
SR-LIO: LiDAR-Inertial Odometry with Sweep Reconstruction

Zikang Yuan1, Fengtian Lang2, Tianle Xu2 and Xin Yang2

Abstract— This paper proposes a novel LiDAR-Inertial
odometry (LIO), named SR-LIO, based on an error state
iterated Kalman filter (ESIKF) framework. We adapt the sweep
reconstruction method, which segments and reconstructs raw
input sweeps from spinning LiDAR to obtain reconstructed
sweeps with higher frequency. We found that such method
can effectively reduce the time interval for each iterated state
update, improving the state estimation accuracy and enabling
the usage of ESIKF framework for fusing high-frequency IMU
and low-frequency LiDAR. To prevent inaccurate trajectory
caused by multiple distortion correction to a particular point,
we further propose to perform distortion correction for each
segment. Experimental results on four public datasets demon-
strate that our SR-LIO outperforms all existing state-of-the-art
methods on accuracy, and reducing the time interval of iterated
state update via the proposed sweep reconstruction can improve
the accuracy and frequency of estimated states. The source
code of SR-LIO is publicly available for the development of
the community.

I. INTRODUCTION

Three-dimension light detection and ranging (LiDAR)
can directly capture accurate and dense scene structure
information in a large range and thus has become one of
the mainstream sensors in outdoor robots and autonomous
driving fields. An odometry utilizing only 3D LiDAR [1], [6],
[7], [16], [19], [26], [27] has the ability to estimate accurate
pose in most scenarios, and transform the point clouds
collected at different times to a unified coordinate system.
However, there are still two main problems in LiDAR-only
odometry: 1) Most existing LiDAR odometry rely on the
Iterative Closest Point (ICP) algorithm for pose estimation
while an inaccurate initial motion value can largely increase
the time consumption. 2) For scenes without rich geometric
structure information, the commonly used point-to-plane ICP
algorithm usually fails due to lack of sufficiently reliable
constraints for pose estimation. Introducing Inertial Measure-
ment Unit (IMU) as an additional sensor is a promising so-
lution to address the above two problems with little memory
and time consumption.

The tightly-coupled framework also uses IMU measure-
ments to provide motion constraints together with ICP, so
as to achieve accurate and robust state estimation. The
tightly-coupled LIO framework can be mainly categorized

This work was supported by National Natural Science Foundation of
China (62122029, U20B200007).

1Zikang Yuan is with Institute of Artificial Intelligence, Huazhong
University of Science and Technology, Wuhan, 430074, China. (E-mail:
yzk2020@hust.edu.cn)

2Fengtian Lang, Tianle Xu and Xin Yang are with the Electronic Infor-
mation and Communications, Huazhong University of Science and Technol-
ogy, Wuhan, 430074, China. (E-mail: M202372913@hust.edu.cn;
tianlexu@hust.edu.cn; xinyang2014@hust.edu.cn)

Fig. 1. Illustration of sweep reconstruction method, which splits the
original sweep packet into continuous point cloud data segments, and then
re-packages point cloud data streams in a multiplexing way to obtain sweeps
with higher frequency.

into two types: error state iterated Kalman filter (ESIKF)
and optimization. The performance of all these two types
both depends on the time interval of integrating IMU mea-
surements. Specifically, for optimization framework, a long
integration time will lead to a large accumulative error of
pre-integration. For ESIKF framework, a long integration
time will reduce the frequency of state update. In general,
the less accumulative error in the predicted state, the more
accurate and robust result can be estimated. However, the
time interval between two consecutive sweeps of spinning
LiDAR is 100 ms (i.e., 10 Hz), which makes IMU pre-
integration or the predicted state have accumulative error.
In addition, the low sweep rate also results in limited output
frequency. The limited output frequency will cause a delay
in the odometry equal to a full sweep duration [9], and put
an unnecessary upper bound for the odometry bandwidth due
to the Nyquist–Shannon sampling theorem [11], [15].

In this paper, we found that our previous proposed sweep
reconstruction method [25] can reduce the accumulative error
of predicted state by reducing the time interval of IMU
measurements integration for ESIKF based LIO systems, and
in turn achieve more accurate and robust state estimation
results. Specifically, the sweep reconstruction method uses
the characteristics of continuous scanning of spinning LiDAR
to segment and reconstruct raw input sweeps from spinning
LiDAR to obtain reconstructed sweeps with higher frequency
(as shown in Fig. 1). The increased frequency shortens

2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 14-18, 2024. Abu Dhabi, UAE

979-8-3503-7770-5/24/$31.00 ©2024 IEEE 7862

20
24

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

97
9-

8-
35

03
-7

77
0-

5/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IR

O
S5

85
92

.2
02

4.
10

80
23

14

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 22,2025 at 08:23:29 UTC from IEEE Xplore. Restrictions apply.

the time interval between two consecutive sweeps, thus
reduces the time interval of IMU measurements integration
and increasing the frequency of state update. Therefore, the
sweep reconstruction can not only increase the frequency of
output pose, but also improve the accuracy of state estimation
of ESIKF based LIO. In addition, to prevent inaccurate tra-
jectory caused by multiple inconsistent distortion correction
to a particular point, we further propose to perform distortion
correction for each segment, which ensured the accuracy of
estimated trajectory and map.

We integrate the sweep reconstruction method and the
corresponding distortion correction method into our ESIKF
based LIO system to derived our SR-LIO. Experimental
results on four public datasets demonstrate that: 1) our SR-
LIO outperforms all existing state-of-the-art methods on
accuracy and achieves higher pose output frequency; 2)
reducing the time interval of iterated state update via the
proposed sweep reconstruction can improve the accuracy of
estimated states; 3) the distortion correction for segments can
better ensure the accuracy of estimated trajectory.

