Appendix E.

3. From Graph Convolution to Graph
Wavelets

Spectral graph convolution is a fundamental operation in
the field of graph signal processing (Shuman et al., 2013).
Specifically, given a signal matrix (or node features) X ∈
RN×d on graph G, the spectral filtering of this signal is
defined with a kernel κ ∈ RN×N by the convolution theo-
rem (Arfken, 1985):

κ ∗G X = F−1(F(κ) · F(X)) ∈ RN×d, (3)

where · is the matrix multiplication operator, F(·) and
F−1(·) are the spectral transform (e.g., graph Fourier trans-
form (Bruna et al., 2013)) and corresponding inverse trans-
form, respectively. To implement a spectral convolution,
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two critical choices must be considered in Eq. (3): 1) the
selection of the transform F and 2) the parameterization of
the kernel κ.

3.1. General spectral wavelet via Chebyshev
decomposition

For the selection of the spectral transform F and its in-
verse F−1, it can be tailored to the specific nature of data.
For set data, the Dirac Delta function (Oppenheim et al.,
1997) is employed, while the fast Fourier Transform (FFT)
proves efficient for both sequences (Li et al., 2021) and
grids (Guibas et al., 2021). In the context of graphs, the
Fourier transform (F → U⊤) emerges as one classical can-
didate. However, some inherent flaws limit the capacity of
Fourier bases. (1) Standard graph Fourier bases, represented
by one fixed matrix U⊤, maintain a constant resolution and
fixed frequency modes. (2) Fourier bases lack the adaptabil-
ity to be further optimized according to different datasets
and tasks. Therefore, multiple resolution and adaptability
are two prerequisites for the design of an advanced base.

Notably, wavelet base is able to conform the above two
demands, and hence offers enhanced filtering compared to
Fourier base. For the resolution, the use of different scales
sj allows wavelet to analyze detailed components of a sig-
nal at different granularities. More importantly, due to its
strong spatial localization (Hammond et al., 2011), each
wavelet corresponds to a signal diffused away from a central
node (Xu et al., 2019a). Therefore, these scales also control
varying receptive fields in spatial space, which enables the si-
multaneous fusion of short- and long-range information. For
the adaptability, graph wavelets offer the flexibility to adjust
the shapes of wavelets and scaling function. These com-
ponents can be collaboratively optimized for the alignment
of basis characteristics with different datasets, potentially
enhancing generalization performance.

Next, we need to determine the form of the scaling func-
tion basis Φ = Uh(Λ)U⊤, the unit wavelet basis Ψ =
Ug(Λ)U⊤, and the scales sj . The forms of h and g are
expected to be powerful enough and easily available. Con-
currently, g should strictly satisfy the wavelet admissibility
criteria, i.e., Eq. (1), and h should complementally provide
DC signals. To achieve this target, we separately intro-
duce odd terms and even terms from Chebyshev polynomi-
als (Hammond et al., 2011) into the approximation of h and
g. Please recall that the Chebyshev polynomial Tk(y) of
order k may be computed by the stable recurrence relation
Tk(y) = 2yTk−1(y) − Tk−2(y) with T0 = 1 and T1 = y.
After the following transform, we surprisingly observe that
these transformed terms match all above expectations:

Tk(y) → 1/2 · (−Tk(y − 1) + 1). (4)

To give a more intuitive illustration, we present the spec-

tra of first six Chebyshev polynomials before and after the
transform in Fig. 1 (b), where the set of odd and even terms
after the transform are denoted as {T o

i } and {T e
i }, respec-

tively. From the figure, g(λ = 0) ≡ 0 for all {T e
i }, and

h(λ = 0) ≡ 1 for all {T o
i }. Consequentially, {T e

i } and
{T o

i } strictly meet the criteria and naturally serve as the ba-
sis of unit wavelet and scaling function. Moreover, not only
can we easily get each Chebyshev term via iteration, but
the constructed wavelet owns arbitrarily complex waveform
because of the combination of as many terms as needed.
Given {T e

i } and {T o
i }, all we need to do is just to learn the

coefficients to form the corresponding g(λ) and h(λ):

g(Λ) =

ρ∑
i

aiT
e
i (Λ) ∈ RN×N ,

h(Λ) =

ρ∑
i

biT
o
i (Λ) ∈ RN×N ,

(5)

where ρ = K/2 (K is the total number of truncated
Chebyshev terms), ã = (a1, a2, . . . , aρ) ∈ R1×ρ and
b̃ = (b1, b2, . . . , bρ) ∈ R1×ρ represent two learnable co-
efficient vectors as follows:

ã = Mean(WaẐ + ba), b̃ = Mean(WbẐ + bb), (6)

where {Wa,Wb} ∈ Rd×ρ and {ba, bb} ∈ R1×ρ are learn-
able parameters, and Ẑ is the eigenvalue embedding com-
posed by the module in (Bo et al., 2023). Further details
can be found in Appendix B. Also, we can learn the scales
s̃ = (s1, s2, . . . , sJ) in the same way:

s̃ = σ(Mean(WsẐ + bs)) · s ∈ R1×J , (7)

where σ is sigmoid function, Ws ∈ Rd×J and bs ∈ R1×J

are learnable parameters, and s = (s1, s2, . . . , sJ) is a pre-
defined vector to control the size of s̃.

Based on our construction, g(λ) is a strict band-pass filter in
[0, 2], while s can scale its shape in g(sλ). Specifically, s <
1 ”stretches” the shape of g(λ), and s > 1 ”squeezes” its
shape (Please refer to Fig. 9). To maintain the same spectral
interval [0, 2], we truncate g(sλ) within the intersection of
λ ∈ [0, 2] and λ ∈ [0, 2/s].

3.2. Matrix-valued kernel via weight sharing

Next, we consider the parametrization of the convolutional
kernel F(κ). In the spectral domain, each Fourier mode
typically corresponds to a global frequency pattern, either
low- or high-frequency. Consequently, in Fourier-based
approaches, it is common to apply a vector-valued kernel
over the diagonalized graph Laplacian spectrum, denoted
as diag(θλ) (Bruna et al., 2013; Defferrard et al., 2016;
Levie et al., 2018), which effectively scales these global
frequency components. However, this strategy becomes un-
suitable after applying a wavelet transform. Unlike Fourier
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(a) WaveGC Block (b) Spectral Transform

MLP & Pooling
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Figure 1. (a) Overview of our proposed WaveGC technique. (b) Illustration of Chebyshev polynomials before and after the given transform,
from [-1, 1] to [0, 2]. In this representation, we distinguish odd and even terms, presenting only the first three terms for each.

bases, wavelet coefficients encode localized, node-specific
patterns that may capture short- or long-range interactions,
but not global frequency modes. As a result, a different
parametrization scheme, tailored to the localized nature of
wavelet representations, is required.

Along another line of research, Fourier Neural Operator
(FNO) (Li et al., 2021) models the convolution kernel as a
fully learnable tensor M ∈ RN×d×d, where N is the num-
ber of frequency modes, and d is the feature dimension. This
tensor-valued kernel offers two notable advantages. First,
although FNO was originally introduced in the context of
the Fourier transform, the kernel M is inherently indepen-
dent of graph spectrum, and is thus amenable to generaliza-
tion across other transforms (Tripura & Chakraborty, 2023).
Second, in contrast to vector-valued kernels, the matrix-
valued formulation provides a significantly larger number
of learnable parameters, thereby increasing its expressivity
and capacity to adapt to complex patterns. Experimental
results presented in Section 6.2 empirically demonstrate
that the matrix-valued kernel outperforms its vector-valued
counterpart in the context of filtering wavelet-transformed
signals.

In this paper, we adopt the tensor M for the convolution
kernel. The standard parameter count for M is N × d× d.
This can lead to a substantial number of parameters, es-
pecially for large-scale graphs with high N , increasing
the risk of overfitting. To mitigate this while preserving
model expressivity, we introduce a parameter-sharing strat-
egy across all frequency modes by employing a single MLP.
This approach reduces the number of learnable parame-
ters from N × d × d (tensor) to d × d (matrix). Accord-
ingly, the convolution operation in Eq. (3) simplifies to
M ∗G X = F−1M ◦ F(X) = F−1(MLP(F(X))), where
◦ is the composition between two functions. An alternative
method is presented in AFNO (Guibas et al., 2021), intro-
ducing a similar technique that offers improved efficiency
but with a more intricate design.

3.3. WAVELET-BASED GRAPH CONVOLUTION

Until now, we have elaborated the proposed advancements
on kernel and bases, and now discuss how to integrate these
two aspects. Provided that we have J wavelet {Ψsj}Jj=1 and
one scaling function Φ constructed via the above Chebyshev
decomposition, F : RN×d → RN(J+1)×d in Eq. (3) is the
stack of transforms from each component:

F(H(l)) = TH(l) = ((ΦH(l))⊤||
(Ψs1H

(l))⊤||...||(ΨsJH
(l))⊤)⊤ ∈ RN(J+1)×d,

(8)
where T = (Φ⊤||Ψ⊤

s1 ||...||Ψ
⊤
sJ )

⊤ is the overall trans-
form and || means concatenation, H(l) is the node em-
bedding matrix at layer l. Next, we check if the in-
verse F−1 exists. Considering T is not a square ma-
trix, F−1 should be its pseudo-inverse as (T⊤T )−1T⊤,
where T⊤T = ΦΦ⊤ +

∑J
j=1 ΨsjΨ

⊤
sj = U [h(λ)2 +∑J

j=1 g(sjλ)
2]U⊤. Ideally, if T is imposed as tight

frames, then h(λ)2 +
∑J

j=1 g(sjλ)
2 = I (Leonardi &

Van De Ville, 2013), and T⊤T = UIU⊤ = I . In this case,
F−1 = (T⊤T )−1T⊤ = T⊤, and Eq. (3) becomes:

H(l+1) = T⊤M ◦ TH(l)

= ΦS ◦ ΦH(l) +

J∑
j=1

ΨsjWj ◦ΨsjH
(l) ∈ RN×d,

(9)
where we separate M into S and {W}Jj=0 as scaling kernel
and different wavelet kernels.

