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ABSTRACT

Graph Neural Networks (GNNs) perform well on graph classification tasks but
are notably susceptible to label noise, leading to compromised generalization and
overfitting. We investigate GNNs’ robustness, identify generalization failure modes
and causes, and prove our hypothesis with three robust GNN training methods.
Specifically, GNN generalization is compromised by label noise in simpler tasks
(few classes), low-order graphs (few nodes), or highly parameterized models.
Focusing on graph classification, we show the link between GNN robustness and
the smoothness of learned node representations, as quantified by the Dirichlet
energy. We show that GNN learns smoother representations with decreasing
Dirichlet energy during training, until the model fits on noisy labels, adding high-
frequency components to the representations. To verify our analysis, we propose
three robust training strategies for GNNs: (a) a spectral inductive bias by enforcing
positive eigenvalues in GNN weight matrices to demonstrate the link between
smoothness and robustness; (b) a Dirichlet energy overfitting control mechanism,
which relies on a noise-free validation set; (c) a noise-robust loss function tailored
for GNNss to induce smooth representations. Crucially, our methods do not degrade
performance in noise-free data, reinforcing our central hypothesis that GNNs’
smoothness bias defines their robustness to label noise.

1 INTRODUCTION

Graph Neural Networks (GNN5s) are powerful for modeling graph structured data Zhang et al.|(2018)),
especially for solving the graph classification task where the objective is to assign a label to each
graph in the dataset. The applications of graph classification span across domains, including social
and citation networks|Yanardag & Vishwanathan|(2015a), bioinformaticsBorgwardt et al.|(2005)), and
chemical molecule analysis (Wale & Karypis, [2006). Crucially, in many real world applications, the
label acquisition process is noisy. Compared to image |Algan & Ulusoy|(2021) or node classification
Dai et al.|(2021)), the problem of graph classification with noisy labels is relatively less explored.
While initial pioneering works Nt & Maeharal (2019);|Yin et al.|(2023)) have begun to address this
challenge, a systematic understanding of when and why GNNs are vulnerable to noisy labels and
the development of robust mitigation strategies tailored to the unique inductive biases of GNNs
remain active areas of research. In this paper, we address this noise robustness challenge and study
GNNSs’ susceptibility to label noise when some samples are labeled incorrectly. The conventional
understanding is that cross entropy loss (CE), usually used in GNN classification tasks, typically leads
to overfitting in the presence of noisy labels, particularly when the model has sufficient expressivity
(Zhang et al.| [2017a)). We observed that, for graph classification, GNNSs trained with standard CE can
show varying degrees of robustness when exposed to label noise. We investigate the hypothesis that
GNNs leverage smooth representations as an inductive bias for generalization and noise robustness.
Through theoretical and empirical analysis, we confirm this link and show that noise overfitting
corresponds to latent node features sharpening. Based on these insights, we develop methods to detect
overfitting and propose three distinct strategies to enhance robustness in noisy graph classification.
Specifically, our contributions are the following:

* We present the first systematic study linking label noise robustness in graph classification
to the spectral dynamics of Dirichlet energy (E%F). While prior works have studied
oversmoothing and energy decay in node classification, we reveal how noise memorization
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in graph classification corresponds to a characteristic rise in high frequency Dirichlet
components.

* We propose a unifying energy based perspective on robustness, showing that three seem-
ingly different approaches (i) enforcing positive eigenvalues in GNN weights, (ii) directly
regularizing Dirichlet energy, and (iii) introducing the novel GCOD loss can all be under-
stood as mechanisms that constrain harmful high frequency energy.

* We provide comprehensive empirical evidence across diverse benchmarks and both sym-
metric and asymmetric noise, establishing Dirichlet energy as a reliable signal of overfitting.
Crucially, our methods improve robustness without degrading clean data performance.

Together, these contributions introduce a principled framework that connects spectral smoothness,
Dirichlet energy, and noise robust learning in GNNs. We believe this perspective opens a new
direction for designing graph models that are not only robust to label noise, but also more stable
under domain shift and adversarial perturbations. Overall, this study improves our understanding
of the sources of GNNs robustness, its smoothness, and its inductive bias, and offers guidance for
practitioners to apply GNNss efficiently to real world applications. The code is available at ht tps :
//anonymous.4open.science/r/Robustness_Graph_Classification—-E76F.

2 RELATED WORKS

Learning under label noise. A large body of work is devoted to the challenge of learning with
noisy labels. Several methods are based on robust loss functions, using symmetric losses (Ghosh
et al.| (2017), or loss correction methods (Patrini et al., 2017). Other works are the Neighboring-
based noise identification approaches (Zhu et al., 2022). Several approaches are based on the early
learning phenomenon |Arpit et al.| (2017), and others proposed to improve the quality of training
data by treating samples with a small loss value as correctly labeled during the training process (Gui
et al.| 2021). Additional methods for learning in the presence of noisy labels are in Appendix

Graph Learning in noisy scenarios. The methods discussed earlier focus mainly on learning from
noisy labels in image datasets. Unlike images, graphs exhibit noise in labels, graph topology (e.g.,
adding/removing edges or nodes), and node features. Most prior work discusses noisy node labels
NT et al.|(2019); | Yuan et al.| (2023a); |Y1in et al.| (2023); [Yuan et al.| (2023b); [Li et al.| (2024)); |Dai et al.
(2021); Kang et al.| (2018), while noise at the edge and feature levels have also been explored (Fox &
Rajamanickam, [2019; Dai et al., [2022; [Yuan et al., 2023b). However, fewer studies investigate graph
classification under noise, limiting progress in applying and improving graph classification tasks.
The seminal work of NT et al.|(2019) addresses graph classification with label noise, proposing a
surrogate loss to discard noisy labels under certain assumptions, without comparison to clean label
scenarios. More recently, |Yin et al. (2023) introduces a method combining contrastive learning and
MixUp Lim et al.|(2021)) within the loss function to improve generalization, along with a curriculum
learning strategy to dynamically discard noisy samples. In contrast, we propose tackling noisy labels
using an effective loss function inspired by [Wani et al.|(2024) or by enhancing graph smoothness.

Dirichlet Energy, Smoothing bias and Sharpening Dirichlet energy is a key measure in GNN,
quantifying the smoothness or variation of features across nodes (Zhou & Scholkopf, 2005). Most
GNN s function as low pass filters, emphasizing low frequency components while diminishing high
frequency ones (Nt & Machara) 2019; Rusch et al.l|2023)). Specifically, Nt & Maehara|(2019) showed
this phenomenon holds for graphs without non trivial bipartite components, with self loops further
shrinking eigenvalues. [Cai & Wang| (2020); /Oono & Suzukil (2021)) prove that GNN Dirichlet energy
exponentially decreases with additional layers when the product of the largest singular value of the
weight matrix and the largest eigenvalue of the normalized Laplacian is less than one. GNN learnable
weight matrices fundamentally control whether features are smoothed or sharpened (Di Giovanni
et al.| 2023). While Dirichlet energy evolution has been studied in relation to oversmoothing [Cai &
‘Wang| (2020); Nt & Maeharal (2019)), and various mitigation approaches leveraging energy properties
exist[Bo et al.| (2021)); Zhou et al.|(2021a); |Chen et al.| (2023)), these work has primarily focused on
node classification, where oversmoothing significantly impacts performance (Yan et al.,|2022). The
role of energy dynamics in graph classification, especially with label noise, remains less explored. In
this work, we provide theoretical and practical insights on leveraging Dirichlet energy to enhance
graph classification performance, even in the presence of label noise (comprehensive discussion in

Appendix D).
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3 BACKGROUND

Let G = (V,&,X) be an undirected graph, with V the set of nodes and £ the set of edges. We denote
by N = |V| the number of nodes of G. N, is the neighborhood of the node u, and d,, = [N, | is its
degree. D € RV *N is the degree matrix, a diagonal with entries D,,,, = d,,. Each node v has feature
vector x,, € R™. The feature matrix X € RY*™ stacks all the feature vectors. A € {0, 1}V is
the graph’s adjacency matrix, with A,,,, = 1 if (u,v) € £ and A, = 0 otherwise.

