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ABSTRACT

In this work, we propose Retentive Network (RETNET) as a foundation archi-
tecture for large language models, simultaneously achieving training parallelism,
low-cost inference, and good performance. We theoretically derive the connection
between recurrence and attention. Then we propose the retention mechanism for
sequence modeling, which supports three computation paradigms, i.e., parallel,
recurrent, and chunkwise recurrent. Specifically, the parallel representation allows
for training parallelism. The recurrent representation enables low-cost O(1) infer-
ence, which improves decoding throughput, latency, and GPU memory without
sacrificing performance. The chunkwise recurrent representation facilitates effi-
cient long-sequence modeling with linear complexity, where each chunk is encoded
parallelly while recurrently summarizing the chunks. Experimental results on
language modeling show that RETNET achieves favorable scaling results, parallel
training, low-cost deployment, and efficient inference. The intriguing properties
make RETNET a strong successor to Transformer for large language models.

1 INTRODUCTION

Low-Cost
Inference

Transformer (Vaswani et al., 2017) has become the de facto
architecture for large language models, which was initially
proposed to overcome the sequential training issue of re-
current models (Hochreiter & Schmidhuber, 1997). How-
ever, training parallelism of Transformers is at the cost
of inefficient inference, because of the O(N') complexity
per step and memory-bound key-value cache (Shazeer,

. . <
2019), which renders Transformers unfriendly to deploy- '?& 2 §°
ment. The growing sequence length increases GPU mem- % 03'>° g
ory consumption as well as latency and reduces inference %'%‘9 Transformer $°
Q

speed. Numerous efforts have continued to develop the
next-generation architecture, aiming at retaining training
parallelism and competitive performance as Transformers
while having efficient O(1) inference. It is challenging to
achieve the above goals simultaneously, i.e., the so-called
“impossible triangle” as shown in Figure 1.

Figure 1: RetNet makes the “impossible
triangle” possible, which achieves train-
ing parallelism, good performance, and
low inference cost simultaneously.

There have been three main strands of research. First, linearized attention (Katharopoulos et al., 2020)
approximates standard attention scores exp(q - k) with kernels ¢(q) - ¢(k), so that autoregressive
inference can be rewritten in a recurrent form. However, the modeling capability and performance
are worse than Transformers, which hinders the method’s popularity. The second strand returns to
recurrent models for efficient inference while sacrificing training parallelism. As a remedy, element-
wise operators (Peng et al., 2023) are used for acceleration, however, representation capacity and
performance are harmed. The third line explores replacing attention with other mechanisms, such as
S4 (Gu et al., 2021), and its variants (Dao et al., 2022b; Poli et al., 2023). None of the previous work
can break through the impossible triangle, resulting in no clear winner compared with Transformers.

In this work, we propose retentive networks (RetNet), achieving low-cost inference, efficient long-
sequence modeling, Transformer-comparable performance, and parallel model training simultane-
ously. Specifically, we introduce a multi-scale retention mechanism to substitute multi-head attention,
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which has three computation paradigms, i.e., parallel, recurrent, and chunkwise recurrent repre-
sentations. First, the parallel representation empowers training parallelism to utilize GPU devices
fully. Second, the recurrent representation enables efficient O(1) inference in terms of memory
and computation. The deployment cost and latency can be significantly reduced. Moreover, the
implementation is greatly simplified without key-value cache tricks. Third, the chunkwise recurrent
representation can perform efficient long-sequence modeling. We parallelly encode each local block
for computation speed while recurrently encoding the global blocks to save GPU memory.

We compare RetNet with Transformer and its variants. Experimental results on language modeling
show that RetNet is consistently competitive in terms of both scaling curves and in-context learning.
Moreover, the inference cost of RetNet is length-invariant. For a 7B model and 8k sequence length,
RetNet decodes 8.4 x faster and saves 70% of memory than Transformers with key-value caches.
During training, RetNet also achieves 25-50% memory saving and 7x acceleration than standard
Transformer and an advantage towards highly-optimized FlashAttention (Dao et al., 2022a). Besides,
RetNet’s inference latency is insensitive to batch size, allowing enormous throughput. The intriguing
properties make RetNet a strong successor to Transformer for large language models.

