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Abstract

Foundation models, such as the Segment Anything Model (SAM), have heightened interest
in promptable zero-shot segmentation. Although these models perform strongly on natural
images, their behavior on medical data remains insufficiently characterized. While SAM 2
has been widely adopted for annotation in 3D medical workflows, the recently released SAM
3 introduces a new architecture that may change how spatial prompts are interpreted and
propagated. Therefore, to assess whether SAM 3 can serve as an out-of-the-box replacement
for SAM 2 for zero-shot segmentation of 3D medical data, we present the first controlled
comparison of both models under purely spatial prompting, with concept mechanisms of
SAM 3 disabled. We benchmark using a variety of prompting strategies on 16 public
datasets (CT, MRI, Ultrasound, endoscopy) covering 54 anatomical structures, patholo-
gies, and surgical instruments. We further quantify three failure modes: prompt-frame
over-segmentation, over-propagation after object disappearance, and temporal retention of
well-initialized predictions. Our results show that SAM 3 provides stronger initialization
than SAM 2 for click prompts and maintains higher Dice and more stable retention for com-
plex, vascular, and soft-tissue anatomies. Under bounding box and mask, SAM 2 remains
competitive and often more conservative for compact organs by terminating tracks earlier
and hallucinating less. The overall results position SAM 3 as the superior default choice
for most medical segmentation tasks, while clarifying when SAM 2 remains a preferable
propagator.

Keywords: Foundation models, Segment Anything Model, Zero-shot segmentation, SAM
2, SAM 3.

1. Introduction

Foundation models for promptable segmentation have reshaped interactive medical image
analysis. The Segment Anything Model (SAM) (Kirillov et al., 2023) introduced a general-
purpose framework for zero-shot segmentation of 2D images using point, box, and mask
prompts. SAM 2 (Ravi et al., 2024) extended this approach to videos and 3D-like sequences
with a memory-based transformer for frame-to-frame propagation, enabling consistent seg-
mentation across volumes and cine series. The most recent iteration, SAM 3 (Carion et al.,
2025), replaces the separate image and memory encoders with a unified Perception Encoder
and a DETR-style detector—tracker (Carion et al., 2020), and adds concept-level prompting
modules for open-vocabulary segmentation. These architectural changes are designed for
recognition and semantics, but they also modify the model’s behaviour under purely spatial
prompts compared with SAM 2.
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Although the SAM family performs strongly on natural images, its behaviour on med-
ical imaging, especially 3D data and long temporal sequences, remains inadequately char-
acterized. Medical data impose modality-specific contrast, low signal-to-noise ratios, and
substantial variation across depth or time. Over the past year, SAM 2 has become a widely
used baseline for zero-shot segmentation of 3D medical data because its memory module
provides stable slice-to-slice propagation. Prior studies have compared SAM and SAM 2 on
medical datasets under various prompting modes (Sengupta et al., 2025; Dong et al., 2024;
Ma et al., 2024a), effectively serving as backwards-compatibility checks for newer models
in the SAM family. With the introduction of SAM 3’s detector—tracker pipeline and re-
designed mask heads, a similar question arises: can SAM 3 safely replace SAM 2 in 3D
medical annotation workflows operating purely with visual prompts?

To answer this question, we conduct a large-scale, controlled comparison of SAM 2
and SAM 3 across sixteen publicly available datasets spanning CT, MRI, ultrasound, and
endoscopy, covering 54 anatomical structures, pathologies, and surgical instruments. We
disable all concept-based mechanisms in SAM 3 so that both models operate strictly in the
visual prompting regime. We benchmark single-click, multi-click, bounding-box, and mask
prompts applied only to the first frame. Beyond prompt-frame and full-volume perfor-
mance, we explicitly quantify three failure modes that are critical for interactive annotation
workflows: prompt-frame over-segmentation (poor initialization), temporal retention (for-
getting), and over-propagation after object disappearance.

This study makes three main contributions:

e A unified, cross-modality evaluation framework for comparing SAM 2 and SAM 3
under identical visual prompts, with all concept-level mechanisms in SAM 3 disabled.

e A comprehensive empirical analysis of prompt-frame and full-volume/sequence perfor-
mance across sixteen datasets, revealing a structural divergence in behaviour: SAM 3
dominates initialization and tracking of complex topologies, while SAM 2 retains spe-
cific advantages for some compact, rigid anatomy under strong spatial guidance.

e A cross-model failure-mode analysis that quantifies prompt-frame over-segmentation,
temporal decay of prediction, and over-propagation, providing the first systematic
evidence on when SAM 3 can serve as an out-of-the-box replacement for SAM 2 and
when SAM 2 remains the more conservative propagator.

By isolating visual-prompt behaviour and conducting extensive cross-modality experiments,
this work clarifies the complementary strengths of SAM 2 and SAM 3 and provides practical
guidance for selecting between these models in clinical and research settings.

2. Methods

2.1. Comparison rationale

The objective of this study is to compare SAM 2 and SAM 3 under controlled and identical
prompting conditions for medical image segmentation in 3D volumes and medical video se-
quences. SAM 3 contains components designed for Promptable Concept Segmentation, such
as the presence head and text—exemplar fusion modules. All concept-based mechanisms are
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disabled in our evaluation so that both models operate strictly within the visual prompting
regime. This configuration creates a direct comparison between the two architectures and
isolates the effects of visual prompt encoding and propagation without the influence of text,
concept embeddings, or exemplar-based recognition.