Graph Neural Networks for Graph Classification. In graph classification, each sample in the
dataset, D, is a graph, i.e., D = {G',y;}1_,, where G' = (V*, €', X"), and y; € {0, 1}/l is its class
associated one-hot encoded representation. We represent the set of labels for D as y € {0, 1}"*I¢I.
More simply we use c; to express the class of sample 7. X* € RY:*™ and A? € RY:*Ni are the
feature and adjacency matrices of graph ¢ respectively. In the case of learning under label noise,
in the training data c; may differ from the ground truth. In this setting, GNNs are employed to
extract features from graph structured data. In the message passing formalism |Gilmer et al.[(2017)),
each feature matrix X’ Vi € {1,...,n} is iteratively updated within the GNN, yielding a new set
of latent features Z‘ € RN *™ for the graph G?. We denote the intermediate representations as
Hﬁ, 0 <[ < L, for each GNN layer up to the L-th one. We identify Xt = H? and Z' = HlL Given
a set of weights W and €2; for layer [/, the message-passing update rule for graph i is:

H"! = UPq, (H}, AGGRw, (H}, A")), 0<I<L €N =

where U P, and AGG Rw, denote the update and aggregation functions of the message passing
mechanism. After obtaining the final node representations Z* € R xm’ 3 learnable, permutation-

invariant function fy : RY ixm’ _y RICT jg applied to transform them into class probabilities. The
predicted output is then represented as a one hot encoded vector ¥;.

Dirichlet Energy on graphs. We now define the Dirichlet energy for graph data: E%", which
quantifies the smoothness of a scalar or vector field defined over the nodes of a graph. For a graph

G = (Vi, £ with node representation matrix Z* € RV:*™' where Z' denotes the latent features of
nodes, the Dirichlet energy is defined as:

CCORD D TN ”
(u,v)e€?

where Z!, denotes the representation of node u. E%"(Z%) sums the squared differences of the
feature vectors across all edges. Intuitively, £ is small when the connected nodes have similar
representations (smooth signal), and large when the neighboring nodes differ (indicating sharpening).

4  GNN ROBUSTNESS TO NOISY GRAPH LABELS, AND ITS FAILURES MODES
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Figure 1: Training accuracy on noisy labels only. Effect of dataset properties: (a) Fewer classes in
PPA lead to faster overfitting on noise. (b) Lower graph order leads to faster overfitting on noise..
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Figure 2: Training accuracy on noisy labels only. Effect of dataset size: (a) Smaller fractions of the
PPA dataset lead to stronger noise memorization. (b) Smaller synthetic datasets are also more prone
to memorizing noise.

We study when and why a GNN overfits noisy labels. Interestingly, GNNs exhibit a degree of
inherent robustness. For instance, injecting noise into the full PPA dataset |Szklarczyk et al.|(2018)),
or large portions of it, does not significantly degrade model performance (see Fig. [I(a)l 2(a)l [0).
We hypothesize that the observed robustness on PPA stems from the fact that the models may be
under parameterized for the inherent difficulty of the PPA benchmark, on which state of the art
methods struggle to achieve perfect accuracyﬂ This finding aligns with general findings that under
parameterized models are often more robust to noise (Zhang et al.| 2017a)). Despite this, we show
that GNNs nevertheless fail under certain conditions of label noise. To examine this, we fix the
model architecture and manipulate task complexity by (i) varying the number of classes as a proxy
for over-parameterization, (ii) varying the average number of nodes in synthetic datasets, and (iii)
varying the share of training data used. We study the average training accuracy on noisy labels as a
direct measure of how much the model fits noise. Higher accuracy on noisy samples indicates the
model is memorizing them, while lower accuracy suggests that the model is not fitting the noise.

GNN Robustness varying number of classes We use 30% of the PPA dataset and inject 20%
symmetric noise into this subset by randomly replacing labels with uniformly sampled incorrect
classes. The model here and below, if not said otherwise, is a 5-layer Graph Isomorphism Network
(GIN) Xu et al.[(2019) with 300 hidden units. Specifically, we create a sub-sampled PPA dataset with
2, 6, and the full 37 classes. Intuitively, reducing the number of classes simplifies the classification
task and reduces the effective dataset size, making the fixed model increasingly overparameterized
relative to the task. Fig. [I(a)] shows the training accuracy on noisy samples across epochs. For
the full 37-class task, the GNN does not memorize noise and remains relatively robust. However,
when the number of classes is reduced to 6 and further to 2, the model increasingly fits the noisy
labels. Interestingly, the 2-class case exhibits slightly more robustness than the 6-class case due to the
symmetric nature of the injected noise, since random flipping between two classes produces highly
contrasting noisy samples.

GNNs are not robust on low-order graphs. We generated synthetic datasets (see procedure in
Appendix, Section to study the effect of graph order (number of nodes). As shown in Fig.
[I(b) GNNs become increasingly sensitive to noise as the graph order decreases. Small graphs lack
sufficient internal structure and aggregation capacity, making them vulnerable to treating noisy labels
as signals. Conversely, larger graphs provide more nodes over which the model can average, diluting
the influence of noisy samples.

GNNs are not robust on small training sets. The size of a training set affects the robustness to noisy
labels. For the PPA dataset, we keep all 37 classes, but subsample the number of training graphs
per class. As shown in Fig. [2(a)] reducing the number of training samples increases the likelihood
of overfitting noise. A similar trend is observed for the synthetic datasets (with graph order 7 and
6 classes) under 35% label noise, as shown in Fig. In both cases, models trained on smaller

'"https://paperswithcode.com/sota/graph-property-prediction-on-ogbg-ppa
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Figure 3: (a) Evolution of training Accuracy for GIN model on the PPA dataset (30% sample, 6
classes) with clean 0% or 20% label noise for CE and GCOD . (b) Dirichlet energy for clean and
noise introduced PPA dataset (30% sample, 6 classes). The Dirichlet energy increases when the
model with CE fits on noise. (c) Dirichlet energy and test Accuracy on the PPA dataset using CE
with GIN and GCN models. (d) Dirichlet energy and test Accuracy on different datasets using GIN
model (axes scaled for comparison).

datasets have a higher tendency to memorize noisy samples due to insufficient clean data to learn
generalizable patterns.

5 REPRESENTATION DIRICHLET ENERGY INDICATES OVERFITTING ON NOISY
LABELS

Across all experimental setups, we consistently observe that the Dirichlet energy (E9") of the learned
node representations increases once the model begins to fit on noisy labels (see Fig. [3(b)). During
early training, when the model captures true patterns, Eg;; remains low; however, as the model starts
fitting the noisy samples, the energy increases significantly. This consistent behavior across diverse
datasets and conditions ( Fig. ﬂand Figure 4) motivates us to use £ as a signal to detect and
monitor overfitting to label noise.

This leads to our first research question RQ1: Is Dirichlet energy related to GNN performance on
graph classification tasks, and how does it evolve when label noise is introduced during training?

To address this, we propose a graph-level Dirichlet energy measure for the graph classification task
and analyze its empirical behavior during training under noise conditions. Given a set of graphs S,
composed of graphs G; with latent representation Z*, we define the Dirichlet energy of the set S as

) 1 o
B (S) = 5 > E(ZY). 3)
giesS
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In particular, we study E%"(D,.), the average Dirichlet energy of graphs belonging to class c, where

D. denotes the subset of training graphs with the label c.

Our empirical analysis provides a consistent answer to RQ1. In clean datasets, i.e., without label
noise, £%"(D,) may fluctuate during the initial training phase as the model begins to adjust to the
task. However, we consistently observe a steady decrease in the later stages of training, culminating
in low and stable Dirichlet energy values once the model converges to high classification accuracy.
This behavior is illustrated in Fig. and Fig. [3(d)] for models trained with standard Cross-Entropy
(CE) loss and no label noise (CE-0%).

However, when synthetic label noise is introduced (e.g., 20% symmetric flipping), the behavior
diverges. As shown in Fig. [3(a)] while the initial phase of training still exhibits a decrease in
Ed"(D,), this is followed by a significant increase during later epochs, precisely when the model
starts to fit the noisy labels. This memorization phase is marked by rising training accuracy on noisy
samples (see CE-20%), demonstrating a direct link between noise fitting and increased Dirichlet
energy. This phenomenon is consistently observed across datasets and model architectures, including
MUTAG, MNIST, and PROTEINS (see Fig. [3(d)|and Fig. [§]in Appendix [[). These findings confirm
that Dirichlet energy serves as a reliable signal of representation smoothness and its disruption as a
result of noise memorization.

