
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

Pseudo-Asynchronous Local SGD:
Robust and Efficient Data-Parallel Training

Hiroki Naganuma∗ NAGANUMA.HIROKI@MILA.QUEBEC

Mila, University of Montreal, Canada
Xinzhi Zhang∗ XINZHI20@UW.EDU

University of Washington, United States
Man-Chung Yue XYZ@SAMPLE.COM

The University of Hong Kong, Hong Kong
Ioannis Mitliagkas IOANNIS@MILA.QUEBEC

Mila, University of Montreal, Canada
Philipp Andre Witte† PWITTE@MICROSOFT.COM

Russell J. Hewett† RHEWETT@MICROSOFT.COM

Yin Tat Lee† YINTATLEE@MICROSOFT.COM

Microsoft, United States

Abstract
Recent trends of larger model and larger datasets require huge amounts of computational resources,
making distributed deep learning essential. Data parallelism is a common approach to speed up
training, but it often involves frequent communication between workers, which can be a bottleneck.
In this work, we propose a method called Pseudo-Asynchronous Local SGD (PALSGD) to improve
the efficiency of data-parallel training. PALSGD is a novel extension of LocalSGD [21], designed
to further reduce communication frequency by introducing a pseudo-synchronization mechanism.
PALSGD allows the use of longer synchronization intervals compared to standard LocalSGD. De-
spite the reduced communication frequency, the pseudo-synchronization approach ensures that
model consistency is maintained, leading to performance results comparable to those achieved
with more frequent synchronization. Furthermore, we provide a theoretical analysis of PALSGD,
establishing its convergence and deriving its convergence rate. This analysis offers insights into the
algorithm’s behavior and performance guarantees. We evaluated PALSGD on CIFAR-10 using a
CNN and GPT-NEO on TinyStories. Our results show that PALSGD achieves better performance
in less time compared to existing methods like distributed data parallel (DDP), Local SGD and
DiLoCo [2].

1. Introduction

Training neural networks has become more computationally expensive, requiring distributed deep
learning techniques to handle the growing data and model sizes. Standard approaches to distributed
training typically rely on data parallelism [11], where a batch of training samples is further split into
multiple micro batches that are assigned to different workers. These workers perform forward and
backward passes on their local data shards and synchronize their model updates through operations
like ALL-REDUCE. However, synchronization at every step introduces significant communication
overhead, especially as the number of workers increases, because all model gradients have to be

*. Alphabetical order, –These authors contributed equally to this work. This work was performed when H.Naganuma
and X.Zhang were Microsoft Research interns
†. Alphabetical order

© H. Naganuma∗, X. Zhang∗, M.-C. Yue, I. Mitliagkas, P.A. Witte†, R.J. Hewett† & Y.T. Lee†.

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

synchronized between workers [14]. In addition, increasing the batch size to improve throughput
can negatively impact model generalization, resulting in suboptimal performance [7].

To address these issues, we propose Pseudo-Asynchronous Local SGD (PALSGD), a novel ex-
tension of the Local SGD [21] framework that incorporates a pseudo-asynchronous model update
mechanism. In PALSGD, workers perform local updates for extended periods and synchronize with
local copies of central models probablistically, allowing them to avoid the strict synchronization re-
quired in traditional methods. This pseudo-synchronization reduces the frequency of ALL-REDUCE

operations, mitigating communication overhead while maintaining model consistency. By intro-
ducing probabilistic updates, workers operate more independently between synchronization points,
leading to better training efficiency. Our approach is particularly suited for large-scale distributed
training scenarios, where communication delays and worker idling due to speed variations are com-
mon bottlenecks.

Our contributions are as follows:

• Pseudo Synchronization: We introduce a probabilistic pseudo-synchronization mechanism
to allow workers to loosely synchronize with the global model, reducing the need for fre-
quent full synchronization. This approach balances communication efficiency and model
consistency.

• Theoretical Analysis: We provide a theoretical analysis of PALSGD, proving its conver-
gence and deriving its convergence rate. This analysis provides insights into the algorithm’s
behavior and its performance guarantees.

• Empirical Validation: We demonstrate the effectiveness of PALSGD through experiments
on CIFAR-10 and TinyStories [3] datasets. We show that it achieves better validation/train
loss performance in shorter training times compared to existing methods like Distributed Data
Parallel (DDP), Local SGD [21] and DiLoCo [2].

Our work builds upon previous research on Local SGD and asynchronous methods. We address
their limitations and advance the field of efficient distributed deep learning.

2. Preliminaries

We consider the following stochastic optimization problem:

min
x∈Rd

F (x), F (x) = Eξ∼Df(x, ξ). (1)

which aims to minimize the expected value of our cost function f with samples ξ drawn from the
universal data distribution D. In distributed training, consider K workers running in parallel and
they are initialized as the same parameter x(0). The training data is uniformly randomly partitioned
into K data shards D1, · · · ,DK , with each worker performs local computations based on its own
data shard, independent of the other workers.

In the pseudo-asynchronous setting, workers operate mostly asynchronously between synchro-
nization points. The workers are only synchronized through the pre-scheduled ALL-REDUCE opera-
tions, which aggregates model parameters (or other states) from all workers. During ALL-REDUCE,
each worker must reach the same point in its local computation, meaning that faster workers need to
wait for slower ones before ALL-REDUCE can occur. However, between two consecutive synchro-
nizations, the workers operate independently, performing local updates without having to wait for

2

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

Algorithm 1: Pseudo-Asynchronous Local SGD with Decoupled Optimizers
Data: x(0) (initial model), K > 0 (number of workers), p ∈ [0, 1] (probability of mixing step), ηt > 0 (mixing

rate), H > 0 (sync interval), optimizers INNEROPT and OUTEROPT, αt (learning rate scheduler for
INNEROPT)

for worker k = 1, · · · ,K do
x
(0)
k ← x(0);

for t = 0, · · · , T − 1 do
b ∼ U [0, 1];
if b ≤ p then

x
(t)
k ← x

(t)
k −

αtηt
p
· (x(t)

k − x(t)); pseudo-synchronization step

else
Sample data ξ ∼ Dk;
g
(t)
k ← ∇f(x

(t)
k , ξ);

x
(t+1)
k ← INNEROPT(x(t)

k , g
(t)
k , αt

1−p
); gradient step

end
if (t+ 1) mod H = 0 then

∆(t) ← ALL-REDUCE(x(t−1) − x
(t)
k); aggregate outer gradient

x(t+1) ← OUTEROPT(x(t),∆(t)); update global model
else

x(t+1) ← x(t)

end
end

end

each other. This allows workers to progress at their own pace during most of the training process,
reducing total idle time over training by decreasing number of communication operations.

