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ABSTRACT

Vision-language alignment is crucial for various downstream tasks such as cross-
modal generation and retrieval. Previous multimodal approaches like CLIP utilize
InfoNCE to maximize mutual information, primarily aligning pairwise samples
across modalities while overlooking distributional differences. In addition, In-
foNCE has inherent conflict in terms of alignment and uniformity in multimodal-
ity, leading to suboptimal alignment with modality gaps. To overcome the lim-
itations, we propose CS-Aligner, a novel framework that performs distributional
vision-language alignment by integrating Cauchy-Schwarz (CS) divergence with
mutual information. CS-Aligner captures both the global distribution informa-
tion of each modality and the pairwise semantic relationships. We find that the
CS divergence seamlessly addresses the InfoNCE’s alignment-uniformity conflict
and serves complementary roles with InfoNCE, yielding tighter and more pre-
cise alignment. Moreover, by introducing distributional alignment, CS-Aligner
enables incorporating additional information from unpaired data and token-level
representations, enhancing flexible and fine-grained alignment in practice. Exper-
iments on text-to-image generation and cross-modality retrieval tasks demonstrate
the effectiveness of our method on vision-language alignment.

1 INTRODUCTION

Vision-language alignment aims to map the paired text and image inputs into a shared feature space,
enabling success across diverse applications such as image-text retrieval (Huang et al., 2024; Kouk-
ounas et al., 2024) and text-to-image (T2I) generation (Ramesh et al., 2022; Razzhigaev et al., 2023).
As a pioneering work in this field, CLIP (Radford et al., 2021) leverages InfoNCE loss (a.k.a. con-
trastive loss) to maximize the mutual information between paired text and image representations,
effectively capturing pairwise and semantic relationships. Its versatility has made it a foundation for
many multimodal tasks (Ramesh et al., 2022; Mokady et al., 2021).

Despite its success, CLIP and its variants (Zhai et al., 2023; Sun et al., 2023) exhibit a persistent
modality gap, a misalignment between text and image representations in the shared latent space. As
shown in Fig. 1a, text and image embeddings often fail to align precisely and may remain separated
from each other. This phenomenon has been widely observed (Zhou et al., 2023; Liang et al., 2022;
Shi et al., 2023) and is attributed to issues such as cone effects (Liang et al., 2022) or suboptimal
latent space geometry (Shi et al., 2023). Intriguingly, Liang et al. (Liang et al., 2022) observed that
CLIP’s InfoNCE loss could inadvertently exacerbate the modality gap, since, as analyzed in Sec. 2,
InfoNCE loss can be decomposed into alignment and uniformity components, which indeed conflict
with each other during vision-language alignment.

Several strategies have been proposed to mitigate the modality gap, such as projection modules with
cosine similarity (Zhou et al., 2023; Gao et al., 2024; Huang et al., 2024) and geodesic multimodal
mixup (Oh et al., 2024). UnCLIP-based models like DALL-E 2 (Ramesh et al., 2022) employ text-
to-image prior modules (e.g., diffusion models) to map text embeddings to image feature space
for alignment. A more recent alternative Eclipse (Patel et al., 2024) uses ℓ2 loss to train a prior
adapter for text and image alignment. These works aim to transform representations across modal-
ities for alignment. However, they explore alignment sample-wisely, heavily relying on pairwise
data. Although sample-wise alignment effectively captures semantic information, it falls short in
aligning entire data distributions. Similar to the InfoNCE in CLIP, the methods struggle to match
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(a) InfoNCE (b) With CS-Aligner (c) Image-Text pair distance.

Figure 1: TSNE visualizations of CLIP text and image features without (a) and with (b) CS-
Aligner. The original CLIP feature distributions reveal a clear domain gap (a). Adapting the model
with our CS-Aligner effectively eliminates the modality gap, leading to tighter alignment (b). Con-
sequently, CS-Aligner yields a lower overall ℓ2 distance between paired image-text features (c).

the representation spaces across modalities, ultimately limiting the overall alignment. The reliance
on carefully curated text-image pairs also limits the scalability and applicability to real-world sce-
narios with unpaired and noisy datasets (Lin et al., 2014; Li et al., 2023b). Moreover, the theoretical
conflict of InfoNCE for vision-language alignment is still under exploration.

To address these challenges, we propose CS-Aligner, a novel distributional approach that incorpo-
rates Cauchy-Schwarz (CS) divergence (Principe et al., 2000b) for vision-language alignment. As a
symmetric measure, CS divergence robustly and efficiently estimates the distance between any rep-
resentation distributions without parametric distributional assumptions, making it highly suitable for
multimodal distribution alignment. Furthermore, we analyze the alignment–uniformity conflict of
InfoNCE in multimodal settings and show that CS divergence effectively mitigates it while remain-
ing compatible with InfoNCE via kernel density estimation (KDE) (Parzen, 1962). This enables
CS-Aligner to align vision–language representations at distributional and sample-wise levels, cap-
turing global modality and local semantics, yielding more comprehensive, consistent, and tighter
alignment as shown in Figs. 1b and 1c.

Moreover, the distributional nature of CS-Aligner enables alignment with unpaired multimodal data,
including cases where a) a single image is associated with multiple captions, or b) vision and lan-
guage inputs are entirely unpaired. This flexibility allows our method to leverage rich and unstruc-
tured datasets and improve alignment robustness beyond curated benchmarks. Beyond unpaired
alignment, we introduce a token-level alignment strategy, which further enriches the multimodal
representation by aligning fine-grained visual and textual tokens, enhancing the semantic precision
of the learned embeddings. Extensive experiments on downstream tasks, including T2I generation
and image-text retrieval, demonstrate the effectiveness of our approach.

2 INFONCE IS INSUFFICIENT FOR ALIGNMENT

Previous multimodal methods (for vision-language) like CLIP (Radford et al., 2021) learn text and
image representations in a shared space by maximizing lower bounds (e.g., InfoNCE (Oord et al.,
2018)) of mutual information between modalities:

I(x;y) =

∫ ∫
p(x,y) log

p(x,y)

p(x)p(y)
dx dy, (1)

where p(x) and p(y) are respectively the distributions of image and text features, and p(x,y) de-
notes their joint probability. Although widely used, it suffers from two limitations.

Limitation1: Mutual information is insufficient for multimodal alignment. Although widely
adopted, mutual information alone is insufficient for effective modality alignment (Liang et al.,
2022). The reason is that mutual information quantifies the statistical dependence between two
random variables (Cover, 1999), ensuring correlation maximization between two random variables.
However, it does not guarantee that the distributions p(x) and p(y) are statistically similar or close
to each other in terms of their underlying distributions. In other words, the embedding distributions
of two modalities can differ significantly or be far apart, yet exhibit strong dependence.
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(a) High MI & High Divergence (b) High MI & Low Divergence.  (c) Low MI & Low Divergence.

MI:1.959
KL: 0

MI:0
KL:0

MI: 1.959
KL: 6.81

Figure 2: Toy examples: mutual information (MI ↑) and distribution divergence (↓) between
two distributions. Distributions with the same high mutual information value can exhibit either
large (a) or small (b) distributional distances, demonstrating that MI alone is insufficient for multi-
modal alignment. Moreover, distribution divergence measures the closeness between distributions
but does not guarantee that the underlying random variables are statistically correlated (c).

We illustrate this issue using a toy example in Fig. 2. Fig. 2a shows that despite strong dependence
and high mutual information, the representation distributions of two representations or random vari-
ables can remain misaligned and be far from each other, resulting in a high divergence. This issue is
also observed in the CLIP model pretrained with InfoNCE, where the vision and language represen-
tations exhibit a noticeable distributional gap, as shown in Fig. 1a. This gap results in inconsistently
aligned multimodal features, hindering the clear representation of shared semantics and disrupt-
ing effective mapping between modalities. Ultimately, this misalignment degrades performance in
downstream tasks, including cross-modality generation. Ideally, the desired multimodal representa-
tions should be highly correlated with low distributional divergence, as depicted in Fig. 2b. Notably,
although directly minimizing the divergence between distributions may reduce the distributional
gap, it risks creating independent multimodal distributions without common semantic information
(Fig. 2c). Therefore, maximizing mutual information and minimizing divergence complement each
other to achieve effective multimodal representation alignment. Details are provided in Appendix A.