Furthermore, to isolate the spectral dynamics, we utilize the HLFF-GNN framework Xu et al.
(2024)), which decomposes the node representations into low-frequency Z; and high-frequency Zo
components. Experiments show that while E%"(Z;) remains stable, E%"(Z,) sharply increases
during noise overfitting, confirming that high frequency energy components are responsible for fitting
mislabeled data (detailed analysis of these experiments is provided in Appendix [E).

From these observations, we conclude that maintaining a low Dirichlet energy, particularly by
suppressing some high-frequency components, correlates with robust generalization. However,
directly minimizing E%"(S) as a loss term presents practical challenges. First, the asymptotic energy
level varies between datasets and architectures, making it difficult to define a universal target. Second,
Ed is a global dataset level quantity, which is not easily decomposed into sample gradients for

stochastic optimization. We propose alternative strategies to promote smoothness.

6 ROBUST STRATEGIES BASED ON SMOOTHING

6.1 METHOD 1: ROBUST GNN BY ENFORCING POSITIVE EIGENVALUES OF
TRANSFORMATIONS

Our previous findings established a strong correlation between a GNN'’s overfitting of noisy labels
and a significant increase in the Dirichlet energy of its learned node representations. The spectral
properties of the learnable weight matrices within GNN layers fundamentally shape the network’s
behavior on the graph, particularly concerning smoothing and sharpening of features. Prior work |Cai
& Wang| (2020);|Oono & Suzuki|(2021); D1 Giovanni et al.|(2023)) has shown that the eigenvalues of
learnable weight matrices interact with the graph Laplacian, inducing either smoothing or sharpening
effects. In particular, [Di Giovanni et al.| (2023) demonstrates that positive eigenvalues promote
attraction between connected nodes, while negative eigenvalues induce repulsion. These findings
suggest that controlling the sign of the weight spectrum could architecturally enforce a smoothing
inductive bias. This lead us to formulate our second research question: RQ2 Does the spectrum of
the weight matrices affect the evolution of equation 3| during training?

To justify our dataset level analysis of Dirichlet energy, we first present the following result:

Proposition 6.1. Let D = {G' = (Z', A'),...,G" = (Z",A"™)} be a set of graphs. Then

E%m (D) = ﬁEd"(Z), where Z = [Z]| ... ||Z™] and A is a block-diagonal matrix with blocks A’

along the diagonal. That is, the dataset-level Dirichlet energy corresponds to the Dirichlet energy of
a single disconnected graph composed of all graphs in D.

Remark 1. Reducing E%" (D) during training implies that the model is simultaneously enhancing

low-frequency representations across all graphs in the dataset.

Discussion of Proposition [6.T|and Remark [T]is provided in Appendix [FI] This result supports the idea
that smoothing at the dataset level can be induced by controlling the local graph behavior. Motivated
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by Di Giovanni et al.|(2023)), we hypothesize that smoothing can be enhanced by removing negative
eigenvalues from the learned weight matrices of the GNN. To test this hypothesis, we constrain
the spectrum of the weight matrix W(2) in each GNN layer after neighborhood aggregation. We
refer to this approach as CE+W2, which uses standard cross entropy loss but with post-hoc positive
eigenvalue enforcement on W), The full derivation of the update rules, spectrum filtering, and
implementation details are provided in Appendix The performance of the method is reported in
Table[T] Despite the findings affirm that controlling the weight matrix spectrum influences Dirichlet
energy and robustness, the eigen decomposition step introduces severe training overhead (Table
and potential instability (Appendix Fig. [I0).

6.2 METHOD 2: ROBUST GNN BY DIRECT ENERGY MANIPULATION

In this Section, We introduce a training method that explicitly constrains Dirichlet energy. By
penalizing graphs with energy above a threshold, the model is encouraged to learn smoother, low-
frequency representations, which we hypothesize improves robustness to label noise. Our approach is
motivated by the empirical observations presented in Section[5]and Appendix [G] which show that
Dirichlet energy increases under overfitting and grows proportionally with label noise.

Formally, for a training set D = {Gy,..., Gy} with associated Dirichlet energies E; = E4"(G;)
and class labels c;, we define the regularization term:

N
1
Lpp(D) =+ D [max(0, B — U], @
i=1

where U,, € R is the energy threshold for class ¢;. The overall training loss becomes £ = Lcog +
AL p g, where A balances the smoothness constraint against the classification objective. We explore
two strategies for setting U, (see also Section [C.4]for more details on these strategies):
Class-specific bound: A dynamic threshold U,. computed after each epoch as the average Dirichlet
energy of clean validation graphs in class c. The validation set must be clean to provide a reliable
reference for estimating class-dependent energy levels. When noise is high, especially symmetric
noise, the class-specific upper bounds U, may lose discriminative power as energy distributions
across classes become similar, reducing the method’s effectiveness. Using clean validation data
preserves the class-specificity of the thresholds.

Fixed bound: A global threshold U. = U for all classes. In this case, the approach is not dynamic;
instead U is kept fixed during training and treated as a hyperparameter tuned to balance the need to
prevent excessive smoothing while still limiting energy growth under noise.

On the PPA dataset with symmetric label noise, both variants of £ i improved test accuracy over
standard L. The fixed bound effectively constrained energy but occasionally over smoothed
representations, particularly under clean labels. In contrast, class-specific bounds yielded better
generalization and stability, improving accuracy under both noisy and clean conditions (Table|[T).
These results confirm that Dirichlet energy regularization helps stabilize feature evolution and
enhances robustness by limiting harmful high frequency components.

7 METHOD 3: ROBUST GNN WITH GCOD L0SS FUNCTION

Having shown that noise overfitting aligns with increasing Dirichlet energy and that E%" decreasing
methods improve robustness, we now explore an alternative path; a robust loss function. We introduce
GCOD , adapted from |[Wani et al.| (2024)) image classification for learning with noisy labels. Unlike
previous methods, GCOD enhances robustness directly through its formulation, not by explicitly
controlling E%" While GCOD is not designed to directly minimize Dirichlet energy, we investigate
its performance in the presence of label noise and, crucially, observe the corresponding behavior
in terms of %" In this section, we focus on research questions: RQ3. Is GCOD able to prevent
learning of noisy samples and promote smoothness of Equation equation 3| even though it is not
specifically designed for it? We analyze this question through a set of experiments.

NCOD Wani et al.[(2024) is a loss function designed to address overfitting due to noisy labels for
image classification (Zhang et al.,[2017a). NCOD assumes samples of the same class are closer in
latent space and leverages Deep Neural Networks’ tendency to first learn from clean samples before
noisy ones (Arpit et al., 2017).
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Our GCOD method adapts the NCOD framework for graph classification with noisy labels. All the
details about the newly designed loss are relegated to Section [C.3]in the Appendix. We introduce
two main modifications over the original NCOD. We add a third loss term L3 (see eq. equation[9]in
Section[C.3)). This term uses a regularization based on a per sample trainable parameter to help the
model distinguish between clean and noisy samples for better alignment. We incorporate the current
training accuracy (arqn) as feedback into other loss terms (eq equation[7} equation[§]in Section|C.3).
This prioritizes learning from samples that the model correctly fits in early training, assuming these
are more likely to be clean.

GCOD consistently reduces overfitting on noisy samples and preserves smoothness in graph learning,
as evidenced by the decreasing Dirichlet energy (Fig. [3(a)]and [3(b)). Our results for Graph Isomor-
phism Networks (GIN) Xu et al[(2019) in Table I} Table[6] and (Fig. [9]and for Graph Convolutional
Networks (GCN) Kipf & Welling| (2016) in Fig. [7]in the Appendix) show that GCOD effectively
mitigates noise impact, validating our hypothesis and answering RQ3.