2.2. Model Overview

SAM 2 (Ravi et al., 2024) is an encoder—decoder architecture built on the Hiera (Hierarchi-
cal Vision Transformer) backbone (Ryali et al., 2023). Its defining feature is a streaming
memory mechanism designed for semi-supervised video object segmentation: a memory
bank stores features and masks from past frames, and a memory-attention module aggre-
gates these to enforce spatio-temporal consistency during propagation through a 3D volume
or cine sequence. SAM 3 (Carion et al., 2025) instead uses a unified Perception Encoder
and a DETR-style detector—tracker (Carion et al., 2020). Learnable object queries are used
to localize and track targets over time, and additional heads support presence prediction
and concept-level prompting. In this work, we disable all language and concept modules so
that SAM 3 operates purely as a visual tracker and segmenter. The resulting configuration
exposes the impact of its new backbone and tracking pipeline while keeping the comparison
with SAM 2 focused on visual prompts and propagation behaviour.

2.3. Prompting Strategy

We evaluate three standard prompting strategies: (i) click prompting, using either a single
positive click (1,0) or a mixed positive—negative configuration (1,2), where the positive click
is placed near the centroid of the target and negative clicks are sampled from a dilated
region around the structure; (ii) bounding-box prompting, where a tight axis-aligned box
around the ground-truth structure in the first frame provides coarse geometric context;
and (iii) mask prompting, where a binary ground-truth mask from the first frame in which
the structure appears is supplied as the initial prompt. All prompts are provided only
on the first frame; thereafter, the models receive no additional interactions and propagate
their predictions sequentially from the first to the last frame without forward-backward
refinement, temporal smoothing, or post-processing.

2.4. Datasets and Implementation Details

We evaluate SAM 2 and SAM 3 on sixteen publicly available medical imaging datasets
spanning four imaging modalities: 3D CT, 3D MRI, ultrasound (2D cine and 3D volumes),
and endoscopy video (Table 1, Figure 1). Our data selection covers a broad spectrum of
anatomical structures, pathological conditions, and clinical instruments across modalities,
ensuring that the evaluation reflects the diversity encountered in real-world clinical imag-
ing workflows. The CT cohorts include multi-organ abdominal benchmarks (AMOS (Ji
et al., 2022), BTCV (Landman et al., 2015), FLARE22 (Ma et al., 2024b), TotalSegmenta-
tor (Wasserthal et al., 2023)) together with oncologic and thoracic tasks from the MSD col-
lection (lung tumors, pancreas and pancreatic tumors, spleen, and colon cancer) (Antonelli
et al., 2022; Simpson et al., 2019). MRI coverage comes from AMOS22 (Ji et al., 2022),
ACDC (Bernard et al., 2018), MSD Task02 Heart and Task04 Hippocampus (Antonelli
et al., 2022; Simpson et al., 2019), and the MRI subset of TotalSegmentator (D’Antonoli
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Table 1: Descriptions of the medical imaging datasets used for evaluation.

Modality Dataset Anatomy #Volumes / #Frames #Classes
AMOS Abdominal 200 / 26069 9
BTCV Abdominal 30 /3779 13
FLARE22 Abdominal 50 / 4794 13
T MSD Lung Lung tumor 63 / 17657 1
MSD Pancreas Pancreas, tumor 281 / 26719 2
MSD Spleen Spleen 41 / 3650 1
MSD Colon Colon cancer 126 / 13486 1
TotalSegmentator Abdominal 1113 / 304346 13
ACDC Cardiac 149 / 1482 3
AMOS Abdominal 40 / 9455 9
MRI MSD Heart Cardiac 20 / 2271 2
MSD Hippocampus Hippocampus 260 / 9270 2
TotalSegmentator Abdominal 1880 / 287217 13
US CAMUS Cardiac 500 / 9964 3
SegThy Thyroid /vascular 32 / 15820 5
Endoscopy  CholecSeg8K Cholecystectomy 17 / 8080 12

Figure 1: Overview of the multi-modality benchmark dataset. Representative im-
ages with ground-truth masks from the sixteen public datasets used in this study,
illustrating variability in modality, anatomy, pathology, contrast, and acquisition.
[Human illustration adapted from Vecteezy.com)].
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et al., 2024). Ultrasound is represented by cardiac cine sequences from CAMUS (Leclerc
et al., 2019) and 3D thyroid ultrasound from SegThy (Kronke et al., 2022), while Cholec-
Seg8K (Hong et al., 2020; Twinanda et al., 2016) provides endoscopy video frames with
organ and instrument labels. Segmentation accuracy is measured using the Dice similar-
ity coefficient (DSC). Statistical significance is assessed using paired Wilcoxon signed-rank
tests on video/volume-level DSC, with significance defined at o = 0.05. All preprocessing
and checkpoint details are provided in Appendix A.

2.5. Failure Mode Analysis

To complement volume-level DSC, we quantify three failure modes at a case level, where
case is a single target structure within a volume per dataset. All metrics are computed per
case and summarized as distributions across all cases, stratified by prompting mode.

1. Prompt-frame oversegmentation (flooding). To measure whether the model accu-
rately resolves the target’s spatial extent or “floods” into the background, we compute an

area ratio on the prompt frame tg. Let My, (t0) and M ;;Oe)d denote the ground-truth and pre-

dicted binary masks at to, and | - | the foreground pixel count. For all cases with | M, go)\ >0
we define

(to)
‘Mpr(éd|

R= (to)
MG

(1)

and analyze both the distribution of R and the fraction of severe flooding events (R > 2).