Limitation2: InfoNCE includes conflicting terms for multimodal alignment. In practice, mutual
information is often optimized via the InfoNCE loss (Oord et al., 2018) which estimates I(x;y)
using paired image-text data {(xi,yi)}Ni=1 and contains image-text and text-image alignment terms:

LInfoNCE = − 1

2N

N∑
i=1

(h(xi,yi) + h(yi,xi)) , h(x,y) = log
exp (sim(x,y)/τ)∑N

j=1 exp (sim(x,yj)/τ)
,

(2)
where sim(·, ·) is cosine similarity and τ is temperature. Critically, the InfoNCE loss in Eq. (2)
requires paired data {(xi,yi)}Ni , and cannot work under unpaired setting.

As analyzed in Wang & Isola (2020), the InfoNCE loss can be decomposed as the sum of the
alignment (Lalign) and uniformity (Luniform) terms i.e., LInfoNCE ≈ Lalign + Luniform:

Lalign ≜ E(x,y)∼ppair [||x− y||α2 ] , Luniform ≜ logE
x,y

i.i.d.∼ p(x,y)

[
exp(−t||x− y||22)

]
, (3)

where t and α are hyperparameters. ppair denotes the image-text pairs distribution. Minimizing
Lalign encourages pairwise alignment. In unimodality, minimizing Luniform promotes representations
that are uniformly distributed on the unit hypersphere, a desirable property for representation learn-
ing (Wang & Isola, 2020). However, in multimodal alignment, Luniform may conflict with Lalign.
Remark 2.1. The uniformity and alignment terms in InfoNCE conflict with each other in multimodal
alignment. Applying Taylor expansions (E(e−x) ≈ 1 − E(x) and log(1 − x) ≈ −x) on Luniform,
the uniformity term becomes:

Luniform ≈ −tEx,y∼p(x,y)

[
||x− y||22

]
= −tE(x,y)∼ppair+punpair

[
||x− y||22

]
, (4)

where p(x,y) = ppair + punpair, and punpair denotes the distribution of unpaired image and text.
Consequently, the combination of the two (InfoNCE) can be written as:

Lalign + Luniform ≈ E(x,y)∼ppair [||x− y||α2 ]− tE(x,y)∼ppair+punpair

[
||x− y||22

]
. (5)
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Figure 3: Illustration of CS-Aligner. We achieve vision-language alignment by freezing the pre-
trained text and image encoders and applying parameter-efficient fine-tuning methods (e.g., adapter)
with our CS-Aligner. CS-Aligner optimizes the adapters using the aggregated CS divergence and In-
foNCE, as formulated in Eq. (6). Once aligned, the adapters are utilized for various cross-modality
tasks: the aligned text adapter facilitates text-to-image generation without additional modifications,
while the aligned multimodal adapters are used for vision-language retrieval.

The alignment contribution (Lalign) in Eq. (3) can be largely suppressed or even canceled (when
t = 1) due to the opposing term in Eq. (5), leaving only negative pairs influential. Essentially, Lalign
promotes alignment across modalities, whereas Luniform encourages dissimilarity among negative
pairs without preserving intra-modal structure. This inherent conflict can result in local minima,
driving alignment and uniformity in opposing directions and ultimately leading to a modality gap.
Thus, InfoNCE alone may lead to suboptimal alignment between modalities.

3 METHODOLOGY

In this section, we address the incapability of mutual information on aligning distributions and the
conflicts in InfoNCE for multimodal alignment. To this end, we first introduce a novel distributional
multimodal alignment framework, CS-Aligner. Then, we analyze that with the KDE, the proposed
method is able to address the uniformity-alignment conflicts of InfoNCE. Finally, we extend CS-
Aligner to the unpaired data, including token-level alignment.

3.1 CS-ALIGNER: DISTRIBUTIONAL MULTIMODAL ALIGNMENT

To mitigate limitation 1 in Sec. 2, we explicitly minimize the distribution divergence between p(x)
and p(y). In practice, p(x) and p(y) may follow arbitrary distributions with minimal intersection,
which may often occur in the multimodal setting. Hence, a robust divergence metric must accom-
modate unpredictable variability and limited support overlap for effective distribution alignment.

To this end, we propose a distributional alignment framework, namely CS-Aligner, which leverages
the CS divergence (DCS), as illustrated in Fig. 3. The objective is:

min−I(x;y) + λDCS(p(x), p(y)), (6)

where λ is a hyperparameter balancing the mutual information term and the divergence penalty.
CS divergence, DCS, is a symmetric and robust metric to quantify the distance between any two
probability density functions p and q, defined over the same support ω as:

DCS(p; q) = − log
((∫

p(ω)q(ω)dω
)2

/
(∫

p(ω)2dω

∫
q(ω)2dω

))
, (7)

The CS divergence satisfies 0 ≤ DCS < ∞, and equals zero if and only if p = q. By introducing DCS
in Eq. (6), instead of solely minimizing pairwise distance, our method also aligns the distributions
of modalities, leading to more robust and efficient multimodal alignment, as shown in Fig. 3.

CS divergence estimation. To estimate CS divergence, we introduce non-parametrical KDE. The
non-parametric KDE means that it does not assume any specific parametric form for the underlying
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distribution. This eliminates the need for explicit parametric assumptions about the underlying
distributions. This provides significant flexibility in measuring distributional distance. Given i.i.d.
samples {xi}Mi=1 ∼ p(x) and {yi}Ni=1 ∼ p(y), the empirical CS divergence estimator is given
by Jenssen et al. (2006):

D̂CS(p(x); p(y))=log
( 1

M2

M∑
i,j=1

κ(xi,xj)
)
+log

( 1

N2

N∑
i,j=1

κ(yi,yj)
)
−2 log

( 1

MN

M∑
i=1

N∑
j=1

κ(xi,yj)
)
.

(8)
where κ is a kernel function such as Gaussian κσ(x,y) = exp(−∥x− y∥22/2σ2) with kernel width
σ. This estimator is symmetric, differentiable, and computationally efficient, making it suitable for
multimodal alignment. Moreover, the third term in Eq. (8) ensures that D̂CS(p(x); p(y)) → ∞ only
when E(κ(x,y)) → 0 (i.e., when the distributions do not overlap). However, as long as there is a
nonzero overlap between the distributions, the estimator remains well-defined and valid.

Hence, CS-Aligner remains reliable even when the two distributions initially have limited overlap,
a common scenario in multimodal tasks. Additionally, its symmetry and non-parametric estimation
properties ensure consistent and unbiased multimodal alignment. Consequently, our method ensures
both semantic and distributional alignment, enabling robust and efficient multimodal learning.

When estimating the mutual information I(x,y) via InfoNCE (Eq. (2)), unlike other distribution
divergences, CS divergence effectively addresses InfoNCE’s inherent alignment-uniformity conflict.

Uniformity and Alignment with CS Divergence. Using the Gaussian kernel κt(x,y) =
exp(−t∥x − y∥22) for CS divergence and combining the alignment and uniformity components of
InfoNCE, the full objective of Eq. (6) can be expressed as

L = E(x,y)∼ppos

[
∥x− y∥α2

]
+ log Ex∼p(x),y∼p(y)

[
κt(x,y)

]
+ λ

(
log Ex,x′∼p(x)

[
κt(x,x

′)
]
+ log Ey,y′∼p(y)

[
κt(y,y

′)
]
− 2 log Ex∼p(x),y∼p(y)

[
κt(x,y)

])
.