Table 1: Performance on the PPA dataset using 30% of

the data restricted to 6 selected classes. The best test  Table 2: Performance of the GIN network
accuracy is hlghllghted in bold red, the second best in across multlple datasets under 40% asym-
blue. Reported values denote mean + standard deviation  metric label noise. Reported values are

across 4 independent runs test accuracy (%). Columns correspond to
Noise Method Test Acc. Train Acc. cross-entropy (CE) with clean labels (0%
Best Last Best Last CE), cross entropy with noisy labels (40%
CE 9625+005 9125 1.00 9933 CE), and GCOD under 40% noise (40%
GCOD 96.65+0.52 9325 9923 9903 GCOD).
0%  CE+W2  9650%112 8650 9976 9929 ~ pataset 0;/;7 fﬁE 407'5"9(:0'3 0% 6(;1(;0')
Fixed 96.58£027 8570 9926 9829  MNIST 7269 7115 7261
Class-specific ~ 96.96 +0.04 88.67 99.41 98.67 Enzymes 73.33 65.80 69.81
CE (cleanonly) 96.15+0.09 90.66 84.50 84.07 %%Bg/B ;g'gg g?‘ig ;g'?g
CE 88.66+0.16 6258 9498 93.45 Reddit 4815 4801 47.94
SOP 91.01 £0.44 85.50 79.17 77.64 MSRC/21 96.69 94.39 95.57
20 % GCOD 93.91+0.26 9258 80.11 79.52
CE + W2 89.83£1.23 76.66 8490 83.68
Fixed 89.69£0.57 80.25 78.07 70.14

Class-specific®  92.34 +0.41 80.92 84.55 83.73

Table 3: Percentage improvement over

CE (cleanonly) 95.08+0.13 8044 68.15 67.05 .
Y cross entropy (CE) using the GIN network.

SCOEP 2;22 i ?i; Zéi? gzgg 2322 Values show gains of OMG and GCOD on
40 % GCOD 93.88+0.04 91.08 6500 6431  selected datasets.
CE+W2  8825+1.13 5633 6878 6588 Dataset OMG GCOD
Fixed 88.58+0.75 77.12 61.08 54.53 MUTAG 0.061  0.062
Class-specific*  88.55+0.11 71.83 6898 67.80 IMDB-B 0.047  0.049

PROTEINS 0.039  0.041

* Requires clean validation set.

8 EXPERIMENTAL RESULTS

This section presents the empirical evaluation of our proposed GCOD loss function, along with the
two methods leveraging Dirichlet energy regularization (CE+W?2 and a method directly using Lpg
with fixed and class-specific bounds), comparing their robustness against label noise across diverse
datasets and conditions. In addition to standard Cross Entropy (CE) baselines, we include two recent
state of the art methods for robustness: SOP|Liu et al.|(2022) and OMG (Yin et al., [2023). SOP is a
leading approach for noise robust image classification based on sample reweighting, while OMG is a
graph specific method designed to mitigate overfitting to noisy supervision. Their inclusion provides
a strong comparative reference for evaluating the noise robustness of GCOD and our Dirichlet energy
methods in both general and graph specific settings.
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Results on PPA Table|l|summarizes the results under 0%, 20%, and 40% label noise on the PPA
dataset, where 30% of the data across 6 classes was selected, utilizing a 5-layered GIN network
(details provided in Appendix [B)

The proposed GCOD loss consistently outperforms other methods by achieving a smaller gap between
the best and final accuracies, which reflects improved generalization and robustness to noise. SOP,
despite being competitive, exhibits wider accuracy gaps, indicating its susceptibility to overfitting.
CE+W?2 occasionally surpasses SOP at certain noise levels; its excessive smoothing leads to overfitting
in noise-free scenarios. Precisely CE+W2 improves test accuracy under moderate noise (e.g., 20%:
89.83 vs. 88.66 compared to CE) and narrows the gap between training and test performance,
indicating reduced overfitting. However, under clean labels (0% noise), CE+W2 tends to over-smooth,
with slightly degraded final accuracy. The eigen decomposition step introduces a modest training
overhead (see Table[/)) and potential instability. However, the findings confirm that controlling the
weight matrix spectrum influences Dirichlet energy and robustness. £p g with a Fixed bound shows
results in line with CE+W?2: it’s able to imporve the performance in the presence of moderate levels
of noise, but in noise-free settings the gains were limited due to potential over-smoothing. With the
use Class-specific bounds, instead, the adaptive mechanism allowed the regularization to align with
the intrinsic complexity of each class, which enable the method to improve the accuracy at all levels
of label noise, including the absence of noise. This suggests the class specific method improves
generalization as well as model robustness.

Results Across Multiple Datasets (20% Symmetric Noise) Table [6| compares GCOD with standard
CE under 20% symmetrical noise across several datasets. The Table shows that GCOD outperforms
CE on most datasets, highlighting its resilience regardless of the specific data characteristics (with
the exception of REDDIT-MULTI-12K in this specific test).

Results under Asymmetric Noise (40%) In Table |2} a comparison of GCOD and CE under 40%
asymmetric label noise across datasets is presented. GCOD consistently outperforms CE, demonstrat-
ing its robustness in handling asymmetric label noise.

Comparison with OMG Lastly, Table [3| compares the percentage accuracy improvements of the
OMG method and our proposed GCOD method across three datasets (MUTAG, IMDB-B, and
PROTEINS) under experimental conditions similar to those in the OMG paper.It further underscores
the superior performance and robustness of GCOD in noisy environments.

Computational Efficiency and Hyperparameter Sensitivity of GCOD Table [/| compares the
percentage runtime increase for various methods relative to GIN trained with cross entropy loss,
normalized to 1, CE+W?2 incurs a 33% increase in training time. The GCOD loss function introduces
no additional hyperparameters beyond the learning rate for the learnable parameters (the weights and
a parameter ). Table[5]shows the impact of the learning rate of « on GCOD performances.

9 CONCLUSIONS

In this paper, we examined GNN performance in graph classification under label noise. We identified
robust scenarios where label noise has limited impact, but also highlighted GNN vulnerabilities where
overly expressive models or low label coverage lead to performance drops. Unlike previous work,
we explored robustness through an energy based lens, using the Dirichlet energy. Our findings show
that learned smoother representations lead to better performance, while sharpness is linked to lower
performance and noisy sample memorization. To make GNNs robust, we propose three methods:
(1) inducing representation smoothness by relating graph Laplacian and weight matrix spectra; (ii)
bounding the Dirichlet energy of representations in training; and (iii) offering GCOD loss function
to enhance representation smoothness. All methods showed promising results without degrading
performance in the absence of noise, which confirmed our hypotheses. Limitations: Although our
work provides insight into the factors that influence GNN performance in the presence of noise, the
experiments relied on limited theoretical foundations. In future work, we aim to theoretically explore
the reasons leading to node feature sharpening in presence of noisy labels and investigate alternative
applications of the Dirichlet energy in loss regularization. Broader Impact and Outlook. Beyond
robustness to noisy labels, our findings suggest that Dirichlet energy may serve as a general lens for
understanding the spectral dynamics of GNNs. We believe that controlling energy opens a path to
principled design of architectures and losses that balance low and high frequency information, with
potential benefits not only for noisy labels but also for other challenges.
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A APPENDIX

This appendix provides additional details, extended experiments, and proofs that support the main
paper. Section A describes the experimental settings and datasets. Section B presents further details
on the proposed methods. Section C reviews additional related works. Section D-H contain extended
experiments, ablation studies, and supplementary figures.

B EXPERIMENTAL SETTINGS

In our experimental setup, we performed tests on several datasets to evaluate performance. The first
dataset, ogbg-ppa|Szklarczyk et al.|(2018]), consists of undirected protein association neighborhoods
derived from the protein-protein association networks of 1,581 species, spanning 37 broad taxonomic
groups. Another dataset, ENZYMES Borgwardt et al.|(2005), includes 600 protein tertiary structures
from the BRENDA enzyme database, representing six different enzyme classes. The MSRC_21
dataset Neumann et al.| (2016)) contains 563 graphs across 20 categories, with an average of 77.52
nodes per graph. The PROTEINS Borgwardt et al.[(2005) dataset is a binary classification set with
1,113 graphs, having an average node count of 39.06 per graph. The MUTAG |Kriege & Mutzel
(2012) dataset is another small binary graph dataset, consisting of 188 graphs, each with an average
of 18 nodes. The IMDB-BINARY |Yanardag & Vishwanathan|(2015b) dataset, as the name suggests,
is a binary graph classification dataset containing 1,000 graphs with an average node count of 20 per
graph, and no node features. Similarly, the REDDIT-MULTI-12K dataset|Yanardag & Vishwanathan
(2015b) includes 11,929 graphs spread across 11 classes, with an average of 391 nodes per graph and
no node features.