How to guarantee tight frames? From above derivations,
tight frames is a key for the simplification of inverse F−1

in Eq. (9). This can be guaranteed by l2 norm on the above
constructed wavelets and scaling function. For each eigen-
value λi ∈ Λ, we have v2i = h(λi)

2 +
∑J

j=1 g(sjλi)
2,

h̃(λi) = h(λi)/v, g̃i(sjλi) = g(sjλi)/v. Then, G(Λ) =

h̃(Λ)2 +
∑

j g̃(sjΛ)2 = I forms tight frames (Section 2).
Thus, while the pseudo-inverse must theoretically exist, we
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Table 1. Comparison between spectral graph convolution and WaveGC.

Spectral Graph Convolution WaveGC
Kernel diag(θλ): Diagonal matrix S / W: Full matrix
Bases U⊤: Fourier basis Φ / Ψs: Scaling / Wavelet basis

Convolution Udiag(θλ)U⊤X ΦS ◦ ΦX / ΨsW ◦ΨsX

can circumvent the necessity of explicitly calculating the
pseudo-inverse.

Resembling the multi-head attention (Vaswani et al., 2017),
we treat each wavelet transform as a “wavelet head”, and
concatenate them rather than sum them to get H(l+1) ∈
RN×d:

H(l+1) = σ
([

ΦS ◦ ΦH(l)||Ψs1W1 ◦Ψs1H
(l)||

. . . ||ΨsJWJ ◦ΨsJH
(l)
]
·W

)
,

(10)

where an outermost MLP increases the flexibility. Fig. 1
(a) presents the whole framework of our wavelet-based
graph convolution, or WaveGC. For a better understand-
ing, we compare spectral graph convolution and WaveGC
in Table. 1, where WaveGC contains only one wavelet for
simplicity. Based on the differences shown in the table,
WaveGC endows spectral graph convolution with the bene-
ficial inductive bias of long-range dependency.

4. Theoretical Properties of WaveGC
Traditionally, wavelet is notable for its diverse receptive
fields because of varying scales (Mallat, 1999). For graph
wavelet, Hammond et al. (2011) were the first to prove the
localization when scale s → 0, but did not discuss the
long-range case when s → ∞. We further augment this dis-
cussion and demonstrate the effectiveness of the proposed
WaveGC in capturing both short- and long-range informa-
tion. Intuitively, a model’s ability to integrate global infor-
mation enables the reception and mixing of messages from
distant nodes. Conversely, a model with a limited recep-
tive field can only effectively mix local messages. Hence,
assessing the degree of information ‘mixing’ becomes a
key property. For this reason, we focus on the concept of
maximal mixing:

Definition 4.1. (Maximal mixing) (Di Giovanni et al.,
2023). For a twice differentiable graph-function yG of node
features xi, the maximal mixing induced by yG among the
features xa and xb with nodes a, b is

mixyG
(a, b) = max

xi

max
1≤α,β≤d

∣∣∣∣∣∂2yG(X)

∂xα
a∂x

β
b

∣∣∣∣∣ . (11)

This definition is established in the context of graph-level
task, and yG is the final output of an end-to-end framework,

comprising the primary model and a readout function (e.g.,
mean, max) applied over the last layer. α and β represent
two entries of the d-dimensional features xa and xb.

Next, we employ the concept of ‘maximal mixing’ on the
WaveGC. For simplicity, we only take one wavelet basis
Ψs for analysis. The capacity of Ψs on mixing information
depends on two factors, i.e. K-order Chebyshev term and
scale s. For a fair discussion on the effect of s on mes-
sage passing, we compare σ(ΨsHW ) and K-order message
passing with the form of σ(

∑K
j=0 τjA

jHW ), τj ∈ [0, 1]:

Theorem 4.2 (Short-range and long-range receptive
fields). Given a large even number K > 0 and two random
nodes a and b, if the depths mΨ and mA are necessary
for σ(ΨsHW ) and σ(

∑K
j=0 τjA

jHW ) to induce the same
amount of mixing mixyG

(b, a), then the lower bounds of
mΨ and mA, i.e. LmΨ

and LmA
, approximately satisfy the

following relation when scale s → 0:

LmΨ
≈ P

K
LmA

+
2|E|

K
√
dadb

mixyG
(b, a)

γ
· 1

(α2s2K)mΨ
.

(12)
Or, if s → ∞, the relation becomes:

LmΨ ≈ P

K
LmA

− 2|E|
K(K + 1)2mAτP 2mA

√
dadb

mixyG
(b, a)

γ
,

(13)
where P < K and (τPA

P )ba = max{(τmAm)ba}Km=0.
da and db are degrees of two nodes, and α = C·2K(K+1)

K! .

γ =
√

dmax

dmin
, where dmax/dmin is the maximum / minimum

degree in the graph.

The proof is provided in Appendix A.3. In Eq. (12), since
the second term on the right-hand side is large (s → 0), it
required Ψs to propagate more layers to mix the nodes.
Conversely, if s → ∞ (Eq. (13)), Ψs will achieve the
same degree of node mixing as K-hop message passing but
with less propagation. Moreover, the greater the ”mixing”
mixyG

(b, a) is required between nodes, the fewer number
of layers LmΨ

is needed compared to LmA
. To conclude,

Ψs presents the short- and long-range characteristics of
WaveGC on message passing, while these characteristics do
not derive from the order K of Chebyshev polynomials but
from the scale s exclusively.
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Table 2. Qualified results on short-range tasks compared to baselines. Bold: Best, Underline: Runner-up, OOM: Out-of-memory. All
results are reproduced based on source codes.

Model
CS Photo Computer CoraFull ogbn-arxiv

Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑
GCN 92.92±0.12 92.70±0.20 89.65±0.52 61.76±0.14 71.74±0.29
GAT 93.61±0.14 93.87±0.11 90.78±0.13 64.47±0.18 71.82±0.23

APPNP 94.49±0.07 94.32±0.14 90.18±0.17 65.16±0.28 71.90±0.25
Scattering 94.77±0.33 92.10±0.61 85.68±0.71 57.65±0.84 66.23±0.19

Scattering GCN 95.18±0.30 93.07±0.42 88.83±0.44 61.14±1.13 71.18±0.76
SGWT 94.81±0.23 92.45±0.62 85.19±0.59 55.04±1.12 69.08±0.30
GWNN 90.75±0.59 94.45±0.45 90.75±0.59 64.19±0.79 71.13±0.47

UFGConvS 95.33±0.27 93.98±0.59 88.68±0.39 61.25±0.93 70.04±0.22
UFGConvR 95.46±0.33 94.34±0.34 89.29±0.46 62.43±0.80 71.97±0.12

WaveShrink-ChebNet 94.90±0.30 93.54±0.90 88.20±0.65 58.98±0.69 OOM
DEFT 95.04±0.32 94.35±0.44 91.63±0.52 68.01±0.86 72.01±0.20

WaveNet 94.91±0.29 94.09±0.63 92.06±0.33 57.65±1.05 71.37±0.14
SEA-GWNN 95.11±0.37 94.35±0.50 89.88±0.64 66.74±0.79 72.64±0.21

WaveGC (ours) 95.89±0.34 95.37±0.44 92.26±0.18 69.14±0.78 73.01±0.18

5. Why do we need decomposition?
As shown in Fig. 1 (b), odd and even terms of Chebyshev
polynomials meet the requirements on constructing wavelet
after decomposition and transform. Additionally, each term
is apt to be obtained according to the iteration formula,
while infinite number of terms guarantee the expressive-
ness of the final composed wavelet. Next, we compare our
decomposition solution with other related techniques:

• Constructing wavelet via Chebyshev polynomials. Previ-
ous wavelet-based GNNs leverage Chebyshev polynomials
with two purposes. (1) Approximate wavelets of pre-defined
forms. SGWT (Hammond et al., 2011), GWNN (Xu et al.,
2019a) and UFGConvS/R (Zheng et al., 2021) follow this
line. They firstly fix the shape of wavelets as cubic spline,
exponential or high-pass/low-pass filters, followed by the
approximation via Chebyshev polynomials. In this pipeline,
wavelet fails to learn further and suit the dataset and task
at hand. (2) Compose a new wavelet. DEFT (Bastos et al.,
2023) employs an MLP or GNN network to freely learn the
coefficients before each Chebyshev basis. These coefficients
are optimized according to the training loss, but loose the
constraint on wavelet admissibility criteria.

• No decomposition. If we uniformly learn the coefficients
for all Chebyshev terms without decomposition, WaveGC
degrades to a variant similar to ChebNet (Defferrard et al.,
2016). However, mixture rather than decomposition blends
the signals from different ranges, and the final spatial ranges
cannot be precisely predicted and controlled.

We provide numerical comparison and spectral visualization
in section 6.3 for WaveGC against these related studies.

6. Numerical Experiments
In this section, we evaluate the performance of WaveGC
on both short-range and long-range benchmarks using the

following datasets: (1) Datasets for short-range tasks: CS,
Photo, Computer and CoraFull from the PyTorch
Geometric (PyG) (Fey & Lenssen, 2019), and one large-size
graph, i.e. ogbn-arxiv from Open Graph Benchmark
(OGB) (Hu et al., 2020) (2) Datasets for long-range tasks:
PascalVOC-SP (VOC), PCQM-Contact (PCQM),
COCO-SP (COCO), Peptides-func (Pf) and
Peptides-struct (Ps) from LRGB (Dwivedi et al.,
2022). Please refer to Appendix C.1 for implementation
details and Appendix C.2 for details of datasets.