2 RETENTIVE NETWORKS

Retentive network (RetNet) is stacked with L identical blocks, which follows a similar layout (i.e.,
residual connection, and pre-LayerNorm) as in Transformer (Vaswani et al., 2017). Each RetNet
block contains two modules: a multi-scale retention (MSR) module, and a feed-forward network
(FFN) module. We introduce the MSR module in the following sections. Given an input sequence

T = T - - - )4, RetNet encodes the sequence in an autoregressive way. The input vectors {x; } |f:|1
is first packed into X 0 — [€1, -, :cm] e Rlzl Xdmoael where dpogel 18 hidden dimension. Then we
compute contextualized vector representations X! = RetNet;(X!~1),l € [1, L].

2.1 RETENTION

In this section, we introduce the retention mechanism that has a dual form of recurrence and
parallelism. So we can train the models in a parallel way while recurrently conducting inference.

Given input X € RI#/Xdmot we project it to one-dimensional function v(n) = X, - wy . Consider a
sequence modeling problem that maps v(n) — o(n) through states s,,. Let v,,, 0,, denote v(n), o(n)
for simplicity. We formulate the mapping in a recurrent manner:

Sp=As, 1+ Klv,, AeR™ K, e R4
" 1
Op = Qnsn = Z QnAn_mK;Z’Umv Qn S RIXd ( )
m=1

where we map v,, to the state vector s,,, and then implement a linear transform to encode sequence
information recurrently. Next, we make the projection @,,, K,, content-aware:

Q=XWqy, K=XWk 2
where Wg, Wi € R%*? are learnable matrices.
We diagonalize the matrix A = A(ye??)A~!, where 7,6 € R? Then we obtain A"~ =
A(ye?)n=mA~1. By absorbing A into W and Wi, we can rewrite Equation (1) as:
Oop = i Qn(ve)" KT vy,
me 3)
=D (@) ) K m(ve) ™) o,
m=1

where Q,, ()", K, (7ve?®)~™ is known as xPos (Sun et al., 2023), i.e., a relative position embed-
ding proposed for Transformer. We further simplify ~y as a scalar, Equation (3) becomes:

n
On = Z ,yn—m(Qneiné) (Kmeime)’[vm )
m=1
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Figure 2: Dual form of RetNet. “GN” is short for GroupNorm.

where T is the conjugate transpose. The formulation is easily parallelizable within training instances.

In summary, we start with recurrent modeling as shown in Equation (1), and then derive its parallel
formulation in Equation (4). We consider the original mapping v(n) — o(n) as vectors and obtain
the retention mechanism as follows.

The Parallel Representation of Retention As shown in Figure 2a, the retention layer is defined as:

Q=(XWy)®0, K=(XWk)00, V=XW,

Gn = ein@j Dy = {’Y ’
0, n<m

Retention(X) = (QKT ©® D)V

n>m

&)

where D € RI#I¥1#| combines causal masking and exponential decay along relative distance as one
matrix, and © is the complex conjugate of ©. In practice, we map Q, K € R? — C%?2, add the
complex position embedding ©, then map them back to R, following the implementation trick as in
LLaMA (Touvron et al., 2023a; Su et al., 2021). Similar to self-attention, the parallel representation
enables us to train the models with GPUs efficiently.

The Recurrent Representation of Retention As shown in Figure 2b, the proposed mechanism
can also be written as recurrent neural networks (RNNSs), which is favorable for inference. For the
n-th timestep, we recurrently obtain the output as:

Sy, = ’ySn—l + K;L—Vn

6
Retention(X,) = Q,S,, n=1,--- |z ©

where (), K, V, ~y are the same as in Equation (5).