2. Temporal retention (forgetting). To measure how segmentation quality evolves
across a volume/sequence while the object is present, we model the decay of Dice over the
object’s lifespan. For each case, we consider all frames where the ground-truth mask is non-
empty and DSC is defined, re-index the frame IDs to a normalized time variable 7 € [0, 1],
and fit a simple linear model

DSC(t)~a+ (7. (2)

The normalized decay slope B serves as a retention score: values closer to zero indicate
stable performance, whereas more negative 8 correspond to faster forgetting. We compute
B for all cases as well as focus on a subset of cases with good initialization (prompt-frame
DSC > 0.7).

3. Owver-propagation after object disappearance. To quantify how long a model
continues to hallucinate a mask after the physical object has disappeared, we count the
number of over-propagated frames. Let t1,sx be the final frame where the ground-truth
object is present (non-empty mask). The over-propagation length for a case is then

L =#{t > tast | M. Ted is non-empty},

, the number of frames with any predicted foreground after the object’s last anno-
tated frame. We summarize L via boxen plots and empirical cumulative distribution
functions, and report percentiles such as the 90th percentile (Pyy), which indicates the
over-propagation length below which 90% of cases fall.
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3. Results
3.1. Prompt-Frame Accuracy

To isolate the effect of prompt interpretation, defined here as the model’s ability to accu-
rately resolve the spatial extent of the target structure on the initial frame based on user
input, we measured segmentation performance on the prompt-frame only. While detailed
numerical results for all 54 anatomical structures are provided in Appendix B (Table 3),
Figure 2 summarizes two key aspects: (a) the distribution of the prediction-to-ground-truth
area ratio R for each prompt type on a log scale, and (b) the fraction of cases with severe
over-segmentation (R > 2) stratified by object ground-truth size.

(a) Prompt-Frame Oversegmentation Severity

Prediction Area / GT Area (log scale)

10x

1x
Click (1,0) Click (1,2) BBox
Prompt Type

(b) Fraction of cases with prediction area > 2x GT area in prompt-frame (severe over-segmentation)

Click (1,0) Click (1,2) BBox

0.06 0.07
0.03  0.03 0.04
0.00 001 o.01

(2k-10k] (10k+) (0-500] (500-2k] (2k-10k] (10k+)
ize Bin (pixels) GT Size Bin (pixels)

(0-500] (500-2k] (2k-10k] (10k+) (0-500] (500-2k]
GT Size Bin (pixels) GTSi

Figure 2: Analysis of Prompt-Frame Over-segmentation. (a) Distribution of the
logio Area Ratio (Aprea/Agt). (b) Proportion of severe oversegmentation failures
(Aprea > 2 x Agy), stratified by ground truth object size. [Color: SHNl2, SAMS]|

Across all structures and prompt types, SAM 3 provides markedly stronger and more
stable initialization than SAM 2. Under click prompting, SAM 2 exhibits a severe instability
manifested as a heavy-tailed distribution in Figure 2a: its predicted masks are frequently
10x to 10°x larger than the ground truth. Specifically, the median area ratio for single-click
prompts is 9.9x for SAM 2 versus 2.6x for SAM 3; for multi-click prompts, the medians
drop to 3.4x and 2.0x, respectively, and for bounding boxes they are close to unity at
1.16x (SAM 2) and 1.11x (SAM 3). Thus, even under sparse clicks, SAM 3 keeps the

predicted area much closer to the ground-truth support, whereas SAM 2 frequently floods
large portions of the frame.
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Figure 2b quantifies the frequency of the severe over-segmentations (R > 2). For single-
click prompting on small targets (< 500 pixels), 79% of SAM 2 initializations are severely
over-segmented, compared with 69% for SAM 3; for medium-sized structures (500-2k pix-
els), the gap widens to 53% vs. 19%, and even for the largest objects (> 10k pixels),
severe over-segmentation occurs in 90% of SAM 2 cases but only 44% of SAM 3 cases.
Multi-click prompting reduces these failure rates for both models, but SAM 2 still shows
substantially higher severe-error frequencies (e.g., 73% vs. 65% in the smallest bin and 49%
vs. 39% in the 2k—10k bin). Bounding-box prompts largely suppress over-segmentation in
both models, with severe over-segmentation falling below 6% across all size bins and below
1% for most large structures. In this strong-prompt regime, the initialization advantage of
SAM 3 becomes modest, confirming that SAM 2’s instability is primarily a sparse-prompt
phenomenon.

3.2. Full-Volume/Sequence Segmentation Accuracy

While prompt-frame accuracy captures initialization quality, clinical applications require
accurate segmentation across full 3D volumes or complete temporal sequences. Full-volume
DSC, therefore, reflects the combined effect of both initialization and propagation under
SAM 2’s memory-based architecture and SAM 3’s redesigned tracking pathway. Table 2
summarizes structure-wise performance across all prompting regimes.

Across modalities, a consistent pattern emerges. Under sparse guidance (single- and
multi-click prompting), SAM 3 generally achieves higher full-volume DSC than SAM 2 for
most targets, indicating that its stronger prompt-frame initialization translates into bet-
ter sequence-level performance, especially for anatomically complex or elongated structures
such as vessels, gastrointestinal segments, and cardiac chambers. As prompt strength in-
creases to bounding boxes and masks, this global advantage narrows: both models approach
similar accuracy for many large, well-contrasted organs, and performance instead splits by
anatomical type.