To summarize, the main contributions of this work are
three folds: 1) We embed the previous proposed sweep
reconstruction method into our newly designed ESIKF based
LIO system and achieve the state-of-the-art accuracy; 2)
For reconstructed sweeps, we proposed an undistort strategy
which performs distortion correction for each segment. 3)
We have released the source code of this work for the
development of the community1.

Although our previous work on the LiDAR-vision system
[25] introduced the concept of sweep reconstruction, the
framework complexity in [25] hindered its real time perfor-
mance when applying sweep reconstruction. Therefore, the
improvement of output frequency by sweep reconstruction in
[25] remain largely theoretical. In contrast, this work adopts
sweep reconstruction method as its cornerstone, developing
a LIO framework from scratch. Throughout the develop-
ment process, we dedicated significant efforts to optimizing
and testing, ensuring it maintains real time performance
even with the inclusion of sweep reconstruction. This work
marks a departure from the theoretical confines of sweep
reconstruction to actualize the dual benefits in both output
frequency and accuracy. In addition, the released code of this
work is noted for its exceptional clarity and reproducibility,
earning it 465 Stars and 64 Forks on github.

The rest of this paper is structured as follows. In Sec. II,
we briefly discuss the relevant literature. Sec. III provides
preliminaries. Then Sec. IV presents details of our system
SR-LIO. Sec. V provides experimental evaluation. Finally,
we conclude the paper in Sec. VI.

II. RELATED WORK

The tightly-coupled framework [4], [12], [13], [17], [21],
[22], [24], [28] uses IMU measurements to provide motion
constraints together with ICP, so as to achieve accurate and

1https://github.com/ZikangYuan/sr lio

robust state estimation. According to the type of LiDAR-
inertial state estimation, the tightly-coupled system can be
further divided into ESIKF based framework [4], [13], [21],
[22] and optimization based framework [12], [17], [24].
LINs [13] firstly fuses 6-axis IMU and 3D LiDAR in an
EKF based framework, where an ESIKF is designed to
correct the estimated state recursively by generating new
feature correspondences in each iteration, and to keep the
system computationally tractable. Based on the mathematical
derivation, Fast-LIO [22] adapts a technique of solving
Kalman gain [18] to avoid the calculation of the high-order
matrix inversion, and in turn greatly reduce the computa-
tional burden. Based on Fast-LIO, Fast-LIO2 [21] proposes
an ikd-tree algorithm [2]. Compared with the original kd-
tree, ikd-tree reduces time cost in building a tree, traversing
a tree, removing elements and other operations. Point-LIO
[9] proposes a point-by-point LIO framework that updates
the state at each LiDAR point measurement, which allows
an extremely high-frequency output. DLIO [4] proposes
to retain a 3-order minimum in state prediction and point
distortion calibration to obtain more accurate pose estimation
result. IG-LIO [5] integrates the generalized-ICP (GICP)
constraints and inertial constraints into a unified estimation
framework. LIO-SAM [17] firstly formulates LIO odometry
as a factor graph. Such formulation allows a multitude of
relative and absolute measurements, including loop closures,
to be incorporated from different sources as factors into the
system. [24] firstly fuses 6-axis IMU and 3D LiDAR in
an optimization based framework. Besides, to obtain more
reliable poses estimation, a rotation-constrained refinement
algorithm is proposed to further align the pose with the
global map. LiLi-OM [12] selects the key-sweeps from solid-
state LiDAR data, and performs multi-key-sweep joint LIO-
optimization. However, when the type of LiDAR changes
from solid-state to spinning, the time interval between two
consecutive key-sweeps becomes longer than 100 ms, then
the error of IMU constraints in LiLi-OM is larger than that
of [24].

III. PRELIMINARY

A. Coordinate Systems

We denote (·)w, (·)l and (·)b as a 3D point in the world
coordinates, the LiDAR coordinates and the IMU coordinates
respectively. The world coordinate is coinciding with (·)b at
the starting position.

We denote the LiDAR coordinates for taking the ith sweep
at time ti as li and the corresponding IMU coordinates
at ti as bi, then the transformation matrix (i.e., external
parameters) from li to bi is denoted as Tbi

li
∈ SE(3),

which consists of a rotation matrix Rbi
li

∈ SO(3) and a
translation vector tbili ∈ R3. The external parameters are
usually calibrated once offline and remain constant during
online pose estimation. Therefore, we can represent Tbi

li
using Tb

l for simplicity. The pose from the IMU coordinate
(·)bi to the world coordinate (·)w is strictly defined as Tw

bi
.

7863

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 22,2025 at 08:23:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Overview of our SR-LIO which consists of four main modules:
a cloud processing module, a static initialization module, an ESIKF based
State Estimation module and a map update module.

In addition to pose, we also estimate the velocity v, the
accelerometer bias ba, the gyroscope bias bω and the gravi-
tational acceleration gw, which are represented uniformly by
a state vector:

x =
[
tT ,qT ,vT ,ba

T ,bω
T ,gwT

]T
(1)

where q is the quaternion form of the rotation matrix R.

B. IMU Measurement Model

An IMU consists of an accelerometer and a gyroscope.
The raw accelerometer and gyroscope measurements from
IMU, ât and ω̂t, are given by:

ât = at + bat +Rt
wg

w + na

ω̂t = ωt + bωt + nω

(2)

IMU measurements, which are measured in the IMU coor-
dinates, combine the force for countering gravity and the
platform dynamics, and are affected by acceleration bias
bat

, gyroscope bias bωt
, and additive noise. As mentioned

in VINs-Mono [14], the additive noise in acceleration and
gyroscope measurements can be modeled as Gaussian white
noise, na ∼ N

(
0,σ2

a

)
, nω ∼ N

(
0,σ2

ω

)
. Acceleration bias

and gyroscope bias are modeled as random walk, whose
derivatives are Gaussian, ḃat

= nba ∼ N
(
0,σ2

ba

)
, ḃωt

=
nbω ∼ N

(
0,σ2

bω

)
.