The Chunkwise Recurrent Representation of Retention A hybrid form of parallel representation
and recurrent representation is available to accelerate training, especially for long sequences. We
divide the input sequences into chunks. Within each chunk, we follow the parallel representation
(Equation (5)) to conduct computation. In contrast, cross-chunk information is passed following the
recurrent representation (Equation (6)). Specifically, let B denote the chunk length. We compute the
retention output of the ¢-th chunk via:

Qu = @pi:Bi+1):  Ku) = Kpipit1), Vi) = Vi(i+1)
Ry = K[} (Vi ©¢) + VPR, Gy ="

: , 0)
Retention(X;)) = (Qp Ky © D)V + (QuRi-1) ©€, & = it
—_—
Inner-Chunk Cross-Chunk
where [i] indicates the i-th chunk, i.e., ;) = [2(i—1)41, -+ , TiB].
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2.2  GATED MULTI-SCALE RETENTION

We use h = dmot/q retention heads in each layer, where d is the head dimension. The heads use
different parameter matrices Wg, Wi, Wy, € R%*9. Moreover, multi-scale retention (MSR) assigns
different ~ for each head. For simplicity, we set -y identical among different layers and keep them
fixed. In addition, we add a swish gate (Hendrycks & Gimpel, 2016; Ramachandran et al., 2017) to
increase the non-linearity of retention layers. Formally, given input X, we define the layer as:

v = 1— 2757arange(07h) c Rh
head; = Retention(X, ;)

Y = GroupNorm,, (Concat(heady, - - - , heady))
MSR(X) = (swish(XWg) ® Y)Wo

®)

where Wg, Wo € Réme X dmoel are Jearnable parameters, and GroupNorm (Wu & He, 2018) nor-
malizes the output of each head, following SubLN proposed in (Shoeybi et al., 2019). Notice that the
heads use multiple ~y scales, which results in different variance statistics. So we normalize the head
outputs separately. The pseudocode of retention is summarized in Appendix D.

Retention Score Normalization We utilize the scale-invariant nature of GroupNorm to improve
numerical precision of retention layers. Specifically, multiplying a scalar value within GroupNorm
does not affect outputs and backward gradients, i.e., GroupNorm(axhead;) = GroupNorm (head;).
We implement three normalization factors in Equation (5). First, we normalize QKT as QK"/v/ad.

Second, we replace D with Dy = Dnm/, /53" D,:. Third, let R denote the retention scores
R = QKT ® D, we normalize it as R, = Bam/max(| 7, Rasl,1). Then the retention output

becomes Retention(X) = RV The above tricks do not affect the final results while stabilizing the
numerical flow of both forward and backward passes, because of the scale-invariant property.

2.3 OVERALL ARCHITECTURE OF RETENTION NETWORKS

For an L-layer retention network, we stack multi-scale retention (MSR) and feed-forward network
(FFN) to build the model. Formally, the input sequence {x; } ‘f:ll is transformed to vectors by a word
embedding layer. We use the packed embeddings X° = [z1,-- -, x|z € RI#1Xdmoder a5 the input and
compute the model output X *:

Y! = MSR(LN(X)) 4 X*

©)
XH = FEN(LN(YY)) 4+ Y?!

where LN(-) is LayerNorm (Ba et al., 2016). The FFN part is computed as FFN(X) =
gelu(X Wy )Ws, where Wy, Wy are parameter matrices.

Training We use the parallel (Equation (5)) and chunkwise recurrent (Equation (7)) representations
during the training process. The parallelization within sequences or chunks efficiently utilizes
GPUs to accelerate computation. More favorably, chunkwise recurrence is especially useful for
long-sequence training, which is efficient in terms of both FLOPs and memory consumption.

Inference The recurrent representation (Equation (6)) is employed during the inference, which
nicely fits autoregressive decoding. The O(1) complexity reduces memory and inference latency
while achieving equivalent results.