In this stronger-prompt regime, SAM 2 is frequently more competitive or superior for
compact, encapsulated organs (e.g., kidneys, spleen, bladder), reflecting more conservative
propagation once a reliable mask is provided. In contrast, SAM 3 retains an advantage for
low-contrast, highly deformable, or tubular anatomy, where tracking stability is more chal-
lenging. Representative failure cases, such as MR bladder and SegThy thyroid /vascular tar-
gets, illustrate that excellent prompt-frame DSC can still collapse to near-zero full-volume
DSC for one model while the other maintains stable masks. These discrepancies foreshadow
the retention and over-propagation behaviour quantified by the failure-mode analysis.

3.3. Failure-Mode Analysis: Temporal Retention and Over-Propagation

Volume-level DSC aggregates initialization and propagation into a single number, but in-
teractive workflows care about how masks evolve over time. Here we examine two temporal
failure modes defined in Section 2.5: (i) retention, i.e., how quickly a well-initialized mask
drifts or degrades while the object is still present, and (ii) over-propagation, i.e., how long
a model continues to hallucinate a mask after the object has disappeared.

Retention of well-initialized objects. To isolate propagation behaviour from pure
initialization failures, we restrict this analysis to cases with good starting masks (prompt-
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Table 2: Full-volume/sequence DSC (%) for zero-shot segmentation across modalities and
anatomical structures using single-click (1,0), multi-click (1,2), bounding-box, and
mask prompts. For each pair, the higher DSC is shown in bold. Color shad-
ing in the table denotes statistical significance for the better model: p < 0.001,
0.001 < p < 0.05, and no shading for p > 0.05.

Click (1,0) Click (1,2) BBox Mask
SAM 2 SAM 3|SAM 2 SAM 3|SAM 2 SAM 3|SAM 2 SAM 3

Adrenal Gland (L) 19.13 25.14 20.79 34.54 | 49.02 46.67 47.59 41.78
Adrenal Gland (R) 8.93 11.28 10.18 19.86 | 45.52 44.86 44.41 39.53

Modality Structure

Aorta 68.71 78.72 72.07 81.17 68.41 74.58 67.22 73.42
Bladder 3.63 10.32 6.56 10.93 10.60 12.03 9.72 11.61
Colon Tumor 11.16 15.98 13.03 17.27 16.58 18.24 18.53 19.36
Duodenum 25.68 30.68 26.92 32.36 31.34 33.23 32.78 34.35
Esophagus 3.88 37.00 8.12 48.28 60.60 68.44 59.75 68.22
Gallbladder 22.88 30.39 31.68 34.53 | 49.62 38.00 48.47 36.68
Inferior Vena Cava 70.08 79.28 65.21 78.77 69.89 78.54 70.41 78.47
CcT Kidney (L) 58.72 59.35 | 66.18 61.38 75.75 64.70 76.67 64.43
Kidney (R) 54.02 65.66 66.01 67.43 78.15 72.52 78.78 72.32
Liver 44.18 65.85 52.10 71.53 67.72 74.94 67.21 74.99
Lung Tumor 6.78 18.72 13.95 30.06 | 44.22 42.48 46.33 43.20
Pancreas 19.24 32.71 23.93 34.87 28.00 33.93 27.38 33.73
Pancreas Tumor 11.64 17.00 13.32 18.72 27.09 28.47 26.49 29.06
Portal & Splenic Veins | 27.70 31.44 31.00 31.63 36.55 34.05 34.69 34.33
Prostate 2.56 7.24 5.32 7.58 11.88 8.70 9.26 8.75
Spleen 46.20 57.13 56.51 59.77 74.25 63.03 74.96 62.56
Stomach 36.80 50.34 45.73 52.07 49.43 53.84 49.42 55.86
Aorta 42.58 58.67 46.05 63.01 40.83 58.59 42.12 58.30
Bladder 0.48 7.49 55.49 6.80 76.91 7.29 47.90 6.34
Gallbladder 17.92 19.03 | 26.15 25.06 44.60 30.19 43.74 30.57

Hippocampus (Ant) 12.19 16.96 11.16 17.86 22.16 23.62 24.86 25.37
Hippocampus (Post) 12.94 33.89 14.00 33.10 16.91 18.43 | 23.74 23.46

Kidney (L) 45.19 44.44 51.67 48.77 58.07 49.23 56.81 48.07

Kidney (R) 52.73 54.43 | 60.53 55.93 63.28 58.29 64.40 57.42

MR Left Atrium 17.72 30.41 26.22 43.65 22.47 44.23 18.94 39.46
Left Ventricle 80.38 93.17 74.32 92.54 88.21 93.62 89.88 94.21

Liver 36.37 57.46 42.94 63.12 51.25 56.39 48.65 56.42

Myocardium 36.92 78.24 39.56 74.10 52.95 72.88 82.46 84.75

Pancreas 6.49 22.87 11.26 24.57 18.24 24.35 17.72 23.83

Prostate 12.22 17.70 15.90 19.59 | 28.12 23.61 28.10 23.65

Right Ventricle 52.39 77.29 46.01 82.76 80.41 85.60 82.61 86.37

Spleen 26.91 49.94 36.22 56.99 56.52 58.78 | 59.15 59.11

Carotid Artery (L) 13.55 10.99 23.53 23.46 5.98 56.65 5.65 41.36
Carotid Artery (R) 1.14 11.92 17.83 21.67 17.00 51.12 22.86 60.69