Additionally, we utilized the MNIST graph dataset, which is derived from the MNIST computer
vision dataset. This dataset contains 55,000 images divided into 10 classes, where each image is
represented as a graph.

Our experimental investigations were primarily conducted employing Graph Convolutional Networks
(GCN) Kipf & Welling|(2016) and Graph Isomorphism Networks (GIN) [Xu et al.| (2019) networks.
Notably, the experimental methodology adopted possesses a generality that extends to encompass
all Message Passing Neural Networks (MPNNs). Our study centers on observing the learning
dynamics of networks during graph classification, particularly examining their adaptability to label
noise. We aim to enhance robustness by employing tailored loss functions. Notably, the selection of
hyperparameters remains unrestricted, as these parameters depend on both the model architecture and
the dataset employed, ensuring a nuanced and generalized approach. In each experiment, we initialize
with hyperparameters suited for clean, non-noisy conditions, ensuring optimal model performance.
These parameters are subsequently held constant as we introduce varying levels of noise, sample
density, or graph order. This approach ensures fair comparisons across experiments and facilitates
a comprehensive exploration of model capacities. The synthetic label noise is generated following
the methodologies described in/Han et al.| (2018b) and |Xia et al.| (2021)) which are considered to be
standard techniques for generating synthetic label noise.

B.1 HYPERPARAMETERS

We employed the standard GIN Xu et al.| (2019) and GCN Kipf & Welling| (2016) architectures
for most of our experiments. However, to investigate the impact of positive eigenvalues on weight
matrices, as outlined in [6.1] we applied targeted modifications to both the GIN and GCN models|C.1]

The table below summarizes the key hyperparameters used for the experiments.

All experiments have been performed over NVIDIA RTX A6000 GPU. For implementation, visit the
following anonymous GitHub: Robustness Graph Classification Project.

B.2 DETAILS ON THE SYNTHETIC DATASET USED FOR FIGURE[I(B))
Figure [I(b)| presents results from synthetic datasets with varying graph order (i.e., number of nodes

per graph). We generate datasets with average graph orders ranging from 5 to 60, sampling actual
node counts from a Poisson distribution with mean equal to the target graph order. Each dataset
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Parameter Value
Architecture GCN, GIN
Learning Rate 0.001
Optimizer Adam,
Batch Size 32
Loss Function CrossEntropy, SOP and GCOD
Epochs 200(PPA) to 1000
Noise Percentage 0% to 40%
Weight Decay le-4
Evaluation Metric Accuracy
GNN Layers 5
Learning Rate « 1
Hidden Units 300

Table 4: Network architecture and hyperparameters.

contains 6 classes, with 1400 graphs per class, a fixed average degree of 2, and edges sampled
uniformly at random.

Node features are sampled from a Gaussian distribution with a mean determined by the class label
and a standard deviation of 1.5. For all graph orders, we apply a consistent label noise rate of 35%
using uniform class flipping. Results demonstrate that GNNs become increasingly sensitive to noise
as the graph order decreases. Small graphs lack sufficient internal structure and aggregation capacity,
making them vulnerable to treating noisy labels as signal. Conversely, larger graphs provide more
nodes and connectivity over which the model can average, diluting the influence of noisy samples.

C ADDITIONAL DETAILS ON THE THREE PROPOSED METHODS

C.1 SPECTRAL BIAS IMPLEMENTATION DETAILS

C.1.1 GNN UPDATE RULES AND SPECTRAL ANALYSIS SETUP

To operationalize spectral bias in GNNs, we evaluate both GCN (Kipf & Welling, 2016)) and GIN (Xu
et al.,2019) layer update mechanisms. For each input graph G;, we define the GCN update rule as:

GCN:  H!™' =¢(AHIWHW?, Vie {l,...,n}, )
and the GIN update rule as:

GIN: HM' =0 (0 ((1+¢H. + AH) W}) W7,

6
Vie{l,...,n}. ©

Here, e is a scalar hyperparameter and both W} and W? are square matrices of size R xm’
allowing direct eigendecomposition. W? is used as a shallow projection matrix after message
aggregation.

C.2  WEIGHT MATRIX SPECTRUM AND CLIPPING PROCEDURE

For each layer [ and each weight matrix v € {1, 2}, let the eigenvalues and eigenvectors be denoted:
{Mg,lﬂ"'ﬂrugn’fl,lh {q)g,lw"ﬂq)vm’fl,l}'

Unlike the graph Laplacian A, these eigenvalues p;; can be negative, which enables feature "sharp-
ening" effects. As shown in|Di Giovanni et al.| (2023)), weight matrices with negative eigenvalues can
amplify high frequency components often associated with noisy or irregular node signals.

To counteract this, we enforce a spectral bias by eliminating the influence of negative eigenvalues.
The procedure is as follows:
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1. Compute the eigendecomposition:
Wi = ®/u; (®))",
where i} is a diagonal matrix of eigenvalues.
2. Apply element-wise ReLU to retain only non-negative eigenvalues:
w " =[]t = max(uf, 0).
3. Reconstruct the filtered weight matrix:
Wit = St (@)
This process removes sharpening components from the learned transformations, effectively biasing

the GNN towards smooth solutions.

C.2.1 TRAINING INTEGRATION AND BACKPROPAGATION HANDLING

In practice, we apply this spectral projection **after each gradient update**, treating it as a deter-
ministic architectural constraint rather than part of the loss. The operation is not included in the
computational graph—no gradients are propagated through the eigendecomposition or clipping.

This ensures that the model learns using unconstrained gradients, but the actual transformation used
in forward passes remains positive-semidefinite.

C.3 DETAIL ON THE DESIGN OF OUR GCOD

In our notation, fp : RN*™" — RICI maps the final node representations Z € RN*™ to the class
probabilities. We apply f, to batches of size B, and introduce up € R? as a trainable parameter,
with ¥ 5 as one-hot encoded class predictions, and y g as calculated soft labels and as in|Wani et al.
(2024).

The Zp is the tensor containing node representation for each graph in the batch, diag,, (M) Extract-
ing the diagonal elements of a matrix M, while diag,..(v) construct a diagonal matrix from a vector
v. Here we offer its extension to Graph tasks with a new GCOD :

Li(ug, fo(ZB),yB,YB: Awain) = Lce(fo(ZB) + amindiag,..(up) - yB.¥5), @)
. 1 . .

Lo(up,¥B,¥B) = i 195 + diag,..(ug) - y5 — yal°, (®)

'CB(uBa fG(ZB)v YB, alrain) - (]- - atrain)DKL {Sa g (_ 1Og (UB))} (9)

where £ is log(o (diag,,(fo(Zp)ys”))) and ayqn is training accuracy.

Equation equation[9] is an additional term w.r.t vanilla NCOD, where we employ the Kullback-Liebler
divergence as a regularization term to regulate the alignment of model predictions with the true class
for clean samples (small u) while preventing alignment for noisy samples (large ©). Moreover in
equation [/| equation (8| we insert a,q;, as a feedback term.

The parameters of the losses are updated using stochastic gradient descent as follows:
O — 0t — V(L1 + L3) u't —u' - pV,.L (10)

The parameter u helps to reduce the importance of noisy labels during training, allowing the model
to focus more on clean data. The computation of the soft label §; € RIC! (i.e. the i-th row of §)
relies on the concept of class embedding |Wani et al.| (2024)).

C.4 DETAILS ON THE DEFINITION OF THE BOUNDS FOR LpE

We defined two strategies for defining the upper bound for the regularization term Lpg: a fixed
global threshold and a class-dependent adaptive threshold.
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Class-dependent. This approach is motivated by the observation that Dirichlet energy is influenced
by factors that can be inherent to each class, such as graph topology. As a result, graphs from different
classes may naturally exhibit distinct Dirichlet energy distributions.

To address this variability, as stated in the main text, we proposed the class-specific bound formulation.
For each class c, the upper bound U, is computed at each epoch as the average Dirichlet energy over
the clean validation graphs belonging to class c. Formally, given D% the set of validation graphs in
class ¢, and F; the Dirichlet energy of graph G;, the bound U, is computed as:

1
U.:——W| > E (11)

GieDyal

The use of clean validation data is essential for ensuring that the thresholds U, are reliable indicators
of the intrinsic smoothness or complexity associated with each class. Relying on noisy samples to
compute U,, especially in the case of high symmetric label noise, would distort the energy, causing
different class thresholds to collapse toward similar values. This would reduce the discriminative
power of the regularization and lead U, to not be reflective of the true underlying structure of each
class.