2.4 RELATION TO AND DIFFERENCES FROM PREVIOUS METHODS

Table 1 compares RetNet with previous methods from various perspectives. The comparison results
echo the “impossible triangle” presented in Figure 1. Moreover, RetNet has linear memory complexity
for long sequences due to the chunkwise recurrent representation. We also summarize the comparisons
with specific methods as follows.
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Architectures P Trau}mg. Inference Cost Long-Sequence‘ Performance
arallelization Memory Complexity

Transformer v O(N) O(N?) vv
Linear Transformer v 0O(1) O(N) X
Recurrent NN X O(1) O(N) X
RWKV x* 0(1) O(N) v
H3/S4 v 0(1) O(NlogN) v
Hyena v O(N) O(NlogN) 4
RetNet v 0(1) O(N) vv

Table 1: Model comparison from various perspectives. The inference cost is measured as one-step
inference complexity. RetNet achieves training parallelization, constant inference cost, linear long-

sequence memory complexity, and good performance. “«”: whether the training implementation is
sequentially parallelized, although RWKYV uses channel-wise parallelism.

Transformer The parallel representation of retention shares similar spirits as Transform-
ers (Vaswani et al., 2017). The most related Transformer variant is Lex Transformer (Sun et al., 2023)
which implements xPos as position embeddings. As described in Equation (3), the derivation of
retention aligns with xPos. In comparison with attention, retention removes softmax and enables
recurrent formulation, which significantly benefits inference.

S4 Unlike Equation (2), if ,, and K, are content-unaware, the formulation can be degenerated to
S4 (Gu et al., 2021), where O = (QKT,QAKT,..,QAFI=IKT) x V.

Linear Attention The variants typically use various kernels #(a:)¢(k;)/s>1=1 | ¢(g;)¢(k,) to replace
the softmax function. However, linear attention struggles to effectively encode position information,
rendering the models less performant. Besides, we reexamine sequence modeling from scratch, rather
than aiming at approximating softmax.

AFT/RWKYV Attention Free Transformer (AFT) simplifies dot-product attention to element-wise
operations and moves softmax to key vectors. RWKYV replaces AFT’s position embeddings with
exponential decay and runs the models recurrently for training and inference. In comparison, retention
preserves high-dimensional states to encode sequence information, which contributes to expressive
ability and better performance.

xPos/RoPE Compared with relative position embedding methods proposed for Transformers,
Equation (3) presents a similar formulation as xPos (Sun et al., 2023) and RoPE (Su et al., 2021).

Sub-LayerNorm As shown in Equation (8), the retention layer uses Sub-LayerNorm (Wang et al.,
2022b) to normalize outputs. Because the multi-scale modeling leads to different variances for the
heads, we replace the original LayerNorm with GroupNorm.

3 EXPERIMENTS

We conduct experiments on language modeling to evaluate RetNet. We evaluate the proposed
architecture with language modeling performance and zero-/few-shot learning on downstream tasks.
Moreover, for training and inference, we compare speed, memory consumption, and latency.

3.1 SETUP

Parameter Allocation We re-allocate the parameters in MSR and FEN for fair comparisons. Let d
denote dpoqer for simplicity here. In Transformers, there are about 4d? parameters in self-attention
where Wq, Wi, Wy, Wo € R¥*4 and 8d? parameters in FEN where the intermediate dimension is
4d. In comparison, RetNet has 8d? parameters in retention, where Wo, Wi € R4 W, Wy €
R4*24 17, € R2¥*<_Notice that the head dimension of V' is twice @), K. The widened dimension is
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Figure 3: Perplexity decreases along with scaling up the model size. We empirically observe that
RetNet tends to outperform Transformer when the model size is larger than 2B.

HS BoolQ COPA PIQA Winograd Winogrande SC Avg

Zero-Shot
Transformer 55.9 62.0 69.0 74.6 69.5 56.5 75.0 66.07
RetNet 60.7 62.2 77.0 75.4 77.2 58.1 76.0 69.51
4-Shot
Transformer 55.8 58.7 71.0 75.0 71.9 57.3 754 66.44
RetNet 60.5 60.1 78.0 76.0 77.9 59.9 75.9 69.76

Table 2: Zero-shot and few-shot learning with Transformer and RetNet. The model size is 6.7B.

projected back to d by Wy,. In order to keep the parameter number the same as Transformer, the FFN
intermediate dimension in RetNet is 2d. Meanwhile, we set the head dimension to 256, i.e., 256 for
queries and keys, and 512 for values. For fair comparison, we keep ~ identical among different model
sizes, where y = 1 — elinspace(log/s2,log 1/512,h) = RI jngtead of the default value in Equation (8).