Jugular Vein (L) 7.76 30.69 19.62 30.55 5.45 35.30 5.57 39.52
Us Jugular Vein (R) 2.33 17.84 7.93 31.92 10.71 28.16 21.49 29.05
Left Atrium 19.49 28.59 30.34 66.11 79.08 83.82 90.34 90.60
LV Endocardium 27.47 67.48 62.50 72.98 85.38 85.79 | 91.93 91.19
LV Epicardium 24.15 28.04 25.84 27.24 41.54 42.29 | 82.20 78.17
Thyroid 10.13 32.65 19.87 53.90 10.53 28.10 7.27 27.58
Abdominal Wall 55.77 67.42 58.14 79.41 69.20 82.56 81.23 87.81
Blood 5.11 12.94 7.91 38.80 25.77 33.39 10.14 38.22
Connective Tissue 70.45 66.32 65.73 61.16 61.14 72.24 69.91 74.55
Cystic Duct 0.15 0.14 0.20 0.14 1.42 0.20 0.16 0.16
Fat 60.00 71.43 | 61.71 60.90 38.42 40.78 87.20 88.14
Endoscopy Gallbladder 72.49 79.18 74.95 75.38 | 82.81 81.17 78.73 83.80
GI Tract 37.83 65.02 31.49 70.83 69.57 75.84 | 76.77 73.30
Grasper 74.59 82.47 75.64 78.21 77.65 78.93 76.35 80.76
Hepatic Vein 19.49 21.62 20.05 21.70 20.71 21.64 20.76 23.08
L-Hook Electrocautery | 66.84 64.50 65.91 68.58 65.91 69.64 66.78 69.98
Liver 57.40 59.78 60.89 68.48 | 67.76 67.12 88.49 90.33

Liver Ligament 98.69 98.29 |898.65 96.16 98.76 98.55 98.72 98.51
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Figure 3: Retention decay analysis for well-initialized cases. Analysis is restricted to
cases with DSC > 0.7 on the prompt frame. (a) Boxen plots showing the distri-
bution of normalized decay slopes across prompting modes, where more negative
values correspond to faster degradation in DSC as the object evolves over time.
(b) Mean normalized decay slopes, summarizing the average retention behavior
for each model and prompt type. (c) Cumulative distribution functions of the
decay slopes, with annotated medians (Psg) highlighting that SAM 3 consistently
exhibits less negative slopes than SAM 2. [Color: SHill2, SAM'3]

frame DSC > 0.7), so that the decay slopes primarily reflect how well each model maintains
a reasonable segmentation rather than how quickly an already-bad mask collapses. Figure 3
summarizes retention for cases with good initialization (prompt-frame DSC > 0.7). The
boxen plots show the distribution of normalized decay slopes 5 for each prompt type, where
more negative values correspond to faster loss of accuracy from the first to the last frame.
The bar plot reports mean slopes by prompt type, and the ECDF curves show, for any
threshold on 3, what fraction of cases have decay no worse than that value; the annotated
P5y markers indicate the median slope (half of the cases decay faster, half more slowly).

Across all well-initialized cases, both models exhibit negative normalized decay slopes
on average, indicating that segmentation quality tends to deteriorate as the object evolves
(Figure 3). However, SAM 3 consistently forgets more slowly. Under single-click prompts,
the mean decay slope is —0.215 for SAM 2 versus —0.134 for SAM 3, and the median
slopes (Pso) are —0.096 and —0.054, respectively, implying that a typical SAM 2 sequence
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Figure 4: Analysis of over-propagation after object disappearance. Over-
propagation length is defined as the number of frames with non-empty prediction
after the last frame where the ground-truth object is present. (a) Boxen plots
(log-scaled y-axis) showing the distribution of over-propagation lengths for each
model and prompting mode. (b) Stacked bar plots summarizing the severity
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90th-percentile values (Pyg). [Color: SHNlE, SAMS]|

loses roughly twice as much DSC over its lifespan as a typical SAM 3 sequence. Multi-
click prompts show a similar pattern (mean slopes —0.233 vs. —0.139; medians —0.111 vs.
—0.045). The difference widens with stronger prompts: for bounding boxes, mean slopes
are —0.286 (SAM 2) and —0.173 (SAM 3), with medians of —0.161 and —0.075; for masks,
the means are —0.320 vs. —0.206 and medians —0.192 vs. —0.114. In the ECDFs, SAM 3’s
curves are consistently shifted toward less negative values, indicating that, conditional on
a good start, SAM 3 maintains segmentation quality better across all prompt types.

Over-propagation after object disappearance. Figure 4 reveals the cost of SAM 3’s
retention stability: a tendency to be “sticky”. The distributions of over-propagation length
highlight how many frames each model continues to predict foreground after the last ground-
truth frame, the stacked bars group volumes into none/minor/moderate/severe hallucina-
tion (0, 1-10, 11-50, > 50 frames), and the ECDF curves describe the cumulative distribu-
tion of hallucinated length; the annotated Py gives the number of frames below which 90%
of cases fall.
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Under single-click (1,0) prompts, both models behave similarly: about 35% of SAM 2
volumes and 33% of SAM 3 volumes terminate perfectly with zero over-propagation, and
the Py values are comparable (79 vs. 76 frames). With multi-click prompts, SAM 2 be-
comes slightly more conservative, with about 43% of volumes showing no over-propagation
compared with about 30% for SAM 3, and Py, dropping to 62 frames for SAM 2 versus 78
frames for SAM 3.