(9)

When λ = 1, this reduces to the following alignment–uniformity decomposition:

L =E(x,y)∼ppair [∥x− y∥α2 ]− log Ex∼p(x),y∼p(y)

[
exp

(
−t∥x− y∥2

)]︸ ︷︷ ︸
Alignment

+ log Ex,x′∼p(x)

[
exp

(
−t∥x− x′∥2

)]︸ ︷︷ ︸
Uniformity on x

+ log Ey,y′∼p(y)

[
exp

(
−t∥y − y′∥2

)]︸ ︷︷ ︸
Uniformity on y

.
(10)

Remark 3.1. For the alignment part, CS-Aligner promotes both the matching of image-text pairs
and the alignment of global distributions. For uniformity, CS-Aligner encourages dispersion within
each modality independently, rather than across modalities, which could otherwise conflict with the
alignment objective. Thus, our method simultaneously fosters both alignment and uniformity while
avoiding the potential conflicts inherent in InfoNCE.
Remark 3.2. The connection between CS divergence and InfoNCE becomes evident when ana-
lyzing both terms from a cosine similarity perspective. For a characteristic kernel κ(x,y) =
⟨ϕ(x), ϕ(y)⟩H, where ϕ maps samples to a Reproducing Kernel Hilbert Space (RKHS) H, the
mean embeddings are: µx = 1

m

∑m
i=1 ϕ(xi) and µy = 1

n

∑n
i=1 ϕ(yi), The CS divergence can

then be expressed in a form that evaluates the cosine similarity between distributions in RKHS:

D̂CS(p(x); p(y)) = −2 log

(
⟨µx,µy⟩H

∥µx∥H∥µy∥H

)
= −2 log sim(µx,µy), (11)

Similarly, InfoNCE evaluates cosine similarity between paired samples (Eq. (2)). This dual-level
similarity assessment underscores the synergy between CS divergence and mutual information, of-
fering a unified and robust framework for multimodal alignment.

Therefore, CS divergence is compatible with InfoNCE and effectively addresses the inherent conflict
between uniformity and alignment, a property not shared by other distribution distance metrics.
Detailed comparisons with other metrics are provided in the Appendix D.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 EXTEND CS-ALIGNER TO UNPAIRED DATA

Benefiting from the distributional alignment, we further propose extensions of CS-Aligner, which
leverage additional information in unpaired data. While the mutual information estimation (In-
foNCE) part requires pairwise data, the CS divergence estimator (Eq. (8)) can operate seamlessly
on unpaired data without introducing additional computation. This unique capability enables CS-
Aligner to extend beyond traditional pairwise multimodal alignment by incorporating additional
distributional information from unpaired data or tokens. Below, we introduce two novel directions.

Unpaired vision-language alignment. Our method leverages two forms of unpaired alignments:
(1) images with multiple captions, and (2) independently sampled unpaired images and texts. The
unpaired alignments are achieved using Eq. (8), where {xi}Mi=1 and {yj}Nj=1 can be independent with
M ̸= N . In both scenarios, our method leverages more uncurated unpaired data for distributional
multimodal alignment, providing greater flexibility and robustness.

Vision-language token alignment. We propose a novel intra-sample distribution alignment ap-
proach between vision and language tokens. Unlike CLIP-based models (Radford et al., 2021)
aligning only the “CLS” tokens of vision and text, our method aligns all tokens for finer-grained
alignment. Specifically, each vision feature xi ∈ RV×D is modeled as a token distribution p(xi)
containing V vision tokens, while each text feature yi ∈ RL×D is represented as a token distribution
p(yi) with L text tokens. D denotes the feature dimension. We compute CS divergence between
vision and text token distributions, and obtain an internal token-wise alignment loss:

Ltoken =
1

B

B∑
i=1

D̂CS(p(xi); p(yi)), (12)

where B is the batch size. In general, V ̸= L, and vision and language tokens do not have a
direct pairing, making InfoNCE inapplicable for estimation. Through our distributional alignment,
Eq. (12) enables comprehensive alignment across all tokens, capturing more details and potentially
enhancing fine-grained alignment.

3.3 PARAMETER-EFFICIENT MULTIMODAL ALIGNMENT

We demonstrate the effectiveness of our CS-Aligner by performing vision-language alignment in a
parameter-efficient manner using pretrained vision and language models, such as CLIP and large
language models (LLMs) (Dubey et al., 2024). To adapt these pretrained models, we employ two
widely used frameworks: adapter (Gao et al., 2024) and LoRA (Hu et al., 2021). The adapter and
LoRA enable efficient alignment of the multimodal large-scale pretrained models, without requiring
extensive computational resources. The whole framework is demonstrated in Fig. 3.

Adapter & LoRA alignment. We add a lightweight transformer (Vaswani, 2017) on top of the
pretrained model as an adapter that projects text or image embeddings into a shared space; option-
ally, we can insert trainable low-rank (LoRA) matrices into the text encoder’s weights to enable
fine-grained adjustments, aligning the representations with the other modality.

4 EXPERIMENTS

We evaluate our method on two tasks to illustrate its vision-language alignment ability: text-to-
image (T2I) generation in Section 4.1 and image-text retrieval in Section 4.2. Note that we focus on
the vision-language alignment and use the generation task as a proxy to measure it. Additionally,
we provide the image-text classification and the image captioning results in Appendix H. We also
present the computation complexity and stability analysis in Appendix E, and additional ablation
studies in Appendix H.1.

4.1 TEXT TO IMAGE GENERATION

Datasets. Following a previous T2I approach (Patel et al., 2024), we train our method on four
datasets: MSCOCO (Lin et al., 2014), CC3M (Sharma et al., 2018), CC12M (Changpinyo et al.,
2021), and LAION-HighResolution-5M (Schuhmann et al., 2022). MSCOCO contains 80K im-
ages paired with multiple captions. CC3M and CC12M include about 2.5M and 10M image-text

6
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pairs, respectively. LAION-HighResolution comprises 175M high-resolution pairs, from which we
select 5M for training. We evaluate the aligned model on the MSCOCO 30K validation set.

Experimental setup. We build our method based on unCLIP-style approaches (e.g., DALL-E-
2 (Ramesh et al., 2022), Karlo (Donghoon et al., 2022), Kandinsky (Razzhigaev et al., 2023)). These
methods train a diffusion prior module on large-scale datasets (hundreds of millions of samples) to
map text into the image representation space, and use a decoder to generate images.

Table 1: Comparisons with T2I methods.
Our method outperforms large-scale diffusion-based
methods and the recent small-scale (alignment)
methods (Eclipse and IB (Almudévar et al., 2025)).

Methods Datasize (M) FID

Large-scale methods
SD v2.1 2000 14.51
SD-unclip v2.1 2000 13.15
Wurstchen 1420 23.60
DALL-E2 250 10.65
Kandinsky 177 20.48
Karlo 115 20.64

Small-scale alignment
IB + Kandinsky decoder 0.08(COCO) 150.52
Eclipse + Kandinsky decoder 0.08(COCO) 16.53
Ours + Kandinsky decoder 0.08(COCO) 12.62

Eclipse + Karlo decoder 0.08(COCO) 23.67
Ours + Karlo decoder 0.08(COCO) 11.27

Ours + SD-unclip decoder 0.08(COCO) 10.88

Differently, CS-Aligner trains an adapter
to align text representations to image fea-
ture space on small-scale datasets, e.g.,
MSCOCO (0.08M), CC3M (3M), and
CC12M (12M), and LAION-HighRes subset
(5M). After alignment, we directly process
the aligned text features using the pretrained
decoder of the large-scale methods (e.g.,
Karlo and Kandinsky) to generate images,
without additional prior modules or multi-
ple diffusion steps. We evaluate generation
quality with the FID score (Heusel et al.,
2017), which measures how closely gener-
ated images match the real image distribu-
tion. This metric is particularly well-suited
for evaluating modality alignment, as it di-
rectly reflects the distribution distance. Ad-
ditional details can be found in Appendix G.