3. Proposed Method: PALSGD

Our PALSGD algorithm is outlined in Algorithm 1. It extends the Local SGD method by intro-
ducing a pseudo-synchronous step that incorporates probabilistic synchronization with the “global”
model x(t), which is stored locally on each worker. In this approach, each worker updates its lo-
cal model independently for H steps, and with probability p, performs a pseudo-synchronization
step that partially aligns the local model x(t)k with the global model x(t). After H inner steps, x(t)

is updated through an ALL-REDUCE operation, aggregating the differences between the local and
global models. This probabilistic synchronization reduces the frequency of full synchronization and
significantly lowering the communication overhead while maintaining sufficient alignment between
workers’ models.

To further improve the empirical performance, we apply several practical techniques. First,
similar to Post-Local SGD [14], we initialize the model x(0) from a model pretrained by DDP.
This addresses the instability issues often observed in the initial phases of training. Additionally,
we employ a decoupled optimizer strategy. Following the DiLoCo framework [2], we employed
AdamW [8] as INNEROPT that handles local updates and Nesterov momentum [22] as OUTEROPT
that updates the global models. Together, these modifications ensure that PALSGD not only reduces
communication costs but also achieves faster convergence and better model performance across
various deep learning tasks.

3

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

Building on this framework, we showed the following theoretical convergence bound for a sim-
plified version of our algorithm, where the inner optimizer is standard SGD and the outer model is
updated by taking the average across inner models. We include the proof in Appendix A.

Theorem 1 (Convergence of PALSGD, Informal) Let x(0), · · · , x(T−1) be the sequence gener-
ated by Algorithm 1 with INNEROPT as SGD and OUTEROPT as SGD with step size 1. Under
Assumptions 1, 2, 3, and 4, let κ = L

µ . For any 0 < p ≤ 1
2 , and for any T > 0, there exists a

sequence of inner step size {αt}T−1
t=0 , a sequence of mixing rate {ηt}T−1

t=0 , and a weight sequence
{wt}T−1

t=0 such that for x̂T = 1
ZT

∑T−1
t=0 wtx

(t) where ZT =
∑T−1

t=0 wt, and ignorining the logrith-
mic and exponentially decaying terms, we have

E[F (x̂T)]− F (x∗) ≤ Õ

(
σ2

µKT
+

κH2σ2

µT 2

)
. (2)

4. Experiments

Experimental Setup

We conducted experiments using two datasets: CIFAR-10 for image classification and TinyStories
for language modeling. For CIFAR-10, a small CNN architecture was used, for TinyStories, we
employed GPT-NEO 1 with 8 million parameters to evaluate the performance of PALSGD in a
distributed training environment.

The CIFAR-10 experiments simulated distributed training to measure the achievable accuracy. We
compared PALSGD with DDP, LocalSGD, and DiLoCo across varying numbers of workers and syn-
chronization intervals. For the TinyStories experiments, we trained the models in a real distributed
environment using 4 to 8 workers. Further details are provided in Appendix C.

Simulation Experiments: CIFAR-10 on Small CNN

In the CIFAR-10 experiments, we observed that both DDP and LocalSGD significantly degrade
in accuracy as the synchronization interval (H) or the number of workers (K) increased. In con-
trast, DiLoCo and PALSGD demonstrated more stable performance across these variables, with
PALSGD showing the least sensitivity. Specifically, PALSGD outperformed LocalSGD by 10%
when H=256 and K=4, and it surpassed DiLoCo by 1.0% when H=32 and K=4. These results
highlight PALSGD’s ability to maintain accuracy while reducing communication overhead.

1. https://huggingface.co/docs/transformers/en/model_doc/gpt_neo

4

https://huggingface.co/docs/transformers/en/model_doc/gpt_neo

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

2 4 8 16 32 64
Number of Workers

DDP

Local SGD

PALSGD
(Ours)

DiLoCo

A
lg

or
ith

m
0.68 0.66 0.64 0.61 0.57 0.52

0.67 0.71 0.62 0.50 0.27 0.19

0.72 0.73 0.72 0.70 0.66 0.57

0.72 0.73 0.72 0.70 0.66 0.560.72 0.73

0.72 0.70 0.66 0.57

Heatmap of Test Accuracy by Algorithm and Number of Workers

16 32 64 128 256
Sync Interval

ddp

Local SGD

PALSGD (Ours)

DiLoCo

A
lg

or
ith

m

0.666 0.666 0.666 0.666 0.666

0.735 0.720 0.689 0.674 0.639

0.737 0.739 0.740 0.742 0.741

0.734 0.738 0.741 0.743 0.737

0.737 0.739

0.741 0.743

0.741

Heatmap of Test Accuracy by Algorithm and Sync Interval

Figure 1: Simulation Experiments: (Left) Comparison of K (Number of workers) with H=32. (Left)
Comparison of H (Sync Interval) with K=4. PALSGD has low sensitivity to K and H, and achieves
high accuracy consistently.

Practical Experiments: TinyStories on GPT-NEO
In the TinyStories experiments, PALSGD demonstrated significant reductions in communication
overhead by minimizing the frequency of synchronization steps. Specifically, PALSGD reduced
the total number of synchronization steps by 93.75% compared to DDP 2. As a result, PALSGD
shortened the total training time by 20-23% while achieving the target loss. DiLoCo, however,
converged more slowly and was unable to reach the target loss within the same training time frame.
More details can be found in Appendix C.

23% of
training time

20% of
training time

Figure 2: GPT-NEO Experiments (K=4 / H=16): Training time comparison across distributed algo-
rithm to achieve target loss. While PALSGD achieve fastest and lowest loss, DDP is slowest and
DiLoCo did not achieve target loss.

Our experiments demonstrate that PALSGD effectively balances communication efficiency and
model performance. The probabilistic pseudo-synchronization mechanism allows workers to up-
date their local models independently, leading to faster convergence and reduced communication
overhead. Compared to existing methods, PALSGD achieves significant improvements in both
training speed and model loss, particularly in large-scale distributed environments.

5. Discussion and Conclusion

We introduced Pseudo-Asynchronous Local SGD (PALSGD), which reduces communication over-
head in large-scale distributed learning through probabilistic pseudo-synchronization. Extending

2. This is the theoretical value when the communication frequency is reduced to one-sixteenth.

5

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

Local SGD, PALSGD decreases the frequency of ALL-REDUCE operations, allowing for extended
local updates. This method is particularly effective in high-latency environments, such as intercon-
tinental data centers, where it enables more efficient, scalable training.

