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Abstract

Recent research has uncovered that federated learning (FL) systems are vulnera-1

ble to various security threats. Although various defense mechanisms have been2

proposed, they are typically non-adaptive and tailored to specific types of attacks,3

leaving them insufficient in the face of adaptive or mixed attacks. In this work,4

we formulate adversarial federated learning as a Bayesian Stackelberg Markov5

game (BSMG) to tackle poisoning attacks of unknown/uncertain types. We further6

develop an efficient meta-learning approach to solve the game, which provides a7

robust and adaptive FL defense. Theoretically, we show that our algorithm provably8

converges to the first-order ε-equilibrium point in O(ε−2) gradient iterations with9

O(ε−4) samples per iteration. Empirical results show that our meta-Stackelberg10

framework obtains superb performance against strong model poisoning and back-11

door attacks with unknown/uncertain types.12

1 Introduction13

Federated learning (FL) allows multiple devices with private data to jointly train a model without14

sharing their local data [39]. However, FL systems are vulnerable to various adversarial attacks15

such as untargeted model poisoning attacks (e.g., IPM [68], LMP [15]) and backdoor attacks (e.g.,16

BFL [2], DBA [71]). To address these vulnerabilities, various robust aggregation rules such as17

Krum [7], coordinate-wise trimmed mean [69], and FLTrust [10] have been proposed to defend against18

untargeted attacks, and both training-stage and post-training defenses such as Norm bounding [57],19

NeuroClip [62], and Prun [64] have been proposed to mitigate backdoor attacks. Further, dynamic20

defenses that myopically adapt parameters such as learning rate [45], norm clipping threshold [21],21

and regularizer [1] have been proposed. However, state-of-the-art defenses remain inadequate in22

countering advanced adaptive attacks (e.g., the reinforcement learning (RL)-based attacks [31, 32])23

that dynamically adjust the attack strategy to obtain long-term advantages. Further, current defenses24

are typically designed to counter specific types of attacks, rendering them ineffective in the presence25

of mixed attacks. As shown in Table 1 (Section 4), simply combining existing defenses with manual26

tuning proves ineffective due to the interference between defense methods, the defender’s lack of27

information about adversaries, and the dynamic nature of FL.28

In this work, we propose a meta-Stackelberg game (meta-SG) framework that obtains superb defense29

performance even in the presence of strong adaptive attacks and a mix of attacks of the same or30

different types (e.g., the coexistence of model poisoning and backdoor attacks). Our meta-SG defense31

framework is built upon the following key observations. First, when the attack type (to be defined in32

Section 2.1) is known as priori, the defender can utilize the limited amount of local data at the server33

and publicly available information to build an approximate world model of the FL system. This34

allows the defender to identify a robust defense policy offline by solving either a Markov decision35

process (MDP) when the attack is non-adaptive or a Markov game when the attack is adaptive. This36
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approach naturally applies to both a single attack and the coexistence of multiple attacks and can37

potentially produce a (nearly) optimal defense. Second, when the attacks are unknown or uncertain,38

as in more realistic settings, the problem can be formulated as a Bayesian Stackelberg Markov game39

(BSMG) [52], which provides a general model for adversarial FL. However, the standard solution40

concept for BSMG, namely, the Bayesian Stackelberg equilibrium, targets the expected case and does41

not adapt to the actual attack with an unknown/uncertain type.42

Motivated by this limitation, we propose a novel solution concept called meta-Stackelberg equilibrium43

(meta-SE) for BSMG as a principled way of developing robust and adaptive defenses for FL. By44

integrating meta-learning and Stackelberg reasoning, meta-SE offers a computationally efficient45

approach to address information asymmetry in adversarial FL and enables strategic adaptation in46

online execution in the presence of multiple (adaptive) attackers. Before training an FL model,47

a meta policy is learned by solving the BSMG using experiences sampled from a set of possible48

attacks. When facing an actual attacker during FL training, the meta-policy is quickly adapted49

using a relatively small number of samples collected on the fly. The proposed meta-SG framework50

only requires a rough estimate of possible worst-case attacks during meta-training, thanks to the51

generalization ability brought by meta-learning.52

To solve the BSMG in the pre-training phase, we propose a meta-Stackelberg learning (meta-SL)53

algorithm based on the debiased meta-reinforcement learning approach in [14]. The meta-SL54

provably converges to the first-order ε-approximate meta-SE in O(ε−2) iterations, and the associated55

sample complexity per iteration is of O(ε−4). Even though meta-SL achieves state-of-the-art sample56

efficiency presented in [24], its operation involves the Hessian of the defender’s value function. To57

obtain a more practical solution (to bypass the Hessian computation), we further propose a fully58

first-order pre-training algorithm, called Reptile meta-SL, inspired by Reptile [43]. Reptile meta-SL59

only utilizes the first-order stochastic gradients from the attacker’s and the defender’s problem to60

solve for the approximate equilibrium. The numerical results in Table 1 demonstrate its effectiveness61

in handling various types of non-adaptive attacks, including mixed attacks , while Figure 2 and62

Figure 9 highlight its efficiency in coping with uncertain or unknown attacks, including adaptive63

attacks. Due to the space limit, we move related work section to Appendix A. Our contributions are64

summarized as follows:65

• We address critical security problems in FL in the face of attacks that may be adaptive or66

mixed with multiple types.67

• We develop a Bayesian Stackelberg game model (Section 2.2) to capture the information68

asymmetry in the adversarial FL under multiple uncertain/unknown attacks.69

• To create a strategically adaptable defense, we propose a new equilibrium concept: meta-70

Stackelberg equilibrium (meta-SE), where the defender (the leader) commits to a meta71

policy and an adaptation strategy, leading to a data-driven approach to tackle information72

asymmetry.73

• To learn the meta equilibrium defense in the pre-training phase, we develop meta-Stackelberg74

learning (Algorithm 1), an efficient first-order meta RL algorithm, which provably converges75

to ε-approximate equilibrium in O(ε−2) gradient steps with O(ε−4) samples per iteration,76

matching the state-of-the-art efficiency in stochastic bilevel optimization.77

• We conduct extensive experiments in real-world settings to demonstrate the superb perfor-78

mance of our proposed method.79

2 Meta Stackelberg Defense Framework80

2.1 Framework Overview81

As shown in Figure 1, the meta-learning framework includes two stages: pre-training, online82

adaptation. The pre-training stage is implemented in a simulated environment, which allows83

sufficient training using trajectories generated from the interactions between the defender and the84

attacker with its type randomly sampled from a set of potential attacks. Both adaptive and non-85

adaptive attacks could be considered for pre-training. After obtaining a meta-policy, the defender will86

interact with the real FL environment in the online adaptation stage to tune its defense policy using87

feedback (i.e., model updates and environment parameters) received in the face of real attacks that88
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Figure 1: A graphical abstract of meta-Stackelberg defense. In the pertaining stage, a simulated
environment is constructed using generated data and the attack domain. The defender utilizes meta-
Stackelberg learning (Algorithm 1) to obtain the meta policy to be online adapted in the real FL.

are not necessarily in the pre-training attack set. Finally, at the last round of FL training, the defender89

will perform a post-training defense on the global model, which may or may not be considered in the90

design of intelligent attacks. Pre-training and online adaptation are indispensable in the proposed91

framework. Table 5 in Appendix D indicate that directly applying defense learned from pre-training92

without online adaptation, as well as adaptation from a randomly initialized defense policy without93

pre-training, both fail to address malicious attacks.94

FL objective. Consider a learning system that includes one server and n clients, each client possesses95

its own private dataset Di = (xj
i , y

j
i )

|Di|
j=1 where |Di| is the size of the dataset for the i-th client.96

Let U = {D1, D2, . . . , Dn} denote the collection of all client datasets. The objective of federated97

learning is to obtain a model w that minimizes the average loss across all the devices: minw F (w) :=98

1
n

∑n
i=1 f(w,Di), where f(w,Di) := 1

|Di|
∑|Di|

j=1 ℓ(w, (x
j
i , y

j
i )) is the local empirical loss with99

ℓ(·, ·) being the loss function.100

Attack objective. We consider two major categories of attacks: untargeted model poisoning attacks101

and backdoor attacks. An untargeted model poisoning attack aims to maximize the average model loss,102

i.e., minw −F (w), while a targeted one strives to cause misclassification of poisoned test inputs to103

one or more target labels (e.g., backdoor attacks). A malicious client i employing targeted attack first104

produces a poisoned dataset D′
i by altering a subset of data samples (xj

i , y
j
i ) ∈ Di to (x̂j

i , c
∗). Here x̂j

i105

is the tainted sample with a backdoor trigger inserted, and c∗ ̸= yji , c
∗ ∈ C is the targeted label. Let106

ρi = |D′
i|/|Di| denote the poisoning ratio, which is typically unknown to the defender. To simplify107

the notation, we assume that among the M = M1 +M2 malicious clients, the first M1 malicious108

clients carry out a targeted attack, and the following M2 malicious clients undertake an untargeted109

attack. Note that clients in the same category may use different attack methods. Then, the joint110

objective of these malicious clients is minw F ′(w) := 1
M1

∑M1

i=1 f(w,D
′
i)− 1

M2

∑M
i=M1+1 f(w,Di).111

FL process. At each round t out of H rounds of FL training, the server randomly selects a subset of112

clients St and sends them the most recent global model wt
g . Every benign client k ∈ St updates the113

model using their local data via one or more iterations of stochastic gradient descent and returns the114

model update gtk to the server. In contrast, an adversary j ∈ St creates a malicious model update115

g̃tj and sends it back. The server then collects the set of model updates {g̃ti ∪ g̃tj ∪ gtk}i,j,k∈St , for116

i ∈ {1, . . . ,M1}, j ∈ {M1+1, . . . ,M}, k ∈ St \ [M ], utilizes an aggregation rule Aggr to combine117

them, and updates the global model: wt+1
g = wt

g − ηtAggr(g̃ti ∪ g̃tj ∪ gtk), which is then sent to118

clients in round t+ 1. At the end of each round, the defender will perform a post-training defense119

h(·) on the global model ŵt
g = h(wt

g) to evaluate the current defense performance. Only at the final120

round H or whenever a client is leaving the FL systems, the global model with post-training defense121

ŵt
g will be sent to all (leaving) clients.122

Attack types. To simplify the exposition, we assume that a single mastermind attacker controls all123

malicious clients within the FL system and employs diverse attack strategies on each controlled client.124

We introduce the concept of attack type to differentiate various attack scenarios, which typically125

include the following three aspects. The first aspect is the attack objective chosen by a malicious126

client. Let Ω1 be the set of all possible attack objectives from the defender’s knowledge base. We set127

Ω1 = {untargeted, targeted} in this work. The second aspect specifies the attack method (i.e., the128
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algorithm used to generate the actual attack policy) adopted by a malicious client. Let Ω2 be the set129

of all possible attack methods from the defender’s knowledge base. The third aspect captures the130

configuration associated with an attack method, including its hyperparameters and other attributes131

(e.g., triggers implanted in backdoor attacks, labels used in targeted attacks, and attacker’s knowledge132

about the FL system). Let Ω3 denote the set of all possible configurations. For each malicious client133

i, the tuple (ω1, ω2, ω3)i where ωk ∈ Ωk for each k fully specifies its particular attack type. Let134

ξ = {(ω1, ω2, ω3)i}Mi=1 be the joint attack type. Further, let Ξ = (Ω1 × Ω2 × Ω3)
M denote the135

domain of attacks that the defender is aware of. Table 2 in Appendix C gives the types of all the136

attacks considered in this work. However, the actual attack type encountered during FL training is137

not necessary in Ξ, although it is presumably similar to a known type in Ξ.138

2.2 Pre-training as a Bayesian Stackelberg Markov game139

From the discussion above, the global model updates and the final output are jointly influenced by the140

defender (through aggregation) and the malicious clients (through corrupted gradients). Hence, the141

FL process in an adversarial environment can be formulated as a two-player discrete time Bayesian142

Stackelberg Markov game (BSMG) defined by a tuple ⟨S,AD, Aξ, T , r, γ,H⟩. Using discrete time143

index t (one step corresponds to one FL round), we have the following.144

• S is the state space, and its elements represent the global model at each round st = wt
g .145

• AD is the defender’s action set. Each action atD represents a combination of the robust146

aggregation and post-training defenses: atD = {Aggr(·), h(·)}.147

• Aξ is the type-ξ attacker’s action set. Each action includes the joint model updates of all148

malicious clients: atA = {g̃ti}
M1
i=1 ∪ {g̃ti}Mi=M1+1.149

• T (st+1|st, Aggr(·), atA) specifies the distribution of the next state given the current state150

and joint actions at t, which is determined by the global model update: wt+1
g = wt

g −151

ηtAggr(g̃ti ∪ g̃tj ∪ gtk).152

• rD, rξ are the defender’s and the attacker’s reward functions (to be maximized), respectively.153

The defender aims to minimize the loss after the post-training: rtD := −F (ŵt
g) where154

ŵt
g = h(wt

g). The attacker’s rtξ is given by the joint attack objective: −F ′(ŵt
g).155

Remark 2.1. The post-training defense is only applied in the final round or to a client leaving the156

FL system and does not interfere with the model updates on wt
g. The defender’s reward function is157

crafted to encompass post-training, as we prioritize a practical, long-term average reward within an158

online process, which enables clients to seamlessly join and depart from the FL system. This design159

enables us to incorporate a post-training defense along with techniques for modifying the model160

structure, such as drop-off and pruning.161

Simulated environment in the white-box setting. With the game model defined above, the defender162

(i.e., the server) can, in principle, identify a strong defense by solving the game (we discuss different163

solution concepts in Section 3). Due to efficiency and privacy concerns in FL, however, it is often164

infeasible to solve the game in real time when facing the actual attacker. Instead, the defender can165

create a simulated environment to approximate the actual FL system during the pre-training stage.166

The main challenge, however, is that the defender often lacks information about the individual devices167

in FL. We first consider the white-box setting where the defender is aware of the number of malicious168

devices in each category (i.e., M1 and M2) and their actual attack types, as well as the non-i.i.d. level169

(to be defined in Section 4.1) of local data distributions across devices. However, it does not have170

access to individual devices’ local data and random seeds, making it difficult to simulate clients’ local171

training and evaluate rewards. To this end, we assume that the server has a small amount of root data172

randomly sampled from the the collection of all client dataset U as in previous work [10, 40]. We173

then use generative model (e.g., conditional GAN model [41] for MNIST and diffusion model [55]174

for CIFAR-10 in our experiments) to generate as much data as necessary to mimic the local training175