Baselines. Our baselines consists of
both large-scale methods Karlo, Kandin-
sky, Wurstchen (Pernias et al., 2023), Sta-
ble Diffusion (Rombach et al., 2022) (SD v2.1 and SD-unClip), and the recent small-
scale alignment method Eclipse. We also compare with the most recent multimodal align-
ment method (Almudévar et al., 2025) (denoted as IB) on the generation task. For fair-
ness, we use the same Transformer adapter as Eclipse (also for (Almudévar et al., 2025))
and only align the “CLS” tokens, highlighting the advantages of our distributional alignment.

Table 2: Comparisons on various training data.
Our method consistently performs better.

Method CC3M CC12M LAION-HighRes 5M

Eclipse 26.73 26.98 19.16
Ours 22.88 22.72 14.79

Comparisons. We compare our method with
both the large-scale diffusion-based methods
and the small-scale alignment methods. The re-
sults are provided in Table 1. By aligning text
representations to image representations on the
small MSCOCO data, our method achieves su-
perior T2I generation than the large-scale meth-
ods, Karlo, Kandinsky, and Stable Diffusion without any diffusion steps. CS-Aligner also outper-
forms Eclipse and IB by an obvious margin using either Karlo or Kandinsky decoders. The results
demonstrate the effective vision-language alignment capability of our method. Moreover, we com-
pare CS-Aligner with Eclipse across different training datasets. As shown in Table 2, our method
performs better across diverse training data (CC3M, CC12M, and LAION-HighRes-5M), under-
scoring the importance of the modality distribution information for robust alignment.

Table 3: CS-Aligner with different adapta-
tion approaches. Our method achieves good
alignment using both adapter and LoRA.

Base Model Adaptation #Parameters FID

Kandinsky Adapter 34M 12.62
LoRA 6M 13.52

Karlo Adapter 33M 11.27
LoRA 1.3M 15.63

Qualitative Visualization. To further test our
method, Fig. 4a shows qualitative visualizations
of generated images using Karlo decoder. Our
aligned text representations result in more realis-
tic images with stronger semantic consistency with
the input sentence, highlighting the effectiveness
of CS-Aligner in enhancing alignment. More vi-
sualizations are provided in Appendix F.1.

CS-Aligner with different adaptation ap-
proaches. To demonstrate the robustness of our
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CS-AlignerEclipse

“A cat sitting 
beside a 
laptop on a 
desk”

No Alignment

“A couple of 
men standing 
on a boat next 
to a small 
dog”

(a) Qualitative comparison. No alignment (left), Eclipse
(middle), and CS-Aligner (right). CS-Aligner yields more
realistic, semantically consistent generations.

a black and white
cat looks at the 
camera and there 
is a TV in the 
background

w/ token alignment
Overall FID: 12.14

w/o token alignment
Overall FID: 12.62

an old photo of a 
little girl sitting on 
her dad’s lap

(b) CS-Aligner with token alignment.
Token alignment enhances fine-grained vi-
sion–language correspondence.

Figure 4: Qualitative visualizations.

method across different models, we perform alignments for T2I using both adapter and LoRA.
Specifically, we apply LoRA with a low-rank dimension of 8 to every transformer layer in the CLIP
text encoder. As shown in Table 3, based on different decoders, CS-Aligner with LoRA introduces
fewer parameters, while still achieving comparable results compared with the adapter-based one,
showing the effectiveness and adaptability of CS-Aligner across different models.

CS-Aligner with multiple captions. It is common in real-world datasets for a single image to corre-
spond to multiple captions (e.g., 5 captions per image in MSCOCO). Due to their pairwise alignment
nature, previous methods such as InfoNCE and ℓ2-based approaches (Radford et al., 2021; Patel
et al., 2024) struggle to simultaneously leverage multiple captions. In contrast, by incorporating CS
divergence, our CS-Aligner enables training for alignment with single image and multiple captions
through the divergence term. To demonstrate the benefits of multiple captions for CS-Aligner, we
conducted experiments on the MSCOCO dataset by estimating the CS divergence term D̂CS in Eq.
(6) using both single and multiple captions. As shown in Fig. 5a, CS-Aligner effectively leverages
the information provided by multiple captions, leading to improved vision-language alignment.

(a) Align with multi-captions. (b) Align with unpaired data.

Figure 5: CS-Aligner with additional information.
Our method benefits from the additional information
from multiple captions (a) and unpaired data (b).

CS-Aligner with additional unpaired
data. Collecting and accurately annotat-
ing paired vision-language data is both
challenging and costly. Enhancing align-
ment with additional unpaired data offers
a more flexible and scalable solution for
real-world applications. However, simi-
lar to the case of multiple captions, pre-
vious methods (Radford et al., 2021; Pa-
tel et al., 2024) struggle to fully utilize un-
paired data due to their reliance on pair-
wise alignment, whereas CS-Aligner natu-
rally incorporates the unpaired data infor-
mation by CS divergence. To demonstrate this capability, we conduct experiments on the MSCOCO
dataset using the Kandinsky decoder with (1) 80K paired training samples, (2) 40K paired train-
ing samples, and (3) 40K paired training samples supplemented with 80K unpaired samples, where
the unpaired samples are used to estimate the CS divergence. As shown in Fig. 5b, the result with
40K paired training data is lower than 80K. However, introducing additional unpaired data obvi-
ously improves the performance, even surpassing the model trained with 80K paired samples. This
demonstrates CS-Aligner’s ability to effectively leverage the distributional information of modalities
for alignment.

CS-Aligner with token alignment. Beyond the unpaired data, CS-Aligner also enables token-level
alignment by treating the tokens of each sample as a distribution. We evaluated the token-level
extension of CS-Aligner with the Kandinsky decoder on MSCOCO. As shown in Fig. 4b, incor-
porating token alignment further improves performance. Moreover, qualitative results indicate that
token alignment enhances fine-grained details in generated images, suggesting an improved ability
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to capture fine-grained relationships between modalities. Additional visualizations are provided in
Fig. 7 in Appendix F.2.

4.2 IMAGE-TEXT RETRIEVAL

Experimental Setup. Effective multimodal alignment also benefits cross-modal retrieval.

Table 4: Comparisons of image-to-text (I2T) and text-to-
image (T2I) retrieval. Our method outperforms the base-
lines on diverse datasets.

Flickr30k Urban-1k DOCCI Average
Methods I2T T2I I2T T2I I2T T2I I2T T2I

Long-CLIP 90.0 76.2 82.5 86.1 66.5 78.6 79.7 80.3
CLIP 85.2 65.0 68.3 55.6 63.1 65.8 72.2 62.1
LLM2CLIP-3M 89.6 77.3 87.1 91.1 84.9 87.8 87.2 85.4
Ours-3M 91.8 81.0 87.6 92.2 86.6 89.1 88.7 87.4

To demonstrate the alignment abil-
ity of our method on retrieval tasks,
we align LLMs (Dubey et al., 2024)
text representations with CLIP vi-
sion representations on both image-
to-text and text-to-image retrieval.
We use the Flickr 1K test set (Young
et al., 2014) for short-text retrieval,
while Urban1K (Zhang et al., 2025)
and DOCCI (Onoe et al., 2025)
are employed for long-text retrieval.
We compare CS-Aligner against pure
InfoNCE-based methods, such as Long-CLIP (Zhang et al., 2025) and LLM2CLIP (Huang et al.,
2024), as the baselines. To ensure a fair comparison, we adopt the setup from LLM2CLIP, aligning
CLIP ViT-L/14 image representations with Llama 3 (8B) text embeddings. Both the vision and text
representations are aligned by adapters trained on CC3M.