IV. OUR SYSTEM SR-LIO

A. Overview

Fig. 2 illustrates the framework of our SR-LIO which
consists of four main modules: cloud processing, static
initialization, ESIKF based state estimation and map update.
The cloud processing module down-samples the 10 Hz input
sweep, then segments and reconstructs the 10 Hz down-
sampled sweep to obtain a reconstructed sweep at 20 Hz. The
static initialization module utilizes the IMU measurements

to estimate some state parameters such as gravitational
acceleration, accelerometer bias, gyroscope bias, and initial
velocity. The ESIKF based state estimation module perform
state estimation in real time, where the frequency of state
update is equal to the frequency of reconstructed sweep.
Finally, we add the point clouds to the map and delete the
point clouds that are far away. For map management, we
utilized the Hash voxel map, which is the same as CT-ICP
[6].

B. Cloud Processing
1) Down-Sampling: Due to huge number of 3D point

clouds to be processed, the computational burden of the
whole system is heavy. In order to reduce the computational
burden, we down-sample the input point clouds (i.e., Sj and
Sj+1 in Fig. 1). Firstly, we perform the quantitative down-
sampling strategy, which keeps only one out of every four
points. Then, we put the quantitative down-sampled points
into a volume with 0.5× 0.5× 0.5 (unit: m) voxel size, and
make each voxel contain only one point, which is the same
as CT-ICP [6].

2) Sweep Reconstruction: Sweep reconstruction aims to
derive a 20 Hz reconstructed sweep P from the 10 Hz origi-
nal input point cloud S. In theory, sweep reconstruction can
increase the 10 Hz input sweep to any frequency. However,
we only derive 2X reconstruction to ensure the state esti-
mation module can handle reconstructed sweep in real time.
Fig. 1 illustrates the core idea of sweep reconstruction, which
is proposed in our previous work [25]. Given the last sweep
Sj which begins at tj−1 and ends at tj , and the current
input sweep Sj+1 which begins at tj and ends at tj+1, we
assume the lengths of time intervals [tj−1, tj] and [tj , tj+1]
are both 100 ms. Based on the characteristics of continuous
acquisition over a period of time of LiDAR, we can split
the original sweep packet into continuous point cloud data
streams, and then re-package point cloud data streams in a
multiplexing way to obtain sweeps with higher frequency.
Specifically, we first calculate two equal points of the time
interval [tj−1, tj] and [tj , tj+1] (i.e., tαj and tαj+1), and put
all time stamps in a set:

T =
{
tj−1, tαj

, tj , tαj+1
, tj+1

}
(3)

Then we take each element of T (i.e., T [k]) as the begin
time stamp and take T [k + 2] as the end time stamp. We re-
packet the point cloud data streams during [T [k] , T [k + 2]]
to obtain the reconstructed sweep. For instance, we packet
the point cloud data streams during

[
tαj

, tαj+1

]
to obtain

the reconstructed sweep Pi. By this way, the original sweeps
Sj+1 can be re-packed to obtain two reconstructed sweeps
(e.g., Pi and Pi+1). Although the duration of Pi is still
100 ms, the time interval between two reconstructed sweeps
(e.g., Pi and Pi+1) decreases from 100 ms to 50 ms. There-
fore, the sweep reconstruction can increase the frequency of
sweep from 10 Hz to 20 Hz.

C. Static Initialization
We adopt static initialization [8] in our system to estimate

some necessary variables including initial velocity, gravita-

7864

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 22,2025 at 08:23:29 UTC from IEEE Xplore. Restrictions apply.

tional acceleration, accelerometer bias and gyroscope bias.
Please refer to [8] for more details.

D. ESIKF based State Estimation

The same as Fast-LIO [22], we utilize the error state
iterated Kalman filter (ESIKF) to perform state estimation.
We set the error state

δx = [δt, δθ, δv, δba, δbω, δg]
T (4)

as the state variable of the filter to derive the prediction and
update formula. It is necessary to note that δθ ∈ so(3),
which is the Lie algebra of rotation. δt, δv, δba, δbω ∈ R3,
δg ∈ S2 due to the fixed length of gravitational acceleration.
The estimated error state would be added to the optimal state
(Eq. 1) during each iteration of state update.

1) State Prediction: The state prediction is performed
once receiving an IMU input (i.e., ω̂n+1 and ân+1), while the
optimal state xw

n+1 (i.e., twn+1, Rw
n+1, vw

n+1, ban+1
, bωn+1

,
gw
n+1) is calculated by:

Rw
n+1 = Rw

nExp

((
ω̂n + ω̂n+1

2
− bωn

)
∆t

)
vw
n+1 = vw

n +Rw
n

(
ân + ân+1

2
− ban −Rn

wg
w
n

)
∆t

twn+1 = twn + vw
n∆t+

1

2
Rw

n

(
ân + ân+1

2
− ban

−Rn
wg

w
n

)
∆t2

ban+1
= ban

,bωn+1
= bωn

,gw
n+1 = gw

n

(5)

The error state δxn+1 and covariance Pn+1 is propagated
as:

δxn+1 = Fxδxn

Pn+1 = FxPnFx
T + FwQFw

T (6)

where Q is the diagonal covariance matrix of noise (σ2
a, σ2

ω ,
σ2

ba
, σ2

bω
). ∆t is the time interval between two consecutive

IMU measurements. Fx is expressed as:

Fx =

I 0 I∆t 0 0 0
0 f11 0 0 −I∆t 0
0 f21 I −Rn

w∆t 0 f25
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 f55

 (7)

f11 = I−
(
ω̂n + ω̂n+1

2
− bωn

)∧

∆t (8)

f21 = −Rn
w

(
ân + ân+1

2
− ban

)∧

∆t (9)

f25 = gw∧

n B (gw
n)∆t (10)

f55 = − 1

∥gw
n ∥

2B (gw
n)

T
gw∧
n gw∧

n B (gw
n) (11)

B(g) =

 1− g2
x

1+gz
− gxgy

1+gz

− gxgy

1+gz
1− gy

2

1+gz

−gx −gy

 (12)

Fig. 3. Illustration of distortion correction. We perform distortion correction
for each segment, but not an entire reconstructed sweep. This strategy makes
the specific point to be undistorted only once, to ensure the accuracy of
estimated trajectory.

where (·) indicates normalization for a specific element and
(·)∧ indicates the skew symmetric matrix corresponding to
a vector. Fw is expressed as:

Fw =

0 0 0 0
0 −I∆t 0 0

−Rn
w∆t 0 0 0
0 0 −I∆t 0
0 0 0 −I∆t
0 0 0 0

 (13)

It is not difficult to see from Eq. 6 that: the uncertainty
(expressed by covariance P) of the predicted state increases
with the increase of IMU measurements being integrated.
Therefore, the longer time interval between two state update
is, the larger accumulative error exists in the predicted state.

2) Distortion Correction: There are two options to per-
form distortion correction: 1) Performing distortion correc-
tion for each reconstructed sweep; 2) Performing distortion
correction for each segment. The option 1) causes the point
cloud in a specific period to be undistorted multi times. Since
the pose used for each distortion correction are different, for
a specific point, the coordinate in (·)w after two corrections
will not be the same. This problem would result in the
inaccuracy of estimated trajectory. To solve this problem, we
propose to perform distortion correction for each segment,
but not an entire sweep (as shown in Fig. 3). Specifically,
for each segment (e.g., C2

j+1), we transform the point (e.g.,
p ∈ C2

j+1) to (·)w according to IMU-integrated pose or
the uniform motion model. After obtaining the reconstructed
sweep Pi+1, we transform all points belong to it from (·)w
to (·)li+1 to finish the distortion correction.

3) State Update: When every new reconstructed sweep
Pi+1 completes, we iteratively perform the following steps
for state update.

Step1. Point-to-plane residuals computation. During
each iteration, we firstly build the point-to-plane residuals.
Specifically, for a undistorted point pk ∈ Pi+1 (1 ≤ k ≤ m),
we first project pk to the world coordinate to obtain pk

w, and
then find 20 nearest points around pk

w from the volume. To

7865

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 22,2025 at 08:23:29 UTC from IEEE Xplore. Restrictions apply.

search for the nearest neighbor of pk
w, we only search in the

voxel V to which pk
w belongs, and the 8 voxels adjacent to

V . The 20 nearest points are used to fit a plane with a normal
n and a distance d. Accordingly, we can build the point-to-
plane residual rpk for pk as the observation constraint:

rpk = ωp

(
nTpk

w + d
)

pk
w = Rw

bi+1
pk + twbi+1

(14)

where ωp is a weight parameter utilized in [6], Rw
bi+1

is
the rotation from (·)bi+1 to (·)w at ti+1. We can express the
observation matrix h as:

h =
[
rp1T , rp2T , · · · , rpmT

]T
(15)

The corresponding Jacobian matrix of observation constraint
H is calculated as:

H =

[
∂rp1

∂xi+1

T

,
∂rp2

∂xi+1

T

, · · · , ∂r
pT

m

∂xi+1

T]T

∂rpk

∂xi+1

T

=
[
ωpn

T −ωpn
TRw

bi+1
pk

∧ 0 0 0 0
]T

(16)
The corresponding covariance matrix of observation con-
straint V is the diagonal matrix of (V1, V2, · · · , Vm), while
Vk = 0.001 in our system.

Step2. Incremental computation. We define the optimal
state calculated from state prediction as xw

bi+1

∣∣∣
0
, and define

the optimal state before current iteration as xw
bi+1

∣∣∣
n

. Ac-
cording to the formula of state update, the incremental δx is
calculated as:

K =

(
HTV−1H+

(
J0
nPJ0

n
T
)−1

)−1

HTV−1

δx = −Kh− (I−KH)J0
n

(
xw
bi+1

∣∣∣
n
⊟ xw

bi+1

∣∣∣
0

) (17)

where J0
n is the partial differentiation of(

xw
bi+1

|n ⊞ δx
)
⊟ xw

bi+1

∣∣∣
0

with respect to δx evaluated at
zero:

J0
n =

I3×3 03×3 03×9 03×2

03×3 I− 1
2δθ

0
n 03×9 03×2

09×3 09×3 I9×9 09×2

02×3 02×3 02×9 J0
gn

 (18)

J0
gn

= I+
1

2
B
(
gw
i+1

∣∣
0

)T
δθgw

i+1

∧B
(
gw
i+1

∣∣
0

)
(19)

δθ0
n = Log

(
Rw

bi+1

∣∣∣
0

T

Rw
bi+1

∣∣∣
n

)
, δθgw

i+1
is the Lie algebra

of rotation from gw
i+1

∣∣
n

to gw
i+1

∣∣
0
.