(see details in Appendix C). We give an ablation study (Table 6) in Appendix D to evaluate the176

influence of limited/biased root data. We remark that the purpose of pre-training is to derive a defense177

policy rather than the model itself. Directly using the shifted data (root or generated) to train the FL178

model will result in low model accuracy (see Table 5 in Appendix D).179

Handling the black-box setting. We then consider the more realistic black-box setting, where180

the defender has no access to the number of malicious devices and their actual attack types,181
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nor the non-i.i.d. level of local data distributions. To obtain a robust defense, we assume the182

server considers the worst-case scenario based on a rough estimate of the missing information183

(see our ablation study in the experiment section) and adopts the RL-based attacks to simulate184

the worst-case attacks (see Section 3.1) when the attack is unknown or adaptive. In the face of185

an unknown backdoor attack, the defender does not know the backdoor triggers and targeted la-186

bels. To simulate a backdoor attacker’s behavior, we first implement multiple GAN-based attack187

models as in [12] to generate worst-case triggers (which maximizes attack performance given the188

backdoor objective) in the simulated environment. Since the defender does not know the poi-189

soning ratio ρi and the target label of the attacker’s poisoned dataset (needed to determine the190

attack objective F ′), we approximate the attacker’s reward function by rtA = −F ′′(ŵt+1
g ), where191

F ′′(w) := minc∈C [
1

M1

∑M1

i=1
1

|D′
i|
∑|D′

i|
j=1 ℓ(w, (x̂

j
i , c))] − 1

M2

∑M
i=M1+1 f(ω,Di). F ′′ differs F ′192

only in the first M1 clients, where we use a strong target label (that minimizes the expected loss) as a193

surrogate to the true label c∗. We compare the defense performance against white-box and black-box194

backdoor attacks ( see Figure 10 in Appendix D).195

3 Meta Stackelberg Learning196

Since the pre-training is modeled by a Bayesian Markov Stackelberg game, solving the game197

efficiently is crucial to a successful defense. This work’s main contribution includes the formulation198

of a new solution concept to the game, meta-Stackelberg equilibrium (meta-SE), and a learning199

algorithm to approximate such equilibrium in finite time. To motivate the proposed concept, we begin200

by addressing the defense against non-adaptive attacks.201

Consider the attacker employing a non-adaptive attack of type ξ; in other words, the attack action at202

each iteration is determined by a fixed attack strategy πξ, where πξ(a) gives the probability of taken203

action a ∈ Aξ, independent of the FL training and the defense strategy. In this case, BSMG reduces204

to an MDP, where the transition kernel is Tξ(·|s, aD) ≜
∫
Aξ
T (·|s, aA, aD)dπξ(aA). Parameterizing205

the defender’s policy πD(a
t
D|st; θ) by a neural network with model weights θ ∈ Θ, the solution206

to the following optimization problem maxθ∈Θ Eat
D∼πD,st∼Tξ

[
∑H

t=1 γ
trtD] ≜ JD(θ, ξ) gives the207

optimal defense against the non-adaptive attack. When the actual attack in the online stage falls208

within Ξ, which the defender is uncertain of, one can consider the defense against the expected attack:209

maxθ Eξ∼QJD(θ, ξ), where Q is a distribution over the attack domain to be designed by the defender.210

One intuitive design is to include all reported attack methods in history as the attack domain and their211

empirical frequency as the Q distribution.212

In stark contrast to non-adaptive attacks, an adaptive attack can adjust attack actions to the FL213

environment and the defense mechanism [31, 32]. Most existing attacks are history-independent [50,214

65]. Hence, we assume that an adaptive attack takes the current state (global model) as input, i.e., the215

attack policy is a Markov policy denoted by πA(a
t
A|st). Denoted by ξ the attack type; then, an optimal216

adaptive attack policy, parameterized by ϕ, is the best response to the existing defense πD(·|st; θ):217

ϕ ∈ argmaxEat
A∼πξ,at

D∼πD [
∑H

t=1 γ
trtξ] ≜ JA(θ, ϕ, ξ). Denote by ϕ∗

ξ the maximizer, and then, the218

defender’s cumulative rewards under such attack is JD(θ, ϕ∗
ξ , ξ) ≜ Eat

A∼πξ,at
D∼πD [

∑H
t=1 γ

trtD].219

3.1 RL-based attacks and defenses220

The actual attack type (which could be either adaptive or non-adaptive) encountered in the online221

phase may be not in Ξ and thus unknown to the defender. To prepare for these unknown attacks,222

we propose to use multiple RL-based attacks with different objectives, adapted from RL-based223

untargeted model poising attack [31] and RL-based backdoor attack [32], as surrogates for unknown224

attacks, which are added to the attack domain for pre-training. The rationale behind the RL surrogates225

includes: (1) they achieve strong attack performance by optimizing long-term objectives; (2) they226

adopt the most general action space (i.e., model updates), which allows them to mimic any adaptive227

or non-adaptive attacks given the corresponding objectives; (3) they are flexible enough to incorporate228

multiple attack methods by using RL to tune the hyper-parameters of a mixture of attacks. A similar229

argument applies to RL-based defenses. We remark that in this paper, an RL-based attack (defense)230

is not a single attack (defense) as in [31, 32] but a systematically synthesized combination of existing231

attacks (defenses). In the simulated environment, we train our defense against the strongest white-box232
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RL attacks in [31, 32] with different objectives (e.g., untargeted or targeted), which is considered the233

optimal attack strategy. The “worst-case” scenario is commonly used in security scenarios to ensure234

the associated defense has performance guarantees under “weaker” attacks with similar objectives.235

Such a robust defense policy gives us a good starting point to further adapt to uncertain or unknown236

attacks. Our defense is generalizable to other adaptive attacks (see Table 8 in Appendix D). The key237

novelty of our RL-based defense is that instead of using a fixed and hand-crafted algorithm as in238

existing approaches, we use RL to optimize the policy network πD(a
t
D|st; θ). Similar to RL-based239

attacks, the most general action space could be the set of global model parameters. However, the240

high dimensional action space will lead to an extremely large search space that is prohibitive in terms241

of training time and memory space. Thus, we apply compression techniques (see Appendix C) to242

reduce the action from high-dimensional space to a 3-dimensional space. Note that the execution243

of our defense policy is lightweight, without using any extra data for evaluation/validation. See the244

discussion in Appendix C on how we apply our RL-based defense during online adaptation.245

3.2 Meta-Stackelberg equilibrium246

As discussed in Section 2.2, one of the key challenges to solving the BSMG is the defender’s247

incomplete information on attack types. Prior works have explored a Bayesian equilibrium approach248

to address this issue [52]. Given the set of possible attacks Ξ that the defender is aware of and a249

prior distribution Q over the domain, the Bayesian Stackelberg equilibrium (BSE) is given by the250

following bi-level optimization:251

max
θ∈Θ

Eξ∼Q[JD(θ, ϕ
∗
ξ , ξ)] s.t. ϕ∗

ξ ∈ argmaxJA(θ, ϕ, ξ). (BSE)

In (BSE), unaware of the exact attacker type, the defender (the leader) aims to maximize the defense252

performance against an average of all attack types, anticipating their best responses.253

From a game-theoretic viewpoint, the Bayesian equilibrium in (BSE) is of ex-ante. The defender254

determines its equilibrium strategy only knowing the type distribution Q. However, as the Markov255

game proceeds, the attacker’s moves (e.g., malicious global model updates) during the interim stage256

(online stage) reveal additional information on the attacker’s private type. This Bayesian equilibrium257

defense strategy fails to handle the emerging information on the attacker’s hidden type in the interim258

stage, as the policy obtained from (BSE) remains fixed throughout the online stage without adaptation.259

To address the limitation of Bayesian equilibrium, we introduce the novel solution concept, meta-260

Stackelberg equilibrium (meta-SE), to equip the defender with online responsive intelligence under261

incomplete information. As a synthesis of meta-learning and Stackelberg equilibrium, the meta-SE262

aims to pre-train a meta policy on a variety of attack types sampled from the attack domain Ξ such263

that online gradient adaption applied to the base produces a decent defense against the actual attack264

in the online environment. Using mathematical terms, we denote by τξ := (sk, akD, a
k
ξ )

H
k=1 the265

trajectory of the FL system under type-ξ attacker up to round H , which is subject to the distribution266

q(θ, ξ) :=
∏H

t=1 πD(a
t
D|st; θ)πξ(a

t
A|st)T (st+1|st, atD, atA). Let ∇̂θJD(τ) be the unbiased estimate267

of the policy gradient ∇θJD using the sample trajectory τξ (see Appendix E). Then, a one-step268

gradient adaptation using the sample trajectory is given by θ + η∇θJD. Incorporating this gradient269

adaptation into (BSE) leads to the proposed meta-SE.270

max
θ∈Θ

Eξ∼QEτ∼q[JD(θ + η∇̂θJD(τ), ϕ
∗
ξ , ξ)],

s.t. ϕ∗
ξ ∈ argmaxEτ∼qJA(θ + η∇̂θJD(τ), ϕ, ξ).

(meta-SE)

The idea of adding the gradient adaptation to the equilibrium is inspired by the recent developments271

in gradient-based meta-learning [16, 43]. When the attack is non-adaptive, the BSMG reduces to272

MDP problem, as delineated at the beginning of this section. Consequently, (meta-SE) turns into273

the standard form of meta-learning [16]. Unlike the conventional (BSE), the solution to (meta-SE274

gives the defender a decent defense initialization after pre-training whose gradient adaptation in the275

online stage is tailored to type ξ, since the online trajectory follows the distribution q(θ, ξ). The276

novelty of (meta-SE) lies in that the leader (defender) determines an optimal adaptation scheme277

rather than a policy, which is computed using an online trajectory without knowing the actual type,278

creating a data-driven strategic adaptation after the pre-training. Besides equation BSE, Appendix G279

also compares the perfect Bayesian equilibrium with the proposed meta-SE, highlighting the latter’s280

scalability to complex FL systems.281
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3.3 Meta-Stackelberg learning282

Algorithm 1 Meta-Stackelberg Learning

1: Input: the distribution Q(Ξ), initial defense meta
policy θ0, pre-defined attack methods {πξ}ξ∈Ξ, pre-
trained RL attack policies {ϕ0

ξ}ξ∈Ξ, step size param-
eters κD , κA, η, and iterations numbers NA, ND;

2: Output: θND ;
3: for iteration t = 0 to ND − 1 do
4: if meta-RL (for non-adaptive) then
5: Sample a batch of K attack types ξ from Ξ;
6: Estimate ∇̂JD(ξ) := ∇̂θJD(θ, πξ, ξ)|θ=θt

ξ
;

7: end if
8: if meta-SG then
9: Sample a batch of K attack types ξ ∈ Ξ;

10: for each sampled attack ξ do
11: Apply one-step adaptation

θtξ ← θt + η∇̂θJD(θt, ϕt
ξ, ξ);

12: ϕt
ξ(0)← ϕt

ξ;
13: for iteration k = 0, . . . , NA − 1 do
14: ϕt

ξ(k + 1)← ϕt
ξ(k)+

15: κA∇̂ϕJA(θtξ, ϕ
t
ξ(k), ξ);

16: end for
17: ∇̂JD(ξ)← ∇̂θJD(θ, ϕt

ξ(NA), ξ)|θ=θt
ξ
;

18: end for
19: end if
20: θt+1 ← θtκD/K

∑
ξ ∇̂JD(ξ)

21: end for

Unlike finite Stackelberg Markov games that283

can be solved (approximately) using mixed-284

integer programming [59] or Q-learning [52],285

our BSMG admits high-dimensional continu-286

ous state and action spaces, posing a more chal-287

lenging computation issue. Hence, we resort288

to a two-timescale policy gradient (PG) algo-289

rithm, referred to as meta-Stackelberg learning290

(meta-SL) presented in Algorithm 1, to solve291

for the meta-SE in a similar vein to [33]. In292

plain words, meta-SL first learns the attacker’s293

best response at a fast scale (lines 13-15), based294

on which it updates the defender’s meta pol-295

icy at a slow scale at each iteration using ei-296

ther debiased meta-learning [14] or reptile [43].297

The two-timescale meta-SL alleviates the non-298

stationarity caused by concurrent policy updates299

from both players [70]. Of particular note is300

that the debiased meta-learning involves Hes-301

sian computation when evaluating the gradient302

of the defender’s objective function since the303

attacker’s best response ϕ∗
ξ(θ) also depends on304

θ. In contrast, reptile uses a first-order approx-305

imation to avoid Hessian. The mathematical306

subties between two policy gradient estimations307

are deferred to the Appendix E.308

The rest of this subsection addresses the com-309

putation expense of the proposed meta-SL. We begin with an alternative solution concept for310

our first-order gradient algorithm, which is slightly weaker than (meta-SE). Let LD(θ, ϕ, ξ) ≜311

Eτ∼qJD(θ + η∇̂θJD(τ), ϕ, ξ), LA(θ, ϕ, ξ) ≜ Eτ∼qJA(θ + ∇̂θJD(τ), ϕ, ξ), for a fixed type ξ ∈ Ξ.312

In the sequel, we will assume LD and LA to be continuously twice differentiable and Lipschitz-313

smooth with respect to both θ and ϕ as in [33], see Appendix F.314

Definition 3.1. For ε ∈ (0, 1), a pair (θ∗, {ϕ∗
ξ}ξ∈Ξ) ∈ Θ× Φ|Ξ| is a ε-meta First-Order Stackelbeg315

Equilibrium (ε-meta-FOSE) of the meta-SG if it satisfies the following conditions: for ξ ∈ Ξ,316

maxθ∈B(θ∗)⟨∇θLD(θ
∗, ϕ∗

ξ , ξ), θ − θ∗⟩ ≤ ε, maxϕ∈B(ϕ∗
ξ)
⟨∇ϕLA(θ

∗, ϕ∗
ξ , ξ), ϕ − ϕ∗

ξ⟩ ≤ ε, where317

B(θ∗) := {θ ∈ Θ : ∥θ − θ∗∥ ≤ 1}, and B(ϕ∗
ξ) := {ϕ ∈ Φ : ∥ϕ− ϕ∗

ξ∥ ≤ 1}.318

Definition 3.1 contains the necessary equilibrium condition for meta-SE in (meta-SE), which can be319

reduced to ∥∇θLD(θ
∗, ϕξ, ξ)∥ ≤ ε and ∥∇ϕLA(θ

∗, ϕξ, ξ)∥ ≤ ε in the unconstraint settings. Since320

we utilize stochastic gradient in practice, all inequalities mentioned above shall be considered in321

expectation. The existence of meta-FOSE is guaranteed Theorem F.1 in Appendix F.322