This adaptive strategy, then, ensures the regularization remains sensitive to plausible class-dependent
variations between the distributions of the energy, which prevents the over penalization of inherently
complex classes and under penalization of simpler ones.

Fixed. For the fixed settings, a constant threshold U was applied uniformly across all the training
samples, regardless of the class. This approach simplifies the regularization term and, by enforcing
uniform penalization, provides a consistent regularization framework..

However, careful tuning of U was necessary. If set too high, the regularization effect is negligible,
allowing the model to overfit noise; if set too low, excessive smoothing occurs, causing a notable drop
in accuracy due to the model’s reduced ability to capture and distinguish important variations in the
data. Consequently, U was progressively decreased during experimentation until such a performance
drop became evident. The selected value of U thus represents a trade-off: energy is sufficiently
reduced to prevent overfitting on noisy labels, while maintaining the model’s capacity to distinguish
between classes.

D ADDITIONAL RELATED WORKS

Learning under label noise. Some methods focus on sample relabelling (Arazo et al.,[2019; Reed:
et al., 2014). Another family of techniques address noisy labels using two networks, splitting the
training set and training two models for mutual assessment (Han et al.l 2018a} |L1 et al.| 2020} |[Kim!
et al.}2023). Regarding regularization for noisy labels, mixup augmentation Zhang et al.|(2017b)) is
a widely used method that generates extra instances through linear interpolation between pairs of
samples in both image and label spaces. Additionally, exist also Reweighting techniques aiming to
improve the quality of training data by using adaptive weights in the loss for each sample (Liu & Tao,
2015} [Pleiss et al., 2020).

Graph Learning in noisy scenarios. Works on node classification under label noise attempt to learn
to predict the correct node label when a certain proportion of labels of the graph nodes are corrupted.
In Du et al.|(2023), authors exploit the pairwise interactions existing among nodes to regularize the
classification. Other approaches use regularizes that detecting those nodes that are associated with
the wrong information. Among these are contrastive losses|Yuan et al.| (2023a); [Li et al.| (2024)), to
mitigate the impact of a false supervised signal. Then in|Yuan et al.[|(2023b), it was also proposed a
self supervised learning method to produce pseudo labels assigned to each node. Other mechanisms
that employ pseudo-labels are discussed in |Qian et al.| (2023)), showing different policies to down
weight the effect of noisy candidates into the final loss function.

The parallel line of work concerning GNN under noise is related to noise coming from missing or
additional edges, and also noisy features. In|Fox & Rajamanickam|(2019), they focus on structural
noise. They show that adding edges to the graph degrades the performance of the architecture. And
propose a node augmentation strategy that repairs the performance degradation. However, this method
is only tested with synthetic graphs. In|Dai et al.|(2022), they develop a robust GNN for both noisy
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graphs and label sparsity issues (RS-GNN). Specifically, they simultaneously tackle the two issues by
learning a link predictor that down weights noisy edges, so as to connect nodes with high similarity
and facilitate the message passing. RS-GNN uses a link predictor instead of direct graph learning
to save computational cost. The link predictor is MLP-based since edges can be corrupted. Their
assumption is that node features of adjacent nodes will be similar. Once the dense adjacency matrix
is reconstructed it is used to classify nodes through GCN. Even though these methods achieve state of
the art performance they are specifically designed for node classification and have some assumptions
on the input graph, such as the homophily property (Dai et al., [2022; |Du et al., 2023} |Yuan et al.,
2023a; Dat et al.| 2021)). Moreover, some of these are validated only within graphs with the same
semantics |Dai et al.|(2022); Du et al.|(2023)); |Yuan et al.| (2023b); L1 et al.| (2024)); |Dai et al.| (2021)
(e.g. citation networks), where the homophily assumption could be valid, but limiting for the overall
research impact.

Dirichlet Energy. Graph Neural Networks (GNNs) face several challenges, including limited
message passing expressiveness |Morris et al. (2021, over smoothing|Oono & Suzuki|(2021)), and
over-squashing|Alon & Yahav|(2021). Over-smoothing has been studied using Dirichlet energy Zhou
& Scholkopt] (2005), which quantifies signal smoothness across graph nodes. Previous research
explores the relationship between energy evolution and over smoothing |Cai & Wang| (2020); Nt &
Macehara| (2019), highlighting design choices that exacerbate this issue. Various approaches have been
proposed to mitigate over-smoothing using energy properties Bo et al.|(2021);|Zhou et al.| (2021a);
Chen et al.|(2023)), though they are focused on node classification, where over-smoothing severely
impacts performance (Yan et al.,[2022). This narrow focus leaves unexplored how energy dynamics
affects other graph tasks. In this work, we provide theoretical and practical insights on leveraging
Dirichlet energy to enhance graph classification performance, even in the presence of label noise.

Smoothing bias. Most GNNs function as low-pass filters, emphasizing low-frequency components
while diminishing high-frequency ones [Nt & Maeharal (2019); Rusch et al.| (2023). Specifically, Nt &
Maeharal (2019) showed this phenomenon holds for graphs without non-trivial bipartite components,
with self-loops further shrinking eigenvalues. Similarly, Topping et al.|(2022)) finds that non-bipartite
graphs, especially without residual connections, exhibit low-frequency dominance. They also show
that continuous-time models like CGNN, GRAND, and PDE-GCND maintain low-pass filtering. (Cai
& Wang| (2020); |Oono & Suzuki|(2021) prove that GNN Dirichlet energy exponentially decreases
with additional GCN layers when the product of the largest singular value of the weight matrix and
the largest eigenvalue of the normalized Laplacian is less than one. Here, it is important to emphasize
that|[Kang et al.|(2018) examines graph classification under label noise using the mix-up technique.
While the mix-up may indirectly promote smoothness in the graph, they do not discuss or establish a
relationship between graph smoothness and the Dirichlet energy. Furthermore, their work centers
on the smoothness of clusters within the graphs, rather than on the overall smoothness of the graph
structure.

D.1 LipSCHITZ CONTINUITY IN GRAPH NEURAL NETWORKS

Regarding Lipschitz continuity, a key aspect of model robustness, Chuang & Jegelkal (2022) provides
a theoretical bound on the Lipschitz constant of the Graph Isomorphism Network (GIN) with

respect to the Tree Mover’s Distance (TMD). The derived bound, |h(G,) — h(Gp)| < ZlL:ll K é)l) .

TMDﬁ'1 (Gq, Gyp), relates the change in the GIN’s output to the distance between the input graphs
as measured by TMD. This theorem highlights that if the constituent learnable functions ¢(*) have
bounded Lipschitz constants K g), then the entire GIN architecture exhibits a Lipschitz property with
respect to TMD. Notably, TMD serves as a pseudometric for graphs that are distinguished by the
L-iteration Weisfeiler-Leman (WL) test, a crucial property given that GIN’s representational power
is closely tied to the WL test. [Davidson & Dym| (2024) further contribute to the understanding of
Lipschitz properties in neural networks operating on sets of features, which are fundamental building
blocks in MPNNs. Their analysis of ReLU summation, a common aggregation function, demonstrates
that it is uniformly Lipschitz under certain conditions. Moreover, their informal theorem on Holder
MPNN embeddings suggests that if the aggregation, combination, and readout functions within an
MPNN are Lipschitz continuous, then the overall MPNN will also be Lipschitz continuous. Juvina
et al.| (2024) delve into tight Lipschitz constraints for GNNs in the context of node classification.
By analyzing a generic graph convolution operation, they derive an optimal Lipschitz constant
¥ = ¢(Ak) for the network, where A\ is the maximum eigenvalue of a weighted adjacency matrix
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M, assuming non-negative weights and ReLLU activations without bias. This work provides a more
precise characterization of the robustness of GNNs to input perturbations. |(Gama et al.|(2020) examine
the stability of GNNs with respect to perturbations in the graph shift operator. Their Theorem 4
establishes that if the graph shift operator S is perturbed by FE such that |E| < ¢, and the filter banks
used in the GNN are bounded and the non-linearity is Lipschitz continuous, then the output of the

GNN with the perturbed graph S will be close to the output with the original graph .S, with a bound
proportional to e and the number of layers.