Comparisons. Table 4 shows that our method consistently and significantly outperforms the base-
lines across various datasets for both image-to-text (I2T) and text-to-image (T2I) retrieval. This
demonstrates the effectiveness of our method for aligning two modalities into a shared space. More-
over, the ability to align a different text encoder (LLM) with the CLIP image encoder highlights the
flexibility and generalizability of our approach.

5 RELATED WORK

Vision-language alignment and applications. CLIP (Radford et al., 2021) serves as a founda-
tional model for vision-language alignment in multimodal tasks. Several works have enhanced CLIP
through techniques such as momentum distillation (Li et al., 2021) and noisy text supervision (Jia
et al., 2021). Despite its success, CLIP suffers from a persistent modality gap between text and image
representations. Prior studies (Zhou et al., 2023; Liang et al., 2022; Shi et al., 2023) attribute this gap
to factors such as cone effects (Liang et al., 2022) and suboptimal latent space structures (Shi et al.,
2023). To address this, various strategies have been proposed, including projection adapters (Zhou
et al., 2023; Gao et al., 2024; Huang et al., 2024), geodesic multimodal mixup (Oh et al., 2024), and
parameter-efficient fine-tuning (Zanella & Ben Ayed, 2024). Recent works also improve CLIP by
large language models (LLMs) (Jang et al., 2024; Koukounas et al., 2024; Huang et al., 2024) for
downstream tasks such as image-text retrieval.

In addition to image-text retrieval, text-to-image (T2I) generation is another application that re-
flects the vision-language alignment capability. T2I has advanced significantly over the past decades,
driven by both diffusion-based (Ramesh et al., 2021; Rombach et al., 2022; Saharia et al., 2022;
Nichol et al., 2021) and GAN-based models (Zhang et al., 2017; Tao et al., 2023). Among diffusion-
based methods, the unCLIP framework (Ramesh et al., 2021; 2022) employs a two-stage architec-
ture with a CLIP-guided diffusion prior and a decoder (e.g., DALL-E-2 (Ramesh et al., 2022) or
Karlo (Donghoon et al., 2022)). Its prior module gϕ maps text representations y to image ones x by
a diffusion model. Recently, Eclipse (Patel et al., 2024) employs an ℓ2 loss to simplify the prior loss
by eliminating diffusion time and introducing a noise ϵ term: Lprior = Eϵ∼N (0,I)

[
∥x− gϕ(ϵ,y)∥22

]
.

However, these methods still rely on pairwise loss (e.g., ℓ2). In contrast, our approach introduces
distributional alignment for a more holistic modality alignment.

9
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6 CONCLUSION

In this paper, we propose CS-Aligner, a novel distributional alignment framework that integrates
Cauchy–Schwarz (CS) divergence with mutual information for multimodal alignment, which ad-
dresses the alignment and uniformity conflict of InfoNCE. By combining global distributional align-
ment with InfoNCE, CS-Aligner achieves tighter and more comprehensive alignment. By consider-
ing the modality distributional information, our method enables to leverage additional and detailed
information from unpaired samples and tokens, leading to more flexible and fine-grained informa-
tion for alignment. We demonstrate the effectiveness of our alignment on text-to-image generation
and cross-modal retrieval.

USE OF LARGE LANGUAGE MODELS (LLMS).

We used LLMs solely for minor language polishing. They were not involved in research ideation,
experimental design, or substantive manuscript writing.

ETHICS STATEMENT

Our proposed method advances research in multimodal alignment by introducing a novel distribu-
tional alignment approach. As a result, it also facilitates progress in multimodal generation. In the
meantime, this capability may raise ethical concerns, including the potential misuse for generating
deceptive or inappropriate content.

REPRODUCIBILITY STATEMENT

We provide sufficient details for reproducibility in Sections 3 and G.
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A DETAILS OF THE TOY EXAMPLES

Example A.1. Consider two Gaussian distributions, p(x) ∼ N (µx, σ
2
x) and p(y) ∼ N (µy, σ

2
y),

with a joint distribution p(x,y) ∼ N
((

µx

µy

)
,

(
σ2
x ρσxσy

ρσxσy σ2
y

))
. Here, µx and µy are the

means of x and y, σ2
x and σ2

y are their variances, and ρ is the correlation coefficient and controls
their linear dependency. When ρ = 0.99, the two modalities are highly dependent, with high mu-
tual information (I = 1.959; see Fig. 2a and 2b). When ρ = 0, the modalities are independent,
resulting in zero mutual information (Fig. 2c). Interestingly, two distributions with the same mutual
information value can either exhibit minimal statistical distance and nearly identical shapes, includ-
ing similar locations, widths, and higher-order moments, as shown in Fig. 2b, or have completely
different shapes with distinct means (0 for p(x) and 2 for p(y)) and variances (4 for p(x) and 1 for
p(y)), as illustrated in Fig. 2a. Quantitatively, the former case shows a minimal KL divergence of 0,
while the latter exhibits a KL divergence of nearly 6.81.

Mutual information. For two continuous random variables x and y, the mutual information is
defined as:

I(x;y) =

∫ ∫
p(x,y) log

(
p(x,y)

p(x) p(y)

)
dx dy. (13)

For a bivariate Gaussian distribution

p(x,y) ∼ N
((

µx

µy

)
,

(
σ2
x ρσxσy

ρσxσy σ2
y

))
,

the mutual information admits the closed-form solution:

I(x;y) = − 1
2 ln

(
1− ρ2

)
. (14)

In particular, for correlation ρ = 0.99, we have I(x,y) ≈ 1.959, while for ρ = 0, the variables are
independent and I(x,y) = 0.

Divergence. For univariate Gaussian distributions p(x) = N
(
µx, σ

2
x

)
and p(y) = N

(
µy, σ

2
y

)
, the

KL divergence is given by:

DKL

(
p(x) ∥ p(y)

)
= ln

(
σy

σx

)
+

σ2
x + (µx − µy)

2

2σ2
y

− 1
2 . (15)

For Fig. 2b and Fig. 2c, we set σx = σy = 1. Hence, when µx = µy = 0, DKL

(
p(x) ∥ p(y)

)
= 0.

For Fig. 2a, we use σx = 2 and σy = 1. When µx = 0 and µy = 2, the DKL

(
p(x) ∥ p(y)

)
≈ 6.81,

which is very large.

B DERIVATIONS

In this section, we provide a derivation of alignment and uniformity terms of InfoNCE. More con-
crete analysis can be found in (Wang & Isola, 2020).

Let (x,y) be positive (image–text) pairs drawn from ppair, and let {(x′
i,y

′
i)}Mi=1 be M negative

samples (unpaired samples) drawn i.i.d. from the marginal pdata. The one-sided InfoNCE (CLIP)
loss with temperature τ > 0 is

LInfoNCE = −1

2
E(x,y)∼ppairE{x′

i,y
′
i}∼pdata

[
log

ex⊤y/τ∑M
i=1 e

x′
i
Ty/τ

+ log
ex⊤y/τ∑M

i=1 e
x⊤y′

i/τ

]
.

In CLIP, the features are normalized to compute the loss. Under this unit-norm constraint ∥x∥2 =
∥y∥2 = 1, LInfoNCE decomposes into

LInfoNCE = −E(x,y)∼ppair

[x⊤y

τ

]
︸ ︷︷ ︸

Lalign

+ E(x,y)∼pdata

[
1
2 log

M∑
i=1

ex⊤y′
i/τ + 1

2 log

M∑
i=1

ex′
i
Ty/τ

]
︸ ︷︷ ︸

Luniform

,
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up to an additive constant. Moreover, by writing

∥x− y∥22 = ∥x∥2 + ∥y∥2 − 2x⊤y = 2− 2x⊤y =⇒ x⊤y = 1− 1
2∥x− y∥22, (16)

we can show that:

(i) Alignment.