The contrast is sharper once strong spatial guidance is provided. For bounding-box
prompts, 54% of SAM 2 volumes exhibit no over-propagation, compared with only 34%
for SAM 3, and severe tails of more than 50 hallucinated frames occur in 6.5% of SAM 2
cases but 15.3% of SAM 3 cases; the corresponding Pyg values are 34 vs. 72 frames. Mask
prompting shows a similar trend: roughly 54% of SAM 2 volumes versus 34% of SAM 3
volumes have zero over-propagation, while severe tails appear in 7.2% vs. 15.5% of cases
and Pyo increases from 37 frames (SAM 2) to 73 frames (SAM 3).

Taken together with the prompt-frame over-segmentation analysis, these failure-mode
results highlight a complementary trade-off between the models. SAM 3 offers more reliable
initialization and better retention for well-initialized objects, particularly under stronger
prompts, but is more “sticky” and prone to long-lived hallucinated masks after the ob-
ject disappears. SAM 2 is less capable under sparse prompts and struggles with com-
plex anatomy, yet it tends to terminate tracks earlier and exhibits fewer extreme over-
propagation failures under bounding-box and mask prompting.

3.4. Performance Behavior as a Function of Prompt Strength

Across modalities, both models follow a consistent pattern as prompt strength increases
from single-click to multi-click, bounding-box, and mask prompts. Under sparse guidance
(clicks), SAM 3 dominates because it interprets minimal prompts more reliably, leading
to higher prompt-frame DSC, fewer prompt-frame over-segmentation failures, and better
temporal retention. As prompts become more informative and provide explicit spatial
support, the global advantage narrows and performance instead splits by anatomical type:
SAM 2 becomes competitive or superior for compact, well-delineated organs, while SAM 3
retains a clear advantage for elongated, low-contrast, or vascular structures that are more
susceptible to drift and over-propagation during tracking.

3.5. Overall Interpretation and Summary of Findings

Taken together, the prompt-frame, full-volume, and failure-mode evaluations show that
SAM 2 and SAM 3 offer complementary strengths rather than a single performance hierar-
chy, driven by a trade-off between prompt interpretation (what to segment) and temporal
consistency (how well it is remembered). We summarize our findings as follows:

e Initialization advantages for SAM 3. Under click prompts, SAM 3 has a clear
advantage: its unified perception encoder infers structure from minimal input, yielding
higher prompt-frame DSC and substantially fewer flooding failures than SAM 2 across
most targets.

e Propagation trade-off for compact versus complex anatomy. Once initialized
via bounding-box or mask prompts, propagation behaviour splits by anatomy. SAM 2

11
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Figure 5: Qualitative examples of cases where SAM 3 outperforms SAM 2. All
three examples are for single-click (1,0) prompting and show SAM 3’s superior
prompt initialization by better localizing the structure even under sparse prompts.
SAM 3 produces accurate, spatially coherent segmentations even for small or low-
contrast structures, whereas SAM 2 exhibits failure to localize the target on the
prompted frame, resulting in over-segmentation and notably lower DSC. [Colors:

GT. SAM2. SAM 3]
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Figure 6: Qualitative examples of cases where SAM 2 outperforms SAM 3. Ex-
amples 1-2 are for bbox and example 3 is for mask prompt. In these examples,
SAM 3 provides strong initial localization but exhibits propagation failures, in-
cluding hallucinated residual masks in later slices (Examples 1-2) and erosion or
collapse of structure boundaries under low contrast or motion (Example 3). In
contrast, SAM 2 maintains more stable slice-to-slice consistency and suppresses
spurious predictions, yielding higher DSC. [Colors: @i, SHEll}2, SAM'3]
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is more stable for compact, encapsulated organs (kidney, spleen, bladder), often show-
ing less temporal drift and fewer over-propagation tails under strong spatial guidance.
SAM 3 is more reliable for elongated, continuous, or poorly contrasted structures
(e.g., vessels, gastrointestinal tract, thyroid), where SAM 2 often fails to maintain the
segmentation despite good initialization.

e The “unreliable propagator” risk. High initialization accuracy does not guaran-
tee successful propagation. In several datasets (e.g., MR bladder, SegThy ultrasound),
one model attains excellent prompt-frame DSC but then collapses or hallucinates for
many frames. This highlights the need to evaluate temporal retention and over-
propagation beyond prompt-frame or volume-averaged DSC.

Overall, for interactive tasks with sparse clicks, SAM 3 is the natural default due to
its stronger prompt interpretation and retention. When stronger prompts (bounding boxes
or masks) are available, the preferred model becomes anatomy dependent: SAM 2 is often
safer for compact organs, whereas SAM 3 is better suited to vascular and irregular soft
tissues where propagation is more fragile. In practice, the optimal choice depends on the
balance between initialization difficulty and propagation demands in a given modality and
task.

4. Conclusion

This work presents the first large-scale, controlled comparison of SAM 2 and SAM 3 for
zero-shot segmentation of 3D medical data under identical visual prompting. By evaluating
single-click, multi-click, bounding-box, and mask initialization across sixteen datasets and
54 anatomical structures, we disentangle how architectural changes in SAM 3 affect prompt
interpretation, temporal retention, and failure behaviour relative to SAM 2.

Our results show that SAM 3 offers markedly stronger prompt interpretation: it de-
livers higher prompt-frame DSC, substantially fewer flooding failures, and slower temporal
decay for well-initialized objects, especially under click and bounding-box prompts. These
advantages translate into superior full-volume performance for most complex, elongated, or
low-contrast targets. SAM 2, however, remains a competitive and often preferable choice
for compact, rigid organs under strong spatial guidance, where its propagation is more
conservative and less prone to long-lived hallucinated masks. The failure-mode analysis
highlights that high initialization accuracy alone is not sufficient: models can still suffer
catastrophic collapse or prolonged over-propagation, underscoring the need to explicitly
evaluate temporal retention and termination behaviour.

