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ABSTRACT

Vision-language-action (VLA) models have shown promise as generalist robotic
policies by jointly leveraging visual, linguistic, and proprioceptive modalities to
generate action trajectories. While recent benchmarks have advanced VLA re-
search in domestic tasks, professional science-oriented domains remain under-
explored. We introduce AutoBio, a simulation framework and benchmark de-
signed to evaluate robotic automation in biology laboratory environments—an
application domain that combines structured protocols with demanding preci-
sion and multimodal interaction. AutoBio extends existing simulation capabili-
ties through a pipeline for digitizing real-world laboratory instruments, special-
ized physics plugins for mechanisms ubiquitous in laboratory workflows, and a
rendering stack that support dynamic instrument interfaces and transparent mate-
rials through physically based rendering. Our benchmark comprises biologically
grounded tasks spanning three difficulty levels, enabling standardized evaluation
of language-guided robotic manipulation in experimental protocols. We provide
infrastructure for demonstration generation and seamless integration with VLA
models. Baseline evaluations with SOTA VLA models reveal significant gaps
in precision manipulation, visual reasoning, and instruction following in scien-
tific workflows. By releasing AutoBio, we aim to catalyze research on generalist
robotic systems for complex, high-precision, and multimodal professional envi-
ronments.

1 INTRODUCTION

Vision-language-action (VLA) model architectures jointly leverage vision, language, and proprio-
ception modalities to generate action trajectories in an end-to-end manner. By aligning capabilities
more closely with how humans perceive and interact with the world, these models hold promise as
a pathway toward generalist robotic policies. Recent VLA models (Brohan et al., 2023; Kim et al.,
2024; Ghosh et al., 2024; Liu et al., 2025; Black et al., 2024; 2025) have demonstrated impressive
results in real-world scenarios, including table bussing, clothing folding, and household manipula-
tion. However, current benchmarks remain largely confined to domestic settings, leaving a critical
gap in evaluating VLA models for professional, science-oriented scenarios.

Biology laboratories represent a uniquely promising yet challenging environment for robotic au-
tomation. Experiments in these environments follow clear, rigorous protocols (Schilling et al.,
2008), making them well-suited for language-guided robots to interpret and execute. Addition-
ally, the repetitive and time-consuming nature of many laboratory tasks presents opportunities for
automation to reduce researcher workload and enhance efficiency. Existing solutions, such as au-
tomated sample preparation platforms (May, 2016), often prioritize throughput at the expense of
flexibility, whereas robotic systems could achieve human-level adaptability. Nevertheless, biologi-
cal experiments impose distinct challenges on robotic intelligence: Long-horizon workflows require
perception and interaction with diverse interfaces (e.g., digital displays, control panels, and articu-
lated mechanisms). Precision-dependent tasks like slot alignment are ubiquitous, while transparent
liquids and containers complicate visual reasoning. These characteristics make biology laboratories
an ideal benchmark for evaluating VLA capabilities in language grounding, visual understanding,
and high-precision manipulation.
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Figure 1: AutoBio framework. AutoBio decomposes complex experiments into fundamental bi-
ological primitives. These are then implemented via robotic motion primitives within a special-
ized simulation environment. AutoBio simulator features instrument digitization pipeline, custom
physics plugins for lab mechanisms, and rendering stack supporting dynamic interfaces and trans-
parent materials. This enables creation of biologically grounded benchmark tasks to evaluate VLA
models on precision control, instruction following, and visual reasoning capabilities in scientific
workflows.

To realize this potential, however, it is critical to first address the challenges of simulating biol-
ogy laboratories—a task that demands advanced asset modeling, physics simulation, and rendering
capabilities. Robotic simulations typically use physics engines such as MuJoCo (Todorov et al.,
2012), Bullet (Coumans & Bai, 2016–2021), and PhysX to provide a foundation for physics-based
interaction. Building upon these engines, each simulator offers its own set of features tailored to
specific focus areas. For instance, robosuite (Zhu et al., 2020) and MuJoCo Playground (Zakka
et al., 2025) primarily target reinforcement learning (RL) (Sutton et al., 1998) algorithms through
standardized tasks involving pick-and-place operations, articulated object manipulation, and loco-
motion. RoboTwin (Mu et al., 2025) emphasizes dual-arm coordination and proposes an automated
pipeline for data synthesis. These simulations generally address out-of-the-box contact-based rigid
body interactions, and lack specialized capabilities required for biological experimentation.

In the AutoBio simulator, we extend asset modeling, physics simulation, and rendering capabilities
to streamline the entire pipeline of biological experiment simulation, specifically targeting the bio-
logical primitives outlined in Figure 1. In biological experiments, many operations rely on special-
ized instruments such as centrifuges, thermal cyclers, and mixers. We develop a workflow to trans-
form real-world instruments into manipulable assets within AutoBio through 3D Gaussian Splatting
(Kerbl et al., 2023), CAD refinement, and texture baking. These transformed instruments are then
paired with self-contained logic to faithfully replicate their real-world characteristics. Regarding
physics simulation, while the physical world operates under universal laws, physics engines typi-
cally provide only generalized implementations, leaving finer-grained interactions to be extended
by users. To address this, we develop a suite of MuJoCo plugins supporting interactions prevalent in
biological experiments—including thread mechanisms, detent mechanisms, eccentric mechanisms,
and quasi-static liquid computation—that are rarely addressed in existing simulators. Finally, ren-
dering fidelity proves crucial as vision serves as the primary input modality for VLA models. The
prevalence of transparent materials in laboratory environments poses particular challenges, as con-
ventional blend-mode rasterization engines handle transparency poorly. We integrate our simulation
with Blender’s Physically Based Rendering (PBR) pipeline to achieve visually accurate transparency
effects for containers and liquids. In addition, we implement dynamic texture rendering for instru-
ment displays, enabling interactive UI manipulation—a critical feature for tasks involving digital
interfaces.