Since the value functions JA, JD are nonconvex, we impose a regularity assumption adapted from323

the Polyak-Łojasiewicz (PL) condition [26], which is customary in nonconvex analysis. Despite the324

lack of theoretical justifications for the PL condition in the literature, [33] empirically demonstrates325

that the cumulative rewards in meta-reinforcement learning satisfy the PL condition, see Figure 4326

Appendix D therein. Assumption 3.2 subsequently leads to the main result in Theorem 3.3327

Assumption 3.2 (Stackelberg Polyak-Łojasiewicz condition). There exists a positive constant µ such328

that for any (θ, ϕ) ∈ Θ × Φ and ξ ∈ Ξ, the following inequalities hold: 1
2µ∥∇ϕLD(θ, ϕ, ξ)∥2 ≥329

maxϕ LD(θ, ϕ, ξ)− LD(θ, ϕ, ξ), 1
2µ∥∇ϕLA(θ, ϕ, ξ)∥2 ≥ maxϕ LA(θ, ϕ, ξ)− LA(θ, ϕ, ξ).330

Theorem 3.3. Under assumption 3.2 and other regularity assumptions in Appendix F, for any331

given ε ∈ (0, 1), let the learning rates κA and κD be properly chosen; let NA ∼ O(log ϵ−1) and332

Nb ∼ O(ϵ−4) be properly chosen (Appendix F), then, Algorithm 1 finds a ε-meta-FOSE within333

ND ∼ O(ε−2) iterations.334
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Finally, we conclude this section by analyzing the meta-SG defense’s generalization ability when335

the learned meta policy is exposed to attacks unseen in the pre-training. Proposition 3.4 asserts that336

meta-SG is generalizable to the unseen attacks, given that the unseen is not distant from those seen.337

The formal statement is deferred to Appendix F.338

Proposition 3.4. Consider sampled attack types ξ1, . . . , ξm during the pre-training and the unseen339

attack type ξm+1 in the online stage. The generalization error is upper-bounded by the “discrepancy”340

between the unseen and the seen attacks C(ξm+1, {ξi}mi=1).341

4 Experiments342

4.1 Experiment Settings343

Dataset. Our experiments are conducted on MNIST [30] and CIFAR-10 [28] datasets with a CNN344

classifier and ResNet-18 model respectively (see Appendix C for details). We consider horizontal FL345

and adopt the approach introduced in [15] to measure the diversity of local data distributions among346

clients. Let the dataset encompass C classes, such as C = 10 for datasets like MNIST and CIFAR-10.347

Client devices are divided into C groups (with M attackers evenly distributed among these groups).348

Each group is allocated 1/C of the training samples in the following manner: a training instance349

labeled as c is assigned to the c-th group with a probability of q ≥ 1/C, while being assigned to350

every other group with a probability of (1− q)/(C − 1). Within each group, instances are evenly351

distributed among clients. A higher value of q signifies a greater non-i.i.d. level. By default, we352

set q = 0.5 as the standard non-i.i.d. level. We assume the server holds a small amount of root353

data randomly sampled from the the collection of all client dataset U . (100 for MNIST and 200 for354

CIFAR-10).355

Baseline. We evaluate our meta-RL and meta-SG defenses under the following untargeted model356

poisoning attacks including IPM [68] (with scaling factor 2), LMP [15], RL [31], and backdoor357

attacks including BFL [2] (with poisoning ratio 1), DBA [67] (with 4 sub-triggers evenly distributed358

to malicious clients and poisoning ratio 0.5), BRL [32], and a mix of attacks from the two categories359

(see Table 2 for all attacks’ categories in Appendix C). We consider various strong defenses as360

baselines, including training-stage defenses such as Coordinate-wise trimmed mean/median [69],361

Norm bounding [57], FLTrust [10], Krum [7], and post-training stage defenses such as NeuroClip [62]362

and Prun [64] and the selected combination of them. We utilize the Twin Delayed DDPG (TD3) [18]363

algorithm to train both attacker’s and defender’s policies. We use the following default parameters:364

number of devices = 100, number of malicious clients for untargeted model poisoning attack = 10,365

number of malicious clients for backdoor attack = 5 (20 for DBA), client subsampling rate = 10%,366

number of FL epochs = 500 (1000) for MNIST (CIFAR-10). We fix the initial model and the367

random seeds for client subsampling and local data sampling for fair comparisons. The details of the368

experiment setup and additional results are provided in Appendices C and D.369

4.2 Experiment Results370

Acc/Bac FedAvg Trimed Mean FLTrust ClipMed FLTrust+NC Meta-RL (ours)

NA 0.7082/0.1 0.7093/0.1078 0.7139/0.1066 0.5280/0.1212 0.7100/0.1061 0.7053/0.0999
IPM 0.1369/0.0312 0.6542/0.1174 0.6828/0.1054 0.5172/0.1220 0.6656/0.0971 0.6862/0.0637
LMP 0.1115/0.1174 0.6224/0.1033 0.7071/0.099 0.5144/0.121 0.7075/0.104 0.7109/0.037
BFL 0.7137/1.0 0.7034/1.0 0.7145/1.0 0.5198/0.5337 0.7100/0.1061 0.7106/0.0143
DBA 0.7007/0.7815 0.6904/0.7737 0.7010/0.8048 0.4935/0.6261 0.6618/0.9946 0.6699/0.2838
IPM+BFL 0.3104/0.8222 0.6415/1.0 0.6911/1.0 0.5097/0.5776 0.6817/0.0267 0.6949/0.0025
LMP+DBA 0.1124/0.1817 0.6444/0.7311 0.7007/0.7620 0.4841/0.6342 0.6032/0.8422 0.6934/0.2136

Table 1: Comparisons of average global model accuracy (acc: higher the better) and backdoor
accuracy (bac: lower the better) after 500 rounds under single/multiple type attacks on CIFAR-10.
All parameters are set as default and random seeds are fixed.

Effectiveness against single/multiple type of attacks. We examine the defense performance of371

our meta-RL compared with other defense combinations in Table 1 based on average global model372

accuracy after 500 FL rounds on CIFAR-10, which measures the success of defense and learning373

speed ignoring the randomness influence (corner-case updates, bias data, etc.) at the bargaining stage374

of FL. The meta-RL first learns a meta-defense policy from the attack domain involving {NA, IPM,375
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Figure 2: Comparisons of defenses against untargeted model poisoning attacks (i.e., LMP and RL) on MNIST
and CIFAR-10. All parameters are set as default and random seeds are fixed.

LMP, BFL, DBA}, then adapts it to the real single/mixed attack. We observe that multiple types376

of attacks may intervene with each other (e.g., IPM+BFL, LMP+DBA), which makes it impossible377

to manually address the entangled attacks. It is not surprising to see FedAvg [39] and defenses378

specifically designed for untargeted attacks (i.e., Trimmed mean, FLTrust) fail to defend backdoor379

attacks (i.e., BFL, DBA) due to the huge deviation of defense objective from the optimum. For380

a fair comparison, we further manually tune the norm threshold (more results in Appendix D)381

from [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] for ClipMed (i.e., Norm bounding + Coordinate-wise Median)382

and clipping range from [2 : 2 : 10] for FLTrust + NeuroClip to achieve the best performance to383

balance the global model and backdoor accuracy in linear form (i.e., Acc - Bac). Intuitively, a tight384

threshold/range has better performance in defending against backdoor attacks, yet will hinder or even385

damage the FL progress. On the other hand, a loose threshold/range fails to defend backdoor injection.386

Nevertheless, manually tuning in real-world FL scenarios is nearly impossible due to the limited387

knowledge of the ongoing environment and the presence of asymmetric adversarial information.388

Instead of suffering from the above concerns and exponential growth of parameter combination389

possibilities, our data-driven meta-RL approach can automatically tune multiple parameters at each390

round. Targeting the cumulative defense rewards, the RL approach naturally holds more flexibility391

than myopic optimization.392

Adaptation to uncertain/unknown attacks. To evaluate the necessity and efficiency of adaptation393

from the meta-SG policy in the face of unknown attacks, we plot the global model accuracy graph394

over FL epochs. The meta-RL pre-trained from non-adaptive attack domain {NA, IPM, LMP, BFL,395

DBA} (RL attack is unknown), while meta-SG pre-train from interacting with a group of RL attacks396

initially target on {FedAvg, Coordinate-wise Median, Norm bounding, Krum, FLTrust } (LMP is397

unknown). The meta-SG plus (i.e., meta-SG+) is a pre-trained model from the combined attack398

domain of the above two. All three defenses then adapt to the real FL environments under LMP or RL399

attacks. As shown in Figure 2, the meta-SG can quickly adapt to both uncertain RL-based adaptive400

attack (attack action is time-varying during FL) and unknown LMP attack, while meta-RL can only401

slowly adapt to or fail to adapt to the unseen RL-based adaptive attacks on MNIST and CIFAT-10402

respectively. In addition, the first and the third Figures in Figure 2 demonstrate the power of meta-SG403

against unknown LMP attacks, even if LMP is not directly used during its pre-training stage. The404

results are only slightly worse than meta-SG plus, where LMP is seen during pre-training. Similar405

observations are given under IPM in Appendix D.406

5 Conclusion407

We have proposed a meta-Stackelberg framework to tackle attacks of uncertain or unknown types in408

federated learning through data-driven adaptation. The proposed meta-Stackelberg learning approach409

is computationally tractable and strategically adaptable, targeting mixed and adaptive attacks under410

incomplete information. The major limitation of our current approach pertains to privacy concerns.411

Our current simulation necessitates that the defender either accesses a small portion of root data or412

learns clients’ data through inversion, which slightly violates the privacy principles of FL. To minimize413

privacy risks, we train our meta-policy in a simulated environment and apply data augmentation to414

blur the learned data. In our experiments, the current “black-box” setting operates under certain415

conditions: we test only one or a few agnostic variables at a time while leaving other information416

known to the defender (see Appendix D). In our future work, we plan to incorporate additional417

state-of-the-art defense algorithms to counter more potent attacks, such as edge-case attacks [63], as418

well as other attack types, such as privacy-leakage attacks [37]. We will also explore new application419

scenarios, including NLP and large generative models. Our framework could be further improved by420

including a client-side defense mechanism that closely mirrors real-world scenarios, replacing the421

current processes of self-data generation.422
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A Related Works618

Poisoning/backdoor attacks and defenses in FL Several defensive strategies against model619

poisoning attacks broadly fall into two categories. The first category includes robust-aggregation-620

based defenses encompassing techniques such as dimension-wise filtering. These methods treat621

each dimension of local updates individually, as explored in studies by [4, 69]. Another strategy is622

client-wise filtering, aiming to limit or entirely eliminate the influence of clients who might harbor623

malicious intent. This approach has been examined in the works of [7, 47, 57]. Some defensive624

methods necessitate the server having access to a minimal amount of root data, as detailed in the625

study by [10]. Naive backdoor attacks are limited by even simple defenses like norm-bounding626

[57] and weak differential private [20] defenses. Despite the sophisticated design of state-of-the-art627

non-addaptive backdoor attacks against federated learning, post-training stage defenses [64, 42, 49]628

can still effectively erase suspicious neurons/parameters in the backdoored model.629

Incomplete Information in Adversarial Machine Learning Prior works have attempted to tackle630

the challenge of incomplete information through two distinct approaches. The first approach is the631

“infer-then-counter” approach, where the hidden information regarding the attacks is first inferred632

through observations. For example, one can infer the backdoor triggers through reverse engineering633

using model weights [60], based on which the backdoor attacks can be mitigated [72]. The inference634

helps adapt the defense to the present malicious attacks. However, this inference-based adaptation635

requires prior knowledge of the potential attacks (i.e., backdoor attacks) and does not directly lend636

itself to mixed/adaptive attacks. Moreover, the inference and adaptation are offline, unable to counter637

online adaptive backdoor attack [31]. The other approach explored the notion of robustness that638

prepares the defender for the worst case [54, 52], which often leads to a Stackelberg game (SG)639

between the defender and the attacker. Yet, such a Stackelberg approach often leads to conservative640

defense, lacking adaptability.641

B Broader Impact642

Towards Universal Robust Federated Learning. Our goal is to establish a comprehensive frame-643

work for universal federated learning defense against all kinds of attacks. This framework ensures644

that the server remains oblivious to any details pertaining to the environment or potential attackers.645

Still, it possesses the ability to swiftly adapt and respond to uncertain or unknown attackers during646

the actual federated learning process. Nevertheless, achieving this universal defense necessitates an647

extensive attack set through pre-training, which often results in a protracted convergence time toward648

a meta-policy. Moreover, the effectiveness and efficiency of generalizing from a wide range of diverse649

distributions pose additional challenges. Considering these, we confine our experiments in this paper650

to specifically address a subset of uncertainties and unknowns. This includes variables such as the651

method of attacker, the number of attackers, the level of independence and identically distributed data,652

backdoor triggers, backdoor targets, and other relevant aspects. However, we acknowledge that our653

focus is not all-encompassing, and there may be other factors that remain unexplored in our research.654

Meta Equilibrium and Information Asymmetry. Information asymmetry is a prevailing phe-655

nomenon arising in a variety of contexts, including adversarial machine learning (e.g. FL discussed in656

this work), cyber security [38], and large-scale network systems [34]. Our proposed meta-equilibrium657

offers a data-driven approach tackling asymmetric information structure in dynamic games without658