The definition of ⊟: For the variable of type a,b ∈ R3,
a ⊟ b = a − b. For the variable of type R1,R2 ∈ SO(3),
R1⊟R2 = Log(R2

TR1). For the variable of type g1,g2 ∈
R3, δg ∈ S2, δg = g1 ⊟ g2 = B(g2)

T
δθg, where θg is the

Lie algebra of rotation from g1 to g2.
The definition of ⊞: For the variable of type a,b ∈ R3,

a ⊞ b = a + b. For the variable of type R ∈ SO(3) and

TABLE I
DATASETS FOR EVALUATION

Velodyne LiDAR IMU
Type Rate Type Rate

nclt 32 7.5 9-axis 100 Hz
utbm 32 10 6-axis 100 Hz
ulhk 32 10 9-axis 100 Hz
kaist 16 10 9-axis 200 Hz

θ ∈ so(3), R ⊞ θ = RExp(θ). For the variable of type
g1,g2 ∈ R3, δg ∈ S2, g2 = g1 ⊞ δg = Exp(B(g1)δg)g1.

After the incremental δx is calculated, we update the
optimal state by:

xw
bi+1

∣∣∣
n+1

= xw
bi+1

∣∣∣
n
⊞ δx (20)

Step1 and Step2 are performed alternately until one of the
following convergence conditions is met: 1) The maximum
number of iterations (e.g., 6) was reached. 2) The magnitude
of incremental is smaller than a threshold (e.g., 0.1 degree for
rotation and 0.01 m for translation). After convergence, the
covariance is updated as:

P = J0
n+1(I−KH)PJ0

n+1
T

(21)

E. Map Update

Following CT-ICP [6], the cloud map is stored in a
volume. The size of each voxel is 1.0×1.0×1.0 (unit: m) and
each voxel contains a maximum of 20 points. When the state
of current down-sampled sweep Pi+1 has been estimated,
we transform Pi+1 to the world coordinate system (·)w, and
add the transformed points into the volume map. If a voxel
already has 20 points, the new points cannot be added to
it. Meanwhile, we delete the points that are far away from
current position.

V. EXPERIMENTS

We evaluated our SR-LIO on four public datasets nclt [3],
utbm [23], ulhk [20] and kaist [10]. nclt is a large-scale,
long-term autonomous unmanned ground vehicle dataset
collected in the University of Michigans North Campus. The
nclt dataset contains a full data stream from a Velodyne
HDL-32E LiDAR and 50 Hz data from Microstrain MS25
IMU. Different from the other three datasets (i.e., utbm,
ulhk and kaist), the LiDAR of nclt takes 130∼140 ms to
complete a 360 deg sweep (i.e., the frequency of a sweep
is about 7.5 Hz). In addition, at the end of some sequences
of nclt, the Segway vehicle platform enters a long indoor
corridor through a door from the outdoor scene, yielding
significant scene changes. This large differences in scenes
produce great difficulties for ICP point cloud registration, and
hence almost all systems would break down here. Therefore,
we omit the test for these cases which usually locate at the
end of the sequences. In addition, 50 Hz IMU measurements
cannot meet the requirements of some systems (e.g., LIO-
SAM [17]). Therefore, we increase the frequency of the IMU
to 100 Hz by interpolation.

The utbm dataset contains two 10 Hz Velodyne HDL-32E
and 100 Hz Xsens MTi-28A53G25 IMU. For point clouds,

7866

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 22,2025 at 08:23:29 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DATASETS OF ALL SEQUENCES FOR EVALUATION

Name Duration
(min:sec)

Distance
(km)

nclt 1 2012-01-08 92:16 6.4
nclt 2 2012-02-02 98:37 6.5
nclt 3 2012-02-04 77:39 5.5
nclt 4 2012-02-05 93:40 6.5
nclt 5 2012-05-11 83:36 6.0
nclt 6 2012-05-26 97:23 6.3
nclt 7 2012-06-15 55:10 4.1
nclt 8 2012-08-04 79:27 5.5
nclt 9 2012-08-20 88:44 6.0
nclt 10 2012-09-28 76:40 5.6
nclt 11 2012-12-01 75:50 5.0
utbm 1 2018-07-19 15:26 4.98
utbm 2 2019-01-31 16:00 6.40
utbm 3 2019-04-18 11:59 5.11
utbm 4 2018-07-20 16:45 4.99
utbm 5 2018-07-13 16:59 5.03
ulhk 1 2019-01-17 5:18 0.60
ulhk 2 2019-04-26-1 2:30 0.55
kaist 1 urban 07 9:16 2.55
kaist 2 urban 08 5.07 1.56
kaist 3 urban 13 24.14 2.36

we only utilize the data from the left LiDAR. The ulhk
dataset contains 10 Hz LiDAR sweep from Velodyne HDL-
32E LiDAR and 100 Hz IMU data from the 9-axis Xsens
MTi-10 IMU. kaist contains two 10 Hz Velodyne VLP-16,
200 Hz Ssens MTi-300 IMU. Two 3D LiDARs are tilted by
approximately 45◦. For point clouds, we utilize the data
from both two 3D LiDARs. All the sequences of utbm,
ulhk and kaist are collected in structured urban areas by a
human-driving vehicle. The datasets’ information, including
the sensors’ type and data rate, are illustrated in Table I.
Details of all the 21 sequences used in this section, including
name, duration, and distance, are listed in Table II. For
all four datasets, we utilize the absolute translational error
(ATE) as the evaluation metrics. A consumer-level computer
equipped with an Intel Core i7-12700 and 32 GB RAM is
used for all experiments.