Our key contributions are as follows: i) We introduced PALSGD, a novel extension of Lo-
cal SGD that incorporates probabilistic pseudo-synchronization, significantly reducing the cost of
synchronization without sacrificing model performance. ii) We provided theoretical convergence
bounds for a simplified version of PALSGD. iii) We empirically validated PALSGD on image clas-
sification and language modeling tasks, demonstrating its effectiveness in reducing training time
and improving model performance compared to baseline methods such as DDP, Local SGD and
DiLoCo.

The limitations of our work include several factors. First, our current approach assumes ho-
mogeneous hardware and network configuration across all workers. Future research could explore
adaptive methods to address heterogeneous environments, where worker speeds or network laten-
cies vary. Second, our theoretical analysis was simplified, focusing on PALSGD with SGD as the
inner optimizer and assuming strongly convex functions, whereas training deep models is inher-
ently non-convex. Extending this theoretical framework to more complex optimizers like Adam or
other adaptive methods may offer deeper insights into the algorithm’s performance. Finally, while
PALSGD enhances communication efficiency, future studies could investigate further reducing syn-
chronization costs, for example, by employing gradient compression techniques or decentralized
communication patterns.

References

[1] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed
deep networks. Advances in neural information processing systems, 25, 2012.

[2] Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. arXiv preprint arXiv:2311.08105, 2023.

[3] Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023.

[4] Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol, Gabriel
Huang, Simon Lacoste-Julien, and Ioannis Mitliagkas. Negative momentum for improved
game dynamics. In The 22nd International Conference on Artificial Intelligence and Statis-
tics, pages 1802–1811. PMLR, 2019.

[5] Xinran Gu, Kaifeng Lyu, Longbo Huang, and Sanjeev Arora. Why (and when) does local sgd
generalize better than sgd? arXiv preprint arXiv:2303.01215, 2023.

[6] Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe.
Local sgd with periodic averaging: Tighter analysis and adaptive synchronization. Advances
in Neural Information Processing Systems, 32, 2019.

6

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

[7] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. arXiv preprint arXiv:1609.04836, 2016.

[8] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[9] Byung-Il Koh, Alan D George, Raphael T Haftka, and Benjamin J Fregly. Parallel asyn-
chronous particle swarm optimization. International journal for numerical methods in engi-
neering, 67(4):578–595, 2006.

[10] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A
unified theory of decentralized sgd with changing topology and local updates. In International
Conference on Machine Learning, pages 5381–5393. PMLR, 2020.

[11] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam
Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences
on accelerating data parallel training. arXiv preprint arXiv:2006.15704, 2020.

[12] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gra-
dient for nonconvex optimization. Advances in neural information processing systems, 28,
2015.

[13] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochas-
tic gradient descent. In International Conference on Machine Learning, pages 3043–3052.
PMLR, 2018.

[14] Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-
batches, use local sgd. arXiv preprint arXiv:1808.07217, 2018.

[15] Bo Liu, Rachita Chhaparia, Arthur Douillard, Satyen Kale, Andrei A Rusu, Jiajun Shen,
Arthur Szlam, and Marc’Aurelio Ranzato. Asynchronous local-sgd training for language mod-
eling. arXiv preprint arXiv:2401.09135, 2024.

[16] I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

[17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[18] Jose Javier Gonzalez Ortiz, Jonathan Frankle, Mike Rabbat, Ari Morcos, and Nicolas Ballas.
Trade-offs of local sgd at scale: An empirical study. arXiv preprint arXiv:2110.08133, 2021.

[19] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub
Konečnỳ, Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv
preprint arXiv:2003.00295, 2020.

[20] Max Ryabinin, Eduard Gorbunov, Vsevolod Plokhotnyuk, and Gennady Pekhimenko. Mosh-
pit sgd: Communication-efficient decentralized training on heterogeneous unreliable devices.
Advances in Neural Information Processing Systems, 34:18195–18211, 2021.

7

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

[21] Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018.

[22] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of ini-
tialization and momentum in deep learning. In International conference on machine learning,
pages 1139–1147. PMLR, 2013.

[23] Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and
analysis of local-update sgd algorithms. Journal of Machine Learning Research, 22(213):
1–50, 2021.

[24] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Im-
proving communication-efficient distributed sgd with slow momentum. arXiv preprint
arXiv:1910.00643, 2019.

[25] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. arXiv
preprint arXiv:1903.03934, 2019.

[26] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic averaging
sgd. Advances in neural information processing systems, 28, 2015.

[27] Tuo Zhang, Lei Gao, Sunwoo Lee, Mi Zhang, and Salman Avestimehr. Timelyfl:
Heterogeneity-aware asynchronous federated learning with adaptive partial training. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5064–5073, 2023.

[28] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan
Liu. Asynchronous stochastic gradient descent with delay compensation. In International
conference on machine learning, pages 4120–4129. PMLR, 2017.

8

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

Appendix A. Proof of Theorem 1

A.1. Assumptions and Main Result

We make the following assumptions on F for our theoretical analysis:

Assumption 1 (L-Smoothness) There exists a constant L > 0 such that for each ξ in the support
of D, and for each x, y ∈ Rd,

∥∇f(x, ξ)−∇f(y, ξ)∥ ≤ L∥x− y∥.

Assumption 2 (µ-Strongly Convex) There exists a constant µ > 0 such that for each ξ in the
support of D, f(x, ξ) is µ-strongly convex. Moreover, write x∗ = argminx∈Rd F (x) as the global
minimal solution.

Assumption 3 (Identical Data Distributions among Workers) Let D1,D2, . . . ,DK be the data
distributions for K workers. Assume that these distributions are identical and independent, denoted
by D1 = D2 = · · · = DK = D.

Assumption 4 (Bounded Variance) There exists σ ≥ 0 such that for any x ∈ Rd,

Eξ∼D[∥∇f(x, ξ)∥2] ≤ σ2.

Theorem 2 (Convergence of PALSGD) Let x(0), · · · , x(T−1) be the sequence generated by Algo-
rithm 1 with INNEROPT as SGD and OUTEROPT as SGD with step size 1. Under Assumptions 1,
2, 3, and 4, for any 0 < p ≤ 1

2 , let αt = α, ηt = η = p
2Hα , and wt = (1− µα)−(t+1) where

α = min

(
p

48LH
,
ln(µ2d0T

2K/σ2)

µT

)
For any T > 0, let x̂T = 1

ZT

∑T−1
t=0 wtx

(t) where ZT =
∑T−1

t=0 wt, we have

E[F (x̂T)]− F (x∗) ≤ Õ

(
LHR2

0

p
· exp(− pT

κH
) +

σ2

µKT
+

κH2σ2

µT 2

)
. (3)

where R0 = ∥x(0) − x∗∥2 and κ = L
µ . Specifically, when p ≤ µ

LH , we have

E[F (x̂T)]− F (x∗) ≤ Õ

(
LHR2

0

p
· exp(− pT

κH
) +

σ2

µKT
+

(κ+ p−1H)σ2

µT 2

)
. (4)

The roadmap for the remainder of this section is as follows: Section A.2 introduces the basic
definitions used in the proof. Section A.3 provides a proof sketch and presents the main technical
lemmas. Section A.4 contains the full proof of Theorem 2. Finally, Section A.5 proves the technical
lemmas stated in Section A.3.