Bayesian-posterior beliefs. Achieving the strategic adaptation through stochastic gradient descent,659

the meta-equilibrium is computationally superior to perfect Bayesian equilibrium and better suited660
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for real-world engineering systems involving high-dimensional continuous parameter spaces. It is661

expected that the meta-equilibrium can also be relevant to other adversarial learning contexts, cyber662

defense, and decentralized network systems.663

C Experiment Setup664

Datasets. We consider two datasets: MNIST [30] and CIFAR-10 [28], and default i.i.d. local data665

distributions, where we randomly split each dataset into n groups, each with the same number of666

training samples. MNIST includes 60,000 training examples and 10, 000 testing examples, where667

each example is a 28×28 grayscale image, associated with a label from 10 classes. CIFAR-10 consists668

of 60,000 color images in 10 classes of which there are 50, 000 training examples and 10,000 testing669

examples. For the non-i.i.d. setting (see Figure 11(d)), we follow the method of [15] to quantify the670

heterogeneity of the data. We split the workers into C = 10 (for both MNIST and CIFAR-10) groups671

and model the non-i.i.d. federated learning by assigning a training instance with label c to the c-th672

group with probability q and to all the groups with probability 1− q. A higher q indicates a higher673

level of heterogeneity.674

Federated Learning Setting. We use the following default parameters for the FL environment:675

local minibatch size = 128, local iteration number = 1, learning rate = 0.05, number of workers676

= 100, number of backdoor attackers = 5, number of untargeted model poisoning attackers = 20,677

subsampling rate = 10%, and the number of FL training rounds = 500 (resp. 1000) for MNIST (resp.678

CIFAR-10). For MNIST, we train a neural network classifier of 8×8, 6×6, and 5×5 convolutional679

filter layers with ReLU activations followed by a fully connected layer and softmax output. For680

CIFAR-10, we use the ResNet-18 model [22]. We implement the FL model with PyTorch [46] and681

run all the experiments on the same 2.30GHz Linux machine with 16GB NVIDIA Tesla P100 GPU.682

We use the cross-entropy loss as the default loss function and stochastic gradient descent (SGD) as683

the default optimizer. For all the experiments except Figures 11(c) and 11(d), we fix the initial model684

and random seeds of subsampling for fair comparisons.685

Baselines. We evaluate our defense method against various state-of-the-art attacks, including non-686

adaptive and adaptive untargeted model poison attacks (i.e., IPM [68], LMP [15], RL [31]), as well as687

backdoor attacks (BFL [2] without model replacement, BRL [32], with tradeoff parameter λ = 0.5,688

DBA [67] where each selected attacker randomly chooses a sub-trigger as shown in Figures 6, PGD689

attack [63] with a projection norm of 0.05), and a combination of both types. To establish the690

effectiveness of our defense, we compare it with several strong defense techniques. These baselines691

include defenses implemented during the training stage, such as Krum [7], ClipMed [69, 57, 31] (with692

norm bound 1), FLTrust [10] with 100 root data samples and bias q = 0.5, training stage CRFL [66]693

with norm bound of 0.02 and noise level 1e− 3 as well as post-training defenses like NeuroClip [62]694

and Prun [64]. We use the original clipping thresholds 7 in [62] and set the default Prun number to695

256.696

Attack type Category Adaptivity

IPM [68] untargeted model poisoning non-adaptive
LMP [15] untargeted model poisoning non-adaptive
BFL [2] backdoor non-adaptive
DBA [67] backdoor non-adaptive
RL [31] untargeted model poisoning adaptive
BRL [32] backdoor adaptive

Table 2: A table showcasing all attacks in the experiments, with their corresponding categories and
adaptivities.

Reinforcement Learning Setting. In our RL-based defense, since both the action space and state697

space are continuous, we choose the state-of-the-art Twin Delayed DDPG (TD3) [18] algorithm to698

individually train the untargeted defense policy and the backdoor defense policy. We implement our699

simulated environment with OpenAI Gym [9] and adopt OpenAI Stable Baseline3 [48] to implement700

TD3. The RL training parameters are described as follows: the number of FL rounds = 300 rounds,701

policy learning rate = 0.001, the policy model is MultiInput Policy, batch size = 256, and γ = 0.99 for702

updating the target networks. The default λ = 0.5 when calculating the backdoor rewards.703
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Settings Pre-training Online-adaptation Related figures/tables

meta-RL {NA, IPM, LMP, BFL, DBA} {IPM, LMP, BFL, DBA, IPM+BFL, LMP+DBA} Table 1,Figures 2, 9 and 11
meta-SG {RL, BRL} {IPM, LMP, RL, BRL} Tables 4 and 8,Figures 2 and 9 to 11
meta-SG+ {NA, IPM, LMP, BFL, DBA, RL, BRL} {IPM, LMP, RL, BRL} Figures 2 and 9

Table 3: A table showcasing the attacks and defenses employed during pre-training and online-
adaptation, with links to the relevant figures or tables. RL and BRL are initially target on {FedAvg,
ClipMed, Krum, FLTrust+NC} during pre-training.

Meta-learning Setting. The attack domains (i.e., potential attack sets) are built as following: For704

meta-RL, we consider IPM [68], LMP [15], EB [5] as three possible attack types. For meta-SG against705

untargeted model poisoning attack, we consider RL-based attacks [31] trained against Krum [7] and706

ClipMed [31, 69, 57] as initial attacks. For meta-SG against backdoor attack, we consider RL-based707

backdoor attacks [32] trained against Norm-bounding [57] and NeuroClip [62] (Prun [64]) as initial708

attacks. For meta-SG against mix type of attacks, we consider both RL-based attacks [31] and709

RL-based backdoor attacks [32] described above as initial attacks.710

At the pre-training stage, we set the number of iterations T = 100. In each iteration, we uniformly711

sample K = 10 attacks from the attack type domain (see Algorithm 2 and Algorithm 1). For each712

attack, we generate a trajectory of length H = 200 for MNIST (H = 500 for CIFAR-10), and update713

both attacker’s and defender’s policies for 10 steps using TD3 (i.e., l = NA = ND = 10). At the714

online adaptation stage, the meta-policy is adapted for 100 steps using TD3 with T = 10, H = 100715

for MNIST (H = 200 for CIFAR-10), and l = 10. Other parameters are described as follows: single716

task step size κ = κA = κD = 0.001, meta-optimization step size = 1, adaptation step size = 0.01.717

Space Compression. Following the BSMG model, it is most generally to use wt
g or (wt

g, I
t) as718

the state, and {g̃tk}
M1+M2

k=1 or wt+1
g as the action for the attacker and the defender, respectively, if719

the federated learning model is small. However, when we use federated learning to train a high-720

dimensional model (i.e., a large neural network), the original state/action space will lead to an721

extremely large search space that is prohibitive in terms of training time and memory space. We722

adopt the RL-based attack in [31] to simulate an adaptive model poisoning attack and the RL-based723

local search in [32] to simulate an adaptive backdoor attack, both having a 3-dimensioanl real action724

spaces after space comparison (see ). We further restrict all malicious devices controlled by the same725

attacker to take the same action. To compress the state space, we reduce wt
g to only include its last726

two hidden layers for both attacker and defender and reduce It to the number of malicious clients727

sampled at round t.728

Our approach rests on an RL-based synthesis of existing specialized defense methods against mixed729

attacks, where multiple defenses can be selected at the same time and combined with dynamically730

tuned hyperparameters. The following specialized defenses are selected in our implementation. For731

training stage aggregation-based defenses, we first normalize the magnitude of all gradients to a732

threshold α ∈ (0,maxi∈St{∥gti∥}], then apply coordinate-wise trimmed mean [69] with trimmed733

rate β ∈ [0, 1). For post-training defense, NeuroClip [62] with clip range ε or Prun [64] with mask734

rate σ is applied. The concrete approach used in each of the above defenses can be replaced by other735

defense methods. The key novelty of our approach is that instead of using a fixed and hand-crafted736

algorithm as in existing approaches, we use RL to optimize the policy network πD(a
t
D|st; θ). Similar737

to RL-based attacks, the most general action space could be the set of global model parameters.738

However, the high dimensional action space will lead to an extremely large search space that is739

prohibitive in terms of training time and memory space. Thus, we apply reduce the action space to740

atD := (αt, βt, εt/σt). Note that the execution of our defense policy is lightweight, without using741

any extra data for evaluation/validation.742

Self-generated Data. We begin by acknowledging that the server only holds a small amount of743

initial data (200 samples with q = 0.1 in this work) learned from first 20 FL rounds using inverting744

gradient [19], to simulate training set with 60,000 images (for both MNIST and CIFAR-10) for FL.745

This limited data is augmented using several techniques such as normalization, random rotation, and746

color jittering to create a larger and more varied dataset, which will be used as an input for generative747

models.748
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Figure 3: Self-generated MNIST images using conditional GAN [41] (second row) and CIFAR-10
images using a diffusion model [55] (fourth row).

Figure 4: Generated backdoor triggers using GAN-based models [12]. Original image (first row).
Backdoor image (second row). Residual (third row).
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Figure 5: MNIST backdoor trigger patterns. The global trigger is considered the default poison pattern and is
used for backdoor accuracy evaluation. The sub-triggers are used by pre-training and DBA only.
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Figure 6: CIFAR-10 fixed backdoor trigger patterns. The global trigger is considered the default poison pattern
and is used for online adaptation stage backdoor accuracy evaluation. The sub-triggers are used by pre-training
and DBA only.
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Figure 7: Examples of reconstructed images using inverting gradient (before and after denoising)

For MNIST, we use the augmented dataset to train a Conditional Generative Adversarial Network749

(cGAN) model [41, 44] built upon the codebase in [29]. The cGAN model for the MNIST dataset750

comprises two main components - a generator and a discriminator, both of which are neural networks.751

Specifically, we use a dataset with 5,000 augmented data as the input to train cGAN, keep the network752

parameters as default, and set the training epoch as 100.753

For CIFAR-10, we leverage a diffusion model implemented in [11] that integrates several recent754

techniques, including a Denoising Diffusion Probabilistic Model (DDPM) [23], DDIM-style deter-755

ministic sampling [56], continuous timesteps parameterized by the log SNR at each timestep [27] to756

enable different noise schedules during sampling. The model also employs the ‘v’ objective, derived757

from Progressive Distillation for Fast Sampling of Diffusion Models [51], enhancing the conditioning758

of denoised images at high noise levels. During the training process, we use a dataset with 50,000759

augmented data samples as the input to train this model, keep the parameters as default, and set the760

training epoch as 30.761

Simulated Environment. To further improve efficiency and privacy, the defender simulate a smaller762

FL system when solving the game. In our experiments, we include 10 clients in pre-training while763

using 100 clients in the online FL system. The simulation relies on a smaller dataset (generated from764

root data) and endures a shorter training time (100 (500) FL rounds for MINST (CIFAR-10) v.s. 1000765

rounds in online FL experiments). Although the offline simulated Markov game deviates from the766

ground truth, the learned meta-defense policy can quickly adapt to the real FL during the online767

adaptation, as shown in our experiment section.768

Backdoor Attacks. We consider the trigger patterns shown in Figure 4 and Figure 6 for backdoor769

attacks. For triggers generated using GAN (see Figure 4), the goal is to classify all images of different770

classes to the same target class (all-to-one). For fixed patterns (see Figure 6), the goal is to classify771

images of the airplane class to the truck class (one-to-one). The default poisoning ratio is 0.5 in772

both cases. The global trigger in Figure 6 is considered the default poison pattern and is used for the773

online adaptation stage for backdoor accuracy evaluation. In practice, the defender (i.e., the server)774

does not know the backdoor triggers and targeted labels. To simulate a backdoor attacker’s behavior,775

we first implement multiple GAN-based attack models as in [12] to generate worst-case triggers776

(which maximizes attack performance given backdoor objective) in the simulated environment.777

Since the defender does not know the poisoning ratio ρi and target label of the attacker’s poisoned778

dataset (involved in the attack objective F ′), we approximate the attacker’s reward function as rtA =779

−F ′′(ŵt+1
g ), F ′′(w) := minc∈C [

1
M1

∑M1

i=1
1

|D′
i|
∑|D′

i|
j=1 ℓ(w, (x̂

j
i , c))]− 1

M2

∑M
i=M1+1 f(ω,Di). F ′′780

differs F ′ only in the first M1 clients, where we use a strong target label (the minimizer) as a surrogate781

to the true label c∗.782

Inverting Gradient/Reverse Engineering. In invert gradient, we set the step size for inverting783

gradients η′ = 0.05, the total variation parameter β = 0.02, optimizer as Adam, the number of784

iterations for inverting gradients max_iter = 10, 000, and learn the data distribution from scratch.785

The number of steps for distribution learning is set to τE = 100. 32 images are reconstructed (i.e.,786

B′ = 32) and denoised in each FL epoch. If no attacker is selected in the current epoch, the aggregate787

gradient estimated from previous model updates is reused for reconstructing data. To build the788

denoising autoencoder, a Gaussian noise sampled from 0.3N (0, 1) is added to each dimension of789

images in Dreconstructed, which are then clipped to the range of [0,1] in each dimension. The result790

is shown in Figure 7.791

In the process of reverse engineering, we use Neural Cleanse [61] to find hidden triggers (See792

Figure 8) connected to backdoor attacks. This method is essential for uncovering hidden triggers793
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Figure 8: Reversed MNIST backdoor trigger patterns. Original triggers (first row). Reversed triggers (second
row)

Figure 9: Comparisons of defenses against untargeted model poisoning attacks (i.e., IPM and RL) on MNIST
and CIFAR-10. RL-based attacks are trained before FL round 0 against the associate defenses (i.e., Krum and
meta-policy of meta-RL/meta-SG). All parameters are set as default and all random seeds are fixed.

and for preventing such attacks. In particular, we use the global model, root generated data and794

inverted data as inputs to reverse backdoor triggers. The Neural Cleanse class from ART is used for795

this purpose. The reverse engineering process in this context involves using the generated backdoor796

method from the Neural Cleanse defense to find the trigger pattern that the model is sensitive to. The797

returned pattern and mask can be visualized to understand the nature of the backdoor.798

Online Adaptation and Execution. During the online adaptation stage, the defender starts by799

using the meta-policy learned from the pre-training stage to interact with the true FL environment,800

while collecting new samples {s, a, r̃, s′}. Here, the estimated reward r̃ is calculated using the801

self-generated data and simulated triggers from the pertaining stage, as well as new data inferred802

online through methods such as inverting gradient [19] and reverse engineering [61]. Inferred data803

samples are blurred using data augmentation [53] while protecting clients’ privacy. For a fixed804

number of FL rounds (e.g., 50 for MNIST and 100 for CIFAR-10 in our experiments), the defense805

policy will be updated using gradient ascents from the collected trajectories. Ideally, the defender’s806

adaptation time (including the time for collecting new samples and that for updating the policy)807

should be significantly less than the whole FL training period so that the defense execution will not808

be delayed. In real-world FL training, the server typically waits for up to 10 minutes before receiving809

responses from the clients [8, 25], enabling defense policy’s online update with enough episodes.810

D Additional Experiment Results811

More untargetd model poisoning/backdoor results. As shown in Figure 9, similar to results812

in Figure 2 as described in Section 4, meta-SG plus achieves the best performance (slightly better813

than meta-SG) under IPM attacks for both MNIST and CIFAR-10. On the other hand, meta-SG814

performs the best (significantly better than meta-RL) against RL-based attacks for both MNIST815

and CIFAR-10. Notably, Krum can be easily compromised by RL-based attacks by a large margin.816

In contrast, meta-RL gradually adapts to adaptive attacks, while meta-SG displays near-immunity817

against RL-based attacks. In addition, we illustrate results under backdoor attacks and defenses on818

MNIST in Table 4.819

Defender’s knowledge of backdoor attacks. We consider two settings: 1) the server knows the820

backdoor trigger but is uncertain about the target label, and 2) the server knows the target label but821

not the backdoor trigger. In the former case, the meta-SG first pre-trains the defense policy with RL822

attacks using a known fixed global pattern (see Figure 6) targeting all 10 classes in CIFAR-10, then823

adapts with an RL-based backdoor attack using the same trigger targeting class 0 (airplane), with824
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Bac Krum CRFL Meta-SG (ours)

BFL 0.8257 0.4253 0.0086
DBA 0.4392 0.215 0.2256
BRL 0.9901 0.8994 0.2102

Table 4: Comparisons of average backdoor accuracy (lower the better) after 250 FL rounds under
backdoor attacks and defenses on MNIST. All parameters are set as default and all random seeds are
fixed.