−E(x,y)

[x⊤y

τ

]
= −E

[1− 1
2∥x− y∥2

τ

]
= −1

τ
+

1

2τ
E
[
∥x− y∥2

]
.

Dropping the constant −1/τ , define

Lalign :=
1

2τ
E(x,y)∼ppair

[
∥x− y∥22

]
. (17)

(ii) Uniformity. For each negative (unpaired) sample y′i, using Eq. equation 16,

ex⊤y′
i/τ = e(1−

1
2∥x−y′

i∥
2)/τ = e1/τ e−

1
2τ ∥x−y′

i∥
2

.

Hence
M∑
i=1

ex⊤y′
i/τ = e1/τ

M∑
i=1

e−
1
2τ ∥x−y′

i∥
2

, log
∑
i

ex⊤y′
i/τ = 1

τ + log
∑
i

e−
1
2τ ∥x−y′

i∥
2

.

An identical argument holds for the {x′
i,y} terms. Up to constants,

Luniform := E(x,y)∼pdata

[
1
2 log

M∑
i=1

e−
1
2τ ∥x−y′

i∥
2

+ 1
2 log

M∑
i=1

e−
1
2τ ∥x′

i−y∥2
]
. (18)

In the limit of large batch size one may further rewrite

Luniform ≈ log Ex,y∼pdata

[
exp(−t∥x− y∥22)

]
,

with t = 1
2τ .

Combining (i) and (ii) and absorbing all additive constants gives the desired decomposition

Lclip = Lalign + Luniform + const.

C RELATED WORK OF CAUCHY-SCHWARZ (CS) DIVERGENCE.

CS divergence (Principe et al., 2000a;b) is derived from the Cauchy-Schwarz inequality for square-
integrable functions. It serves as a symmetric distribution distance metric with notable properties,
such as the ability to measure conditional distributions (Yu et al., 2025) and the closed-form expres-
sion for mixtures of Gaussians (Kampa et al., 2011). CS divergence has been successfully applied
across various domains, including deep clustering (Trosten et al., 2021), disentangled representation
learning (Tran et al., 2022), and deep regression (Yu et al., 2024). Moreover, due to its advantage of
estimating discrepancy between conditional distributions, it has demonstrated success in the domain
adaption area (Yin et al., 2024) and time series clustering (Yu et al., 2025). However, the utility of
CS divergence in foundation models remains unclear and unexplored.

D COMPARISON BETWEEN CS DIVERGENCE AND OTHER METRICS

Unlike parametric distributions, distributions of different real-world modalities exhibit unpredictable
variability and inconsistent overlaps, meaning that p(x) and p(y) may follow arbitrary distributions
with a small intersection. Therefore, it is crucial to overcome these challenges to measure and
optimize multimodal distribution divergence robustly. Below, we outline several key properties that
an effective metric should satisfy for multimodal alignment.
Remark D.1. Key properties for distribution align metrics:
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• Symmetry: Both distributions are treated equally, ensuring consistent and unbiased multi-
modal alignment, formulated by D(p(x), p(y)) = D(p(y), p(x)).

• Differentiable and Efficient Estimation: Enable differentiable estimation without dis-
tribution assumptions to facilitate optimization, formulated as ∂D(p(x; θ), p(y;ϕ)) ̸=
∅,∀p(x), p(y). Achieve the estimation non-parametrically or efficiently.

• Robustness to Small Distribution Overlap: Provide reliable measurements even when dis-
tributions have minimal overlap of supports, which may often occur in multimodal scenar-
ios. The property is formulated as 0 ≤ D(p(x), p(y)) ≤ ∞ when 0 < µ

(
supp(p(x)) ∩

supp(p(y))
)
< ϵ. µ

(
supp(p(x)) ∩ supp(p(y))

)
denotes the overlap of p(x) and p(y). ϵ is

a small value.

These properties enable the divergence term to align arbitrary distributions with small support over-
lap, which is well-suited for large-scale multimodal applications involving deep learning.

D.1 CONNECTION TO THE PRIOR LOSS

Remark D.2. Connection to the prior loss (ℓ2 loss) used by Eclipse (Patel et al., 2024):

Lprior = Eϵ∼N (0,I)

[
∥x− gϕ(ϵ,y)∥22

]
. (19)

Consider the third term in Eq. (8), which involves κ(xi,yj) defined by the Gaussian kernel
κσ(x,y) = exp

(
−∥x− y∥22/2σ2

)
. A second-order Taylor expansion yields

κ(xi,yj) = exp

(
− (xi − yj)

2

2σ2

)
≈ 1− (xi − yj)

2

2σ2
. (20)

When i = j (i.e., diagonal of κ(x,y)), this approximation reduces to a weighted ℓ2 loss by 1/2σ2,
analogous to the Eq. 19. Consequently, the ℓ2 loss emerges as a special case of our divergence, fo-
cusing solely on paired sample reconstruction and omitting broader distribution alignment, including
off-diagonal (cross-sample) contributions.

D.2 COMPARISON WITH KL DIVERGENCE.

KL divergence is a widely used metric in deep learning. Given two distributions, p(ω) and q(ω), the
KL divergence is defined as:

DKL(p; q) =

∫
p(ω) log

p(ω)

q(ω)
dω. (21)

Validity for multimodal alignment. Define the support sets of distributions p and q as:

supp(p) = {ω ∈ Ω : p(ω) > 0}, supp(q) = {ω ∈ Ω : q(ω) > 0}. (22)

For KL divergence, if there exists any point x ∈ supp(p) such that q(x) = 0, the term
p(ω) log p(ω)

0 → ∞, leading to: DKL(p; q) = ∞. Thus, a necessary condition for KL divergence to
be finite is supp(p) ⊆ supp(q). Otherwise, KL divergence becomes invalid.

In contrast, the CS divergence becomes infinite only if there is no overlap between supports of p and
q, i.e., when

∫
p(ω)q(ω)dω = 0, making the logarithm undefined. Hence, the condition for finite

CS divergence is: supp(p) ∩ supp(q) ̸= ∅.
In multimodal alignment, it’s reasonable to assume that the two modality distributions partially over-
lap but are not disjoint, as supported by our empirical observations in Fig. 4a (no alignment results).
Under these conditions, KL divergence can be invalid and therefore suboptimal. Conversely, the CS
divergence condition is less restrictive, making it more suitable and stable for multimodal alignment.

Compatibility with InfoNCE Integrating InfoNCE with CS divergence explicitly encourages intra-
modality uniformity and cross-modality alignment, thereby effectively improving multimodal align-
ment. For KL divergence, assuming the distributions of the two modalities are Gaussian, N (µ0,Σ0)
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and N (µ1,Σ1), the divergence can be computed as:

DKL [N (µ0,Σ0)∥N (µ1,Σ1)] =
1

2

(
tr
(
Σ−1

1 Σ0

)
+ (µ1 − µ0)

⊤Σ−1
1 (µ1 − µ0)− k + log

(
detΣ1

detΣ0

))
.

(23)

This formulation lacks explicit connections to the InfoNCE in terms of alignment and uniformity,
making it less compatible with InfoNCE compared to the CS divergence.

Nonparametric estimation. Additionally, when the distributions are not assumed to be Gaussian,
a nonparametric estimator is required for KL divergence. A common choice, the k-NN estima-
tor (Wang et al., 2009), is non-differentiable, which poses challenges for optimization in gradient-
based learning frameworks. In contrast, the CS divergence demonstrates greater stability and differ-
entiability when paired with KDE, making it a more robust choice.