9

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

A.2. Basic Definitions

For any k ∈ [K], t = 0, · · · , T − 1, let b(t)k denote a Bernoulli random variable with parameter p
(i.e., b(t)k = 1 with probability p and b

(t)
k = 0 with probability 1− p). Let

g
(t)
k =

1− b
(t)
k

1− p
∇f(x

(t)
k , ξ

(t)
k) +

ηtb
(t)
k

pK
(x

(t)
k − x(t)).

The for any t such that (t+ 1) mod H ̸= 0, we can rewrite the inner step as

x
(t+1)
k = x

(t)
k − αt g

(t)
k .

Let
g(t) =

1

K

∑
k∈[K]

g
(t)
k . (5)

Let x̄(t) = 1
K

∑
k∈[K] x

(t)
k as the current mean of the client servers at step t. Then we have

x̄(t+1) = x̄(t) − αt g
(t).

Let ξ(t)k denote the data sampled by the k-th server at step t. Let Ft = {ξ(s)k }s=0,··· ,t−1,k∈[K] ∪
{b(s)k }s=0,··· ,t−1,k∈[K] for t ≥ 1 and F0 = ∅. Define ḡ(t) as the expectation of g(t) over the random-
ness at step t, i.e.

ḡ(t) = E[g(t) | Ft] =
1

K

∑
k∈[K]

(
∇F (x

(t)
k) + ηt(x

(t)
k − x(t))

)
. (6)

For any t ≥ 0, let t− ≤ t be the largest integral multiples of H that is at most t, i.e. t− is the last
iteration at or before t such that x(t) is updated. Similarly, let t+ ≥ t be smallest integral multiples
of H that is at least t, i.e. the next round at or after t such that x(t) is updated.

A.3. Main Technical Lemmas

We now sketch the proof of Proof of Theorem 2. Our analysis employs the framework of Local
SGD [21]. The main technical lemmas are as follows:

Lemma 1 Under Assumption 1 with L and Assumption 2 with µ ≥ 0, for any t ≥ 0 with αt ≤ 1
4L ,

it holds that

E
[
∥x̄(t+1) − x∗∥2

]
≤ (1− µαt)E

[
∥x̄(t) − x∗∥2

]
+ α2

t E
[
∥g(t) − ḡ(t)∥2

]
− αt

2
E
[
F (x̄(t))− F (x∗)

]
+

2αtL

K

∑
k∈[K]

E
[
∥x(t)k − x̄(t)∥2

]
.

Lemma 1 can be proved almost verbatim to [21, Lemma 3.1].

10

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

Lemma 2 Under Assumption 1 with L ≥ 0, Assumption 3 and Assumption 4. Suppose that p ≤
1
2 , 12L2 ≤ η2t /p, and Eξ∼D[∥∇f(x∗, ξ)∥2] ≤ σ2. Let g(t) and ḡ(t) be defined as (5) and (6)
respectively. Then for any t ≥ 0, it holds that

E
[
∥g(t) − ḡ(t)∥2

]
≤3η2t (1− p)

p
· 1

K2

K∑
k=1

E[∥x(t)k − x(t)∥2] + 24L

K2

K∑
k=1

E[F (x̄(t))− F (x∗)] +
12σ2

K
.

The proof of Lemma 2 can be found in Section A.5.1.
We then show the following lemma that upper-bounds 1

K

∑
k∈[K] E[∥x

(t)
k − x(t)∥2] by a recur-

sion:

Lemma 3 Suppose 0 < p ≤ 1
2 and the sequences {αt}t≥0, {ηt}t≥0 satisfy (1) αtηt =

p
2H and (2)

αt ≤ p
6LH . Suppose that Eξ∼D[∥∇f(x∗, ξ)∥2] ≤ σ2. Then for any t ≥ 0, if (t + 1) mod H = 0

we have Ξt = 0, if (t+ 1) mod H ̸= 0 we have

1

K

∑
k∈[K]

E[∥x(t)k − x(t)∥2]

≤ 12LH ·
t−1∑
s=t−

α2
s

1

K

∑
k∈[K]

E[F (x(s))− F (x∗)] + 6H2α2
t−σ

2 +
p2

2H
·

t−1∑
s=t−

1

K

∑
k∈[K]

E[∥x(s)k − x(t
−)∥2].

The proof of Lemma 3 can be found in Section A.5.2.
We further simplify the recurrence of 1

K

∑
k∈[K] E[∥x

(t)
k −x(t)∥2] by taking weighted sum from

t = 0 to T .

Lemma 4 Suppose the sequences {Ξt}t≥0, {et}t≥0 satisfy (1) for all (t+1) mod H = 0 Ξt = 0,
and (2) for all (t+ 1) mod H ̸= 0,

Ξt ≤
p

2H
·

t−1∑
s=t−

Ξs + 6Hα2
t−

t−1∑
s=t−

σ2 + 12LH ·
t−1∑
s=t−

α2
ses. (7)

Suppose that for all t ≥ 0, αt = α ≤ p
6LH and wt ≤ wt+1 ≤ (1 + p

H)wt. Then for all T > 0 we
have

T∑
s=0

wsΞs ≤ 9α2H2
T∑

s=0

wsσ
2 +

p2

48L

T∑
s=0

wses.

The proof of Lemma 4 can be found in Section A.5.3.

A.4. Proof of Theorem 2

We are now able to show Theorem 2 using the previous lemmas.
Proof Combining with Lemma 1 and Lemma 2, we have

E
[
∥x̄(t+1) − x∗∥2

]
≤ (1− µαt)E

[
∥x̄(t) − x∗∥2

]
+

(
24Lα2

t

K2
− αt

2

)
E
[
F (x̄(t))− F (x∗)

]

11

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

+

(
2αtL

K
+

3η2tα
2
t (1− p)

pK2

) ∑
k∈[K]

E
[
∥x(t)k − x̄(t)∥2

]
+

12α2
tσ

2

K

≤ (1− µαt)E
[
∥x̄(t) − x∗∥2

]
+

(
24Lα2

t

K2
− αt

2

)
E
[
F (x̄(t))− F (x∗)

]
+

(
8αtL

K
+

12η2tα
2
t (1− p)

pK2

) ∑
k∈[K]

E[∥x(t)k − x(t)∥2] + 12α2
tσ

2

K
(8)

where the second inequality comes from

1

K

∑
k∈[K]

E[∥x̄(t) − x(t)∥2] ≤ 1

K

∑
k∈[K]

E[2∥x(t)k − x̄(t)∥2 + 2∥x̄(t) − x(t)∥2]

and

E[∥x̄(t) − x(t)∥2] = 1

K2
E[∥

∑
k∈[K]

(x
(t)
k − x(t))∥2] ≤ 1

K
·
∑
k∈[K]

E[∥x(t)k − x(t)∥2].