Figure 10: Comparisons of baseline defenses, i.e., NeuroClip, Prun, ClipMed, FLTrust+NeuroClip (from left
to right) and whitebox/blackbox meta-SG under RL-based backdoor attack (BRL) on CIFAR-10. The BRLs
are trained before FL round 0 against the associate defenses (i.e., NeuroClip, Prun, ClipMed, FLTrust+NC and
meta-policy of meta-SG). Other parameters are set as default and all random seeds are fixed.

results shown in the third figure of Figure 10. In the latter case where the defender does not know the825

true backdoor trigger used by the attacker, we implement the GAN-based model [12] to generate the826

worst-case triggers (see Figure 4) targeting one known label (truck). The meta-SG will train a defense827

policy with the RL-based backdoor attacks using the worst-case triggers targeting the known label,828

then adapt with a RL-based backdoor attack using a fixed global pattern (see Figure 6) targeting the829

known label in the real FL environment (results shown in the fourth graph in Figure 10. We call the830

two above cases blackbox settings since the defender misses key backdoor information and solely831

depends on their own generated data/triggers w/o inverting/reversing during online adaptation. In832

the whitebox setting, the server knows the backdoor trigger pattern (global) and the targeted label833

(truck), and is trained by true clients’ data. The corresponding results are in the first two graphs of834

Figures 10, which show the upper bound performance of meta-SG and may not be practical in a real835

FL environment. Post-training defenses alone (i.e., NeuroClip and Prun) and combined defenses836

(i.e., ClipMed and FLTrust+NC) are susceptible to RL-based attacks once the defense mechanism837

is known. On the other hand, as depicted in Figure 10, we demonstrate that our whitebox meta-SG838

approach is capable of effectively eliminating the backdoor influence while preserving high main839

task accuracy simultaneously, while blackbox meta-SG against uncertain labels is unstable since840

the meta-policy will occasionally target a wrong label, even with adaptation and blackbox meta-SG841

against unknown trigger is not robust enough as its backdoor accuracy still reaches nearly 50% at the842

end of FL training.843

Acc NA/FedAvg Root data Generated data Pre-train only Online-adapt only

MNIST 0.9016 0.4125 0.5676 0.6125 0.4134
CIFAR-10 0.7082 0.2595 0.3833 0.1280 0.3755

Table 5: Ablation studies of only using root data/generated dataset in simulated environment to learn
the FL model and the defense performance under IPM of directly applying meta-policy learned from
pre-training without adaptation/starting online adaptation from a randomly initialized defense policy.
Results are average globel model accuracy after 250 (500) FL rounds on MNIST (CIFAR-10). All
parameters are set as default and all random seeds are fixed..

Importance of inverting/reversing methods. In the ablation study, we examine a practical and844

relatively well-performed graybox meta-SG. The graybox meta-SG has the same setting as blackbox845

meta-SG during pre-training as describe in Section 2.2, but utilizes inverting gradient [19] and reverse846

engineering [61] during online adaptation to learn clients’ data and backdoor trigger in a way without847

breaking the privacy condition in FL. The graybox approach only learns ambiguous data from clients,848

then applies data augmentation (e.g., noise, distortion) and combines them with previously generated849

data before using. Figure 11(a) illustrates that graybox meta-SG exhibits a more stable and robust850

mitigation of the backdoor attack compared to blackbox meta-SG. Furthermore, in Figure 11(b),851
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(a) (b) (c) (d)

Figure 11: Ablation studies. (a)-(b): uncertain backdoor target and unknown backdoor triggers, where the
meta-policies are trained by worst-case triggers generated from GAN-based models [12] or targeting multiple
labels on CIFAR-10 during pre-training and utilizing inverting gradient [19] and reverse engineering [61] during
online adaptation. (c)-(d): meta-RL tested by the number of malicious clients in [20%, 30%, 40%] and non-i.i.d.
level in q = [0.5, 0.6, 0.7] on MNIST compared with Krum and ClipMed under LMP attack. Other parameters
are set as default.

graybox meta-SG demonstrates a significant reduction in the impact of the backdoor attack, achieving852

nearly a 70% mitigation, outperforming blackbox meta-SG.853

Number of malicious clients/Non-i.i.d. level. Here we apply our meta-RL to study the impact of854

inaccurate knowledge of the number of malicious clients and the non-i.i.d. level of clients’ local data855

distribution. With rough knowledge that the number of malicious clients is in the range of 5%-50%,856

the meta-SG will pre-train on LMP attacks with malicious clients [5 : 5 : 50], and adapt to three cases857

with 20%, 30%, and 40% malicious clients in online adaptation, respectively. Similarly, when the858

non-i.i.d. level is between 0.1-1, the meta-SG will pre-train on LMP attacks with non-i.i.d. level859

[0.1 : 0.1 : 1] and adapt to q= 0.5, 0.6, 0.7 in online adaptation. As illustrated in Figures 11(c)860

and 11(d), meta-SG reaches the highest model accuracy for all numbers of malicious clients and861

non-i.i.d. levels under LMP.862

Importance of pre-training and online adaptation As shown in Table 5, the pre-training is to863

derive defense policy rather than the model itself. Directly using those shifted data (root or generated)864

to train the FL model will result in model accuracy as low as 0.2-0.3 (0.4-0.5) for CIFAR-10 (MNIST)865

in our setting. Pre-training and online adaptation are indispensable in the proposed framework. Our866

experiments in Table 5 indicate that directly applying defense learned from pre-training w/o online867

adaptation and adaptation from randomly initialized defense policy w/o pre-training both fail to868

address malicious attacks, resulting in global model accuracy as low as 0.3-0.6 (0.1-0.4) on MNIST869

(CIFAR-10). In the absence of adaptation, meta policy itself falls short of the distribution shift870

between the simulated and the real environment. Likewise, the online adaptation fails to attain the871

desired defense policy without the pre-trained policy serving as a decent initialization.872

Biased/Limited root data We evaluate the average model accuracy after 250 FL epochs under the873

meta-SG framework against the IPM attack, using root data with varying i.i.d. levels (as defined in874

the experiment setting section). Here, q = 0.1 (indicating the root data is i.i.d.) serves as our baseline875

meta-SG, as presented in the paper. We designate class 0 as the reference class. For instance, when q876

= 0.4, it indicates a 40% probability for each data labeled as class 0 within the root data, while the877

remaining 60% are distributed equally among the other classes. We observe that when q is as high878

as 0.7, there is one class (i.e., 3) missing in the root data. Although, through inverting methods in879

online adaptation, the defender can learn the missing data in the end, it suffered the slower adaptation880

compared with a good initial defense policy. In addition, we test the average model accuracy after881

250 FL epochs under meta-SG against IPM attack using different numbers of root data (i.e., 100, 60,882

20), where 100 root data is our original meta-SG setting in the rest of paper. We overserve that when883

number of root data is 20, two classes of data are missing (i.e., 1 and 5).884

Generalization to unseen adaptive attacks We thoroughly search related works considering885

adaptive attacks in FL and find very limited works (with solid and lightweight open-source implemen-886

tation) that can be used as our benchmark. As a result, we introduce two new benchmark adaptive887

attack methods in the testing stage as unseen adaptive attacks: (1) adaptive LMP![15], which requires888

access to normal clients’ updates in each FL round, and (2) RL attack [31] restricted 1-dimensional889

action space (i.e., adaptive scalar factor) compared with the baseline 3-dimensional RL attack [31]890

showing in our paper. The defender in pre-training only interacts with the 3-dimensional RL attack.891

We test the average model accuracy after 250 FL epochs under meta-SG against different (unseen)892
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Biased Level q = 0.1 q = 0.4 q = 0.7

Acc 0.8951 0.8612 0.7572

(a) Ablation study of biased root data.

Number of Root Data 100 60 20

Acc 0.8951 0.8547 0.6902

(b) Ablation study of limited root data.

Table 6: Results of the average model accuracy on MNIST after 250 FL epochs under meta-SG
against IPM attack using root data with (a) different i.i.d levels and (b) different numbers of root data.
All random seeds are fixed and all other parameters are set as default.

Acc/Bac NormBound 0.2 NormBound 0.1 NormBound 0.05

DBA 0.6313/0.9987 0.5192/0.6994 0.3610/0.4392
IPM+BFL 0.6060/0.5123 0.4917/0.2104 0.3614/0.2253

Acc/Bac NeuroClip 10 NeuroClip 6 NeuroClip 1

DBA 0.6221/0.9974 0.6141/0.9984 0.2515/0.0002
IPM+BFL 0.1/0.0020 0.1/0 0.1/0

Table 7: Results of manually tuning norm threshold [57] and clipping range [62]. All other parameters
are set as default and all random seeds are fixed.

adaptive attacks. What is interesting here is that meta-SG can achieve even better performance against893

unseen attacks.894

Attack Methods Model Acc

3-dimensional RL 0.8652
Adaptive LMP 0.8692
1-dimensional RL 0.8721

Table 8: Comparisons of average model accuracy after 250 FL rounds under different adaptive attacks
on MNIST. All parameters are set as default and all random seeds are fixed.

E Algorithms895

This section elaborates on meta-learning defense and meta-Stackelberg defense in equation meta-SE.896

To begin with, we first review the policy gradient method [58] in RL and its Monte-Carlo estimation.897

To simplify our exposition, we fix the attacker’s policy ϕ, and then the Markov game reduces to a898

single-agent MDP, where the optimal policy to be learned is the defender’s θ.899

Policy Gradient The idea of the policy gradient method is to apply gradient ascent to the900

value function JD. Following [58], we obtain ∇θJD := Eτ∼q(θ)[g(τ ; θ)], where g(τ ; θ) =901 ∑H
t=1∇θ log π(a

t
D|st; θ)R(τ) and R(τ) =

∑H
t=1 γ

tr(st, atD). Note that for simplicity, we sup-902

press the parameter ϕ, ξ in the trajectory distribution q, and instead view it as a function of θ. In903

numerical implementations, the policy gradient ∇θJD is replaced by its Monte-Carlo (MC) estima-904

tion using sample trajectory. Suppose a batch of trajectories {τi}Nb
i=1, and Nb denotes the batch size,905

then the MC estimation is906

∇̂θJD(θ, τ) := 1/Nb

∑
τi

g(τi; θ). (E1)

The same deduction also holds for the attacker’s problem when fixing the defense θ.907
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Meta-Learning FL Defense As discussed in Section 3, meta-learning-based defense (meta defense)908

mainly targets non-adaptive attack methods, where πA(·;ϕ, ξ) is a pre-fixed attack strategy following909

some rulebook, such as IPM [68] and LMP [15]. In this case, the BSMG reduces to single-agent MDP910

for the defender, where the transition kernel is determined by the attack method. Mathematically, the911

meta-defense problem is given by912

max
θ,Ψ

Eξ∼Q(·)[JD(Ψ(θ, τ), ϕ, ξ)]. (E2)

Since the attack type is hidden from the defender, the adaptation mapping Ψ is usually defined in a913

data-driven manner. For example, Ψ(θ, τ) can be defined as a one-step stochastic gradient update914

with learning rate η: Ψ(θ, τ) = θ + η∇̂JD(τξ) [16] or a recurrent neural network in [13]. This915

work mainly focuses on gradient adaptation for the purpose of deriving theoretical guarantees in916

Appendix F.917

With the one-step gradient adaptation, the meta-defense problem in equation E2 can be simplified as918

max
θ

Eξ∼Q(·)Eτ∼q(θ)[JD(θ + η∇̂θJD(τ), ϕ, ξ)]. (E3)

Recall that the attacker’s strategy is pre-determined, ϕ, ξ can be viewed as fixed parameters, and919

hence, the distribution q is a function of θ. To apply the policy gradient method to equation E3, one920

needs an unbiased estimation of the gradient of the objective function in equation E3. Consider the921

gradient computation using the chain rule:922

∇θEτ∼q(θ)[JD(θ + η∇̂θJD(τ), ϕ, ξ)]

= Eτ∼q(θ){∇θJD(θ + η∇̂θJD(τ), ϕ, ξ)(I + η∇̂2
θJD(τ))︸ ︷︷ ︸

①

+ JD(θ + η∇̂θJD(τ))∇θ

H∑
t=1

π(at|st; θ)︸ ︷︷ ︸
②

}.
(E4)

The first term results from differentiating the integrand JD(θ + η∇̂θJD(τ), ϕ, ξ) (the expectation is923

taken as integration), while the second term is due to the differentiation of q(θ). One can see from924

the first term that the above gradient involves a Hessian ∇̂2JD, and its sample estimate is given by925

the following. For more details on this Hessian estimation, we refer the reader to [14].926

∇̂2JD(τ) =
1

Nb

Nb∑
i=1

[g(τi; θ)∇θ log q(τi; θ)
T +∇θg(τi; θ)] (E5)