Overall, our findings position SAM 3 as the stronger default backbone for broad 3D
medical segmentation workflows, while clarifying scenarios in which SAM 2 remains the safer
propagator for specific organ types and prompt regimes. A key limitation of this study is
that we restrict the comparison to purely visual prompts, deliberately disabling the concept-
and text-based mechanisms introduced in SAM 3. As vision—language approaches such as
Voxtell (Rokuss et al., 2025) gain traction for open-vocabulary 3D medical segmentation,
extending our framework to include semantic prompting and language-guided concepts,
with SAM 3’s full capabilities enabled, is an important direction for future work.
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Appendix A. Preprocessing Details

All datasets were converted into a unified slice-based format to enable consistent evaluation
across models and modalities. For CT datasets, images were first windowed using clinically
standard ranges (e.g., soft-tissue windowing with level-width of 40/400 for abdominal CT
and lung windowing of —600/1500 for thoracic CT) before clipping and rescaling to [0, 255].
MRI volumes were normalized by extracting the intensity values between the 0.5th and
99.5th percentiles within each volume and linearly rescaling this clipped range to [0, 255],
ensuring robustness to modality-specific dynamic range differences. Ultrasound images were
min—max normalized per sequence and similarly rescaled to [0,255]. Endoscopy datasets
provided color-coded semantic masks, which were converted into per-class binary masks via
RGB-to-class lookup. No smoothing, interpolation, or artifact removal was applied. This
standardized preprocessing ensures that SAM 2 and SAM 3 operate on identically prepared
inputs across all imaging modalities.

All experiments use publicly released checkpoints without any fine-tuning. For SAM 2,
we use the SAM 2.1 Hiera-B+ checkpoint. The SAM 3 release does not specify multiple
model variants in the paper, and we therefore adopt the standard configuration provided
by the authors. All evaluations were performed on NVIDIA H100 GPUs.

Appendix B. Detailed Prompt-Frame Results

This appendix provides the structure-wise breakdown of prompt-frame accuracy to sup-
plement the analysis in Section 3.1. Table 3 summarizes the DSC across all structures,
modalities, and prompt types. In CT, the gains for SAM 3 are substantial for anatomically
small or low-contrast targets such as bladder, pancreas, esophagus, prostate, and spleen.
Improvements are similarly pronounced in MRI, especially for cardiac structures where
SAM 3 significantly outperforms SAM 2 for LV, RV, and myocardium under both single-
and multi-click prompting. Multi-click prompting (1,2) reduces ambiguity for both models,
yet SAM 3 retains a clear advantage in nearly all CT and MRI structures with statistically
significant gains, frequently with p < 0.001.

For bounding-box prompts, where the spatial support is considerably less ambiguous,
the performance gap narrows but does not disappear. SAM 3 continues to produce higher
DSC for most CT and MRI structures, although with smaller margins. We also see some
instances of SAM 2 performing slightly better than SAM 3 (e.g., MR Bladder and MR
Hippocampus Posterior). Box prompts achieve the highest absolute accuracy for both
models, and here the differences between the two models typically fall within a modest
range (~5 DSC points) with the exception of MR Myocardium where SAM 3 beats SAM 2
by about 20 DSC points.

Ultrasound exhibits a mixed pattern. For segmentation of cardiac chambers in cine se-
quences (LA, LV endocardium, LV epicardium), SAM 3 achieves substantially higher DSC
for click prompts, reflecting improved localization. In contrast, for the SegThy dataset (thy-
roid, carotid arteries, and jugular veins), both models exhibit near-total failure under click
prompting, with DSCs frequently remaining in the single digits. Segmentation accuracy
becomes meaningful only when bounding-box prompts are supplied; in this viable regime,
SAM 2 consistently outperforms SAM 3 across the thyroid and all vascular targets.
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For endoscopy (CholecSeg8K), SAM 3 shows an advantage under single-click (1,0)
prompting, outperforming SAM 2 for the majority of the tissue and instrument classes.
However, under multi-click (1,2) and bounding-box prompts, the results are more balanced:
SAM 2 and SAM 3 each achieve higher DSC for different categories, and no model dom-
inates across all structures. Notably, even when numerical differences are large between
the two models, none of these comparisons reach statistical significance because Cholec-
Seg8K contains only a small number of annotated videos, which limits the power of paired
significance testing.

Appendix C. Retention on all data

In the main text (Section 3.3) we focused on retention behavior for the subset of cases with
good initialization (DSC > 0.7 on the prompt frame). For completeness, Figure 7 extends
the same analysis to all volume—object pairs, including those with poor initialization. As
expected, the distributions of normalized decay slopes broaden for both models, particularly
under click prompting where failures at the first frame lead to rapid apparent decay. Under
single-click (1,0) prompts, the mean slopes of SAM 2 and SAM 3 are nearly identical
(approximately —0.071 vs. —0.073) and the median slopes are close to zero (—0.006 vs.
—0.028), reflecting that most degradation is driven by a minority of highly unstable cases.
For multi-click prompting, SAM 3 retains an advantage (mean slopes —0.130 vs. —0.085;
medians —0.059 vs. —0.030). The differences become more pronounced under bounding-box
and mask prompts: SAM 2 exhibits substantially more negative mean slopes (about —0.262
and —0.309) than SAM 3 (about —0.152 and —0.201), and the ECDFs show that SAM 3’s
decay distributions are consistently shifted toward less negative values. Overall, when poor
initializations are included, SAM 3 continues to forget more slowly than SAM 2 once a
sufficiently strong spatial prompt is provided.
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Table 3: Prompt—frame DSC (%) for zero-shot segmentation across modalities and anatomi-
cal structures using single-click (1,0), multi-click (1,2), and bounding-box prompts.
For each pair, the higher DSC is shown in bold. Color shading in the table denotes
statistical significance for the better model: p < 0.001, 0.001 < p < 0.05, and no
shading for p > 0.05.