6.1. Benchmarking WaveGC
For short-range (S) datasets, we follow the settings
from (Chen et al., 2022). For ogbn-arxiv, we use
the public splits in OGB (Hu et al., 2020). For long-
range datasets, we adhere to the experimental configura-
tions outlined in (Dwivedi et al., 2022). The selected
baselines belong to four categories, i.e., classical GNNs
{GCN (Kipf & Welling, 2017), GAT (Velickovic et al.,
2017), APPNP (Gasteiger et al., 2018), GINE (Xu et al.,
2019b) and GatedGCN (Bresson & Laurent, 2017)}, graph
scattering network {Scattering (Gama et al., 2018) and Scat-
tering GCN (Min et al., 2020)}, spectral graph wavelet
network {SGWT (Hammond et al., 2011), GWNN (Xu
et al., 2019a), UFGConvS (Zheng et al., 2021), UFG-
ConvR (Zheng et al., 2021), WaveShrink (Wan et al., 2023),
DEFT (Bastos et al., 2023) and WaveNet (Yang et al.,
2024)} and wavelet lifting transform {SEA-GWNN (Deb
et al., 2024)} 1. The results of the comparison with SOTA
models are shown in Table 2 and 3, where our WaveGC
demonstrates the best results on all datasets. Remarkably,
the improvement on VOC achieves up to 11.83%, implying
the superior long-range information perception.

In the experiments conducted on the five short-range

1For SGWT and Scattering, we concatenate the filtered signals
from all bases and apply an MLP to get the final embeddings.
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Table 3. Qualified results on long-range tasks compared to baselines. Bold: Best, Underline: Runner-up, OOM: Out-of-memory, All
results are reproduced based on source codes.

Model
VOC PCQM COCO Pf Ps

F1 score ↑ MRR ↑ F1 score ↑ AP ↑ MAE ↓
GCN 12.68±0.60 32.34±0.06 08.41±0.10 59.30±0.23 34.96±0.13
GINE 12.65±0.76 31.80±0.27 13.39±0.44 54.98±0.79 35.47±0.45

GatedGCN 28.73±2.19 32.18±0.11 26.41±0.45 58.64±0.77 34.20±0.13
Scattering 16.58±0.49 33.90±0.27 16.44±0.79 56.80±0.38 26.77±0.11

Scattering GCN 30.45±0.36 33.73±0.45 30.27±0.60 62.87±0.64 26.43±0.20
SGWT 31.22±0.56 34.04±0.05 32.97±0.53 60.23±0.27 25.39±0.21
GWNN 25.60±0.56 32.72±0.08 13.39±0.44 65.47±0.48 27.34±0.04

UFGConvS 31.27±0.39 33.94±0.24 23.15±0.55 65.83±0.75 27.08±0.58
UFGConvR 31.08±0.33 34.08±0.20 26.02±0.48 65.29±0.82 27.50±0.21

WaveShrink-ChebNet 18.80±0.85 32.56±0.11 11.12±0.46 61.12±0.53 27.45±0.06
DEFT 35.98±0.20 34.25±0.06 30.14±0.49 66.95±0.63 25.06±0.13

WaveNet 28.60±0.15 33.19±0.20 23.06±0.18 64.63±0.27 25.88±0.01
SEA-GWNN 31.97±0.55 29.89±0.26 24.33±0.23 68.75±0.20 25.64±0.31

WaveGC (ours) 41.63±0.19 34.50±0.02 35.96±0.22 69.73±0.43 24.83±0.11

datasets, the model is required to prioritize local information,
while the five long-range datasets necessitate the handling
of distant interactions. The results clearly demonstrate that
the proposed WaveGC consistently outperforms traditional
graph convolutions and graph wavelets in effectively aggre-
gating both local and long-range information.

6.2. Effectiveness of matrix-valued kernel

The proposed matrix-valued kernel and weight-sharing strat-
egy mark an advancement over conventional graph convolu-
tion, particularly in the context of processing wavelet-based
signals. In this section, we conduct a comprehensive anal-
ysis of the effectiveness of these two architectural innova-
tions.

As shown in Table 4, the matrix-valued kernel consistently
outperforms its vector-valued counterpart. This improve-
ment suggests that increasing the expressiveness of the ker-
nel—through a higher parameter capacity—enhances the
model’s ability on feature learning.

Table 4. Compare Matrix-valued and Vector-valued kernels.

Kernel Computer (Accuracy ↑) Ps (MAE ↓)
Vector-valued 89.96 25.30
Matrix-valued 92.26 24.83

In addition, Table 5 examines the impact of weight sharing
across spectral frequencies. Assigning distinct kernels to
individual frequencies does not improve performance and,
even results in degradation. This decline is likely due to over-
fitting caused by the large number of parameters introduced
in the non-sharing setup. Specifically, non-sharing kernels
require a mapping from each eigenvalue embedding to a
unique transformation matrix, defined as f : Rd → Rd×d,
which is implemented using a multi-layer perceptron (MLP)
with a weight dimension of Rd×d×d, d is the embedding
dimension. For instance, when d=96 in Ps, this results in

an approximate increase about 876K parameters.

Table 5. Compare sharing and non-sharing kernel weights.

Result (Parameters) Computer (Accuracy ↑) Ps (MAE ↓)
Non-sharing 90.51 (535k) 26.22 (1,410k))

Sharing 92.26 (167k) 24.83 (534k)

6.3. Effectiveness of learnable wavelet bases

In this section, we compare the learnt wavelet bases from
WaveGC with other baselines, including five graph wavelets
(i.e. SGWT (Hammond et al., 2011), UFGConvS/R (Zheng
et al., 2021), DEFT (Bastos et al., 2023), GWNN (Xu et al.,
2019a) and WaveNet (Yang et al., 2024)). We addition-
ally evaluate ChebNet*, a variant of our WaveGC where
the only change is to combine odd and even terms without
decomposition. Therefore, the improvement of WaveGC
over ChebNet* reflects the effectiveness of decoupling op-
eration. The numerical comparison on Computer and
PascalVOC-SP has been shown in Table. 2 and 3, which
demonstrates obvious gains from WaveGC especially on
long-range PascalVOC-SP. The ChebNet* gets 89.85
and 36.45 separately on Computer and PascalVOC-SP,
still inferior to WaveGC. 2

To address the performance gap observed on the VOC
dataset, we provide insights through the spectral visualiza-
tion of various bases in Fig. 2. Upon examination of various
wavelets, those from SGWT and UFGConvS/R meet ad-
missibility criteria with multiple resolutions, but these lines
are not adaptive. DEFT outputs multiple bases with unpre-
dictable shapes, so it is hard to strictly restrain these outputs
as wavelets. GWNN adopts one exponential wavelet base,
omitting information from different ranges as well as not
meeting criteria. WaveNet and ChebNet* blend local and
distant information in spatial space, hampering the deci-

2We explore more differences between ChebNet (Defferrard
et al., 2016) and our WaveGC in Appendix C.4.
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SGWT DEFT GWNN
ChebNet*

(Coulping of WaveGC)

WaveGC

UFGConvS/R WaveNet

Figure 2. The spectral and spatial visualization of different bases on PascalVOC-SP.

sion on the best range. For our WaveGC, Fig. 2 intuitively
demonstrates that the unit wavelet got by our decoupling
of Chebyshev polynomials strictly meets the admissibility
criteria, as Eq. (1), while the corresponding base scaling
function supplements the direct current signals at λ = 0.
After integration of learnable scales, the final wavelets also
meet criteria and adapt to the demand on multiresolution.
The plot of G(λ) = h(λ)2 +

∑3
j=1 g(sjλ)

2 as a black
dashed line (located at 1) confirms the construction of tight
frames via normalization technique. Fig.2 also depicts the
signal distribution over the topology centered on the target
node (the red-filled circle). As the scale sj increases, the
receptive field of the central node expands. Once again, this
visualization intuitively confirms the capability of WaveGC
to aggregate both short- and long-range information simul-
taneously but distinguishingly. More analyses are given in
Appendix C.3.1.

6.4. Ablation study

Table 6. Results of the ablation study. Bold: Best.

Variants Computer Ps

Accuracy ↑ MAE ↓
WaveGC 92.26 24.83

w/o wavelet 89.65 34.20
w/o MPNN 90.89 25.04

w/o h(λ) 90.57 25.12
w/o g(sλ) 90.87 25.09

In this section, we conduct an ablation study of our WaveGC
to assess the effectiveness of each component, and the cor-
responding results are presented in Table 6. The evalu-
ation is conducted on Peptides-struct (long-range)
and Computer (short-range).

Given the hybrid network (Fig. 3), we firstly remove the
MPNN part (i.e., ‘w/o MPNN’) and wavelet part (i.e., ‘w/o
wavelet’), respectively. Both ablations degrade model per-
formances, where ‘w/o wavelet’ decline more. To avoid in-
terference from MPNN part, we base on ‘w/o MPNN’, and

continue to exclude scaling term (i.e., ‘w/o h(λ)’), wavelet
terms (i.e., ‘w/o g(sλ)’) and tight frame constrains (i.e.,
‘w/o tight frame’). Then, both the scaling function basis
h(λ) and wavelet bases g(sλ) are essential components
of our WaveGC. In particular, neglecting h(λ) results in a
larger drop in performance on both short-range and long-
range cases, emphasizing the crucial role of low-frequency
information.