Finally, to complete the sample estimate of∇θEτ∼q(θ)[JD(θ + η∇̂θJD(τ), ϕ, ξ)], one still needs to927

estimate ∇θJD(θ + η∇̂θJD(τ), ϕ, ξ) in the first term. To this end, we need to first collect a batch928

of sample trajectories τ ′ using the adapted policy θ′ = θ + η∇̂θJD(τ). Then, the policy gradient929

estimate of ∇̂θJD(θ
′) proceeds as in equation E1. To sum up, constructing an unbiased estimate of930

equation E4 takes two rounds of sampling. The first round is under the meta policy θ, which is used931

to estimate the Hessian equation E5 and to adapt the policy to θ′. The second round aims to estimate932

the policy gradient∇θJD(θ + η∇̂θJD(τ), ϕ, ξ) in the first term in equation E4.933

In the experiment, we employ a first-order meta-learning algorithm called Reptile [43] to avoid the934

Hessian computation. The gist is to simply ignore the chain rule and update the policy using the935

gradient ∇θJD(θ
′, ϕ, ξ)|θ′=θ+η∇̂θJD(τ). Naturally, without the Hessian term, the gradient in this936

update is biased, yet it still points to the ascent direction as argued in [43], leading to effective meta937

policy. The advantage of Reptile is more evident in multi-step gradient adaptation. Consider a l-step938

gradient adaptation, the chain rule computation inevitably involves multiple Hessian terms (each939

gradient step brings a Hessian term) as shown in [14]. In contrast, Reptile only requires first-order940

information, and the meta-learning algorithm (l-step adaptation) is given by Algorithm 2.941

Meta-Stackelberg Learning Recall that in meta-SE, the attacker’s policy ϕ∗
ξ is not pre-fixed.942

Instead, it is the best response to the defender’s adapted policy as shown in equation meta-SE. To943
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Algorithm 2 Reptile Meta-Reinforcement Learning with l-step adaptation
1: Input: the type distribution Q(ξ), step size parameters κ, η
2: Output: θT
3: randomly initialize θ0

4: for iteration t = 1 to T do
5: Sample a batch Ξ̂ of K attack types from Q(ξ);
6: for each ξ ∈ Ξ̂ do
7: θtξ(0)← θt

8: for k = 0 to l − 1 do
9: Sample a batch trajectories τ of the horizon length H under θtξ(k);

10: Evaluate ∇̂θJD(θ
t
ξ(k), τ) using MC in equation E1;

11: θtξ(k + 1)← θtξ(k) + κ∇̂θJD(θ
t, τ)

12: end for
13: end for
14: Update θt+1 ← θt + 1/K

∑
ξ∈Ξ̂(θ

t
ξ(l)− θt);

15: end for

obtain this best response, one needs alternative training: fixing the defense policy, and applying944

gradient ascent to the attacker’s problem until convergence. It should be noted that the proposed945

meta-SL utilizes the unbiased gradient estimation in equation E5, which paves the way for theoretical946

analysis in Appendix F. Yet, we turn to the Reptile to speed up pre-straining in the experiments. We947

present both algorithms in Algorithm 3, and only consider one-step adaptation for simplicity. The948

multi-step version is a straightforward extension of Algorithm 3.

Algorithm 3 (Reptile) Meta-Stackelberg Learning with one-step adaptation
1: Input: the type distribution Q(ξ), initial defense meta policy θ0, pre-trained attack policies
{ϕ0

ξ}ξ∈Ξ, step size parameters κD, κA, η, and iterations numbers NA, ND;
2: Output: θND

3: for iteration t = 0 to ND − 1 do
4: Sample a batch Ξ̂ of K attack types from Q(ξ);
5: for each ξ ∈ Ξ̂ do
6: Sample a batch of trajectories using ϕt and ϕt

ξ;
7: Evaluate ∇̂θJD(θt, ϕt

ξ, ξ) using equation E1;
8: Perform one-step adaptation θtξ ← θt + η∇̂θJD(θtξ(k), ϕ

t
ξ, ξ);

9: ϕt
ξ(0)← ϕt

ξ;
10: for k = 0, . . . , NA − 1 do
11: Sample a batch of trajectories using θtξ and ϕt

ξ(k);
12: ϕt

ξ(k + 1)← ϕt
ξ(k) + κA∇̂ϕJA(θ

t
ξ, ϕ

t
ξ(k), ξ);

13: end for
14: if Reptile then
15: Sample a batch of trajectories using θtξ and ϕt

ξ(NA);
16: Evaluate ∇̂JD(ξ) := ∇̂θJD(θ, ϕ

t
ξ(NA), ξ)|θ=θt

ξ
using equation E1;

17: else
18: Sample a batch of trajectories using θt and ϕt

ξ(NA);
19: Evaluate the Hessian using equation E5;
20: Sample a batch of trajectories using θtξ and ϕt

ξ(NA);
21: Evaluate ∇̂JD(ξ) := ∇̂θJD(θ

t
ξ, ϕ

t
ξ(NA), ξ) using equation E4;

22: end if
23: θ̄tξ ← θt + κD∇̂JD(ξ);
24: end for
25: θt+1 ← θt + 1/K

∑
ξ∼Ξ̂(θ̄

t
ξ − θt), ϕt+1

ξ ← ϕt
ξ(NA);

26: end for
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F Theoretical Results949

F.1 Existence of Meta-SG950

Theorem F.1. Under the conditions that Θ and Φ are compact and convex, the meta-SG admits at951

least one meta-FOSE.952

Proof. Clearly, Θ × Φ|Ξ| is compact and convex, let ϕ ∈ Φ|Ξ|, ϕξ ∈ Φ be the (type-aggregated)953

attacker’s strategy, since the consider twice continuously differentiable utility functions ℓD(θ, ϕ) :=954

Eξ∼QLD(θ, ϕξ, ξ) and ℓξ(θ, ϕ) := LA(θ, ϕξ, ξ) for all ξ ∈ Ξ. Then, there exists a constant γc > 0,955

such that the auxiliary utility functions:956

ℓ̃D(θ; (θ
′, ϕ′)) ≡ ℓD(θ, ϕ)−

γc
2
∥θ − θ′∥2

ℓ̃ξ(ϕξ; (θ
′, ϕ′) ≡ ℓξ(θ

′, (ϕξ, ϕ
′
−ξ))−

γc
2
∥ϕξ − ϕ′

ξ∥2 ∀ξ ∈ Ξ
(F6)

are γc-strongly concave in spaces θ ∈ Θ, ϕξ ∈ Φ for all ξ ∈ Ξ, respectively for any fixed (θ′, ϕ′) ∈957

Θ× Φ|Ξ|.958

Define the self-map h : Θ× Φ|Ξ| → Θ× Φ|Ξ| with h(θ′, ϕ′) ≡ (θ̄(θ′, ϕ′), ϕ̄(θ′, ϕ′)), where959

θ̄(θ′, ϕ′) = argmax
θ∈Θ

ℓ̃D(θ, ϕ
′), ϕ̄ξ(θ

′, ϕ′) = argmax
ϕξ∈Φ

ℓ̃ξ(θ
′, (ϕξ, ϕ

′
−ξ)).

Due to compactness, h is well-defined. By strong concavity of ℓ̃D(·; (θ′, ϕ′)) and ℓ̃ξ(·; (θ′, ϕ′)), it960

follows that θ̄, ϕ̄ are continuous self-mapping from Θ × Φ|Ξ| to itself. By Brouwer’s fixed point961

theorem, there exists at least one (θ∗, ϕ∗) ∈ Θ× Φ|Ξ| such that h(θ∗, ϕ∗) = (θ∗, ϕ∗). Then, one can962

verify that (θ∗, ϕ∗) is a meta-FOSE of the meta-SG with utility function ℓD and ℓξ , ξ ∈ Ξ, in view of963

the following inequality964

⟨∇θ ℓ̃D(θ
∗; (θ∗, ϕ∗)), θ − θ∗⟩ = ⟨∇θℓD(θ

∗, ϕ∗), θ − θ∗⟩
⟨∇ϕξ

ℓ̃ξ(θ
∗; (θ∗, ϕ∗)), ϕξ − ϕ∗

ξ⟩ = ⟨∇ϕξ
ℓξ(θ

∗, ϕ∗), ϕξ − ϕ∗
ξ⟩,

therefore, the equilibrium conditions for meta-SG with utility functions ℓ̃D and {ℓ̃ξ}ξ∈Ξ are the same965

as with utility functions ℓD and {ℓξ}ξ∈Ξ, hence the claim follows.966

F.2 Proofs: Non-Asymptotic Analysis967

In the sequel, we make the following smoothness assumptions for every attack type ξ ∈ Ξ. In968

addition, we assume, for analytical simplicity, that all types of attackers are unconstrained, i.e., Φ is969

the Euclidean space with proper finite dimension.970

Assumption F.2 ((ξ-wise) Lipschitz smoothness). The functions LD and LA are continuously971

diffrentiable in both θ and ϕ. Furthermore, there exists constants L11, L12, L21, and L22 such that972

for all θ, θ1, θ2 ∈ Θ and ϕ, ϕ1, ϕ2 ∈ Φ, we have, for any ξ ∈ Ξ,973

∥∇θLD (θ1, ϕ, ξ)−∇θLD (θ2, ϕ, ξ)∥ ≤ L11 ∥θ1 − θ2∥ (F7)
∥∇ϕLD (θ, ϕ1, ξ)−∇ϕLD (θ, ϕ2, ξ)∥ ≤ L22 ∥ϕ1 − ϕ2∥ (F8)
∥∇θLD (θ, ϕ1, ξ)−∇θLD (θ, ϕ2, ξ)∥ ≤ L12 ∥ϕ1 − ϕ2∥ (F9)
∥∇ϕLD (θ1, ϕ, ξ)−∇ϕLD (θ2, ϕ, ξ)∥ ≤ L12 ∥θ1 − θ2∥ (F10)
∥∇ϕLA(θ, ϕ1, ξ)−∇ϕLA(θ, ϕ2, ξ)∥ ≤ L21∥ϕ1 − ϕ2∥. (F11)

We also make the following strict-competitiveness assumption. This notion can be treated as a974

generalization of zero-sum games: if one joint action (aD, aA) leads to payoff increases for one975

player, it must decrease the other’s payoff.976

Assumption F.3 (Strict-Competitiveness). The BSMG is strictly competitive, i.e., there exist con-977

stants c < 0, d such that ∀ξ ∈ Ξ, s ∈ S, aD, aA ∈ AD ×Aξ, rD(s, aD, aA) = crA(s, aD, aA) + d.978
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In adversarial FL, the untargeted attack naturally makes the game zero-sum (hence, SC). The purpose979

of introducing Assumption F.3 is to establish the Danskin-type result [3] for the Stackelberg game980

with nonconvex value functions (see Lemma F.5), which spares us from the Hessian inversion.981

Lemma F.4 (Implicit Function Theorem (IFT) for Meta-SG). Suppose for (θ̄, ϕ̄) ∈ Θ × Φ|Ξ|,982

ξ ∈ Ξ we have ∇ϕLA(θ̄, ϕ̄, ξ) = 0 the Hessian ∇2
ϕLA(θ̄, ϕ̄, ξ) is non-singular. Then, there exists983

a neighborhood Bε(θ̄), ε > 0 centered around θ̄ and a C1-function ϕ(·) : Bε(θ̄)→ Φ|Ξ| such that984

near (θ̄, ϕ̄) the solution set {(θ, ϕ) ∈ Θ× Φ|Ξ| : ∇ϕLA(θ, ϕ, ξ) = 0} is a C1-manifold locally near985

(θ̄, ϕ̄). The gradient ∇θϕ(θ) is given by −(∇2
ϕLA(θ, ϕ, ξ))

−1∇2
ϕθLA(θ, ϕ, ξ).986

Lemma F.5. Under assumptions F.2, 3.2, there exists {ϕξ : ϕξ ∈ argmaxϕ LA(θ, ϕ, ξ)}ξ∈Ξ, such
that

∇θV (θ) = ∇θEξ∼Q,τ∼qJD(θ + η∇̂θJD(τ), ϕξ, ξ).

Moreover, the function V (θ) is L-Lipschitz-smooth, where L = L11 +
L12L21

µ987

∥∇θV (θ1)−∇θV (θ2)∥ ≤ L∥θ1 − θ2∥.

Proof of Lemma F.5. First, we show that for any θ1, θ2 ∈ Θ, ξ ∈ Ξ, and ϕ1 ∈988

argmaxϕ LA(θ1, ϕ, ξ), there exists ϕ2 ∈ argmaxϕ LA(θ2, ϕ, ξ) such that ∥ϕ1 − ϕ2∥ ≤ L12

µ ∥θ1 −989

θ2∥. Indeed, based on smoothness assumption equation F11 and equation F10,990

∥∇ϕLA(θ1, ϕ1, ξ)−∇ϕLA(θ2, ϕ1, ξ)∥ ≤ L21∥θ1 − θ2∥,
∥∇ϕLD(θ1, ϕ1, ξ)−∇ϕLD(θ2, ϕ1, ξ)∥ ≤ L12∥θ1 − θ2∥.

Since ϕ2 ∈ argmaxϕ LA(θ2, ϕ, ξ),∇ϕLA(θ2, ϕ2, ξ) = 0. Apply PL condition to ∇ϕLA(θ, ϕ2, ξ),991

max
ϕ
LA(θ1, ϕ, ξ)− LA(θ1, ϕ2, ξ) ≤

1

2µ
∥∇ϕLA(θ1, ϕ2, ξ)∥2

=
1

2µ
∥∇ϕLA(θ1, ϕ2, ξ)−∇ϕLA(θ2, ϕ2, ξ)∥2

≤ L2
21

2µ
∥θ1 − θ2∥2 by equation F11.

Since PL condition implies quadratic growth, we also have992

LA(θ1, ϕ1, ξ)− LA(θ1, ϕ2, ξ) ≥
µ

2
∥ϕ1 − ϕ2∥2.

Combining the two inequalities above we obtain the Lipschitz stability for ϕ∗
ξ(·), i.e.,

∥ϕ1 − ϕ2∥ ≤
L21

µ
∥θ1 − θ2∥.