For simplicity, write dt = E
[
∥x̄(t) − x∗∥2

]
, et = E

[
F (x̄(t))− F (x∗)

]
and Ξt =

1
K

∑
k∈[K] E[∥x̄(t)−

x(t)∥2]. Then we can rewrite (8) as

dt+1 ≤ (1− µαt) dt +

(
24Lα2

t

K2
− αt

2

)
et +

(
8αtL+

12η2tα
2
t (1− p)

pK

)
Ξt +

12α2
tσ

2

K
.

Multiplying both sides by 1
αt

and rearranging, we have(
1

2
− 24Lαt

K2

)
et ≤

1− µαt

αt
dt −

1

αt
dt+1 +

(
8L+

12η2tαt(1− p)

pK

)
Ξt +

12αtσ
2

K
.

From αt = α ≤ p
48HL ≤ 1

4L and ηt = η = p
2Hα , we can further simplify the above inequality as

1

4
et ≤

1− µα

α
dt −

1

α
dt+1 + 9LΞt +

12ασ2

K
.

Next, by taking the weighted average from t = 0 to T − 1 with weight wt = (1 − µα)−(t+1)

and normalizing factor WT =
∑t−1

t=0wt, we have

1

4WT

T−1∑
t=0

wtet ≤
1

α
· 1

WT

T−1∑
t=0

((1− µα)wtdt − wtdt+1)

+
9L

WT

T−1∑
t=0

wtΞt +
12ασ2

K
· 1

WT

T−1∑
t=0

wt

≤ 1

α
· 1

WT

T−1∑
t=0

(wt−1dt − wtdt+1)

+
9L

WT

T−1∑
t=0

wtΞt +
12ασ2

K
· 1

WT

T−1∑
t=0

wt (By (1− µα)wt = wt−1)

12

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

≤ 1

α
· 1

WT

T−1∑
t=0

(wt−1dt − wtdt+1)

+
9L

WT
·

(
9α2H2

T−1∑
t=0

wtσ
2 +

p2

2L

T−1∑
t=0

wtet

)
+

12ασ2

K
(By Lemma 4)

≤ 1

α
· 1

WT
(d0 − wTdt+1)

+
9L

WT
·

(
9α2H2

T−1∑
t=0

wtσ
2 +

p2

48L

T−1∑
t=0

wtet

)
+

12ασ2

K

(Taking telescoping sum on the first term)

Rearranging and using p ≤ 1
2 , we get that

1

5
· 1

WT

T−1∑
t=0

wtet ≤
1

α
· 1

WT
(d0 − wTdt+1) +

(
81LH2α2 +

12α

K

)
σ2

≤ d0
α

(1− µα)T +

(
81LH2α2 +

12α

K

)
σ2

≤ d0
α

exp(−µαT) +

(
81LH2α2 +

12α

K

)
σ2

Let

α = min

(
p

48LH
,
ln(µ2d0T

2K/σ2)

µT

)
If p

48LH ≤ ln(µ2d0T 2K/σ2)
µT , then

1

WT

T−1∑
t=0

wtet ≤ Õ

(
LHd0

p
exp(−µpT

LH
) +

LH2σ2

µ2T 2
+

σ2

µKT

)

Otherwise, if ln(µ2d0T 2K/σ2)
µT < p

48LH , then

1

WT

T−1∑
t=0

wtet ≤ Õ

(
σ2

µTK
+

LH2σ2

µ2T 2

)
Therefore, assuming p ≤ 1

κH we have

1

WT

T−1∑
t=0

wtet ≤ Õ

(
LHd0

p
exp(−µpT

LH
) +

LH2σ2

µ2T 2
+

σ2

µKT

)
≤ Õ

(
LHd0

p
exp(−µpT

LH
) +

(L+ µp−1H)σ2

µ2T 2
+

σ2

µKT

)
.

13

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

The proof then follows from

E[F (x̂T)]− F (x∗) ≤ 1

WT

T−1∑
t=0

wtE[F (x(t))]− F (x∗) ≤ 1

WT

T−1∑
t=0

wtet.

A.5. Proof of Main Technical Lemmas

A.5.1. PROOF OF LEMMA 2

Proof Noting that {g(t)k − (x
(t)
k + x(t))b

(t)
k − ∇F (x

(t)
k)}Kk=1 are independent zero-mean random

vectors, we have that for any t ≥ 0,

E
[
∥g(t) − ḡ(t)∥2

]
= E

∥∥∥∥∥ 1

K

K∑
k=1

(
g
(t)
k −∇F (x

(t)
k) + ηtx

(t) − ηtx
(t)
k

)∥∥∥∥∥
2

=
1

K2

K∑
k=1

E
[∥∥∥g(t)k −∇F (x

(t)
k) + ηtx

(t) − ηtx
(t)
k

∥∥∥2] . (9)

where the last term comes from the independence of {gkt }. We then rewrite each of the summands
as

E
[∥∥∥g(t)k − ηtx

(t)
k + ηtx

(t) −∇F (x
(t)
k)
∥∥∥2]

=EFt

[
(1− p) · E

ξ
(t)
k

[∥∥∥∥ 1

1− p
∇f(x

(t)
k , ξ

(t)
k)−∇F (x

(t)
k)− ηtx

(t)
k + ηtx

(t)

∥∥∥∥2 ∣∣∣ Ft−1

]

+ p ·
∥∥∥∥(1

p
− 1

)
ηt(x

(t)
k − x(t))−∇F (x

(t)
k)

∥∥∥∥2
]

=EFt

[
1

1− p
E
ξ
(t)
k

[
∥∇f(x

(t)
k , ξ

(t)
k)−∇F (x

(t)
k)∥2 | Ft

]
+ (1− p)

∥∥∥∥ηtx(t)k − ηtx
(t) − p

1− p
∇F (x

(t)
k)

∥∥∥∥2
+

(1− p)2

p

∥∥∥∥ηtx(t)k − ηtx
(t) − p

1− p
∇F (x

(t)
k)

∥∥∥∥2
]