6.5. Complexity analysis

The main complexity of WaveGC is the eigen-
decomposition process, involving O(N3). This is
practical for the small-to-medium graphs used in all
long-range and some short-range benchmarks, where
detailed spectral modeling is critical. To accelerate the
decomposition on large-scale graph (e.g., ogbn-arxiv), we
may adopt randomized SVD (Halko et al., 2009) with
complexity O(N2 logK), where we only pick the top K
eigenvectors.

Table 7. Training and EVD time on short- and long-range datasets.

Short-range CS Photo Computer CoraFull ogbn-arxiv
Training (min) 5.70 0.95 4.87 22.00 36.67

EVD (min) 2.82 0.32 1.44 3.49 21.69

Long-range VOC PCQM COCO Pf Ps
Training (h) 4.02 12.33 45.40 1.88 1.32

EVD (h) 0.05 0.21 0.58 0.02 0.02

Fig. 7 presents a direct comparison of the training time and
EVD time across both short-range and long-range datasets.
As shown, the time required for EVD is consistently lower
than that of training across all datasets, with the difference
being particularly significant in the long-range cases. Fur-
thermore, the EVD operation is performed only once before
training, and it is a prerequisite for most graph wavelet base-
lines. To further reduce complexity, we propose a fully
polynomial-based approximation that removes the need for
EVD, achieving total complexity of O(N). More details are
given in Appendix D.
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Other experiments In Appendix C.5, we analyze the
complexity and report the running time for WaveGC and
other spectral graph wavelets. Our model shows shorter
running times than competitive spectral models while being
significantly more accurate. In Appendix C.6, we test the
sensitivity of two important hyper-parameters.

7. Conclusion
In this study, we proposed a novel graph convolution opera-
tion based on wavelets (WaveGC), establishing its theoreti-
cal capability to capture information at both short and long
ranges through a multi-resolution approach.
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A. Theoretical Proof
Firstly, we give two auxiliary but indispensable lemma and theorem. Let starts from the formula σ(ΨsHW ). In this
equation, we bound the first derivate of non-linear function as |σ′| < cσ, and set ||W || ≤ w, where || · || is the operator
norm. First, we give an upper bound for each entry in Ψs.
Lemma A.1 (Upper bound for graph wavelet). Let Ψ = Ug(Λ)UT . Given a large even number K > 0, then for
∀i, j ∈ V × V , we have:

(Ψs)ij <
(
α(Â)K/2sK

)
ij
, α =

C · 2K(K + 1)

K!
. (14)

The proof is given in Appendix A.1. In this lemma, we assume g is smooth enough at λ = 0. For fair comparison
with traditional K-hop message passing framework σ(

∑K
j=0 τjA

jHW ), we just test the flexibility with the similar form
σ(ΨsHW ). In this case, we derive the depth mΨ necessary for this wavelet basis Ψs to induce the amount of mixing
mixyG

(a, b) between two nodes a and b.
Theorem A.2 (The least depth for mixing). Given commute time τ(a, b) (Lovász, 1993) and number of edges |E|. If Ψs

generates mixing mixyG
(b, a), then the number of layers mΨ satisfies

mΨ ≥ τ(a, b)

2K
+

2|E|
K
√
dadb

[
mixyG

(b, a)

γ(α2s2K)mΨ
− 1

λ1
(γ + |1− λ∗|KmΨ+1)

]
, (15)

where da and db are degrees of two nodes, γ =
√

dmax

dmin
, and |1− λ∗| = max0<n≤N−1 |1− λn| < 1.

The proof is given in Appendix A.2. In the following subsections, we firstly prove these lemma and theorem, and finally
give the complete proof of Theorem 4.2.

A.1. Proof of Lemma A.1 (Upper bound for graph wavelet)

Proof. We aim to investigate the properties of filters Ψsj = Ug(sjλ)U
⊤ to capture both global and local information,

corresponding to the cases sj → 0 and sj → ∞, respectively. In the former case, as sj approaches zero, g(sjλ) tends
towards g(0). For the latter case, the spectral information becomes densely distributed and concentrated near zero. Hence,
the meaningful analysis of g(λ) primarily revolves around λ = 0. Expanding g(λ) using Taylor’s series around λ = 0, we
get:

g(λ) =

K∑
k=0

Ck
λk

k!
+ g(K+1)(λ∗)

λK+1

(K + 1)!
≈

K∑
k=0

Ck
λk

k!
, (16)

where we neglect the high-order remainder term. Next, we have

(Ψ)ij =
(
Ug(Λ)UT

)
ij
=

(
K∑

k=0

Ck
L̂k

k!

)
ij

=

(
K∑

k=0

Ck

k!
(I − Â)k

)
ij

=

(
K∑

k=0

Ck

k!

k∑
p=0

(
k
p

)
(−Â)p

)
ij

<

(
K∑

k=0

Ck

k!

k∑
p=0

(
k
p

)
(Â)p

)
ij

=

(
K∑

k=0

Ck

k!

k∑
p=0

k!

(k − p)!p!
(Â)p

)
ij

=

(
K∑

k=0

Ck

k∑
p=0

(Â)p

(k − p)!p!

)
ij

. (17a)

We introduce a new parameter µ =

(∑K−1
k=0 Ck

∑k
p=0

(ÂAA)p

(k−p)!p!

)
ij(

CK

∑K
p=0

(ÂAA)p

(K−p)!p!

)
ij

, so the above relation becomes:

(Ψ)ij <

(
(µ+ 1)CK

K∑
p=0

(ÂAA)p

(K − p)!p!

)
ij

=

(
C

K∑
p=0

(Â)p

(K − p)!p!

)
ij

, (18)
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A General Graph Spectral Wavelet Convolution via Chebyshev Order Decomposition

where we set C = (µ+ 1)CK . Then, let us explore the expression ϵpij =
(Â)pij

(K−p)!p! . First, we will address the denominator
(K − p)!p!. As p increases, this denominator experiences a sharp decrease followed by a rapid increase. The minimum
value occurs at (K/2)!(K/2)! when p = K/2, assuming K is even. Second, let’s analyze the numerator (Â)pij , which
involves repeated multiplication of Â. According to Theorem 1 in (Li et al., 2018), this repeated multiplication causes (Â)p

to converge to the eigenspaces spanned by the eigenvector D−1/21 of λ = 0, where 1 = (1, 1, . . . , 1) ∈ Rn 3. Then, let us
assume there exists a value p∗ beyond which the change in (Â)p becomes negligible. Given that K is a large even number,
we can infer that K/2 ≫ p∗. Thus, when (K − p)!p! sharply decreases, (Â)p has already approached a stationary state.

Consequently, max ϵpij =
(Â)

K/2
ij

(K/2)!(K/2)! , where the denominator reaches its minimum. Thus, we have

(Ψ)ij <

(
C

K∑
p=0

(Â)p

(K − p)!p!

)
ij

< C(K + 1)

(
(Â)K/2

(K/2)!(K/2)!

)
ij

<

(
C · 2K(K + 1)

K!
(Â)K/2

)
ij

. (19a)

We have 1
(K/2)!(K/2)! <

2K

K! given that

(K/2)!(K/2)! = (
K

2
· K − 2

2
. . .

4

2
· 2
2
)(
K

2
· K − 2

2
. . .

4

2
· 2
2
)

> (
K

2
· K − 2

2
. . .

4

2
· 2
2
)(
K − 1

2
· K − 3

2
. . .

3

2
· 1
2
)

=
K ·K − 1 ·K − 2 ·K − 3 . . . 4 · 3 · 2 · 1

2 · 2 · 2 · 2 . . . 2 · 2 · 2 · 2︸ ︷︷ ︸
K terms

=
K!

2K
.

(20)

With α = C·2K(K+1)
K! and scale s, Eq. (19a) can be finally written as

(Ψs)ij <
(
α(Â)K/2sK

)
ij
. (21)

A.2. Proof of Theorem A.2 (The least depth for mixing)

For this section, we mainly refer to the proof from (Di Giovanni et al., 2023).

Preliminary. For simplicity, we follow (Di Giovanni et al., 2023) to denote some operations utilized in this section. As
stated, we consider the message passing formula σ(ΨsHW ). First, we denote h

(l),α
a as the α-th entry of the embedding

h
(l)
a for node a at the l-th layer. Then, we rewrite the formula as:

h(l),α
a = σ(h̃(l−1),α

a ), 1 ≤ α ≤ d, (22)

where h̃
(l−1),α
a = (ΨsHW )a is the entry α of the pre-activated embedding of node a at layer l. Given nodes a and b, we

denote the following differentiation operations:

∇ah
(l)
b :=

∂h
(l)
b

∂xa
, ∇2

abh
(l)
i :=

∂2h
(l)
i

∂xa∂xb
. (23)

Next, we firstly derive upper bounds on ∇ah
(l)
b , and then on ∇2

abh
(l)
i .

3Simple proof. (Â)p = U(I − Λ)pU⊤ =
∑n

i=0(1 − λi)
pu1u

⊤
1 . Provided only 1 − λ0 = 1 and 1 − λi ∈ (−1, 1) for other

eigenvalues, with p → ∞, only (1− λ0)
p = 1 but (1− λi)

p → 0. Thus, we have (Â)p → u1u
⊤
1 , where u1 = D−1/21

13
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Lemma A.3. Given the message passing formula σ(ΨsHW ), let assume |σ′| ≤ cσ and ||W || ≤ w, where || · || is the
operator norm. For two nodes a and b after l layers of message passing, the following holds:

||∇ah
(l)
b || ≤ (cσw)

l(Bl)ba, (24)

where Bba =
(
α(Â)K/2sK

)
ba

.