Second, show that∇θV (θ) can be directly evaluated at {ϕ∗
ξ}ξ∈Ξ. Inspired by Danskin’s theorem, we993

first made the following argument, consider the definition of directional derivative. Let ℓ(θ, ϕ) :=994

∇θEξ,τJD(θ + η∇̂JD(τ), ξ). For a constant τ and an arbitrary direction d,995

ℓ(θ + τd, ϕ∗(θ + τd))− ℓ(θ, ϕ∗(θ)))

= ℓ(θ + τd, ϕ∗(θ + τd))− ℓ(θ + τd, ϕ∗(θ)) + ℓ(θ + τd, ϕ∗(θ))− ℓ(θ, ϕ∗(θ))

= ∇ϕℓ(θ + τd, ϕ∗(θ))⊤ [ϕ∗(θ + τd)− ϕ∗(θ))]︸ ︷︷ ︸
∆ϕ

+o(∆ϕ2)

+ τ∇θℓ(θ, ϕ
∗(θ))T d+ o(d2).

Hence, a sufficient condition for the first equation is∇ϕℓ(θ + τd, ϕ∗(θ)) = 0, meaning that ℓD(θ, ϕ)996

and LA(θ, ϕ, ξ) share the first-order stationarity at every ϕ when fixing θ. Indeed, by Lemma F.4, we997

have, the gradient is locally determined by998

∇θV = Eξ∼Q[∇θLD(θ, ϕξ, ξ) + (∇θϕξ(θ))
⊤∇ϕLD(θ, ϕξ, ξ)]

= Eξ∼Q

[
∇θLD(θ, ϕξ, ξ)− [(∇2

ϕLA(θ, ϕ, ξ))
−1∇2

ϕθLA(θ, ϕ, ξ)]
⊤∇ϕLD(θ, ϕξ, ξ)

]
.
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Given a trajectory τ := (s1, atD, a
t
A, . . . , a

H
D , aHA , sH+1), let RD(τ, ξ) :=

∑H
t=1 γ

t−1rD(st, at, ξ)999

and RD(τ, ξ) :=
∑H

t=1 γ
t−1rD(st, at, ξ). Denote by µ(τ ; θ, ϕ) the trajectory distribution, that the1000

log probability of µ is given by1001

logµ(τ ; θ, ϕ) =

H∑
t=1

(log πD(a
t
D|st; θ + η∇̂θJD(τ)) + log πA(a

t
A|st;ϕ) + logP (st+1|atD, atA, st)

According to the policy gradient theorem, we have1002

∇ϕLD(θ, ϕ, ξ) = Eµ[RD(τ, ξ)

H∑
t=1

∇ϕ log(πA(a
t
A|st;ϕ))],

∇ϕLA(θ, ϕ, ξ) = Eµ[RA(τ, ξ)

H∑
t=1

∇ϕ log(πA(a
t
A|st;ϕ))].

By SC Assumption F.3, when∇ϕLA(θ, ϕ, ξ) = 0, there exists c < 0, d, such that∇ϕLD(θ, ϕ, ξ) =1003

Eµ[cRA(τ, ξ)
∑H

t=1∇ϕ log(πA(a
t
A|st;ϕ))] + Eµ[

∑H
t=1 γ

t−1d
∑H

t=1∇ϕ log(πA(a
t
A|st;ϕ))] = 0.1004

Hence∇θV = Eξ∼Q[∇θLD(θ, ϕξ, ξ)].1005

Third, V (θ) is also Lipschitz smooth. As we notice that, ℓD is Lipschitz smooth since Eξ∼Q is a1006

linear operator, we have,1007

∥∇θV (θ1)−∇θV (θ2)∥
≤ ∥∇θEξ∼QLD(θ1, ϕ1, ξ)−∇θEξ∼QLD(θ2, ϕ2, ξ)∥
= ∥∇θℓD(θ1, ϕ1)−∇θℓD(θ2, ϕ1) +∇θℓD(θ2, ϕ1)−∇θℓD(θ2, ϕ2)∥
≤ ∥∇θℓD(θ1, ϕ1)−∇θℓD(θ2, ϕ1)∥+ ∥∇θℓD(θ2, ϕ1)−∇θℓD(θ2, ϕ2)∥
≤ L11∥θ1 − θ2∥+ L12∥ϕ1 − ϕ2∥

≤ (L11 +
L12L21

µ
)∥θ1 − θ2∥,

which implies the Lipschitz constant L = L11 +
L12L21

µ .1008

It is impossible to present the convergence theory without the assistance of some standard assumptions1009

in batch reinforcement learning, of which the justification can be found in [14]. We also require some1010

additional information about the parameter space and function structure. These assumptions are all1011

stated in Assumption F.6.1012

Assumption F.6.1013

(a) The policy gradients are bounded, ∥∇θLD(θ, ϕ, ξ)∥ ≤ G2, ∥∇ϕLA(θ, ϕ, ξ)∥ ≤ G2 for all1014

θ, ϕ ∈ Θ× Φ and ξ ∈ Ξ.1015

(b) The policy gradient estimations are unbiased, i.e.,1016

E[∇̂ϕJA(θ
t, ϕt

ξ, ξ)−∇ϕJA(θ
t, ϕt

ξ, ξ)] = 0

(c) The variances for the stochastic gradients are bounded, i.e., for all θt, ϕt
ξ, ξ,1017

E[∥∇̂ϕJA(θ
t, ϕt

ξ, ξ)−∇ϕJA(θ
t, ϕt

ξ, ξ)∥2] ≤
σ2

Nb
.

E[∥∇̂ϕJD(θ
t, ϕt

ξ, ξ)−∇θJD(θ
t, ϕt

ξ, ξ)∥2] ≤
σ2

Nb
.

(d) The parameter space Θ has diameter DΘ := supθ1,θ2∈Θ ∥θ1 − θ2∥; the initialization θ01018

admits at most DV function gap, i.e., DV := maxθ∈Θ V (θ)− V (θ0).1019

(e) It holds that the parameters satisfy 0 < µ < −cL22.1020
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Equipped with Assumption F.6 we are able to unfold our main result Theorem 3.3, before which1021

we show in Lemma F.7 that ϕ∗
ξ can be efficiently approximated by the inner loop in the sense that1022

∇θEξ∼QLD(θ
t, ϕt

ξ(NA), ξ) ≈ ∇θV (θt), where ϕt
ξ(NA) is the last iterate output of the attacker1023

policy.1024

Lemma F.7. Under Assumption F.6, 3.2, F.3, and F.2, let ρ := 1 + µ
cL22

∈ (0, 1), L̄ =1025

max{L11, L12, L22, L21, V∞} where V∞ := max{max ∥∇V (θ)∥, 1}. For all ε > 0, if the attacker1026

learning iteration NA and batch size Nb are large enough such that1027

NA ≥
1

log ρ−1
log

32D2
V (2V∞ + LDΘ)

4L̄|c|G2

L2µ2ε4

Nb ≥
32µL2

21D
2
V (2V∞ + LDΘ)

4

|c|L2
22σ

2L̄Lε4
,

then, for zt := ∇θEξ∼QLD(θ
t, ϕt

ξ(NA), ξ)−∇θV (θt),1028

E[∥zt∥] ≤
Lε2

4DV (2V∞ + LDΘ)2
,

and1029

E[∥∇ϕLA(θ
t, ϕt

ξ(N), ξ)∥] ≤ ε.

Proof of Lemma F.7. Fixing a ξ ∈ Ξ, due to Lipschitz smoothness,1030

LD(θ
t, ϕt

ξ(N), ξ)− LD(θ
t, ϕt

ξ(N − 1), ξ)

≤ ⟨∇ϕLD(θ
t, ϕt

ξ(N − 1), ξ), ϕt
ξ(N)− ϕt

ξ(N − 1)⟩+ L22

2
∥ϕt

ξ(N)− ϕt
ξ(N − 1)∥2.

The inner loop updating rule ensures that when κA = 1
L21

, ϕt
ξ(N) − ϕt

ξ(N − 1) =1031

1
L21
∇̂ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ). Plugging it into the inequality, we arrive at1032

LD(θ
t, ϕt

ξ(N), ξ)− LD(θ
t, ϕt

ξ(N − 1), ξ)

≤ 1

L21
⟨∇ϕLD(θ

t, ϕt
ξ(N − 1), ξ), ∇̂ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)⟩+ L22

2L2
21

∥∇̂ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2.

Therefore, we let (F t
n)0≤n≤N be the filtration generated by σ({ϕt

ξ(τ)}ξ∈Ξ|τ ≤ n) and take condi-1033

tional expectations on F t
n:1034

E[V (θt)− ℓD(θ
t, ϕt(N))|F t

N−1] ≤ V (θt)− ℓD(θ
t, ϕt(N − 1))

Eξ

[
1

L21
⟨∇ϕLD,∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)⟩+ L22

2L2
21

∥∇̂ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2

]
.

By variance-bias decomposition, and Assumption F.6 (b) and (c),1035

E[∥∇̂ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2|F t

N−1]

= E[∥∇̂ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)−∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ) +∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)∥2|F t

N−1]

= E[∥(∇̂ϕ −∇ϕ)JA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2|F t

N−1] + E[∥∇ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2|F t

N−1]

+ E[2⟨(∇̂ϕ −∇ϕ)JA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ),∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)⟩|F t

N−1]

≤ σ2

Nb
+ ∥∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)∥2.

Applying the PL condition (Assumption 3.2), and Assumption F.6 (a) we obtain1036

E[V (θt)− ℓD(θ, ϕ
t(N))|ϕN−1]− V (θt)− ℓD(θ, ϕ

t(N − 1))

≤ Eξ

[
1

L21
⟨∇ϕLD,∇ϕLA(θ

t, ϕt
ξ(N − 1), ξ)⟩+ L22

2L2
21

(
σ2

Nb
+ ∥∇ϕLA(θ

t, ϕt
ξ(N − 1), ξ)∥2)

]
= Eξ

[
− 1

2L22
∥∇ϕLD∥2 +

1

2L22
∥∇ϕ(LD +

L22

L21
LA)(θ

t, ϕt
ξ(N − 1), ξ)∥2 + L22σ

2

2L2
21Nb

]
≤ µ

cL21
(max

ϕ
ℓD(θ

t, ϕ)− ℓD(θ
t, ϕt(N − 1))) +

L22σ
2

2L2
21Nb

,
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rearranging the terms yields1037

E[V (θt)− ℓD(θ
t, ϕt(N))|F t

n] ≤ ρ(V (θt)− ℓD(θ
t, ϕt(N − 1))) +

L22σ
2

2L2
21Nb

,

where we use the fact that −maxϕ ℓD(θ
t, ϕ) ≤ −V (θt). Telescoping the inequalities from τ = 0 to1038

τ = N , we arrive at1039

E[V (θt)− ℓD(θ
t, ϕt(N))] ≤ ρN (V (θt)− ℓD(θ

t, ϕt(0))) +
1− ρN

1− ρ

(
L22σ

2

2L2
21Nb

)
.

PL-condition implies quadratic growth, we also know that V (θt) − ℓD(θ
t, ϕt(N)) ≤1040

Eξ
1
2µ∥∇ϕLD(θ

t, ϕt
ξ(N), ξ)∥2 ≤ 1

2µG
2, by Assumption F.3,1041

∥ϕ∗
ξ(θ

t)− ϕt
ξ(N)∥2 ≤ 2

µ
(LA(θ

t, ϕ∗
ξ , ξ)− LA(θ

t, ϕt
ξ(N), ξ))

≤ 2|c|
µ

∣∣LD(θ
t, ϕ∗

ξ , ξ)− LD(θ
t, ϕt

ξ(N), ξ)
∣∣

Hence, with Jensen inequality and choice of NA and Nb,1042

E[∥zt∥] = E[∥∇θV (θt)− Eξ∇θLD(θ
t, ϕt

ξ(NA), ξ)∥]
≤ L12E[∥ϕt

ξ(NA)− ϕ∗
ξ∥]

≤ L12

√
2|c|
µ

E[V (θt)− ℓD(θt, ϕt(NA))]

≤ L12

√
|c|
µ2

ρNAG2 + (1− ρNA)
|c|L2

22σ
2

µL2
21Nb

.

Now we adjust the size of NA and Nb to make E[∥zt∥] small enough, to this end, we set1043

ρNA
|c|G2

µ2
≤ ε4L2

32D2
V (2V∞ + LDΘ)4L̄

|c|L2
22σ

2

L2
21Nb

≤ ε4L2µ2

32D2
V (2V∞ + LDΘ)4L̄

,

which further indicates that1044

NA ≥
1

log ρ−1
log

32D2
V (2V∞ + LDΘ)

4L̄|c|G2

L2µ2ε4

Nb ≥
32µL2

21D
2
V (2V∞ + LDΘ)

4

|c|L2
22σ

2L̄Lε4
.

In the setting above, it is not hard to verify that1045

E[∥zt∥] ≤
Lε2

4DV (2V∞ + LDΘ)2
≤ ε.

Also note that ∥∇ϕLA(θ
t, ϕt

ξ(NA), ξ)∥ = ∥∇ϕLA(θ
t, ϕt

ξ(NA), ξ)−∇ϕLA(θ
t, ϕ∗

ξ , ξ)∥, given the1046

proper choice of NA and Nb, one has1047

E∥∇ϕLA(θ
t, ϕt

ξ(NA), ξ)−∇ϕLA(θ
t, ϕ∗

ξ , ξ)∥

≤ L21E[∥ϕt
ξ(NA)− ϕ∗

ξ∥] ≤
Lε2

4DV (2V∞ + LDΘ)2
≤ ε,

which indicates the ξ-wise inner loop stability.1048

Now we are ready to provide the convergence guarantee of the first-order outer loop.1049
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Theorem F.8. Under Assumption F.6, Assumption F.3, and Assumption F.2, let the stepsizes be,1050

κA = 1
L22

, κD = 1
L , if ND, NA, and Nb are large enough,1051

ND ≥ ND(ε) ∼ O(ε−2) NA ≥ NA(ε) ∼ O(log ε−1), Nb ≥ Nb(ε) ∼ O(ε−4)

then there exists t ∈ N such that (θt, {ϕt
ξ(NA)}ξ∈Ξ) is ε-meta-FOSE.1052

Proof. According to the update rule of the outer loop, (here we omit the projection analysis for1053

simplicity)1054

θt+1 − θt =
1

L
∇̂θℓD(θ

t, ϕt(NA)),

one has, due to unbiasedness assumption, let (Ft)0≤t≤ND be the filtration generated by σ(θt|k ≤ t)1055

E[⟨∇θℓD(θ
t, ϕt(NA)), θ

t+1 − θt⟩|Ft] =
1

L
E[∥∇θℓD(θ

t, ϕt(NA))∥2|Ft]

= LE∥θt+1 − θt∥2|Ft],

which leads to1056

E[⟨∇θℓD(θ
t, ϕ∗), θt+1 − θt⟩|Ft] = E[⟨zt, θt − θt+1⟩|Ft] + LE[∥θt+1 − θt∥2∥].