Language Model Training We train language models with various sizes (i.e., 1.3B, 2.7B, and
6.7B) from scratch. The hyper-parameters are attached in Appendix A. The training corpus is a
curated compilation of The Pile (Gao et al., 2020), C4 (Dodge et al., 2021), and The Stack (Kocetkov
et al., 2022). We append the <bos> token to indicate the start of a sequence'. The training batch size
is 4M tokens with 2048 maximal length. We train the models with 100B tokens, i.e., 25k steps. We
use the AdamW (Loshchilov & Hutter, 2019) optimizer with 3; = 0.9, 82 = 0.98, and weight decay
is set to 0.05. The number of warmup steps is 375 with linear learning rate decay. The parameters are
initialized following DeepNet (Wang et al., 2022a) to guarantee training stability. The implementation
is based on TorchScale (Ma et al., 2022). We train the models with 512 AMD MI200 GPUs.

3.2 COMPARISONS WITH TRANSFORMER

Language Modeling As shown in Figure 3, we report perplexity on the validation set for the
language models based on Transformer and RetNet. We present the scaling curves with three model
sizes, i.e., 1.3B, 2.7B, and 6.7B. RetNet achieves comparable results with Transformers. More
importantly, the results indicate that RetNet is favorable regarding size scaling. Besides performance,
the RetNet training is quite stable in our experiments. Experimental results show that RetNet is a
strong competitor to Transformer for large language models. Empirically, we find that RetNet starts
to outperform Transformer when the model size is larger than 2B. We also summarize the language
modeling results with different context lengths in Appendix B.

Zero-Shot and Few-Shot Evaluation on Downstream Tasks We also compare the language
models on a wide range of downstream tasks. We evaluate zero-shot and 4-shot learning with the 6.7B
models. As shown in Table 2, the datasets include HellaSwag (HS; Zellers et al. 2019), BoolQ (Clark
et al., 2019), COPA (Wang et al., 2019), PIQA (Bisk et al., 2020), Winograd, Winogrande (Levesque

'We find that appending the <bos> token at the beginning benefits training stability and performance.
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. Memory (GB) | \ Throughput (wps)
Model Size Trm Trm+FlashAttn RetNet Trm Trm+FlashAttn ~ RetNet
1.3B 74.8 38.8 34.5 10832.4 63965.2 73344.8
2.7B 69.6 42.1 42.0 5186.0 34990.2 38921.2
6.7B 69.0 51.4 48.0 2754.4 16230.1 17458.6
13B 61.4 46.3 45.9 1208.9 7945.1 8642.2

Table 3: Training cost of Transformer (Trm), Transformer with FlashAttention (Trm+FlashAttn), and
RetNet. We report memory consumption and training throughput (word per second; wps).

et al., 2012), and StoryCloze (SC; Mostafazadeh et al. 2017). The accuracy numbers are consistent
with language modeling perplexity presented in Figure 3. RetNet achieves comparable performance
with Transformer on zero-shot and in-context learning settings.

3.3 TRAINING COST

As shown in Table 3, we compare the training speed and memory consumption of Transformer and
RetNet, where the training sequence length is 8192. We also compare with FlashAttention (Dao
et al., 2022a), which improves speed and reduces GPU memory IO by recomputation and kernel
fusion. In comparison, we implement RetNet using vanilla PyTorch code, and leave kernel fusion
or FlashAttention-like acceleration for future work. We use chunkwise recurrent representation of
retention as described in Equation (7). The chunk size is set to 512. We evaluate the results with eight
Nvidia A100-80GB GPUs, because FlashAttention is highly optimized for A100. Tensor parallelism
is enabled for 6.7B and 13B models.

Experimental results show that RetNet is more memory-efficient and has higher throughput than
Transformers during training. Even compared with FlashAttention, RetNet is still competitive in
terms of speed and memory cost. Moreover, without relying on specific kernels, it is easy to train
RetNet on other platforms efficiently. For example, we train the RetNet models on an AMD MI200
cluster with decent throughput. It is notable that RetNet has the potential to further reduce cost via
advanced implementation, such as kernel fusion.