Proof. If l = 1 and we fix entries 1 ≤ α, β ≤ d, then we have:

(∇ah
(1)
b )αβ = (diag(σ′(h̃

(0)
b ))(W (1)ΨbaI))αβ . (25)

With Cauchy–Schwarz inequality, we bound the left hand side by

||∇ah
(1)
b || ≤ ||diag(σ′(h̃

(0)
b ))|| · ||W (1)Ψba||

≤ cσwBba.

Next, we turn to a general case where l > 1:

(∇ah
(l)
b )αβ = (diag(σ′(h̃

(l−1)
b )(W

∑
j

Ψbj∇ah
(m−1)
j ))αβ . (27)

Then, we can use the induction step to bound the above equation:

||∇ah
(l)
b || ≤ (cσw)

l|
∑
j0

∑
j1

· · ·
∑
jl−2

Ψbj0Ψj0j1 . . .Ψjl−3jl−2
Ψjl−2a|

≤ (cσw)
l(Bl)ba.

(28)

In Eq. (28), we implicitly use |Ψl
s|ba <

(
α(Â)K/2sK

)l
ba

= Bl
ba. Similar to proof given in Appendix A.1, we can give the

following proof:

|Ψl
s|ba =

∣∣Ug(sΛ)lUT
∣∣
ba

=

∣∣∣∣∣slKCl L̂lK

K!l

∣∣∣∣∣
ba

=

∣∣∣∣slK Cl

K!l
(I − Â)lK

∣∣∣∣
ba

=

∣∣∣∣∣slK Cl

K!l

lK∑
p=0

(
lK
p

)
(−Â)p

∣∣∣∣∣
ba

<

(
slK

Cl

K!l

lK∑
p=0

(
lK
p

)
(Â)p

)
ba

=

(
slK

Cl

K!l

lK∑
p=0

(lK)!

(lK − p)!p!
(Â)p

)
ba

=

(
slK

Cl(lK)!

K!l

lK∑
p=0

(Â)p

(lK − p)!p!

)
ba

<

(
slK

Cl(lK)!

K!l
(lK + 1)

(
(Â)lK/2

(lK/2)!(lK/2)!

))
ba

<

(
slK

Cl(lK)!

K!l
(lK + 1)

2lK

(lK)!
(Â)lK/2

)
ba

=

(
slK

Cl · 2lK(lK + 1)

K!l
(Â)lK/2

)
ba

<

(
slK

Cl · 2lK(K + 1)l

K!l
(Â)lK/2

)
ba

=
(
α(Â)K/2sK

)l
ba

,

(29)

where in the last line, we utilize the relation lK + 1 < (K + 1)l.

Lemma A.4. Given the message passing formula σ(ΨsHW ), let assume |σ′|, |σ′′| ≤ cσ and ||W || ≤ w, where || · || is
operator norm. For nodes i, a and b after l layers of message passing, the following holds:

||∇2
abh

(l)
i || ≤

l−1∑
k=0

∑
j∈V

(cσw)
2l−k−1w(Bl−k)jb(B

k)ij(B
l−k)ja, (30)

where Bba =
(
α(Â)K/2sK

)
ba

.
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Proof. Considering ∇2
abh

(l)
i ∈ Rd×(d×d), we refer to (Di Giovanni et al., 2023) to use the following ordering for indexing

the columns:
∂2h

(l),α
i

∂xβ
b ∂x

γ
a

:= (∇2
abh

(l)
i )α,d(β−1)+γ . (31)

Similar to the proof of Lemma A.3, we firstly focus on m = 1:

(∇2
abh

(1)
i )α,d(β−1)+γ = (diag(σ′′(h̃

(0),α
i ))(W (1)ΨibI)αγ × (W (1)ΨiaI)αβ . (32)

We bound the left-hand side as:
||∇2

abh
(1)
i || ≤ (cσw)(w|Bib||Bia|). (33)

Then, for m > 1:
(∇2

abh
(l)
i )α,d(β−1)+γ

= diag(σ′′(h̃
(l−1),α
i )(W

∑
j

Ψij∇ah
(l−1)
j )× (W

∑
j

Ψij∇bh
(l−1)
j )︸ ︷︷ ︸

R

+ diag(σ′(h̃
(l−1),α
i )(W (m)

∑
j

Ψij∇2
abh

(l−1)
j )︸ ︷︷ ︸

Z

.

(34)

We denote ||∇jh
(l−1)
i || as (Dh(l−1))ij , and ||∇2

abh
(l−1)
i || as (D2h(l−1)

ba)i. To bound R, we deduce as follows:

||R|| ≤ cσ(w
∑
j

Bij ||∇ah
(l−1)
j ||)× (w

∑
j

Bij ||∇bh
(l−1)
j ||)

= cσw(wBDh(l−1))ib(BDh(l−1))ia

≤ cσw(wB(cσw)
l−1Bl−1)ib(B(cσw)

l−1Bl−1)ia (35a)

= (cσw)
2l−1(w(Bl)ib(B

l)ia),

where we utilize the conclusion from Theorem A.3 in (35a). For term Z, we have:

||Z|| ≤ cσw(BD2h(l−1))i

≤ cσw
∑
s

Bis

l−2∑
k=0

∑
j∈V

(cσw)
2l−2−k−1w(Bl−1−k)jb(B

k)sj(B
l−1−k)ja (36a)

=

l−2∑
k=0

∑
j∈V

(cσw)
2l−2−k(Bl−1−k)jb(B

k+1)ij(B
l−1−k)ja

=

l−1∑
k=1

∑
j∈V

(cσw)
2l−1−k(Bl−k)jb(B

k)ij(B
l−k)ja,

where in (36a), we recursively use the Eq. (34). Finally, we finish the proof as:

||∇2
abh

(l)
i || ≤ ||R||+ ||Z||

≤
l−1∑
k=0

∑
j∈V

(cσw)
2l−1−k(Bl−k)jb(B

k)ij(B
l−k)ja.

(37)

With Lemma A.3 and A.4, now we give the following theorem.
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Theorem A.5. Consider the message passing formula σ(ΨsHW ) with mΨ layers, the induced mixing mixyG
(b, a) over the

features of nodes a and b satisfies:

mixyG
(b, a) ≤

mΨ−1∑
l=0

(cσw)
(2mΨ−l−1)

(
w
(
BmΨ−l

)⊤
diag

(
1⊤Bl

)
BmΨ−l

)
ab

, (38)

where Bba =
(
α(Â)K/2sK

)
ba

and 1 ∈ Rn is the vector of ones.

Proof. Here, we define the prediction function yG : N × d → d on G as y(mΨ)
G = Readout(H(mΨ)θ), where Readout

is to gather all nodes embeddings to get the final graph embedding, H(mΨ) is the node embedding matrix after mΨ layers
and θ is the learnable weight for graph-level task. If we set Readout = sum, we derive:

mixyG
(b, a) = max

x
max

1≤β,γ≤d

∣∣∣∣∣∂2yG
(mΨ)(X)

∂xβ
a∂x

γ
b

∣∣∣∣∣
≤
∑
i∈V

∣∣∣∣∣
d∑

α=1

θα
∂2h

(mΨ),α
i

∂xβ
a∂x

γ
b

∣∣∣∣∣
=
∑
i∈V

||(∇2
abh

(mΨ)
i )⊤θ||

≤
∑
i∈V

||∇2
abh

(mΨ)
i || (39a)

≤
mΨ−1∑
k=0

(cσw)
(2mΨ−k−1)

(
w
(
BmΨ−k

)⊤
diag

(
1⊤Bk

)
BmΨ−k

)
ab

, (39b)

where in (39a), we assume the norm ||θ|| ≤ 1. In (39b), we use the results from Lemma A.4. This upper bound still holds if
Readout is chosen as MEAN or MAX (Di Giovanni et al., 2023).

In theorem A.5, we can assume that cσ to be smaller or equal than one, which is satisfied by the majority of current
active functions. Furthermore, considering the normalization (e.g., L2 norm) on W , we assume w < 1. With these two
assumptions, the conclusion of theorem A.5 is rewritten as:

mixyG
(b, a) ≤

mΨ−1∑
l=0

((
BmΨ−l

)⊤
diag

(
1⊤Bl

)
BmΨ−l

)
ab

. (40)

With this new conclusion, we now turn to the proof of Theorem A.2:

Proof. Firstly, diag
(
1⊤Bl

)
i
= (αsK)l(((Â)K/2)l1)i ≤ γ(αsK)l by using (((Â)K/2)l1)i ≤ γ (Di Giovanni et al., 2023).

Then, we find

mΨ−1∑
l=0

((
BmΨ−l

)⊤
diag

(
1⊤Bl

)
BmΨ−l

)
ab

≤ γ

(
mΨ−1∑
l=0

B2(mΨ−l) · (αsK)l

)
ab

< γ

(
mΨ−1∑
l=0

(α(Â)K/2sK)2(mΨ−l) · (αsK)l

)
ab

< γ(αsK)2mΨ

(
mΨ−1∑
l=0

ÂK(mΨ−l)

)
ab

= γ(αsK)2mΨ

(
mΨ∑
l=1

ÂKl

)
ab

.

(41)
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The following proof depends on commute time τ(a, b) (Lovász, 1993), whose the definition is as follows using the spectral
representation of the graph Laplacian (Di Giovanni et al., 2023):

τ(a, b) = 2|E|
N−1∑
n=0

1

λn

(
un(a)√

da
− un(b)√

db

)2

. (42)

Then, we have:(
mΨ∑
l=1

ÂKl

)
ab

≤
KmΨ∑
l=0

(
Âl
)
ab

=

KmΨ∑
l=0

∑
n≥0

(1− λn)
lun(a)un(b)

= (KmΨ + 1)

√
dadb
2|E|

+
∑
n>0

1− (1− λ)KmΨ+1

λn
un(a)un(b) (43a)

= (KmΨ + 1)

√
dadb
2|E|

+
∑
n>0

1

λn
un(a)un(b)−

∑
n>0

(1− λ)KmΨ+1

λn
un(a)un(b).