A. Comparison of the State-of-the-Arts

We compare our SR-LIO with six state-of-the-art LIO
systems, i.e., LiLi-OM [12], LIO-SAM [17], Fast-LIO2
[21], DLIO [4], IG-LIO [5] and Point-LIO [9]. For a fair
comparison, we obtain the results of the above systems based
on the source code provided by the authors.

Results in Table III demonstrate that our SR-LIO outper-
forms state-of-the-arts for more than half sequences in terms
of smaller ATE. Although IG-LIO achieves comparable
results to our system on nclt dataset, it shows poor accuracy
and robustness on utbm and kaist dataset. In addition,
although our accuracy is not the best on nclt 2, nclt 3,
ulhk 2 and kaist 1, we are very close to the best accuracy. “-
” means the corresponding value is not available. LIO-SAM
needs 9-axis IMU data as input, while the utbm dataset only
provides 6-axis IMU data. Therefore, we cannot provide the
results of LIO-SAM on the utbm dataset. “×” means the
system fails to run entirety on the corresponding sequence.

TABLE III
RMSE OF ATE COMPARISON OF STATE-OF-THE-ART (UNIT: M)

LiLi-
OM

LIO-
SAM

Fast-
LIO2 DLIO IG-

LIO
Point-
LIO Ours

nclt 1 50.71 1.85 3.57 3.27 1.85 2.55 1.34
nclt 2 91.86 7.18 2.00 1.80 1.72 2.45 1.80
nclt 3 92.93 2.16 2.77 5.35 2.92 5.31 2.37
nclt 4 215.91 2.70 3.60 18.10 1.56 1.73 1.91
nclt 5 185.24 × 2.46 3.14 1.84 11.24 1.62
nclt 6 141.83 × 2.60 12.44 2.12 14.89 2.10
nclt 7 50.42 2.97 2.37 2.98 1.82 4.39 2.13
nclt 8 137.05 2.26 2.59 7.84 2.40 16.28 2.70
nclt 9 224.68 10.68 4.01 2.46 1.68 10.59 2.11
nclt 10 × × 2.65 7.72 1.72 16.22 1.67
nclt 11 × × 4.37 3.89 1.89 10.78 1.61
utbm 1 67.16 - 15.13 14.25 17.37 22.71 7.70
utbm 2 38.17 - 21.21 13.85 21.27 23.02 16.28
utbm 3 10.70 - 10.81 55.28 13.75 13.81 8.42
utbm 4 70.98 - 15.20 18.05 16.44 21.76 11.12
utbm 5 62.57 - 13.24 14.95 × 19.88 9.14
ulhk 1 × 1.68 1.20 2.44 1.15 1.07 1.02
ulhk 2 3.11 3.13 3.24 × 3.31 2.82 3.21
kaist 1 × 16.96 0.88 1.04 61.20 0.75 1.10
kaist 2 × × 16.27 1.91 3.01 1.08 0.92
kaist 3 × × × × × 3.04 1.36
Denotations: “×” means the system fails to run entirety on the
corresponding sequence, and “-” means the corresponding value is
not available.

TABLE IV
OUTPUT POSE FREQUENCY COMPARISON

LiLi-
OM

LIO-
SAM LINs Fast-

LIO2
IG-
LIO Ours

nclt 7.5 7.5 7.5 7.5 7.5 15
utbm 10 10 10 10 10 20
ulhk 10 10 10 10 10 20
kaist 10 10 10 10 10 20

Except for our system and Point-LIO, other systems break
down on several sequences, which also demonstrate the
robustness of our system.

Results in Table IV demonstrate that our sweep recon-
struction method can provide higher-frequency sweep than
existing state-of-the-arts except Point-LIO. Limited by the
frequency of LiDAR scan (e.g., 10 Hz), the frequency of
iterated state update can only be performed at a maximum
frequency of 10 Hz. Even if the power of computing re-
sources (e.g., CPU) is assumed to be infinite, the iterated
state update cannot be performed at higher than 10 Hz.
However, with the assistance of our sweep reconstruction, the
frequency of LiDAR sweep can be increased to an arbitrary
value theoretically. In this work, we increase the frequency
of LiDAR sweep from 10 Hz to 20 Hz. Benefit from the very
low computational overhead of the framework, our system
can still run in real time with 20 Hz reconstructed sweeps.

B. Ablation Study of Sweep Reconstruction

We examine the impact of sweep reconstruction on pose
estimation accuracy by comparing the ATE result with vs.
without sweep reconstruction. Without using the proposed
sweep reconstruction, the system takes 10 Hz raw input
to perform state update at 10 Hz. In addition, all other
configuration parameters are unchanged.

7867

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 22,2025 at 08:23:29 UTC from IEEE Xplore. Restrictions apply.

TABLE V
ABLATION STUDY OF SWEEP RECONSTRUCTION ON RMSE OF ATE

(UNIT: M)

Ours w/o sweep
reconstruction

Ours

nclt 1 1.40 1.34
nclt 2 1.94 1.80
nclt 3 5.25 2.37
nclt 4 × 1.91
nclt 5 × 1.62
nclt 6 2.24 2.10
nclt 7 2.23 2.13
nclt 8 × 2.70
nclt 9 4.00 2.11
nclt 10 1.97 1.67
nclt 11 1.85 1.61
utbm 1 10.74 7.70
utbm 2 16.98 16.28
utbm 3 9.94 8.42
utbm 4 11.35 11.12
utbm 5 10.04 9.14
ulhk 1 1.02 1.02
ulhk 2 3.36 3.21
kaist 1 1.14 1.10
kaist 2 0.95 0.92
kaist 3 1.56 1.36

Denotations: “×” means the system fails to run entirety on the
corresponding sequence.