=EFt

[
1

1− p
E
ξ
(t)
k

[
∥∇f(x

(t)
k , ξ

(t)
k)−∇F (x

(t)
k)∥2 | Ft

]
+

1− p

p

∥∥∥∥ηt(x(t)k − x(t))− p

1− p
∇F (x

(t)
k)

∥∥∥∥2
]

Notice that for all k ∈ [K],

E
ξ
(t)
k

[
∥∇f(x

(t)
k , ξ

(t)
k)−∇f(x

(t)
k)∥2

]
≤ E

ξ
(t)
k

[∥∇f(x
(t)
k , ξ

(t)
k)∥2]

≤ E
ξ
(t)
k

[∥∇f(x
(t)
k , ξ

(t)
k)−∇f(x∗, ξ

(t)
k) +∇f(x∗, ξ

(t)
k)∥2]

14

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

≤ E
ξ
(t)
k

[∥∇f(x
(t)
k , ξ

(t)
k)−∇f

ξ
(t)
k

(x(t)) +∇f
ξ
(t)
k

(x(t))−∇f(x∗, ξ
(t)
k) +∇f(x∗, ξ

(t)
k)∥2]

≤ 3 · E
ξ
(t)
k

[∥∇f(x
(t)
k , ξ

(t)
k)−∇f

ξ
(t)
k

(x(t))∥2 + ∥∇f
ξ
(t)
k

(x(t))−∇f(x∗, ξ
(t)
k)∥2 + ∥∇f(x∗, ξ

(t)
k)∥2]

≤ 3L2E[∥x(t)k − x(t)∥2] + 6LE
ξ
(t)
k

[f(x(t), ξ
(t)
k)− f(x∗, ξ

(t)
k)] + 3σ2

= 3L2E[∥x(t)k − x(t)∥2] + 6LE[F (x(t))− F (x∗)] + 3σ2 (10)

and from Jensen’s inequality,

∥∇f(x
(t)
k)∥2 ≤ E

ξ
(t)
k

[
∥∇f(x

(t)
k , ξ

(t)
k)∥2 | Ft

]
≤ 3L2E[∥x(t)k − x(t)∥2] + 6L(F (x(t))− F (x∗)) + 3σ2,

we then have

EFt

[
1

1− p
+

1− p

p

∥∥∥∥ηt(x(t)k − x(t))− p

1− p
∇F (x

(t)
k)

∥∥∥∥2
]

≤ 1

1− p
E
ξ
(t)
k

[
∥∇f(x

(t)
k , ξ

(t)
k)−∇F (x

(t)
k)∥2 | Ft

]
+

2η2t (1− p)

p
E
[
∥x(t)k − x(t)∥2

]
+

2p

1− p
E
[
∥∇F (x

(t)
k)∥2

]
≤ (1 + 2p)

1− p
· (3L2E[∥x(t)k − x(t)∥2] + 6LE[F (x(t))− F (x∗)] + 3σ2) +

2η2t (1− p)

p
E
[
∥x(t)k − x(t)∥2

]
≤ 3η2t (1− p)

p
E[∥x(t)k − x(t)∥2] + 24LE[F (x(t))− F (x∗)] + 12σ2.

Where the last step comes from p ≤ 1
2 and 12L2 ≤ η2t

p . Substituting the last inequality into (9)
yields the desired inequality.

A.5.2. PROOF OF LEMMA 3

Proof Note that x(t) = 1
K

∑
k∈[K] x

(t−)
k = x̄(t

−) = x
(t−)
k . Here the last equality comes from

that the client model synchronizes with the average model at step t−. Therefore, we can write
1
K

∑
k∈[K] E[∥x

(t)
k − x(t)∥2] as

1

K

∑
k∈[K]

E[∥x(t)k − x(t)∥2] = 1

K

∑
k∈[K]

E[∥x(t)k − x
(t−)
k ∥2] (11)

Using ∥
∑H

i=1 xi∥2 ≤ H ·
∑H

i=1 ∥xi∥2 we have

1

K
·
∑
k∈[K]

E
[
∥x(t)k − x

(t−)
k ∥2

]

≤ H

K
·
∑
k∈[K]

t−1∑
s=t−

E
[
∥x(t+1)

k − xkt ∥2
]

=
H

K
·
∑
k∈[K]

t−1∑
s=t−

(
α2
s

(1− p)
· E

ξ
(s)
k

[∥∇f(x
(s)
k , ξ

(s)
k)∥2] + α2

sη
2
s

p
· E[∥x(s)k − x(t

−)∥2]
)

15

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

≤ H

K
·
∑
k∈[K]

t−1∑
s=t−

(
2α2

s ·
(
6LE[F (x(s))− F (x∗)] + 3σ2

)
+
(α2

sη
2
s

p
+ 6α2

sL
2
)
· E[∥x(s)k − x(t

−)∥2]
)

≤ H

K
·
∑
k∈[K]

t−1∑
s=t−

(
6α2

s ·
(
2LE[F (x(s))− F (x∗)] + σ2

)
+

p2

2H2
· E[∥x(s)k − x(t

−)∥2]
)
d

≤ 12LH ·
t−1∑
s=t−

α2
s

1

K

∑
k∈[K]

E[F (x(s))− F (x∗)] + 6H2α2
t−σ

2 +
p2

2H
·

t−1∑
s=t−

1

K

∑
k∈[K]

E[∥x(s)k − x(t
−)∥2].

(12)

where the third step comes from (10) and p ≤ 1
2 , and the fourth step comes from α2

sη
2
s = p2

4H2 and

α2
s ≤

p2

24L2H2 . The lemma then follows.

A.5.3. PROOF OF LEMMA 4

Proof Substituting Ξt− , · · · ,Ξt−1 on the right-hand-side of (7) by (7), we get

Ξt ≤
p

2H
·

t−1∑
s=t−

Ξs + 6Hα2
t−1∑
s=t−

σ2 + 12LH ·
t−1∑
s=t−

α2es

≤ p

2H
·

t−1∑
s=t−

(
p

2H
·

s−1∑
r=t−

Ξr + 6Hα2
s−1∑
r=t−

σ2 + 12LH ·
s−1∑
r=t−

α2er

)

+ 6Hα2
t−1∑
s=t−

σ2 + 12LH ·
t−1∑
s=t−

α2es

≤ p2

4H
·

t−2∑
s=t−

Ξs +

t−2∑
s=t−

(3Hpα2 + 6Hα2)σ2 + 6Hα2σ2 +

t−2∑
s=t−

(6LHpα2 + 12LHα2)es + 12LHα2et−1.