3.4 INFERENCE COST

As shown in Figure 4, we compare memory cost, throughput, and latency of Transformer and RetNet
during inference. Transformers reuse KV caches of previously decoded tokens. RetNet uses the
recurrent representation as described in Equation (6). We evaluate the 6.7B model on the A100-80GB
GPU. Figure 4 shows that RetNet outperforms Transformer in terms of inference cost.

Memory As shown in Figure 4a, the memory cost of Transformer increases linearly due to KV
caches. In contrast, the memory consumption of RetNet remains consistent even for long sequences,
requiring much less GPU memory to host RetNet. The additional memory consumption of RetNet is
almost negligible (i.e., about 3%) while the model weights occupy 97%.

Throughput As presented in Figure 4b, the throughput of Transformer drops along with the
decoding length increases. In comparison, RetNet has higher and length-invariant throughput during
decoding, by utilizing the recurrent representation of retention.

Latency Latency is an important metric in deployment, which greatly affects user experience. We
report decoding latency in Figure 4c. Experimental results show that increasing batch size renders
Transformer’s latency larger. Moreover, the latency of Transformers grows faster with longer input. In
order to make latency acceptable, we have to restrict the batch size, which harms the overall inference
throughput of Transformers. By contrast, RetNet’s decoding latency outperforms Transformers and
keeps almost the same across different batch sizes and input lengths.
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Figure 4: Inference cost of Transformer and RetNet with a model size of 6.7B. RetNet outperforms
Transformers in terms of memory consumption, throughput, and latency.

Method In-Domain | PG22 QMSum GovReport SummScreen
RWKV 30.92 51.41 28.17 19.80 25.78
H3 29.97 49.17 24.29 19.19 25.11
Hyena 32.08 52.75 28.18 20.55 26.51
Linear Transformer 40.24 63.86 28.45 25.33 32.02
RetNet 26.05 45.27 21.33 16.52 22.48

Table 4: Perplexity results on language modeling. RetNet outperforms other architectures on both the
in-domain evaluation set and various out-of-domain corpora.

3.5 COMPARISON WITH TRANSFORMER VARIANTS

Apart from Transformer, we compare RetNet with various efficient Transformer variants, including
Linear Transformer (Katharopoulos et al., 2020), RWKV (Peng et al., 2023), H3 (Dao et al., 2022b),
and Hyena (Poli et al., 2023). All models have 200M parameters with 16 layers and a hidden
dimension of 1024. For H3, we set the head dimension as 8. For RWKYV, we use the TimeMix
module to substitute self-attention layers while keeping FFN layers consistent with other models
for fair comparisons. We train the models with 10k steps with a batch size of 0.5M tokens. Most
hyperparameters and training corpora are kept the same as in Section 3.1.

Table 4 reports the perplexity numbers on the in-domain validation set and other out-of-domain
corpora, e.g., Project Gutenberg 2019-2022 (PG22; Sun et al. 2023), QMSum (Zhong et al., 2021),
GovReport (Huang et al., 2021), SummScreen (Chen et al., 2021; Shaham et al., 2022). Overall,
RetNet outperforms previous methods across different datasets. RetNet not only achieves better
evaluation results on the in-domain corpus but also obtains lower perplexity on several out-of-domain
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Method In-Domain \ PG22 QMSum GovReport SummScreen
RetNet 26.05 45.27 21.33 16.52 22.48
— swish gate 27.84 49.44 22.52 17.45 23.72
— GroupNorm 27.54 46.95 22.61 17.59 23.73
— v decay 27.86 47.85 21.99 17.49 23.70
— multi-scale decay 27.02 47.18 22.08 17.17 23.38
Reduce head dimension 27.68 47.72 23.09 17.46 23.41

Table 5: Ablation results on in-domain and out-of-domain corpora.

datasets. The favorable performance makes RetNet a strong successor to Transformer, besides the
benefits of significant cost reduction (Sections 3.3 and 3.4).