Experimental Comparison. To verify the above analysis, we compare CS divergence and KL
divergence on the unpaired data scenario, where KL can easily become invalid. We trained a KL
+ InfoNCE model in our unpaired data setting—using paired data for InfoNCE and unpaired data
for divergence. The initial KL value exceeded 5000 (extremely large), and consequently, the model
could not converge, leading to catastrophic failure. In contrast, CS divergence remained stable
(initial value around 3), and achieved comparable final performance with an FID of 12.18 (Fig. 5b
in the main paper).

D.3 COMPARISON WITH WASSERSTEIN DISTANCE.

Wasserstein Distance is also widely used for distribution discrepancy (e.g. GAN (Arjovsky et al.,
2017)). However, Wasserstein distance is be computed either by using an additional learnable mod-
ule (e.g., a neural network for estimating a transport map (Korotin et al., 2022)) or by solving an
optimization problem, often approximated via multiple Sinkhorn (Cuturi, 2013) iterations for com-
putational efficiency, leading to efficiency problem in large-scale training. In contrast, CS divergence
can be efficiently estimated by a nonparametric estimator.

D.4 QUANTITATIVE COMPARISONS WITH KL AND WASSERSTEIN DISTANCE.

We compare our method with KL and Wasserstein distances below. To make the KL divergence
tractable, we assume the batch embeddings follow Gaussian distributions. For the Wasserstein dis-
tance, we either use the closed-form Gaussian Wasserstein distance under the same assumption or
apply the Sinkhorn algorithm for general distributions. However, in practice, we found that Sinkhorn
often fails to converge. The results show that our method outperforms both KL and Wasserstein
distances. Moreover, Wasserstein distance and KL lack an InfoNCE-style alignment–uniformity
decomposition; only CS-divergence yields the compatible formulation (Eq. 10). The Gaussian as-
sumption is also stronger than our nonparametric method.

Method FID ↓
KL 23.48
W-distance 18.41
Sinkhorn Not converge
CS-Aligner 12.62

D.5 COMPARISON WITH MUTUAL INFORMATION DIVERGENCE (KIM ET AL., 2022).

Mutual information estimation depends on parametric assumptions about the underlying distribu-
tions, e.g., multivariate Gaussian, whereas CS divergence imposes no such constraints. Moreover,
estimating mutual information decomposes into a mutual information term plus two KL divergences,
and thus lacks explicit connections to the InfoNCE in terms of alignment and uniformity.
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E COMPUTATION COMPLEXITY AND STABILITY ANALYSIS

We normalize high-dimensional embeddings onto the unit hypersphere and use a fixed Gaussian
kernel bandwidth so that concentration of measure and classical KDE theory ensure stable, low-
variance estimates.

In high dimensions, mapping embeddings onto the unit hypersphere exploits the concentration of
measure phenomenon: as d grows, the pairwise distances ∥x− y∥ between random points on Sd−1

concentrate sharply around
√
2, with fluctuations of order O(1/

√
d). Consequently, a Gaussian

kernel

K(x, y) = exp
(
−∥x− y∥2

2σ2

)
, (24)

with fixed bandwidth (e.g. σ = 1) yields values confined to a narrow, well-behaved range, pre-
venting weights from collapsing to 0 or saturating at 1 and ensuring smoothly varying density esti-
mates (Berestycki & Nickl, 2009).

Moreover, when the effective sample size n (e.g. batch size) and dimensionality d satisfy nσd ≫ 1,
which holds for σ = 1, n ∼ 103, and d ∼ 103, the KDE estimator obeys a central limit theorem.
This guarantees that CS divergence estimates have vanishing variance and stable gradients during
optimization (Parzen, 1962).

Computational complexity. The computation cost of our method is comparable to the CLIP-
based method when scaling up to even larger-scale datasets. The computation complexity is O(N2),
which is the same as the InfoNCE used in CLIP. However, the computational complexity is feasible
to scale up to larger-scale datasets.

F MORE RESULTS

F.1 MORE VISUALIZATION

We illustrate more high-resolution images generated by the Kandinsky decoder with our aligned text
representation in Fig. 6. The adapter is trained on LAION-HighRes 5M.

F.2 MORE VISUALIZATION FOR TOKEN ALIGNMENT

We provide more visualizations with and without the token alignment Fig. 7, demonstrating its
ability to generate more fine-grained images with CS-Aligner.

G IMPLEMENTATION DETAILS

Implementation details Our models were trained on 4 NVIDIA RTX A100 GPUs with a global
batch size of 1,024 (256 per GPU). We optimized parameters using AdamW with a cosine annealing
learning rate schedule, spanning a total of 100 GPU hours. Mixed-precision training (FP16) was
employed to enhance computational efficiency while maintaining stability. We use the learning rate
of 5e− 5. We use hyperparameter λ as 0.01 to keep the same number scale as the divergence.

Kernel density estimator. A proper kernel size is critical in KDE for accurate estimation of Eq.
(8). In this paper, we follow Yin et al. (2024) to normalize the features from two modalities and use
a kernel size 1. In general, this is sufficient to ensure stable learning.

G.1 T2I DETAILS

Figure 1 implementation details. For Fig. 1a and Fig. 1b, we train the same adapter on top of
the CLIP model using InfoNCE and CS-Aligner, respectively. We use the MSCOCO training set
and visualize the learned representations with t-SNE on 5K image–text pairs from the validation
set. For the temperature in both InfoNCE and CS-Aligner, we initialize it from the pretrained CLIP
model and keep it learnable during training. For Fig. 1c, we compute the L2 distance between
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A  vase of flowers displayed at 
the front windows of a store

A bald man with a beard wearing 
a polka dot bow tie

A basket fill with different 
types of fruit

A bedroom decorated with 
a blue underwater theme

A wooden cutting board filled 
with chopped vegetables

"Head shot" of a zebra against a 
stark background

A backpack and a line of 
supplies laying out

A bathroom is very colorful with 
blue yellow and red

A bear made out of gummy 
bears sitting on a counter

A bed in a bedroom next to a 
slide glass door

A bed with a colorful blanket 
has an iron bed frame

a bench surrounded by 
different types of plant life

A big black dog sitting next to a 
laptop computer

A big brown horse near a fence 
in the snow

a big sail boat in the sea with 
other boats

a black and white cat hugging a 
handbag

Figure 6: Qualitative visualization.The adapter is trained on LAION-HighRes 5M. The aligned
text representation is then decoded by the Kandinsky decoder.
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w/ token 
Alignment

Overall FID:
12.14

w/o token 
alignment

Overall FID:
12.62

A black pan filled with 
mushrooms and vegetables

Living room setting with 
furniture, fireplace and lamp

A neat yellow bed in a room 
with blue walls

a black red and green train 
engine on a track

Figure 7: Token alignment is effective for fine-grained generations with more details and
stronger semantic correspondence with the text inputs.

the embeddings of all image–text pairs and visualize the resulting histogram. The histogram of L2
distances for positive pairs systematically reflects their distance distribution.

Kandinsky details. We use Kandinsky v2.2, an unCLIP-type model that utilizes CLIP ViT-bigG-
14-laion2B-39B-b160k with 1280 projection dimensions for text and image encoders. Kandinsky
v2.2 employs a latent diffusion model and MOVQ (Zheng et al., 2022) as the decoder to generate
images of size 512× 512 from the given image representation. When using the Kandinsky decoder,
we apply 50 denoising steps (Ho et al., 2020) with a classifier-free guidance scale of 7.5 (Ho &
Salimans, 2022).

Karlo details. Karlo uses CLIP-ViT-L/14 with 768 projection dimensions for image and text en-
coders. It employs a diffusion model to decode the image representation into a low-resolution image,
followed by a super-resolution diffusion module that upsamples it to 512 × 512. When using the
Karlo decoder, we apply 25 denoising steps with a classifier-free guidance scale of 7.5, followed by
an additional 7 super-resolution steps.