Repeat the above step for t− 1− t− times and using Ξt− = 0 gets

Ξt ≤
t−1∑
s=t−

6Hα2(1 + p)(1− ps−t−

2s−t−
)σ2 +

t−1∑
s=t−

12LHα2(1 + p)(1− ps−t−

2s−t−
)es

≤ 9H2α2σ2 +

t−1∑
s=t−

18LHα2es (13)

Taking average of Ξt from t = 0 to T with weight wt = (1− cα)t, we get

T∑
t=0

wtΞt ≤ 9H2α2
T∑
t=0

wtσ
2 + 18LHα2

T∑
t=0

wt

t−1∑
s=t−

es

≤ 9H2α2
T∑
t=0

wtσ
2 + 18LHα2

T∑
t=0

et

t−1∑
s=t−

ws

16

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

≤ 9H2α2
T∑
t=0

wtσ
2 + 18LHα2

T∑
t=0

wtet

t−1∑
s=t−

(1 +
p

H
)s−t−

≤ 9H2α2
T∑
t=0

wtσ
2 +

p

16L

T∑
t=0

wtet

where the third step comes from wt+1 ≤ (1 + p
H)wt, and the last step comes from αt ≤ p

48HL . The
lemma then follows.

Appendix B. Related Work

Local SGD and Variants Local SGD is a widely adopted technique for reducing communication
overhead in distributed optimization. It allows workers to perform multiple local updates before
synchronizing with a central server, minimizing the need for frequent gradient exchanges and im-
proving communication efficiency. Introduced in federated learning by [17], Local SGD has been
extensively studied for its convergence properties. [21] demonstrated that it converges at the same
rate as mini-batch SGD, particularly in smooth and strongly convex settings. Subsequent works,
such as [6] and [10], extended these results by analyzing Local SGD under more generalized frame-
works, including varying network topologies, different convexity settings, and data heterogeneity.
The key insight of our algorithm is that it allows workers to mix with the ”central model” more
frequently without incurring extra communication overhead, leading to better alignment of local
models compared to Local SGD.

Several variants of Local SGD have been proposed to further enhance scalability. Elastic Averaging
SGD (EASGD) [26] allows local models to diverge from the global model within a bounded range,
improving convergence in non-convex settings. While our proposed algorithm similarly introduces
slackness through proximal terms in the loss function, it further reduces communication by em-
ploying stochastic synchronization rather than stepwise synchronization. Moreover, our algorithm
reduces variance between local models more effectively by ensuring that all workers start from the
same global model every H local steps, leading to improved consistency across workers. Coopera-
tive SGD [23] expands on Local SGD by enabling direct communication between workers, reducing
reliance on a central server and improving robustness in decentralized systems. Additionally, Post-
Local SGD, a combination of mini-batch SGD and Local SGD, was introduced by [14] and shown
to strike a better balance between communication efficiency and generalization performance in deep
learning tasks [5]. In our proposed method, we adopt a similar strategy to Post-Local SGD by using
mini-batch SGD in the warmup phase, followed by the application of our PALSGD algorithm in the
second phase. This approach allows us to leverage the fast initial convergence of mini-batch SGD
before transitioning to our more communication-efficient method.

Negative Momentum Momentum-based optimization methods are widely employed to acceler-
ate the convergence of gradient-based algorithms. Recent study [4], particularly in the context of
adversarial learning such as Generative Adversarial Networks (GANs), have emphasized the role
of negative momentum in improving game dynamics. In their study, negative momentum was in-
troduced as a stabilizing mechanism to address oscillatory behavior in adversarial settings. Their
results demonstrated that alternating gradient updates with a negative momentum term achieve more

17

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

efficient convergence, both theoretically and empirically, especially in bilinear games and challeng-
ing scenarios like saturating GANs.

Our proposed method, PALSGD, shares conceptual similarities with negative momentum in the
context of distributed learning, despite the focus being on single-objective function optimization
rather than adversarial learning. The pseudo-synchronization introduced in PALSGD can be inter-
preted as a form of regularization, akin to how negative momentum explicitly modifies the update
direction in adversarial games. While previous study [4] applied negative momentum to mitigate in-
stability in adversarial games, our method regularizes model divergence in large-scale data-parallel
SGD, reducing the instability often observed in such setups. Thus, negative momentum and our
pseudo-asynchronous approach provide complementary insights into enhancing the stability and ef-
ficiency of gradient-based methods, albeit in distinct settings: adversarial games versus large-scale
distributed learning.

Robust Aggregation through Decoupled Method While Local SGD is theoretically fast-converging
and communication-efficient, it faces empirical limitations in large-scale optimization tasks [18].
One of the challenges is that simple averaging of local models, as used in Local SGD, struggles in
scenarios involving adaptive optimizers like SGD momentum and AdamW, which are common in
large-scale training. Recent works such as Slomo [24] and FedOpt [19] have focused on more robust
aggregation techniques by decoupling the inner optimizer for local training and the outer optimizer
for model aggregation. More recent approaches such as DiLoCo [2] and Asynchronous Local SGD
[15] have validated the effectiveness of using AdamW for local updates and Nesterov momentum
for outer optimization in large-scale language modeling tasks, offering improved performance and
robustness. Our proposed algorithm intergrates the decoupled method from the DiLoCo framework
with the pseudo-synchronization process. We showed that our method significantly outperforms
DiLoCo on image classification and language modeling tasks.

Asynchronous and Pseudo-Asynchronous Methods Asynchronous and pseudo-asynchronous meth-
ods have been developed to address inefficiencies in synchronous training, particularly the “strag-
gler effect”, where faster workers are forced to wait for slower ones. This issue has been widely
observed in synchronous distributed settings [1, 9, 12, 13]. [1] introduced one of the earliest asyn-
chronous frameworks, enabling each worker to update the global model independently, which sig-
nificantly improved computational utilization. However, this approach introduced the challenge of
stale gradients, where outdated updates from slower workers are applied to newer models, hindering
convergence. Methods like Asynchronous SGD with Delay Compensation [28] addressed this is-
sue by approximating fresher gradients. Other approaches such as Polyak Averaging [25] proposed
downweighting stale updates to improve robustness. More recently, Asynchronous Local SGD [15]
introduced a decoupled method, demonstrating that the strategic use of momentum can alleviate
many of the challenges posed by staleness. In federated learning, methods like Moshpit SGD [20]
and TimelyFL [27] have explored asynchronous approaches to better manage unreliable or hetero-
geneous devices in large-scale distributed systems.

Appendix C. Experimental Details

We conducted our experiments on two datasets: CIFAR-10 and TinyStories. The CIFAR-10 dataset
was used for image classification tasks, while TinyStories was employed for language modeling

18

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

experiments. We implemented the distributed algorithm (DDP, LocalSGD, DiLoCo and PALSGD)
on two different distributed systems, referred to as Cluster A and Cluster B, which have varying
GPU configurations and interconnects, as detailed below.