In addition, we discuss the training and inference efficiency of the compared methods. Let d denote
the hidden dimension, and n the sequence length. For training, RWKV’s token-mixing complexity
is O(dn) while Hyena’s is O(dn log n) with Fast Fourier Transform acceleration. The above two
methods reduce training FLOPS via employing element-wise operators to trade-off modeling capacity.
In comparison with retention, the chunk-wise recurrent representation is O(dn(b + h)), where b is
the chunk size, h is the head dimension, and we usually set b = 512, h = 256. For either large model
size (i.e., larger d) or sequence length, the additional b + h has negligible effects. So the RetNet
training is quite efficient without sacrificing the modeling performance. For inference, among the
compared efficient architectures, Hyena has the same complexity (i.e., O(n) per step) as Transformer
while the others can perform O(1) decoding.

3.6 ABLATION STUDIES

We ablate various design choices of RetNet and report the language modeling results in Table 5. The
evaluation settings and metrics are the same as in Section 3.5.

Architecture We ablate the swish gate and GroupNorm as described in Equation (8). Table 5
shows that the above two components improve performance. First, the gating module is essential
for enhancing non-linearity and improving model capability. Notice that we use the same parameter
allocation as Transformers after removing the gate. Second, group normalization in retention balances
the variances of multi-head outputs, which improves training stability and language modeling results.

Multi-Scale Decay Equation (8) shows that we use different -y as the decay rates for the retention
heads. In the ablation studies, we examine removing ~ decay (i.e., “— = decay”) and applying the
same decay rate across heads (i.e., “— multi-scale decay”). Specifically, ablating ~y decay is equivalent
to v = 1. In the second setting, we set v = 127/128 for all heads. Table 5 indicates that both the
decay mechanism and using multiple decay rates can improve the language modeling performance.

Head Dimension As indicated by the recurrent perspective of Equation (1), the head dimension
implies the memory capacity of hidden states. In ablation, we reduce the default head dimension
from 256 to 64, i.e., 64 for queries and keys, and 128 for values. We keep the hidden dimension
dmodel the same. Table 5 shows that the larger head dimension achieves better performance.

4 CONCLUSION

In this work, we propose retentive networks (RetNet) for sequence modeling, which enables various
representations, i.e., parallel, recurrent, and chunkwise recurrent. RetNet achieves significantly better
inference efficiency (in terms of memory, speed, and latency), favorable training parallelization, and
competitive performance compared with Transformers. The above advantages make RetNet an ideal
successor to Transformers for large language models, especially considering the deployment benefits
brought by the O(1) inference complexity. In the future, we would like to scale up RetNet in terms of
model size and training steps. In addition, we are interested in deploying RetNet models on various
edge devices, such as mobile phones.
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A HYPERPARAMETERS

Hyperparameters 1.3B 2.7B 6.7B
Layers 24 32 32
Hidden size 2048 2560 4096
FFN size 4096 5120 8192
Heads 8 10 16
Learning rate 6x107% 3x107* 3x107*
LR scheduler Linear decay
Warm-up steps 375

Tokens per batch 4M

Adam [ (0.9, 0.98)

Training steps 25,000

Gradient clipping 2.0

Dropout 0.1

Weight decay 0.01

Table 6: Hyperparamters used for the models in Section 3.

B RESULTS WITH DIFFERENT CONTEXT LENGTHS

As shown in Table 7, we report language modeling results with different context lengths. In order
to make the numbers comparable, we use 2048 text chunks as evaluation data and only compute
perplexity for the last 128 tokens. Experimental results show that RetNet outperforms Transformer
across different context lengths. Besides, RetNet can utilize longer context for better results.

Model 512 1024 2048
Transformer 13.55 12.56 12.35
RetNet 13.09 12.14 11.98

Table 7: Language modeling perplexity of RetNet and Transformer with different context length. The
results show that RetNet has a consistent advantage across sequence length.