Click (1,0) Click (1,2) BBox
SAM 2 SAM 3|SAM 2 SAM 3|SAM 2 SAM 3

Adrenal Gland (L) 20.28 25.56 | 25.81 37.11 77.04  78.38
Adrenal Gland (R) 9.60 10.65 15.56 20.14 77.45 79.91

Modality Structure

Aorta 60.30 68.14 65.54 69.59 84.05 86.20
Bladder 10.33 50.53 22.13 59.97 84.49 87.51

Colon Tumor 25.45 44.05 35.21 52.08 74.76 76.82
Duodenum 47.65 52.93 52.80 61.04 82.07 85.77
Esophagus 5.20 33.93 20.68 46.13 85.97 86.85
Gallbladder 24.38 44.24 37.32 52.06 82.68 84.38
Inferior Vena Cava 86.25 90.79 84.81 91.24 91.25 93.63
CcT Kidney (L) 51.79 65.32 60.48 67.76 84.48 87.78
Kidney (R) 49.94 65.13 61.59 67.24 84.67 88.17
Liver 30.62 52.88 44.08 57.99 78.42 81.99

Lung Tumor 5.08 19.21 20.12 29.90 75.89 76.62
Pancreas 17.96 36.65 28.60 41.79 78.72 81.22
Pancreas Tumor 22.01 37.43 28.10 42.81 85.55 88.24
Portal & Splenic Veins | 60.85 76.99 66.13 76.82 86.91 88.50
Prostate 9.06 36.79 25.03 47.22 86.01 87.25
Spleen 37.91 60.77 54.95 65.60 80.81 85.09
Stomach 45.89 62.82 56.87 69.60 84.40 87.21

Aorta 29.88 38.59 37.97 40.79 83.66 84.97
Bladder 13.42 86.99 84.28 87.97 | 92.42 90.53
Gallbladder 16.25 26.63 28.62 33.63 82.00 83.32

Hippocampus (Ant) 6.89 18.70 | 23.69 20.90 82.12 82.31
Hippocampus (Post) 3.16 8.92 6.14 13.37 | 82.82 79.41

Kidney (L) 41.18 44.71 48.50 49.75 81.88 82.86

Kidney (R) 40.84 49.34 49.83 52.22 82.26 84.88

MR Left Atrium 4.58 9.97 15.16 18.30 75.25 79.67
Left Ventricle 88.08 95.64 89.10 94.34 96.06 96.75

Liver 19.82 34.04 29.60 39.75 76.87 78.63

Myocardium 36.61 79.95 44.74 72.40 53.80 74.25

Pancreas 4.20 17.38 16.13 23.58 75.27 78.24

Prostate 13.82 29.82 26.80 35.58 84.08 84.39

Right Ventricle 73.64 86.55 74.90 89.23 95.07 95.61

Spleen 20.78 39.74 38.06 49.25 77.78 79.50

Carotid Artery (L) 0.38 0.68 3.62 1.61 64.05 57.98
Carotid Artery (R) 0.18 1.46 14.53 3.30 61.06  60.97

Jugular Vein (L) 1.14 2.65 6.74 2.93 58.41 55.61

US Jugular Vein (R) 0.40 1.63 6.99 2.50 58.32 54.97
Left Atrium 17.61 25.31 47.37  60.30 76.99 82.61

LV Endocardium 31.73 70.46 69.49 73.01 | 86.77 86.16

LV Epicardium 23.98 27.65 | 30.73 26.04 34.15 34.93

Thyroid 0.99 3.89 5.88 3.70 67.19 65.14

Abdominal Wall 58.07  72.06 77.34 80.86 | 87.33 87.24

Blood 3.06 3.08 42.03 63.01 | 73.81 72.91

Connective Tissue 66.34 54.60 68.74 67.61 85.01 88.95

Cystic Duct 30.50 32.92 | 29.70 13.45 41.92 48.84

Fat 62.33 74.23 | 72.84 62.25 53.74 52.80

Endoscopy Gallbladder 73.32 83.38 82.24  83.48 88.38 88.44
GI Tract 53.26 79.72 80.53 86.75 92.02 93.13

Grasper 81.52 90.12 | 90.30 88.98 87.00 86.53

Hepatic Vein 87.78 85.87 88.03 86.91 88.74  87.64

L-Hook Electrocautery| 73.67 72.20 74.06 71.93 89.42 90.96

Liver 55.80 66.08 63.87  67.55 72.76 73.40

Liver Ligament 98.38 2()98.25 98.29 95.66 98.55 98.52
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Figure 7: Retention decay analysis on all cases. Same layout as Figure 3, but
computed over all volume—object pairs, including those with poor initialization
(DSC < 0.7). The distributions broaden for both models, especially under click
prompting, yet SAM 3 generally maintains less negative mean decay slopes for
multi-click, bounding-box, and mask prompts.
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