C.1. Settings

Hardware Configurations: We utilized two types of clusters for our experiments:

Cluster A

• GPU: NVIDIA Tesla T4 (16GB) x 4
• GPU Bandwidth: 320.0 GB/s
• GPU Interconnect: PCIe with NUMA Node Interconnect (No NVLink)

Cluster B

• GPU: NVIDIA Tesla V100 DGXS (32GB) x 8
• GPU Bandwidth: 897.0 GB/s
• GPU Interconnect: NVLink, 150 GB/s per GPU

Software and Library Configurations: Both clusters used the following software environment:

• Python: 3.11.6
• PyTorch: 2.3.1+cu121
• CUDA: 12.1
• CUDNN: 8902

Workloads:

• Small CNN on CIFAR-10: The CIFAR-10 dataset 3 is widely used in machine learning re-
search, especially for image recognition tasks. It consists of 60,000 color images, each measur-
ing 32x32 pixels, evenly distributed across ten distinct classes. These classes include common
objects such as airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks.
Each class is represented by 6,000 images, and the dataset is divided into a training set of
50,000 images and a test set of 10,000 images.
We used a small CNN for training on CIFAR-10. Our experiment on CIFAR-10 is preliminary,
aimed at selecting algorithms for comparison and conducting ablation studies rather than mea-
suring training speed. Therefore, to simulate multiple workers on a single GPU and examine
the effect on loss and accuracy when multiple models are allocated to the GPU, we employed
a small CNN with fewer parameters.
The small CNN is defined as follows. The model consists of two convolutional layers, each fol-
lowed by a ReLU activation and max-pooling operation. The first convolutional layer takes the
input (which is a 3-channel CIFAR-10 image) and applies 32 filters of size 5x5 with padding
to preserve spatial dimensions. The second convolutional layer increases the number of filters
to 64, using the same filter size and padding. After each convolution, the image is downsam-
pled by a 2x2 max-pooling operation. Following the convolutional layers, the feature map is
flattened and passed through a fully connected layer with 1,024 units, which is activated by

3. https://www.cs.toronto.edu/˜kriz/cifar.html

19

https://www.cs.toronto.edu/~kriz/cifar.html

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

ReLU. The final layer maps the output to 10 classes, corresponding to the categories in the
CIFAR-10 dataset.

• GPT-NEO on TinyStories: The TinyStories dataset [3] is designed for small-scale text gen-
eration tasks, providing a benchmark for language modeling performance on short narrative
texts. We utilized the GPT-NEO model 4 with 8 million parameters to evaluate the PALSGD
algorithm under distributed training conditions.
The GPT-NEO model used in this experiment is configured with the following architecture.
It includes a maximum positional embedding size of 300, which allows the model to handle
input sequences of up to 300 tokens. The hidden size is set to 128, determining the dimension-
ality of the model’s internal representations. The model has 8 attention heads, enabling it to
capture diverse relationships across tokens in a sequence through its self-attention mechanism.
Additionally, there are 8 hidden layers, each contributing to the depth of the model, allowing
it to learn more complex hierarchical patterns in the data.

Training Configuration:

All experimental results, unless otherwise noted, refer to the configuration of the hyper parameter
with the best results for that metric.

• Image Classification on Simulation Environment: We conducted experiments on the CIFAR-
10 dataset to evaluate the accuracy performance of the distributed algorithm. The model used
for this experiment was a small CNN architecture, trained for 200 epochs with 1 to 64 worker.
The inner optimizer for this experiment was AdamW [16], with an initial learning rate of
{0.0001, 0.0005, 0.001}. The outer learning rate was also set to 0.01, with the outer optimizer
is Nesterov Momentum SGD. We applied Post-Local SGD after 250 iterations. The model
and optimizer states were synchronized at initialization, but the optimizer state was not syn-
chronized during training phase of Local SGD, DiLoCo and PALSGD. We used a batch size
per worker is 64, probability of 0.25 for psuedo synchronization updates, and ηt is 1 in Algo-
rithm 1.
We conducted ablation studies on a small CNN architecture, as shown in Fig. 1, focusing on
the effects of synchronization interval (H: 16 to 256) and the number of workers (K: 2 to 64).
The experiments compared the performance of PALSGD against baseline methods such as
DDP, Local SGD, and DiLoCo.

• Languale Modeling on Distributed Environment: We trained the model for 15 epochs with
a local batch size of 512 per GPU, using 4 GPUs in A cluster. The global batch size was set
to 2048. The inner optimizer’s learning rate was fixed at 0.001, and we employed the AdamW
[16] for inner optimizer with gradient clipping enabled. Regarding outer optimization for
DiLoCo and PALSGD, we use Nesterov Momentum SGD with outer learning rate was fixed
at 0.1 to 0.2. The synchronization interval (H) was set to 16. The variants of Local SGD
algorithm started after 1024 iterations. For experiments of PALSGD, synchronization interval
set as 16 to 64, probabilistic synchronization parameter p=0.1, and ηt is 1 to 16.

4. https://huggingface.co/docs/transformers/en/model_doc/gpt_neo

20

https://huggingface.co/docs/transformers/en/model_doc/gpt_neo

PSEUDO-ASYNCHRONOUS LOCAL SGD: ROBUST AND EFFICIENT DATA-PARALLEL TRAINING

C.2. Additional Results

In the 8-GPU experiment, we used Cluster B. While it might seem that the communication bottle-
neck would be larger due to the doubled number of GPUs compared to the 4-GPU cluster, this is not
necessarily the case. Since the GPUs in Cluster B does not share the same bandwidth and FLOPS
as those in Cluster A, furhtermore, Cluster B differs in that the GPUs are connected via NVLink,
which provides faster communication. This makes it an ideal computing environment for distributed
deep learning. As a result, we achieved only a 20% improvement in training speed. What we want
to emphasize here is that even in an optimal communication environment like NVLink, which does
not span across nodes, there is still room for a 20% increase in training speed.

23% of
training time

20% of
training time

Figure 3: GPT-NEO Experiments (K=8 / H=64) on DGX-1 (8 V100 GPUs Connected by NVLINK):
Training time comparison across distributed algorithm to achieve target loss. While PALSGD
achieve fastest and lowest loss, DDP is slowest and DiLoCo did not achieve target loss.

21

	Introduction
	Preliminaries
	Proposed Method: PALSGD
	Experiments
	Discussion and Conclusion
	Proof of Theorem 1
	Assumptions and Main Result
	Basic Definitions
	Main Technical Lemmas
	Proof of Theorem 2
	Proof of Main Technical Lemmas
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Related Work
	Experimental Details
	Settings
	Additional Results