D.2 OVERSHARPENING IN GRAPH NEURAL NETWORKS

The primary definition of GNN oversharpening, as introduced in the literature and particularly
highlighted by analyses such as |Di Giovanni et al.|(2023)), characterizes it as an asymptotic behavior.
Specifically, oversharpening occurs when the node features, after passing through multiple GNN
layers, become predominantly determined by their projection onto the eigenvector of the graph
Laplacian associated with its highest frequency. This implies that the learned representations capture
primarily the most rapidly varying components of the signal over the graph. Pioneering work, notably
by|D1 Giovanni et al.| has rigorously established how the eigenvalues of GNN weight matrices directly
influence feature dynamics, leading to either smoothing or sharpening effects. This analysis primarily
considers linear graph convolutions employing symmetric weight matrices W. The key findings are:
Positive eigenvalues of W: These induce an attractive force between the features of connected nodes.
This attraction causes their representations to become more similar, promoting a smoothing effect
across the graph. Consequently, features tend to align with the low-frequency components of the
graph Laplacian, which is characteristic of oversmoothing. Negative eigenvalues of W: Conversely,
these induce a repulsive force between the features of connected nodes. This repulsion drives their
representations apart, leading to increased differences and thus a sharpening effect. This enhances the
high-frequency components of the features. If these negative eigenvalues are sufficiently dominant
and interact appropriately with the graph Laplacian’s spectrum, this can lead to the oversharpening
phenomenon, where node features become primarily aligned with the highest-frequency eigenvector
of the graph Laplacian. The spectral norm of GNN weight matrices, while not a direct cause of
oversharpening in the same way as the sign of eigenvalues, plays a significant modulatory role. It
governs the overall "energy" or "scale" of the transformations applied by the GNN layers, thereby
influencing the potential for various spectral phenomena, including oversharpening. The link between
a large spectral norm (or large weight variance) and "oversharpening" (defined as high-frequency
dominance) is indirect but significant. A large spectral norm, by definition, allows for eigenvalues of
large magnitudes, both positive and negative. If learning dynamics or initialization conditions lead to
a scenario in which negative eigenvalues of large magnitude become dominant within this expanded
spectral envelope, the oversharpening conditions, as described by |Di Giovanni et al.[(2023)), could be
met.

Zhou et al.| (2021b) analyzes this issue through the lens of Dirichlet energy, a measure of the variance
of node embeddings. This work shows that the Dirichlet energy at each layer of a Graph Convolutional
Network (GCN) is bounded by the Dirichlet energy of the previous layer, scaled by the singular
values of the weight matrix. By imposing constraints on the Dirichlet energy, it is possible to control
the smoothness of the learned embeddings. The work titled "Graph Neural Networks Do Not Always
Oversmooth" challenges the universality of the oversmoothing problem. It establishes a "chaotic,
non-oversmoothing phase" in GCNs that can be reached by appropriately tuning the weight variance
at initialization. This suggests that oversmoothing is not an inherent limitation of GCN architectures,
but rather a consequence of parameter initialization. Eldan et al.| (2017)’s lemma on the spectral gap
and edge addition provides insights into how graph structure influences spectral properties, which are
related to information propagation and potentially oversmoothing. Their result shows that adding an
edge can decrease the spectral gap of the Laplacian matrix under certain conditions related to the
eigenvector and degrees of the connected nodes. Finally, the paper Zhuo et al.|(2024) demonstrates
that with carefully chosen weights, GNNs can avoid oversmoothing even in deep architectures.
Specifically, by employing a whitening transformation on the node features at each layer, the network
can prevent the convergence of node representations to a constant vector, suggesting that learnable
weights play a crucial role in mitigating oversmoothing.
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E DIRICHLET ENERGY AMPLIFICATION IN HIGH-FREQUENCY COMPONENTS
UNDER LABEL NOISE: A THEORETICAL AND EMPIRICAL ANALYSIS

In continuation of the findings presented in Section [5] where we established the role of Dirichlet
Energy in identifying overfitting in noisy settings, we now deepen this perspective by dissecting the
learned representations into frequency components. While we previously observed that elevated
Dirichlet Energy in the later phases of training corresponds with the onset of noisy label fitting, our
objective here is to uncover which representation subspaces are most impacted, and to understand
the underlying dynamics. To this end, we utilize the HLFF-GNN framework Xu et al.| (2024)),
"implemented in our work as FGRLConv",to demonstrate that high-frequency components bear the
brunt of overfitting when GNNs are trained on noisy labels.

Empirical results already showed that the total Dirichlet Energy of graph representations tends to
rise as the model begins fitting corrupted labels. However, this increase is not uniform across all
representation spaces. The HLFF-GNN architecture offers a decomposition into three orthogonal
signals: Y (shared residual), Z; (low-frequency), and Z» (high-frequency). We hypothesize, and
confirm, that it is the high frequency subspace Z, that is most vulnerable to label noise. This
hypothesis, tested under graph classification (an extension beyond the original node classification
setting of HLFF-GNN), is validated both theoretically and empirically.

Consider a graph G = (V, £, X), where V is the node set, £ C V x V the edge set, and X € RN xm
the input feature matrix. Within HLFF-GNN, node features evolve through frequency modulated
propagation into three latent subspaces (Xu et al.,|2024). In our FGRLConv implementation:

* Y represents the residual representation,
» 7 encodes low-frequency, smooth features propagated via message passing,
» 75 captures high-frequency, local features filtered using the graph Laplacian A.

These representations are updated as follows:

v = pogal (0 = 200 DAy,

I+1 n B
2 Az P,

where Ay z,, Ay z,, Az are batch aware attention mechanisms modulating signal interactions (Xu
et al.| 2024). The model minimizes a composite loss:

L=Y = X|F+Ate(Z] AZy) +ate(Zy (I - A)Z2) + B(Y " Zo|| T+ 1IY T Za|I)

Under clean labels, the objective guides the model toward smooth, interpretable feature spaces.
However, in the presence of noisy supervision, the model is forced to encode erroneous patterns,
disproportionately influencing Z5. In the spectral domain, the Dirichlet Energy for Z5 becomes:

m N-—1

Edir(Z2) = Z Z )‘u(wIZ2T)2

r=1 u=0

where \,, and ¢, are eigenvalues and eigenvectors of the Laplacian. Larger A\, correspond to higher
frequencies, thereby exaggerating the effect of noise on the Z; energy profile.

To verify these dynamics, we trained FGRLNet on the ENZYMES dataset under both clean labels
and 30% symmetric label noise. We tracked average per class per sample Dirichlet Energy for
Y, Z,, Z5 across training epochs. Under clean supervision, Z>’s energy increased modestly, while Z;
and Y either stabilized or declined. In contrast, noisy supervision triggered a sharp and continuous
rise in Z,’s energy, marking it as a reliable signal of overfitting. This phenomenon is visualized in @]

Furthermore, statistical descriptors such as slope and standard deviation of Ey;;(Z2) were found to be
strong early indicators of label noise. Under clean conditions, these metrics remained stable, but they
deviated significantly under noisy labels, especially for mislabeled graphs.

These insights lead to actionable strategies for robust training:

* High-frequency components (Z3) are principal amplifiers of label inconsistencies.
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Figure 4: Evolution of Dirichlet energy across training epochs for the representations Y, Z7, and
Zs learned by the FGRL model on the ENZYMES dataset. Solid lines represent training with
0% label noise, while dashed lines correspond to 30% symmetric label noise. The top-left plot
shows the normalized energy trajectories for all three representations, with each normalized by its
own maximum value to enable direct comparison. The remaining plots display the raw Dirichlet
energy for each representation individually, preserving their respective scales to emphasize magnitude

differences and noise sensitivity.
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* Monitoring E9"(Z,) dynamics allows early identification of noise driven instability.
* Losses can be adaptively modulated to suppress noisy gradient propagation through Z.

By grounding robustness in frequency sensitive learning signals, we offer a principled mechanism
that can be used to detect and curb overfitting. This analysis extends and reinforces the findings of
Section 3] charting a refined path forward in noise resilient GNN design.

F RoOBUST GNN BY ENFORCING POSITIVE EIGENVALUES OF
TRANSFORMATIONS

F.1 PROOF OF SECTIONI[6.]]