In Eq. (43a), we use u0(a) =
√

da

2|E| . Then, from the definition of commute time, we can get:

N−1∑
n=1

1

λn
un(a)un(b) =

−τ(a, b)

4|E|
√
dadb +

1

2

∑
n>0

1

λn
(u2

n(a)

√
db
da

+ u2
n(b)

√
da
db

)

≤ −τ(a, b)

4|E|
√
dadb +

1

2λ1

(√
da
db

+

√
db
da

−
√
dadb
|E|

)
,

(44)

where in the last inequation, we utilize the fact that
∑

n>0 u
2
n(a) = 1− u2

0(a) because {un} is a set of orthonormal basis.
Besides, we use λn > λ1,∀n > 1. Next, we derive

−
∑
n>0

(1− λ)KmΨ+1

λn
un(a)un(b) ≤

∑
n>0

|1− λ∗|KmΨ+1

λn
|un(a)un(b)||

≤ |1− λ∗|KmΨ+1

2λ1

∑
n>0

(u2
n(a) + u2

n(b))

≤ |1− λ∗|KmΨ+1

2λ1

(
2− da + db

2|E|

)
,

(45)

where |1− λ∗| = max0<n≤N−1 |1− λn| < 1. Insert derivations (44) and (45) into (43), then gather all above derivations:

mixyG
(b, a) ≤ γ(αsK)2mΨ

{
(KmΨ + 1)

√
dadb
2|E|

− τ(a, b)

4|E|
√
dadb

+
1

2λ1

(√
da
db

+

√
db
da

−
√
dadb
|E|

)
+

|1− λ∗|KmΨ+1

2λ1

(
2− da + db

2|E|

)}

≤ γ(αsK)2mΨ
√

dadb

(
KmΨ

2|E|
− τ(a, b)

4|E|

)
+

γ(αsK)2mΨ

2λ1

(√
da
db

+

√
db
da

)
+

γ(αsK)2mΨ

λ1
|1− λ∗|KmΨ+1.

(46)

In last inequation, we discard
√
dadb

2|E|

[
1− 1

λ1

(
1 + |1−λ∗|KmΨ+1

2

(√
da

db
+
√

db

da

))]
< 0 because λ1 < 1. Then,

mixyG
(b, a)

γ(αsK)2mΨ
√
dadb

≤ KmΨ

2|E|
− τ(a, b)

4|E|
+

1

2λ1

√
dadb

(√
da
db

+

√
db
da

+ 2|1− λ∗|KmΨ+1

)
. (47)
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From (47), we can finally give the lower bound of mΨ as:

mΨ ≥ 2|E|
K

{
τ(a, b)

4|E|
+

mixyG
(b, a)

γ(αsK)2mΨ
√
dadb

− 1

2λ1

√
dadb

(√
da
db

+

√
db
da

+ 2|1− λ∗|KmΨ+1

)}

>
2|E|
K

{
τ(a, b)

4|E|
+

1√
dadb

[
mixyG

(b, a)

γ(αsK)2mΨ
− 1

2λ1

(
2γ + 2|1− λ∗|KmΨ+1

)]}
=

2|E|
K

{
τ(a, b)

4|E|
+

1√
dadb

[
mixyG

(b, a)

γ(α2s2K)mΨ
− 1

λ1

(
γ + |1− λ∗|KmΨ+1

)]}
=

τ(a, b)

2K
+

2|E|
K
√
dadb

[
mixyG

(b, a)

γ(α2s2K)mΨ
− 1

λ1

(
γ + |1− λ∗|KmΨ+1

)]
(48)

A.3. Proof of Theorem 4.2 (Short-range and long-range receptive fields)

Proof. From theorem A.2, we denote LmΨ
= τ(a,b)

2K + 2|E|
K

√
dadb

[
mixyG (b,a)

γ(α2s2K)mΨ
− 1

λ1

(
γ + |1− λ∗|KmΨ+1

)]
. For

K-order message passing σ(
∑K

j=0 τjA
jHW ), τj ∈ [0, 1], we assume that (τPA

P )ba is the maximum among
{(τ0A0)ba, . . . , (τKAK)ba}. According to theorem A.5, we can get the similar conclusion, replacing B with C =
(K + 1)τPA

P . Then, we have the following proof:

Proof. Again, diag
(
1⊤Cl

)
i
= ((K + 1)τP )

l(APl)1)i ≤ γ((K + 1)τP )
l. Then, we have

mA−1∑
l=0

((
CmA−l

)⊤
diag

(
1⊤Cl

)
CmA−l

)
ab

≤ γ

(
mA−1∑
l=0

C2(mA−l) · ((K + 1)τP )
l

)
ab

< γ

(
mA−1∑
l=0

((K + 1)τPA
P )2(mA−l) · ((K + 1)τP )

l

)
ab

< γ((K + 1)τP )
2mA

(
mA−1∑
l=0

Â2P (mA−l)

)
ab

= γ((K + 1)τP )
2mA

(
mA∑
l=1

Â2Pl

)
ab

< γ(
√
(K + 1)τP )

4mA

(
2mA∑
l=1

ÂPl

)
ab

.

(49)

Following the rest proof of LmΨ
, replace {αsK ,mΨ,K} with {

√
(K + 1)τP , 2mA, P}, and get the expression of LmA

:

LmA
=

τ(a, b)

2P
+

2|E|
P
√
dadb

[
mixyG

(b, a)

γ((K + 1)2τP 2)mA
− 1

λ1

(
γ + |1− λ∗|2PmA+1

)]
. (50)

Therefore, we have

LmΨ ≈ P

K
LmA

+
2|E|

K
√
dadb

[
mixyG

(b, a)

γ

(
1

(α2s2K)mΨ
− 1

((K + 1)2τP 2)mA

)]
, (51)

where we ignore |1 − λ∗|KmΨ+1 and |1 − λ∗|2PmA+1. Since |1 − λ∗| < 1 as shown in theorem A.2, therefore |1 −
λ∗|KmΨ+1 − |1− λ∗|2PmA+1 will be very small, especially when mΨ and mA are large. From Eq. (51), when s → ∞, the
relation becomes:

LmΨ
≈ P

K
LmA

− 2|E|
K(K + 1)2mAτP 2mA

√
dadb

mixyG
(b, a)

γ
. (52)
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Or, when s → 0, the relation becomes:

LmΨ ≈ P

K
LmA

+
2|E|

K
√
dadb

mixyG
(b, a)

γ
· 1

(α2s2K)mΨ
. (53)

B. Details of Encoding Eigenvalues
In this paper, we adopt Eigenvalue Encoding (EE) Module (Bo et al., 2023) to encode eigenvalues. EE functions as a
set-to-set spectral filter, enabling interactions between eigenvalues. In EE, both magnitudes and relative differences of all
eigenvalues are leveraged. Specifically, the authors use an eigenvalue encoding function to transform each λ from scalar R1

to a vector Rd:
ρ(λ, 2i) = sin (ϵλ/100002i/d), ρ(λ, 2i+ 1) = cos (ϵλ/100002i/d), (54)

where i is the dimension of the representations and ϵ is a hyper parameter. By encoding in this way, relative frequency shifts
between eigenvalues are captured. Then, the raw representations of eigenvalues are the concatenation between eigenvalues
and corresponding representation vectors:

Zλ = [λ1||ρ(λ1), . . . , λN−1||ρ(λN−1)]
⊤ ∈ RN×d. (55)

To capture the dependencies between eigenvalues, a standard Transformer is used followed by skip-connection and feed
forward network (FFN):

Ẑλ = Transformer(LN(Zλ)) +Zλ ∈ RN×d, Z = FFN(LN(Ẑλ)) + Ẑλ ∈ RN×d, (56)

where LN is the layer normalization. Then, Z is the embedding matrix for eigenvalues, which is injected into the learning of
combination coefficients ã and b̃, and scales s̃.

C. Experimental Details
C.1. Implementation Details

Figure 3. Combing MPNN with WaveGC.

Inspired by (Rampásek et al., 2022), we adopt the hybrid network
architecture as shown in Fig. 3, where the ”WaveGC” block is the pro-
cess shown in Fig. 1 (a). This architecture explicitly involves a parallel
massage passing neural network (MPNN) (e.g., GCN (Kipf & Welling,
2017), GatedGCN (Bresson & Laurent, 2017)) to augment the low-
frequency modeling. Then, these two branches separately go through
skip-connection and normalization, and then sum together followed
by a two-layers MLP, eventually skip-connection and normalization.

We explore the number of truncated terms ρ from 1 to 10 and adjust
the number of scales J from 1 to 5. Additionally, for the pre-defined
vector s controlling the amplitudes of scales, we test each element
in s from 0.1 to 10. The usage of the tight frames constraint is
also a parameter subject to tuning, contingent on the given dataset.
Typically, models iterate through several layers to produce a single
result, thus the parameters of WaveGC may or may not be shared
between different layers. For short-range datasets, we only retain the
first 30% of eigenvalues and their corresponding eigenvectors for efficient eigendecomposition, and set a threshold ℵ and
filter out entries in Φ and Ψsj whose absolute value is lower than ℵ.