Since V (·) is L-Lipschitz smooth,1057

E[V (θt)− V (θt+1)] ≤ E[⟨∇θV (θt), θt − θt+1⟩] + L

2
E[∥θt+1 − θt∥2]

≤ E[⟨zt, θt+1 − θt⟩]− E[⟨∇θℓD(θ
t, ϕt(NA)), θ

t+1 − θt⟩] + L

2
E[∥θt+1 − θt∥2]

≤ E[⟨zt, θt+1 − θt⟩]− L

2
E[∥θt+1 − θt∥2].

(F12)

Fixing a θ ∈ Θ, let et := ⟨∇θℓD(θ
t, ϕt(NA)), θ − θt⟩, we have1058

E[et|Ft] = LE[⟨θt+1 − θt, θ − θt⟩|Ft]

= E[⟨∇θℓD(θ
t, ϕt(NA))−∇θV (θt), θt+1 − θt⟩+ ⟨∇θV (θt), θt+1 − θt⟩]

+ LE[⟨θt+1 − θt, θ − θt+1⟩]
≤ E[(∥zt∥+ V∞ + LDΘ)∥θt+1 − θt∥]

(F13)

By the choice of Nb, we have, since V∞ = max{maxθ ∥∇V (θ)∥, 1},1059

E[∥zt∥] ≤ L12E[∥ϕN − ϕ∗∥] ≤ Lε2

4DV (2V∞ + LDΘ)
≤ V∞.

Thus, the relation equation F13 can be reduced to1060

E[et] ≤ (2V∞ + LDΘ)E[∥θt+1 − θt∥].

Telescoping equation F12 yields1061

−DV ≤ E[V (θ0)− V (θND )] ≤ DΘ

T−1∑
t=0

E[∥zt∥]−
L

2(2V∞ + LDΘ)2
E[

T−1∑
t=0

E[e2t |Ft].

Thus, setting ND ≥ 4DV (2V∞+LDΘ)2

Lε2 , and then by Lemma F.7, we obtain that,1062

1

ND

ND−1∑
t=0

E[e2t ] ≤
ε2

2
+

2DV (2V∞ + LDΘ)
2

LND
≤ ε2

which implies there exists t ∈ {0, . . . , ND − 1} such that E[e2t ] ≤ ε2.1063

1064
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F.3 Generalization to Unseen Attacks1065

In the online adaptation phase, the pre-trained meta-defense may be exposed to attacks unseen in the1066

pre-training phase, which poses an out-of-distribution (OOD) generalization issue to the proposed1067

meta-SG framework. Yet, Proposition F.9 and Proposition F.13 assert that meta-SG is generalizable1068

to the unseen attacks, given that the unseen is not distant from those seen. The formal statement is1069

deferred to Appendix F, and the proof mainly targets those unseen non-adaptive attacks for simplicity.1070

Proposition F.9 (OOD Generalization Informal Statement). Consider sampled attack types1071

ξ1, . . . , ξm during the pre-training and the unseen attack type ξm+1 in the online stage. The gen-1072

eralization error is upper-bounded by the “discrepancy” between the unseen and the seen attacks1073

C(ξm+1, {ξi}mi=1).1074

Our main goal is to quantify the value discrepancy under an attack type that is out of empirical1075

distribution. We consider attack types ξ1, . . . , ξm to be empirically sampled from distribution Q(·)1076

during the pre-training stage, and an unseen attack type ξm+1 in the online stage. The quantification1077

of distance C(ξm+1, {ξi}mi=1) relies on the total variation,1078

Definition F.10 (total variation). For two distributions P and Q, defined over the sample space Ω1079

and σ-field F , the total variation between P and Q is ∥P −Q∥TV := supU∈F |P (U)−Q(U)|.1080

The celebrated result shows the following characterization of total variation,1081

∥P −Q∥TV = sup
f :0≤f≤1

Ex∼P [f(x)]− Ex∼Q[f(x)].

Let the fixed attack policies ϕi, i = 1, . . . ,m+ 1 corresponding to each attack type. To formalize1082

the generalization error, for each θ ∈ Θ, we define populational values1083

V̂ (θ) :=
1

m

m∑
i=1

Eτ∼qθi
JD(θ − η∇̂θJD(τ), ϕi, ξi)

V̂m+1(θ) := Eτ∼qθm+1
JD(θ − η∇̂θJD(τ), ϕm+1, ξm+1)

where qθi (·) : (S × A × S)H−1 × S → [0, 1] is the trajectory distribution determined by state1084

dependent policies πD(·|s; θ), πA(·|s;ϕi, ξi) and transition kernel T . Since qθi is factorizable, we1085

have Lemma F.11 to eliminate ∥qθi − qθm+1∥TV dependence on θ by upper bounding it using another1086

pair of mariginal distributions.1087

Lemma F.11. For any θ ∈ Θ, there exist marginals di, dm+1 : (S × AA × S)H−1 × S → [0, 1]1088

total variation ∥qθi − qθm+1∥TV can be bounded by ∥di − dm+1∥TV .1089

Proof. By factorization, for a trajectory τ , any θ ∈ Θ, and any type index i = 1, . . . ,m+ 1:1090

qθi (τ) =

H−1∏
t=1

πD(a
t
D|st; θ)

H−1∏
t=1

πA(a
t
A|st, ϕi, ξi)

H−1∏
t=1

T (st+1|st, at),

thus, by the inequality of product measure,1091

∥qθi − qθm+1∥TV ≤
H−1∑
t=1

∥πD(·|st; θ)− πD(·|st; θ)∥TV︸ ︷︷ ︸
0

+∥di − dm+1∥TV ,

where di and dm+1 are the residue factors after removing πA(·|st; θ).1092

Assumption F.12. For any ξ ∈ Ξ and ϕξ, the function JD(θ, ϕξ, ξ) is G-Lipschitz continuous w.r.t.1093

θ ∈ Θ;1094

Proposition F.13. Under assumption 3.2 and certain regularity conditions, fixing a policy θ ∈ Θ, we1095

have, there exist some marginal distribution of1096

|V̂m+1(θ)− V̂ (θ)| ≤ C(dm+1, {di}mi=1),

where the constant C depending on the total variation between dm+1 and {di}mi=1:1097

C(dm+1, {di}mi=1) :=
2ηG2

m

m∑
i=1

∥dm+1 − di∥TV +
1− γH

1− γ
∥dm+1 −

1

m

m∑
i=1

di∥TV ,

here, G is the Lipschitz parameter of JD w.r.t. both θ.1098
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Proof. We start with the decomposition of the generalization error, for an arbitrary attack type ξi,1099

i = 1, . . . ,m, fixing a policy θ ∈ Θ determines jointly with each ϕi the trajectory distribution qθi .1100

Denoting the one-step adaptation policy θ′(τ) = θ− η∇JD(τ) as a function of trajectory τ , we have1101

the following decomposition,1102

V̂m+1(θ)− V̂ (θ) = Eτm+1∼qθm+1
JD(θ

′(τm+1), ϕm+1, ξm+1)−
1

m

m∑
i=1

Eτi∼qθi
JD(θ

′(τi), ϕi, ξi)

= Eτm+1∼qθm+1
JD(θ

′(τm+1), ϕm+1, ξm+1)−
1

m

m∑
i=1

Eτm+1∼qθm+1
JD(θ

′(τm+1), ϕi, ξi)︸ ︷︷ ︸
(i)

+
1

m

m∑
i=1

Eτm+1∼qθm+1
JD(θ

′(τm+1), ϕi, ξi)−
1

m

m∑
i=1

Eτi∼qθi
JD(θ

′(τi), ϕi, ξi)︸ ︷︷ ︸
(ii)

.

We assume (τm+1, τi) is drawn from a joint distribution which has marginals qθm+1 and qθi and is1103

corresponding to the maximal coupling of these two. Then,1104

τm+1 ∼ qθm+1, τi ∼ qθi , P(τm+1 ̸= τi) = ∥qθi − qθm+1∥TV ,

if τm+1 disagrees with τi, for (ii), we have, since Jθ
D is Lipschitz with respect to θ,1105

∥JD(θ′(τm+1), ϕi, ξi)− JD(θ
′(τi), ϕi, ξi)∥

≤ ηG∥∇̂θJD(τm+1)− ∇̂θJD(τi)∥
≤ 2ηG2,

as a result, denoting the maximal coupling of qθm+1 and qθi as gives,1106

[Eτm+1∼qθm+1
JD(θ

′(τm+1), ϕi, ξi)− Eτi∼qθi
JD(θ

′(τi), ϕ, ξi)]

= E(τm+1,τi)∼
∏

(qθm+1,q
θ
i )
[JD(θ

′(τm+1), ϕi, ξi)− JD(θ
′(τi), ϕ, ξi)]

≤ 2ηG2∥qθm+1 − qθi ∥TV ≤ 2ηG2∥di − dm+1∥TV ,

where the last inequality is due to Lemma F.11. Averaging the m empirical ξi’s yeilds the result:1107

(ii) ≤ 2ηG2

m

m∑
i=1

∥di − dm+1∥TV .

Since the trajectory distribution is a product measure, the difference between qθi and qθm+1 only lies1108

by attacker’s type, ∥qθ
′(τm+1)

m+1 − q
θ′(τm+1)
i ∥TV = ∥qθm+1 − qθi ∥TV ≤ ∥dm+1 − di∥TV .1109

Now we bound (i), for ease of exposition we let q′′ = q
θ′(τm+1)
m+1 and q′i := q

θ′(τm+1)
i . By the finiteness1110

of total trajectory reward R(τ) for any trajectory τ , R(τ) ≤ 1−γH

1−γ , hence,1111

(i) = Eτm+1∼qθm+1
JD(θ

′(τm+1), ϕm+1, ξm+1)−
1

m

m∑
i=1

Eτm+1∼qθm+1
JD(θ

′(τm+1), ϕi, ξi)

= Eτm+1∼qθm+1

[
Eτ ′′∼q′′RD(τ

′′)− 1

m

m∑
i=1

Eτ ′
i∼q′i

RD(τ
′
i)

]

≤ Eτm+1∼qθm+1

1− γH

1− γ
∥q′′m+1 −

1

m

m∑
i=1

q′i∥TV

≤ 1− γH

1− γ
∥dm+1 −

1

m

m∑
i=1

di∥TV .

1112
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G A Game-theoretic Perspective on Meta Equilibrium1113

This section offers further justification for the meta-equilibrium in (meta-SE), and we argue that meta-1114

equilibrium provides a data-driven approach to address incomplete information in dynamic games.1115

Note that information asymmetry is prevalent in the adversarial machine learning context, where the1116

attacker enjoys an information advantage (e.g., the attacker’s type). The proposed meta-equilibrium1117

notion can shed light on these related problems beyond the adversarial FL context.1118

We begin with the insufficiency of Bayesian Stackelberg equilibrium defined as the solution to the1119

bilevel optimization in equation BSE in handling information asymmetry, a customary solution1120

concept in security studies [35].1121

max
θ∈Θ

Eξ∼Q(·)[JD(θ, ϕ
∗
ξ , ξ)] s.t. ϕ∗

ξ ∈ argmaxJA(θ, ϕ, ξ),∀ξ ∈ Ξ. (BSE)

One can see from equation BSE that such an equilibrium is of ex-ante type: the defender’s strategy is1122

determined before the game starts. It targets a “representative” attacker (an average of all types). As1123

the game unfolds, new information regarding the attacker’s private type is revealed (e.g., through1124

the global model updates). However, this ex-ante strategy does not enable the defender to adjust its1125

strategy as the game proceeds. Using game theory language, the defender fails to handle the emerging1126

information in the interim stage.1127

To create interim adaptability in this dynamic game of incomplete information, one can consider1128

introducing the belief system to capture the defender’s learning process on the hidden type. Let It1129

be the defender’s observations up to time t, i.e., It := (sk, akD)
t
k=1s

t+1. Denote by B the belief1130

generation operator bt+1(ξ) = B[It]. With the Bayesian equilibrium framework, the belief generation1131

can be defined recursively as below1132

bt+1(ξ) = B[st, atD, bt] :=
bt(ξ)πA(a

t
A|st; ξ)T (st+1|st, atA, atD)∑

ξ′ b
t(ξ′)πA(atA|st; ξ′)T (st+1|st, atA, atD)

. (G1)

Since bt is the defender’s belief on the hidden type at time t, its belief-dependent Markovian strategy1133

is defined as πD(s
t, bt). Therefore, the interim equilibrium, also called Perfect Bayesian Equilibrium1134

(PBE) [17] is given by a tuple (π∗
D, π

∗
A, {bt}Ht=1) satisfying1135

π∗
D = argmaxEξ∼QEπD,π∗

A
[

H∑
t=1

rD(s
t, atD, a

t
A)b

t(ξ)]

π∗
A = argmaxEπD,πA [

H∑
t=1

rA(s
t, atD, a

t
A)],∀ξ,

{bk}Hk=1 satisfies (G1) for realized actions and states.

(PBE)

In contrast with (BSE), this perfect Bayesian equilibrium notion (PBE) enables the defender to make1136

good use of the information revealed by the attacker, and subsequently adjust its actions according to1137

the revealed information through the belief generation. From a game-theoretic viewpoint, both (PBE)1138

and (meta-SE) create strategic online adaptation: the defender can infer and adapt to the attacker’s1139

private type through the revealed information since different types aim at different objectives, hence,1140

leading to different actions. Compared with PBE, the proposed meta-equilibrium notion is better1141

suited for large-scale complex systems where players’ decision variables can be high-dimensional1142

and continuous, as argued in the ensuing paragraph.1143

To achieve the strategic adaptation, PBE relies on the Bayesian-posterior belief updates, which soon1144

become intractable as the denominator in equation G1 involves integration over high-dimensional1145

space and discretization inevitably leads to the curse of dimensionality. Despite the limited practicality,1146

PBE is inherently difficult to solve, even in finite-dimensional cases. It is shown in [6] that the1147

equilibrium computation in games with incomplete information is NP-hard, and how to solve for1148

PBE in dynamic games remains an open problem. Even though there have been encouraging attempts1149

at solving PBE in two-stage games [36], it is still challenging to address PBE computation in generic1150

Markov games.1151
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