Fig. 4. The comparison of partial trajectory of utbm 1 with (a) distortion
correction for each segment and (b) distortion correction for the recon-
structed sweep directly.

Results in Table V demonstrate that increasing the fre-
quency of state update by increasing sweep frequency can
improve the accuracy and robustness of ESIKF framework.

C. Ablation Study of Distortion Correction

As illustrated in Sec. IV-D.2, the proposed distortion
correction for each segment can prevent inaccurate trajectory
caused by multiple inconsistent distortion correction to a
particular point. Therefore, we evaluate the effectiveness of
this distortion correction method in this section. As shown
in Fig. 4, (a) is the partial trajectory of exemplar sequence
utbm 1 with distortion correction for each segment, (b) is
the partial trajectory of exemplar sequence utbm 1 with
distortion correction for the reconstructed sweep directly.
Only partial trajectories are compared because drift occurs
halfway through case (b). The comparison result illustrates
that the proposed distortion correction method for each seg-
ment significantly enhance the undistortion of LiDAR points,

TABLE VI
ABLATION STUDY OF DISTORTION CORRECTION ON RMSE OF ATE

(UNIT: M)

distortion correction
for each segment

distortion correction
for the reconstructed sweep

nclt 1* 1.25 39.37
nclt 2 1.80 3.75
nclt 3 2.37 10.14
nclt 4* 1.79 4.12
nclt 5* 1.62 2.71
nclt 6 2.10 2.21
nclt 7 2.13 2.20
nclt 8* 2.57 131.45
nclt 9 2.11 2.76
nclt 10 1.67 39.31
nclt 11 1.61 7.82
utbm 1* 5.19 24.12
utbm 2* 6.12 13.65
utbm 3 8.42 63.05
utbm 4 11.12 30.13
utbm 5 9.14 11.86
ulhk 1 1.02 1.62
ulhk 2 3.21 3.09
kaist 1 1.10 1.19
kaist 2 0.92 0.96
kaist 3 1.36 2.36

Denotations: “*” means the system fails to run entirety with dis-
tortion correction of the reconstructed sweep on the corresponding
sequence, and we compare the ATE results for only a portion of
the trajectory for these cases.

leading to more accurate trajectory. Table VI showcases the
numerical results across all sequences. Noting that certain se-
quences were unable to finish complete processing due to the
distortion correction of the reconstructed sweep (indicated
by “*”). Therefore, we have focused on comparing the ATE
results for only a portion of the trajectory for these cases. The
results in Table VI demonstrate that the proposed distortion
correction for each segment can effectively address the issue
of inconsistent distortion arising from sweep reconstruction,
thereby ensuring improved accuracy and robustness of the
system.

D. Time Consumption

We evaluate the runtime breakdown (unit: ms) of our sys-
tem for all sequences. In general, the most time-consuming
modules are (1) sweep segmentation, (2) sweep reconstruc-
tion with distortion correction for each segment, (3) ESIKF
based state estimation and (4) map update. Therefore, for
each sequence, we test the time cost of above four modules,
and the total time for handling a sweep.

Results in Table VII show that our SR-LIO takes
20∼30 ms to handle a reconstructed sweep, while the time
interval of two consecutive reconstructed sweep is 65 ms on
nclt dataset, and 50 ms on utbm, ulhk, kaist dataset. That
means our system can not only run in real time, but also
save 20∼45 ms per reconstructed sweep.

VI. CONCLUSION

This paper utilizes the previous proposed sweep recon-
struction method [25] to increase the frequency of sweeps,

7868

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 22,2025 at 08:23:29 UTC from IEEE Xplore. Restrictions apply.

TABLE VII
TIME CONSUMPTION PER RECONSTRUCTED SWEEP (UNIT: MS)

(1) (2) (3) (4) Total
Maximum
Available

Time
nclt 1 1.86 4.35 11.24 10.38 28.32 65
nclt 2 1.81 4.22 12.07 9.72 28.35 65
nclt 3 1.76 3.82 11.76 9.77 27.62 65
nclt 4 1.94 3.96 11.46 10.83 28.78 65
nclt 5 1.87 4.39 13.66 10.28 30.77 65
nclt 6 2.07 4.28 13.00 9.93 29.85 65
nclt 7 2.02 4.37 12.34 7.97 27.37 65
nclt 8 2.09 4.59 13.78 5.62 26.79 65
nclt 9 2.02 4.26 12.45 10.51 29.90 65
nclt 10 2.10 4.15 11.94 10.37 29.10 65
nclt 11 1.85 3.89 11.48 9.29 27.07 65
utbm 1 3.73 3.71 8.44 4.73 21.10 50
utbm 2 3.99 3.86 9.32 4.76 22.45 50
utbm 3 3.87 3.60 9.68 4.96 22.71 50
utbm 4 3.83 3.61 8.24 5.06 21.25 50
utbm 5 3.80 2.85 7.96 5.53 20.64 50
ulhk 1 7.92 3.53 7.28 1.10 20.34 50
ulhk 2 9.48 3.07 6.04 1.85 21.02 50
kaist 1 1.94 3.79 10.29 5.56 22.16 50
kaist 2 1.50 3.84 11.03 4.03 20.97 50
kaist 3 1.13 3.21 11.11 5.98 21.94 50

Denotations: (1) sweep segmentation. (2) sweep reconstruction
with distortion correction for each segment. (3) ESIKF based state
estimation. (4) map update.

and utilizes the higher frequent reconstructed sweeps to per-
form state update for ESIKF based LIO framework (i.e., SR-
LIO). For LIO systems, this method can not only increase the
frequency of LiDAR sweep, but also reduce the accumulative
error of predicted state by reducing the time interval of
IMU measurements integration, and in turn achieve more
accurate and robust state estimation results. In addition, for
reconstructed sweeps with common data, we propose to
perform distortion correction for each segment but not an
entire reconstructed sweep, to better ensure the accuracy of
estimated trajectory.