For fair comparisons, we randomly run 4 times on long-range datasets (Dwivedi et al., 2022), and 10 times on short-range
datasets (Chen et al., 2022), and report the average results with their standard deviation for all methods. For the sake of
reproducibility, we also report the related parameters in Appendix C.7.
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Table 8. The statistics of the short-range datasets.

Dataset # Graphs # Nodes # Edges # Features # Classes
CS 1 18,333 163,788 6,805 15

Photo 1 7,650 238,163 745 8
Computer 1 13,752 491,722 767 10
CoraFull 1 19,793 126,842 8,710 70

ogbn-arxiv 1 169,343 1,116,243 128 40

C.2. Datasets Description

For short-range datasets, we choose five commonly used CS, Photo, Computer, CoraFull (Fey & Lenssen, 2019)
and ogbn-arxiv (Hu et al., 2020). CS is a network based on co-authorship, with nodes representing authors and edges
symbolizing collaboration between them. In the Photo and Computer networks, nodes stand for items, and edges suggest
that the connected items are often purchased together, forming co-purchase networks. CoraFull is a network focused
on citations, where nodes are papers and edges indicate citation connections between them. ogbn-arxiv is a citation
network among all Computer Science (CS) Arxiv papers, where each node corresponds to an Arxiv paper, and the edges
indicate the citations between papers. The details of these five datasets are summarized in Table 8.

Table 9. The statistics of the long-range datasets.

Dataset # Graphs Avg. # nodes Avg. # edges Prediction level Task Metric
PascalVOC-SP 11,355 479.4 2,710.5 inductive node 21-class classif. F1 score
PCQM-Contact 529,434 30.1 61.0 inductive link link ranking MRR

COCO-SP 123,286 476.9 2,693.7 inductive node 81-class classif. F1 score
Peptides-func 15,535 150.9 307.3 graph 10-task classif. Avg. Precision
Peptides-struct 15,535 150.9 307.3 graph 11-task regression Mean Abs. Error

For long-range tasks, we choose five long-range datasets (Dwivedi et al., 2022), including PascalVOC-SP (VOC),
PCQM-Contact (PCQM), COCO-SP(COCO), Peptides-func (Pf) and Peptides-struct (Ps). These
five datasets are usually used to test the performance on long-range modeling. VOC and COCO datasets are created through
SLIC superpixelization of the Pascal VOC and MS COCO image collections. They are both utilized for node classification,
where each super-pixel node is categorized into a specific object class. PCQM is developed from PCQM4Mv2 (Hu et al.,
2021) and its related 3D molecular structures, focusing on binary link prediction. This involves identifying node pairs
that are in 3D contact but distant in the 2D graph. Both Pf and Ps datasets consist of atomic graphs of peptides sourced
from SATPdb. In the Peptides-func dataset, the task involves multi-label graph classification into 10 distinct peptide
functional classes. Conversely, the Peptides-struct dataset is centered on graph regression to predict 11 different 3D
structural properties of peptides. The details of these five datasets are summarized in Table 9.

C.3. More analyses for section 6.3

In this section, we firstly give a further visualization on short-range dataset and then analyze the impact of the learned scales.

C.3.1. VISUALIZATION ON CORAFULL

To give one more example, we provide additional visualization results on the CoraFull dataset. These results are presented in
Fig. 4, where the learned scaling functions h(λ) and g(λ) meet the specified requirements. The four subfigures in Fig. 4(c)
illustrate that as the scale sj increases, the receptive field of the center node expands. This highlights WaveGC’s capability
to capture both short- and long-range information by adjusting different values of sj . However, one of our strategies for
CoraFull involves considering only 30% of eigenvalues as input. Consequently, the full spectrum is truncated, leaving only
the remaining 30% parts, as depicted in Fig. 5. We give a deeper insight in the behavior of this truncation from both spectral
and spatial perspectives:

• Spectral perspective. As shown in Fig. 5, the wavelet function g(sλ) retains non-trivial amplitudes within the first
30% domain. While g(λ) ≈ 0, the retained spectral range is sufficiently broad to allow the wavelets to operate
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Figure 4. Illustration of the spectral and spatial signals of the
learned function basis and multiple wavelet bases with full spec-
trum.

Figure 5. Illustration of the spectral and spatial signals of the
learned function basis and multiple wavelet bases with partial
spectrum.

effectively. Therefore, even in the truncated setting, both the scaling function h(λ) and wavelet function g(λ) contribute
meaningfully to low-frequency modeling.

• Spatial perspective. In Fig. 5(b), we observe that truncating the spectrum mimics the effect of using a larger wavelet
scale s > 1, which reduces the effective spectral range and increases the spatial receptive field. This effect is visually
confirmed in Fig. 4(c) and 5(c), where the receptive fields become noticeably larger after truncation. Thus, even on
short-range datasets, the wavelet branch captures valuable higher-order information that complements local aggregation
from MPNN. This complementary role is further validated by the performance drop observed in Table 6 when wavelets
are removed.

Overall, spectral truncation does not impair wavelet behavior; instead, it supports effective low-frequency modeling while
also enhancing spatial coverage.

C.3.2. IMPACT OF THE LEARNED SCALES

s=9.48 s=0.72

Peptides-struct Pascal-VOC

Figure 6. Visualizations of receptive fields for Peptides-struct (Ps)
and Pascal-VOC (VOC) at their largest scale s.

Table 10. Comparison of average and max receptive fields of Ps
and VOC.

Peptides-struct Pascal-VOC
Avg. Receptive Field 3.02 0.74
Max Receptive Field 9 3
Avg. Shortest Path 20.89 10.74

We empirically analyze the learned scale values and their impact on receptive fields in Fig. 6. Specifically, we illustrate
the largest learned scales for the Ps and VOC datasets, along with their corresponding receptive field visualizations. The
receptive field is heuristically defined as follows:
Definition 1. (Receptive field.) Given a wavelet Ψ(sλ), node j lies in the receptive field of node i if |Ψ(sλ)[i, j]| >
0.1×max(|Ψ(sλ)|).

Under this criterion, we observe that Ps exhibits larger receptive fields, corresponding to a larger learned scale of 9.48. We
further report the average and maximum receptive field sizes across all nodes in Table 10. The larger receptive fields in Ps
align with its inherently longer average shortest-path distances, thus validating the model’s ability to adaptively adjust to
long-range dependencies. To examine the extreme case of large-scale values, we increase the predefined scale vector s̄ in
Eq. (7) for Peptides-func (Pf) to (10, 100, 1000). This vector determines the upper bound of the learnable scale range. The
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Figure 7. Visualizations of receptive fields for Peptides-func (Pf) at extreme scales.

resulting learned scales and receptive fields are depicted in Figure 3. When s = 9.17, the red node primarily aggregates local
information; in contrast, at s = 988.24, the same node gathers information from a much broader range. This confirms our
theoretical assertion that WaveGC exhibits long-range behavior as s approaches infinity.

C.4. More comparisons between WaveGC and ChebNet

Table 11. More ablations for differences between WaveGC and ChebNet.

Free α̃ Free β̃ Fix s=1 Free s̃ Original
Computer 91.28±0.15 91.19±0.09 91.73±0.02 91.51±0.02 92.26±0.18

Ps 25.08±0.01 25.09±0.12 25.28±0.00 25.15±0.25 24.83±0.11

Obviously, both WaveGC and ChebNet attempt weighted combination of Chebyshev polynomials in different ways. On one
hand, ChebNet learns term coefficients independently, while WaveGC map eigenvectors into coefficients α̃ and β̃. On the
other hand, WaveGC further involve multiple and learnable scales s̃. Finally, we test importance of these differences on the
Computer and Ps. The results are summarized in Table 11, showcasing different variants such as free learning coefficients
(i.e., α̃αα, β̃ββ), adopting single scale s=1, and free learning s̃ss to avoid joint parameterization. Each of these modifications
resulted in degraded performance compared to the original model, demonstrating the improvements our new model offers
over ChebNet.

C.5. Complexity and Running time

Table 12. Comparison on running time per epoch (s).

SGWT GWNN WaveShrink WaveNet DEFT UFGConvS UFGConvR WaveGC
Computer 3.6 0.8 2.7 2.0 1.1 3.1 3.2 1.5

Ps 21.0 30.5 52.0 27.3 23.6 47.3 43.5 23.9

The main contribution of WaveGC is to address long-range interactions in graph convolution, so it inevitably establishes
spatial connections between distant nodes. This results in the same O(N2) complexity as Transformer (Vaswani et al.,
2017). This is the same for all spectral graph wavelets, including SGWT, GWNN, WaveShrink, WaveNet and UFGConvS/R.
A possible solution is to decrease the number of considered frequency modes from N to ν. In this way, the complexity
is reduced to O(ν ·N). We report the running time consumption of WaveGC and other spectral graph wavelets (that is,
SGWT, GWNN, WaveShrink, WaveNet, DEFT, UFGConvS and UFGConvR). The time consumptions for Computer and
Ps are presented in Table 12. According to the table, the running time of WaveGC is in the first level among spectral graph
wavelets.

C.6. Hyper-Parameter Sensitivity Analysis

In WaveGC, two key hyper-parameters, namely ρ and J , play important roles. The parameter ρ governs the number of
truncated terms for both T o

i and T e
i , while J determines the number of scales sj in Eq. (7). In this section, we explore the

sensitivity of ρ and J on the Peptides-struct (Ps) and Computer datasets. The results are visually presented in Fig.8, where
the color depth of each point reflects the corresponding performance (the lighter the color, the better the performance), and

22



A General Graph Spectral Wavelet Convolution via Chebyshev Order Decomposition

the best points are identified with a red star. Observing the results, we note that the optimal value for ρ is 2 for Ps and 7 for
Computer. This discrepancy can be attributed to the substantial difference in the graph sizes between the two datasets, with
Computer exhibiting a significantly larger graph size (refer to Appendix C.2). Consequently, a more intricate filter design is
necessary for the larger dataset. Concerning J , the optimal value is determined to be 3 for both Ps and Computer. A too
small J leads to inadequate coverage of ranges, while an excessively large J results in redundant scales with overlapping
ranges.