Adapter details. To ensure a fair comparison, our adapter module has the same architecture as
Eclipse (Patel et al., 2024), which is based on the standard PriorTransformer model (Ramesh et al.,
2022) but modified to be time-independent. Specifically, it consists of 10 layers with 16 attention
heads, each having a head dimension of 32. The embedding dimension is 768/1280, with three
additional embeddings. The model does not use time embeddings and has a dropout rate of 0.0. For
the text to image generation task, in order to use the pretrained image generator, we only use the text
adapter. For the retrieval and classification, we use adapters for both modalities.

LoRA We configure LoRA (Low-Rank Adaptation) for CLIP with a rank of r = 8 and a scaling
factor of α = 16, enabling efficient adaptation while maintaining a low computational footprint.
The targeted modules include the self-attention projections, the fully connected layers, and the
text projection layer, ensuring adaptation across both vision and text processing components.
A dropout rate of 0.1 is applied to enhance regularization. For the CLIP encoder in Kandinsky, ViT-
bigG-14-laion2B-39B-b160k, the number of LoRA parameters is 6 million. As for CLIP-ViT-L/14
in Karlo, the CLIP model size is smaller, resulting in 1.3 million LoRA parameters.

LAION-HighResolution-5M selection. We use a subset of 5 million image-text pairs from the
LAION-HighResolution dataset, which contains 175 million pairs. Due to computational con-
straints, we download only a portion of the dataset and select pairs with English captions.
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H MORE EXPERIMENTAL RESULTS

Image-text classification. We compare with CLIP-Adapter (Gao et al., 2024) on the image clas-
sification task following their few-shot classification setting. We fine-tune the adapter based on
ViT-B/16 with 16-shots subset for each of the 11 datasets. The results are provided in the following
table. With better alignment, our method consistently performs better.

Table 5: Comparison with CLIP-Adapter on the image classification task. Our methods per-
forms consistently better on various datasets.

Method ImageNet Caltech101 DTD EuroSAT FGVCAircraft Food101 Flowers102 OxfordPets StanfordCars SUN397 UCF101 Average

(Gao et al., 2024) 71.1 94.4 70.9 85.7 42.8 83.2 96.0 92.1 78.6 75.0 82.8 79.3
Ours 72.9 95.0 72.3 87.2 44.4 85.8 97.5 93.0 81.9 76.2 84.0 80.9

Table 6: Image captioning results.

Method Bleu 1 ↑ CIDEr ↑
InfoNCE+LM 40.4 14.3
InfoNCE+LM+CS 41.3 16.7

Image captioning. We extend our method to the image captioning task. We adopt the Blip2 (Li
et al., 2023a) stage one training strategy to highlight the importance of representation alignment for
the image captioning task. We train a Q-former with the image text contrastive loss (InfoNCE) and
the language model loss on the MSCOCO captioning dataset. The results in Table 6 show that our
method can improve the image captioning ability. Also, the qualitative results of image captioning
are shown in Fig. reffig:vis-captioning. The generated captions are semantically aligned with the
images, demonstrating the general applicability of our method.

Captioning: A
young boy
Wearing
headphones.

Captioning: 
A cluttered 
room with a 
table and 
chairs in it.

Captioning: 
A baby
laying in a
bed with a
teddy bear.

Figure 8: Qualitative results of image captioning.

H.1 ABLATION STUDY

Hyperparameter Sensitivity Analysis. We conducted a sensitivity analysis on the two key hy-
perparameters, λ (the weight for InfoNCE) and σ (the Gaussian kernel width). For efficiency, we
evaluated on a subset of 10 000 MSCOCO training samples and report Fréchet Inception Distance
(FID) as the metric.

Table 7 shows that our method is robust to moderate variations in both λ and σ, with only minor
FID fluctuations over a wide range. A large λ overemphasizes distributional alignment, optimizing
intra-modality uniformity and global distribution distance while overlooking the pairwise alignment
term. Since the generation task is sensitive to both global distribution closeness and sample-wise
alignment, an excessively large λ can degrade performance. We also evaluate the sensitivity of λ
and σ on the MSCOCO retrieval task. The results show that our method is robust and performs well
across a wide range of hyperparameters.
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Table 7: Sensitivity of FID to λ and σ.

λ 0.01 0.1 1 10

FID 81.34 32.51 29.86 65.79
(a) λ sensitivity

σ 0.1 0.5 1 1.5

FID 30.58 27.79 29.86 31.49
(b) σ sensitivity

Table 8: Sensitivity to λ and σ. on MSCOCO retrieval

σ 0.1 0.5 1 1.5

R@1 49.3 50.9 50.7 50.2

λ 0.01 0.1 1 10

R@1 50.1 50.6 50.7 48.6

Alignment with InfoNCE is not enough for the generation task. We ablate InfoNCE and In-
foNCE with CS divergence (CS-Aligner) on the text-to-image generation task. Specifically, we train
the adapter on the MSCOCO dataset and use the Kandinsky decoder to generate the corresponding
images. For the InfoNCE temperature, we resume it from the pretrained CLIP model and keep it
learnable. We then compute the FID score for comparison (lower is better). Table 9 shows that
InfoNCE alone struggles to align the multimodal distributions, resulting in a high FID score. As the
learnable temperature τ (inherited from CLIP) decreases during training, the contrastive logits be-
come sharper, making the uniformity term dominate over the alignment term and thereby weakening
multimodal alignment (see our decomposition in Sec. 2) For text-to-image generation, the decoder
requires the two modalities to lie in the same distribution, which InfoNCE alone is unable to guar-
antee. Hence, an InfoNCE-only model may still perform well in cosine-similarity–based retrieval
but fails in generation due to the persistent distributional gap.

We also provide the retrieval ablations. Retrieval requires only correct relative similarity ranking,
not full distributional overlap, so the degradation of InfoNCE-only is smaller. Nevertheless, CS-
Aligner consistently outperforms InfoNCE-only, likely because the intra-modality uniformity terms
(Eq. 9) promote better sample separability, which benefits retrieval.

Table 9: Ablation study of CS-Aligner on retrieval and generation. Alignment with CS-Aligner
significantly outperforms using InfoNCE alone.

Method Retrieval Generation

T2I I2T Avg FID ↓
InfoNCE 50.1 65.8 57.95 151.35
CS-Aligner 50.7 66.34 58.52 12.62

H.2 MORE DISCUSSIONS

Qualitative comparison with respect to different kernel widths. The qualitative comparison
across different kernel widths in Fig. 9 shows that the method is robust within a reasonable range of
kernel-width variations.

Sensitivity to kernel function. We choose the Gaussian kernel for its unique theoretical advan-
tage, which is the only choice to derive the compatible formulation (Eq. 10) that unifies InfoNCE’s
uniformity and alignment terms. Therefore, we only use the Gaussian kernel in our method.

Extension to other tasks: video-audio. To show the scalability of our method to other multimodal
tasks, we extend our method to the video–audio retrieval and generation task. Specifically, we use
the VGGSound dataset (Chen et al., 2020), randomly selecting 1000 videos for testing and using
the rest for training. We sample 4 frames from each video and use the audio to generate 4 images
for computing the FID score, which evaluates the audio-to-image generation quality. We compare
against ImageBind (Girdhar et al., 2023), which is trained on a large-scale dataset using pairwise
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𝜎 = 0.1 𝜎 = 0.5 𝜎 = 1 𝜎 = 1.5

Figure 9: Qualitative comparison with respect to different kernel widths σ.

InfoNCE. The results in Table 10 show that our method outperforms the InfoNCE-based method on
both generation and retrieval tasks.

Table 10: Audio-image retrieval and generation results.

Model Retrieval Generation
V2A R@1 V2A R@5 A2V R@1 A2V R@5 FID ↓

ImageBind 21.3 44.5 20.1 43.7 53.24
ImageBind-finetune 46.1 76.9 41.2 74.4 48.19
Ours 47.7 77.2 42.2 75.3 40.06
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