The proposed SR-LIO achieves the state-of-the-art accu-
racy on four public datasets. Meanwhile, we demonstrate the
effectiveness of sweep reconstruction to improve the output
frequency and accuracy of ESIKF based LIO systems.

REFERENCES

[1] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser
range data in urban environments.” in Robotics: Science and Systems,
vol. 2018, 2018, p. 59.

[2] Y. Cai, W. Xu, and F. Zhang, “ikd-tree: An incremental kd tree for
robotic applications,” arXiv preprint arXiv:2102.10808, 2021.

[3] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “University
of michigan north campus long-term vision and lidar dataset,” The
International Journal of Robotics Research, vol. 35, no. 9, pp. 1023–
1035, 2016.

[4] K. Chen, R. Nemiroff, and B. T. Lopez, “Direct lidar-inertial odome-
try: Lightweight lio with continuous-time motion correction,” in 2023
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2023, pp. 3983–3989.

[5] Z. Chen, Y. Xu, S. Yuan, and L. Xie, “ig-lio: An incremental gicp-
based tightly-coupled lidar-inertial odometry,” IEEE Robotics and
Automation Letters, vol. 9, no. 2, pp. 1883–1890, 2024.

[6] P. Dellenbach, J.-E. Deschaud, B. Jacquet, and F. Goulette, “Ct-
icp: Real-time elastic lidar odometry with loop closure,” in 2022
International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 5580–5586.

[7] J.-E. Deschaud, “Imls-slam: Scan-to-model matching based on 3d
data,” in 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2018, pp. 2480–2485.

[8] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “Openvins:
A research platform for visual-inertial estimation,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 4666–4672.

[9] D. He, W. Xu, N. Chen, F. Kong, C. Yuan, and F. Zhang, “Point-lio:
Robust high-bandwidth light detection and ranging inertial odometry,”
Advanced Intelligent Systems, p. 2200459, 2023.

[10] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, “Complex urban
dataset with multi-level sensors from highly diverse urban environ-
ments,” The International Journal of Robotics Research, vol. 38, no. 6,
pp. 642–657, 2019.

[11] M. Karimi, M. Oelsch, O. Stengel, E. Babaians, and E. Steinbach,
“Lola-slam: Low-latency lidar slam using continuous scan slicing,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2248–2255,
2021.

[12] K. Li, M. Li, and U. D. Hanebeck, “Towards high-performance
solid-state-lidar-inertial odometry and mapping,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 5167–5174, 2021.

[13] C. Qin, H. Ye, C. E. Pranata, J. Han, S. Zhang, and M. Liu, “Lins:
A lidar-inertial state estimator for robust and efficient navigation,”
in 2020 IEEE international conference on robotics and automation
(ICRA). IEEE, 2020, pp. 8899–8906.

[14] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[15] C. Qu, S. S. Shivakumar, W. Liu, and C. J. Taylor, “Llol: Low-latency
odometry for spinning lidars,” in 2022 International Conference on
Robotics and Automation (ICRA). IEEE, 2022, pp. 4149–4155.

[16] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 4758–4765.

[17] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus,
“Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and
mapping,” in 2020 IEEE/RSJ international conference on intelligent
robots and systems (IROS). IEEE, 2020, pp. 5135–5142.

[18] H. W. Sorenson, “Kalman filtering techniques,” in Advances in control
systems. Elsevier, 1966, vol. 3, pp. 219–292.

[19] H. Wang, C. Wang, C.-L. Chen, and L. Xie, “F-loam: Fast lidar
odometry and mapping,” in 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 4390–
4396.

[20] W. Wen, Y. Zhou, G. Zhang, S. Fahandezh-Saadi, X. Bai, W. Zhan,
M. Tomizuka, and L.-T. Hsu, “Urbanloco: A full sensor suite dataset
for mapping and localization in urban scenes,” in 2020 IEEE interna-
tional conference on robotics and automation (ICRA). IEEE, 2020,
pp. 2310–2316.

[21] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-
inertial odometry,” IEEE Transactions on Robotics, vol. 38, no. 4, pp.
2053–2073, 2022.

[22] W. Xu and F. Zhang, “Fast-lio: A fast, robust lidar-inertial odometry
package by tightly-coupled iterated kalman filter,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 3317–3324, 2021.

[23] Z. Yan, L. Sun, T. Krajnı́k, and Y. Ruichek, “Eu long-term dataset
with multiple sensors for autonomous driving,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2020, pp. 10 697–10 704.

[24] H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3d lidar inertial
odometry and mapping,” in 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 3144–3150.

[25] Z. Yuan, Q. Wang, K. Cheng, T. Hao, and X. Yang, “Sdv-loam:
Semi-direct visual-lidar odometry and mapping,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2023.

[26] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.” in Robotics: Science and systems, vol. 2, no. 9. Berkeley, CA,
2014, pp. 1–9.

[27] ——, “Low-drift and real-time lidar odometry and mapping,” Au-
tonomous Robots, vol. 41, pp. 401–416, 2017.

[28] T. Zhang, X. Zhang, Z. Liao, X. Xia, and Y. Li, “As-lio: Spatial overlap
guided adaptive sliding window lidar-inertial odometry for aggressive
fov variation,” arXiv preprint arXiv:2408.11426, 2024.

7869

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on February 22,2025 at 08:23:29 UTC from IEEE Xplore. Restrictions apply.