(a) Ps: ρ-analysis (b) Computer: ρ-analysis (c) Ps: J-analysis (d) Computer: J-analysis

Figure 8. Analysis of the sensitivities of ρ and J .

C.7. Hyper-parameters Settings

We implement our WaveGC in PyTorch, and list some important parameter values in our model in Table 13. Please note that
for the five long-range datasets, we follow the parameter budget ∼500k (Dwivedi et al., 2022).

Table 13. The values of parameters used in WaveGC (T: True; F: False).

Dataset # parameters ρ J s Tight frames ℵ
CS 495k 3 3 {0.5, 0.5, 0.5} T 0.1

Photo 136k 3 3 {1.0, 1.0, 1.0} T 0.1
Computer 167k 7 3 {10.0, 10.0, 10.0} T 0.1
CoraFull 621k 3 3 {2.0, 2.0, 2.0} T 0.1

ogbn-arxiv 2,354k 3 3 {5.0, 5.0, 5.0} F /
PascalVOC-SP 506k 5 3 {0.5, 1.0, 10.0} T /
PCQM-Contact 508k 5 3 {0.5, 1.0, 5.0} T /

COCO-SP 546k 3 3 {0.5, 1.0, 10.0} T /
Peptides-func 496k 5 3 {10.0, 10.0, 10.0} T /
Peptides-struct 534k 3 3 {10.0, 10.0, 10.0} F /

C.8. Operating Environment

The environment where our code runs is shown as follows:

• Operating system: Linux version 5.11.0-43-generic

• CPU information: Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz

• GPU information: NVIDIA RTX A5000

D. Approximation Strategy for O(N) Complexity
To further reduce complexity, we propose a fully polynomial-based approximation that removes the need for eigendecompo-
sition, achieving total complexity of O(N), on par with graph Fourier-basis-based methods. This is achieved via polynomial
approximation of the wavelet transform using Chebyshev polynomials:
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Figure 9. The scale s can “stretch” or “squeeze” the shape of g(λ)
as g(sλ).
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Figure 10. The illustration of applying “window” over g(sλ).

• Scaling function h(Λ). Since h(Λ) =
∑

biT
o
i (Λ), where T o

i are odd-degree Chebyshev polynomials, we can compute

Φf = Uh(Λ)U⊤f =
∑

biT
o
i (L)f . (57)

This is equivalent to a polynomial operation over the graph Laplacian L, which has O(N) complexity.

• Wavelet Function g(Λ). Similarly, g(Λ) =
∑

aiT
e
i (Λ), where T e

i are even-degree Chebyshev polynomials, gives

Ψf = Ug(Λ)U⊤f =
∑

aiT
e
i (L)f , (58)

which is also polynomial in L with O(N) cost.

• Incorporating scale s. The domain λ ∈ [0, 2] for g(λ) transforms to λ ∈ [0, 2/s] in g(sλ). This raises two scenarios:

– If s < 1: The full spectrum [0,2] is covered, and g(sλ) remains valid as a polynomial (Fig. 9 (2)).

– If s > 1: Only the interval [0,2/s] is valid. The rest of the spectrum [2/s,2] should be suppressed (Fig. 9 (3)). To
handle this, we apply a window function w(λ), where:

w(λ) =

{
1 λ ∈ [0, 2/s]

0 λ ∈ [2/s, 2]

The true scaled wavelet becomes g(sλ) = g(sλ) · w(λ). Both g(sλ) and w(λ) can be approximated using
Chebyshev polynomials, so the entire operation remains within O(N) complexity.

Using this approach, plus without eigenvalue encoding (EE) and tight frame constraint, we no longer require EVD with
the maximum simplification. The resulting model maintains the theoretical structure of WaveGC while gaining substantial
computational benefits.

Table 14. Running time (s) per epoch.

CS Photo Computer
GPRGNN 1.1 0.2 0.4
BernNet 1.5 0.5 1.3
UniFilter 5.7 0.8 1.5

WaveGC simplified 1.4 0.6 1.8

Table 15. Qualified results on three short-range datasets.

Accuracy ↑ CS Photo Computer
GPRGNN 95.13 94.49 90.82
BernNet 95.42 94.67 90.98
UniFilter 95.68 94.34 90.07

WaveGC simplified 95.63 94.90 91.22
WaveGC 95.89 95.37 92.26

To validate this simplified version, we compared its runtime and accuracy with GPRGNN (Chien et al., 2020), BernNet (He
et al., 2021), and UniFilter (Huang et al., 2024) on three short-range datasets. As shown in Table 14, the WaveGC simplified
achieves comparable training time to Fourier-based methods. According to Table 2, it incurs only a small drop in performance
compared with WaveGC, confirming that polynomial approximation remains effective even without EVD.
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E. Related Work
Graph Wavelet Transform. Graph wavelet transform is a generalization of classical wavelet transform (Mallat, 1999) into
graph domain. SGWT (Hammond et al., 2011) defines the computing paradigm on weighted graph via spectral graph theory.
Specifically, it defines scaling operation in time field as the scaling on eigenvalues. The authors also prove the localization
properties of SGWT in the spatial domain in the limit of fine scales. To accelerate the computation on transform, they
additionally present a fast Chebyshev polynomial approximation algorithm. GWNN (Xu et al., 2019a) chooses heat kernel
as the filter to construct the bases. The graph wavelet bases learnt from these methods are not guaranteed as band-pass
filters in λ ∈ [0, 2] and thus violate admissibility condition (Mallat, 1999). UFGCONV (Zheng et al., 2021) defines a
framelet-based graph convolution with Haar-type filters. WaveNet (Yang et al., 2024) relies on Haar wavelets as bases,
and uses the highest-order scaling function to approximate all the other wavelets and scaling functions. WGGP (Opolka
et al., 2022) integrates Gaussian processes with Mexican Hat to represent varying levels of smoothness on the graph. The
above four methods fix the form of the constructed wavelets, extremely limiting the adaptivity to different datasets. In this
paper, our WaveGC constructs band-pass filter and low-pass filter purely depending on the even terms and odd terms of
Chebyshev polynomials. In this case, the admissibility condition is strictly guaranteed, and the constructed graph wavelets
can be arbitrarily complex and flexible with the number of truncated terms increasing. In addition, SEA-GWNN (Deb et al.,
2024) focuses on the second generation of wavelets, or lifting schemes, which is a different topic from ours.

Graph Scattering Transform. The Scattering Transform constructs a hierarchical, tree-like structure by combining a
cascading filter bank (or wavelets), point-wise non-linearity, and a low-pass operator. As introduced by Mallat (Mallat,
2012), this approach guarantees translation invariance and stability to deformations. On one hand, researchers have explored
the application of this technique to graph data. Early efforts, such as those by (Zou & Lerman, 2020), (Gama et al., 2019),
and GS-SVM (Gao et al., 2019), extended the scattering transform into the graph spectral domain. ST-GST (Pan et al., 2020)
defined filtering and wavelets for spatio-temporal graphs, deriving the corresponding scattering process. Meanwhile,(Gama
et al., 2018) employed lazy diffusion(Coifman & Maggioni, 2006) as wavelets to construct graph diffusion scattering,
demonstrating its stability against deformations based on diffusion distance. HDS-GNN (Zhang et al., 2022) enhanced GNNs
by integrating scattering features from a diffusion scattering network layer by layer, while GGSN (Koke & Kutyniok, 2022)
introduced further flexibility to each operation. On the other hand, the computational efficiency of this transform, which
involves a total of

∑L
l=1 J

l filtering operations, poses a significant challenge. To address this, pGST (Ioannidis et al., 2020)
proposed a pruning strategy, retaining only the higher-energy child signals for each parent node. Scattering GCN (Min et al.,
2020) further optimized the process by selectively using more beneficial wavelets, simplifying the scattering computation.

Spectral graph convolution. Traditional studies on spectral graph convolution mainly concentrate on the design of filter
with fixed Fourier bases. One way is to design low-pass filters that smooth signals within neighboring regions. GCN (Kipf
& Welling, 2017) keeps the first two ChebNet (Defferrard et al., 2016) terms with extra tricks, and averages signals between
neighbors. PPNP (Gasteiger et al., 2018) smooths signals in a broader range following PageRank based diffusion. Another
way is to design adaptive filters so work in both homophily and heterophily scenarios. ChebNet (Defferrard et al., 2016)
approximates universe filter functions with learnable coefficients before each Chebyshev term. FAGCN (Bo et al., 2021)
proposes self-gating mechanism to adaptively learn more information beyond low-frequency information in GNNs.

Graph Transformer. Graph Transformer (GT) has attracted considerable attentions on long-range interaction. GT (Dwivedi
& Bresson, 2020) proposes to employ Laplacian eigenvectors as PE with randomly flipping their signs. Graphormer (Ying
et al., 2021) takes the distance of the shortest path between two nodes as spatial encoding, which is involved in attention
calculation as a bias. GraphGPS (Rampásek et al., 2022) provides different choices for PE, consisting of LapPE, RWSE,
SignNet and EquivStableLapPE. SGFormer (Wu et al., 2023) is empowered by a simple attention model that can efficiently
propagate information among arbitrary nodes. Recently, Xing et al. (2024) are the first to reveal the over-globalizing
problem in graph transformer, and propose CoBFormer to improve the GT capacity on local modeling with a theoretical
guarantee.
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