C INFERENCE COST OF GROUPED-QUERY RETENTION

We compare with grouped-query attention (Ainslie et al., 2023) and evaluate the method in the context
of RetNet. Grouped-query attention makes a trade-off between performance and efficiency, which
has been successfully verified in LLaMA2 34B/70B (Touvron et al., 2023b). The method reduces the
overhead of key/value cache during inference. Moreover, the performance of grouped-query attention
is better than multi-query attention (Shazeer, 2019), overcoming the quality degradation brought by
using one-head key value.

As shown in Table 8, we compare the inference cost with grouped-query attention and apply the
method for RetNet. For the LLaM A2 70B model, the number of key/value heads is reduced by 8x,
where the query head number is 64 while the key/value head number is 8. For RetNet-70B, the
parameter allocation is identical to LLaMA (Touvron et al., 2023a), where the dimension is 8192, and
the head number is 32 for RetNet. For RetNet-70B-GQ?2, the key-value head number is 16, where
grouped-query retention is applied. We run the inference with four A100 GPUs without quantization.

When the batch size is 256, LLaMA?2 runs out of memory while RetNet without group query still
has a high throughput. When equipped with grouped-query retention, RetNet-70B achieves 38%
acceleration and saves 30% memory.
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We evaluate LLaMA?2 under 2k and 8k lengths separately. The batch size is decreased to 8 so that
LLaMAZ2 can be run without out of memory. Table 8 shows that the inference cost of Transformers
increases with the sequence length. In contrast, RetNet is length-invariant. Moreover, RetNet-70B-
GQ2 achieves better latency, throughput, and GPU memory than LLaMA2-70B-2k/8k equipped
with grouped-query attention. Notice that evaluation metrics are averaged over positions of different
sequence lengths for fair comparison, rather than only considering the inference cost of maximum

length.
Model Batch Size Latency (ms)] Throughput (wps)t Memory (GB)|
LLaMA2-70B-2k 256 — — OOM
LLaMA2-70B-8k 256 — — OOM
RetNet-70B 256 639.1 410.19 72.469
RetNet-70B-GQ2 256 461.8 567.66 52.726
LLaMA2-70B-2k 8 184.5 44.42 33.374
LLaMA2-70B-8k 8 277.7 29.50 37.386
RetNet-70B-GQ2 8 106.2 77.02 32.301

Table 8: Inference cost of RetNet and LLaMA2-70B with difference batch size and length. LLaMA2-
70B is equipped with grouped-query attention, reducing key/value heads by 8x. “-GQ2” means
grouped-query retention, which reduces half of key/value heads. “-2k” and “-8k” indicate sequence
length for LLaM A2, while RetNet is length-invariant. RetNet is capable of large-batch inference and

is favourable in terms of latency, throughput, and GPU memory.

D PSEUDO CODE OF RETENTION

def ParallelRetention( def RecurrentRetention(
q, # bsz * num_head * len * gk_dim q, k, v, # bsz * num_head * len * gkv_dim
k, # bsz * num_head * len * gk_dim past_kv, # bsz * num_head * gk_dim * v_dim
v, # bsz * num_head * len * v_dim decay # num_head * 1 * 1
decay_mask # num_head * len * len ):
): current_kv = decay * past_kv + k.unsqueeze
retention = q @ k.transpose(-1, -2) (-1) * v.unsqueeze(-2)
retention = retention * decay_mask output = torch.sum(q.unsqueeze(-1) *
output = retention Q@ v current_kv, dim=-2)
output = group_norm(output) output = group_norm(output)
return output return output, current_kv

def ChunkwiseRetention(

q, k, v, # bsz * num_head * chunk_size * gkv_dim
past_kv, # bsz * num_head * gk_dim * v_dim
decay_mask, # num_head * chunk_size * chunk_size
chunk_decay, # num_head * 1 * 1

inner_decay, # num_head * chunk_size

):

retention = q @ k.transpose(-1, -2)

retention = retention * decay_mask
inner_retention = retention @ v

cross_retention = (q @ past_kv) * inner_decay
retention = inner_retention + cross_retention
output = group_norm(retention)

current_kv = chunk_decay * past_kv + k.transpose(-1, -2) @ v
return output, current_kv

Figure 5: Pseudocode for the three computation paradigms of retention.
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