ProofofProposition Letus denote A = {\%,,0 < u < N*A1 < i < n} as the set of the all
graph frequencies in D and we rewrite it as A = {\;|0 < k < Nyog A Nyop = > N*}. This
formalization is agnostic to the specific graph in the dataset.

From this we can easily rewrite equation equation [T2]as follows:

m Niot

Edzr — ‘D| Z Z )\ '(pTZtOt (12)

r=1u=1
having Ztot c RN{,ot xm’ and 1/)u e RNwtxl.
Let us assume now the case of a graph G = (Z, A), where Z = [Z]|...||Z"] € RNtorxm’ and

Ac RNwotXNiot jg a diagonal block matrix, where each block i in the diagonal is A*. The resulting
E4"(Z) can be computed as:
m  Niot
Edﬂ‘ . Z Z A/ /Tzfof (13)
r=1u=1
Let’s notice that Equation equation [I3]differs from Equation equation[T2]in their set of eigenvalues
and eigenvectors, and the scaling factor |D|.

Let us now define the graph Laplacian of G as A = Iy, — D :AD":. Being G composed by
disconnected graphs we can write its Laplacian as the following diagonal block matrix:
Iy: — (DY) 2AYDYH)~2 ... 0 Al .. 0
A= z z =
0 <o Iyn — (D")"zA™(D")" 2 0 -~ A™
(14)
From [14 . we can evince that the eigenvalues set of eigenvalues A’ of A corresponds to the union
of the eigenvalues for each Laplacian of the dlsconnected graphs s.t. A" = { A1 < i < n}. This

derives from the property that det(A — ALy, " det(A" — M) (Anton & Rorres, 2014).
So this proves that A, = A/, Vu in Equations and

. ,L . . . ,L . . Z
For the eigenvectors, suppose 17 is the j-th eigenvector of A" corresponding to eigenvalue A’ (e.g.

j € {0,...,N%}). We construct the corresponding eigenvector of A through the diagonal block
matrix properties. Formally, the corresponding eigenvector ;, of A corresponding to Aj is given by:

01 o
0 0
1%: 1:[’; = |Pu
0 0
(o] Lo

This vector 1)/, satisfies the eigenvector equation for A:

Al = N, = N4,
From this, it follows always that 1] Z{" = T Z1,Vr.
Thus, it follows that E4" (D) = |D| - E4"(Z).
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G ADDITIONAL EMPIRICAL STUDIES ON DIRICHLET ENERGY BEHAVIOUR

To gain deeper insight into the behavior of the Dirichlet energy during training, we conducted two
additional experiments. These studies aim to clarify how energy evolves under different training
dynamic, specifically in scenarios of overfitting and varying levels of label noise.

Overfitting on clean data

The first experiment investigates the evolution of Dirichlet energy when a model is intentionally
overfitted to clean data. We trained a GIN model on the ENZYMES dataset without regularization
and with the explicit goal of fitting the training data completely. As shown in Figure[5(a)} the model
successfully overfits the training set, as evidenced by the near-perfect training accuracy and the large
gap between training and validation accuracy.

Notably, the Dirichlet energy consistently increases throughout the training process. This finding
suggests that an upward trend in energy is not necessarily caused by label noise, but may instead be a
general result of overfitting. In particular, the model’s growing capacity to memorize fine-grained
details may lead to less smooth and more fluctuating feature representations, reflected by higher
Dirichlet energy.

Training under varying levels of noise

The second experiment investigates how the Dirichlet energy evolves during training when the dataset
contains varying levels of label noise. A GIN model was trained on the PPA dataset under symmetric
label noise at rates of 10%, 20%, 30%, and 40%. During training, we tracked the evolution of the
Dirichlet energy according to the noise rate.

As illustrated in Figure all noise levels exhibit a similar pattern in energy evolution: an initial
decrease followed by a rise. This U-shaped trajectory suggests that the model initially learns
generalizable low-frequency patterns, then begins to memorize label noise, resulting in less smooth
node representations and thus higher Dirichlet energy.

Crucially, we observe that higher label noise levels consistently lead to higher final Dirichlet energy.
The 40% noise curve ends with the highest energy, while the 10% noise setting maintains the lowest.
This trend highlights a direct relationship between label noise and energy growth, further suggesting
that Dirichlet energy can serve as an indicator of the extent to which the model is fitting noise.

te_:
te_30%

Accuracy/Dirchilet Energy
°
>
Dirchilet Energy

Training Epoch Training Epoch

(@) (b)

Figure 5: Empirical observations on Dirichlet energy dynamics. (a) Training on ENZYMES without
noise, where the model is deliberately overfitted. The plot shows normalized Dirichlet energy
alongside training and validation accuracy. As the model memorizes the training data, Dirichlet
energy increases, indicating a rise in high-frequency components. (b) Evolution of normalized
Dirichlet energy during training on PPA with symmetric label noise levels (10% to 40%). All curves
follow a similar pattern: an initial energy decrease followed by a rise. Higher noise levels result
in higher final energy, suggesting a link between Dirichlet energy growth and the amount of noisy
labels.

H ADDITIONAL TABLES
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Table 5: Sensitivity analysis of Ir,, for v under 40% asymmetric noise, % Change shows the percent-
age difference of test Accuracy using GCOD with two different learning rates for u.

Dataset lr, =1 lIr, =0.1 % Change
Proteins 76.19 75.89 -0.39%
MNIST 72.61 72.48 -0.18%
Enzymes 69.81 68.33 -2.12%
IMDB/Binary  72.89 71.94 -1.30%
Mutag 93.19 92.61 -0.62%
Reddit 47.94 48.08 +0.29%
MSRC/21 95.57 95.45 -0.13%

Table 6: Performance of CE vs. GCOD with 20 % symmetric label noise. The last column reports the
difference (GCOD — CE) on test accuracy.

Dataset Metric 0% CE 20% CE 20 % GCOD (GC%;)D‘?CE)
Best 72.69 66.30 71.26 +4.96
MNIST Last 69.80 53.64 67.88 +14.24
Difference 2.89 12.66 3.38
Best 73.33 64.16 68.69 +4.53
ENZYMES  Last 65.78 57.50 62.54 +5.04
Difference 7.55 6.66 6.15
Best 96.69 90.26 94.69 +4.43
MSRC_21 Last 93.80 79.64 90.26 +10.62
Difference 2.89 10.62 4.43
Best 81.16 76.23 79.38 +3.15
PROTEINS  Last 79.18 62.32 78.12 +15.80
Difference 1.98 13.91 1.26
Best 94.73 89.47 90.01 +0.54
MUTAG Last 84.21 68.42 86.84 +18.42
Difference 10.52 21.05 3.17
IMDB- Best 76.50 75.00 75.40 +0.40
BINARY Lgst 71.60 71.00 73.50 +2.50
Difference 4.90 4.00 1.90
Best 48.15 45.05 44.98 -0.07
Mo Last 4601 4467 44.89 022
Difference 2.14 0.38 0.09

Table 7: Relative runtime comparison of GIN trained with standard Cross Entropy (baseline, runtime
normalized to 1.00) versus alternative robustness-enhancing methods (SOP, GCOD, and CE+W2) on
the PPA dataset (using 30% data, 6 classes).

Method Runtime

GIN 1.00

SOP 1.048

GCOD 1.029

CE+W2 1.33
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I ADDITIONAL FIGURES
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Figure 6: Training accuracy for known noisy and
clean samples using GCN with CE loss. (4 class
form PPA, with 40% symmetrical noise)
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Figure 7: Comparison of the train and test accu-
racy for the Enzymes dataset. GCN model with
different losses and noise levels.
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Figure 8: Average test accuracy and average
Dirichlet energy on the MUTAG dataset with 0%
label noise using the GIN model. The plot illus-
trates the evolution of accuracy and representation
smoothness over training epochs.
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Figure 9: Comparison of the train and test accu-
racy for the Enzymes dataset with GIN model, on
clean and 20% symmetric noise.
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Figure 10: Test accuracy on the PPA dataset (30%
subset, 6-class task) using Cross-Entropy (CE)
and the CE+W2 method, which enforces positive-
semidefinite weight matrices via eigendecompo-
sition. While comparable peak accuracy, CE+W2
exhibits unstable convergence due to the spectra
constraint applied after each epoch disrupts opti-
mization.
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