By combining the above-mentioned simulation features, we propose the AutoBio benchmark, which
distills robotic manipulation primitives into practical biological experiment tasks. We provide com-
prehensive infrastructure to facilitate trajectory synthesis, demonstration generation, and standard-
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Table 1: Comparison of AutoBio with related robotic manipulation simulators / benchmarks

Benchmark
(Simulator)

Target
domain #Tasks Interactive

instrument
Threaded

object Fluid Reactive
display

Render
backend

Demo
synthesis

VLA model
train & eval

Meta-world - 50 × × × × MuJoCo ✓ ×
Robosuite - 9 × × × × Isaac Sim × ×
Factory Factory 8 × ✓ × × Isaac Gym × ×
Maniskill 2 - 20 × × × × SAPIEN ✓ ×
Robotwin - 14 × × × × SAPIEN ✓ ✓
Libero Home 130 × × × × Isaac Sim ✓ ×
Chemistry3D Chemistry 5 × × ✓ × Isaac Sim × ×
AutoBio (ours) Biology 16 ✓ ✓ ✓ ✓ Blender ✓ ✓

ized data interfaces for VLA model integration. Our benchmark comprises tasks across three diffi-
culty levels, where we evaluate open-source SOTA VLA models, including π0 (Black et al., 2024),
π0.5 (Black et al., 2025) and RDT (Liu et al., 2025). This evaluation reveals critical limitations in
current approaches and suggests potential improvements in model architecture and training method-
ologies.

Our key contributions summarize as follows: (1) A simulator designed for biology labs, featuring
instrument digitization, physics plugins (thread/detent mechanisms, quasi-static liquids), and PBR
rendering for transparency and reactive displays. (2) A benchmark with biologically grounded tasks,
enabling standardized evaluation of robotic automation in lab protocols, with support for trajectory
synthesis and VLA integration. (3) Systematic evaluation of VLA models in science-oriented set-
tings, revealing critical gaps in precision manipulation, instruction following and visual reasoning.

2 RELATED WORKS

Vision-Language-Action Model. Recent generalist policies integrate vision, language, and con-
trol for broad task generalization. RT-2 (Brohan et al., 2023) leverages web-scale vision-language
data for robotic control, while OpenVLA (Kim et al., 2024)—trained on 1M real-world de-
mos—surpasses larger closed models on various manipulation tasks. RDT (Liu et al., 2025) ex-
tends diffusion transformers to bimanual manipulation, enabling zero-shot generalization to novel
objects and scenes. π0 (Black et al., 2024) (and its successor π0.5 (Black et al., 2025)) combines
VLMs with flow matching for smooth, cross-embodiment action generation. However, the bench-
mark tasks typically involve coarse manipulation (picking, placing, folding) rather than precise lab
procedures. Long-horizon, high-precision tasks and interacting with digital interfaces are rarely
evaluated. AutoBio is intended to fill this gap by focusing on lab-specific objects and instruments,
explicitly testing fine-grained vision-language-action reasoning not covered by prior work.

Robotic Manipulation Benchmark. Existing benchmarks like ManiSkill (Gu et al., 2023), Meta-
World (Yu et al., 2019), robosuite (Zhu et al., 2020), Libero (Liu et al., 2023), ARMBench (Mitash
et al., 2023), and Factory (Narang et al., 2022) focus on rigid-object manipulation (e.g., pick/place,
assembly) in home, warehouse or factory settings. While Chemistry3D (Li et al., 2024) introduces
science-oriented tasks for chemical experiments, most lack support for fluids, digital interfaces, or
lab-specific precision. AutoBio addresses this gap by simulating biological workflows with fluid
handling, transparent materials, and interactive instrument UIs—challenges absent in prior bench-
marks. A feature comparison with related benchmarks can be found in Table 1.

Robotic Automation in Laboratory. A parallel research thread builds specialized “self-driving”
labs for science. Szymanski et al. (Szymanski et al., 2023) describe A-Lab that fully automates
solid-state materials synthesis with fixed hardware pipelines tailored to inorganic chemistry. In their
system, robotic arms dose powders, handle furnaces, and transfer samples between instruments
while ML algorithms propose recipes. Similarly, other efforts have automated enzyme engineering
or pharmaceutical screens (Holland & Davies, 2020; Rapp et al., 2024; Tom et al., 2024). However,
these platforms typically prioritize throughput: each piece of equipment is specialized for a specific
protocol, and human oversight is still needed for setup or maintenance (Holland & Davies, 2020).
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Figure 2: Digitized instruments for fundamental biological experiment operations, with an example
taken from vortex mixer demonstrating the proposed workflow for digitizing real-world instruments.

AutoBio targets the complementary goal of flexible, human-like manipulation in the lab. Instead of
crafting one-purpose machines, AutoBio’s framework is designed to move toward handling novel
protocols end-to-end: reading digital instructions, applying proper tools, and adapting on the fly,
that lie beyond the scope of existing lab automation work.

3 AUTOBIO SIMULATOR

3.1 AUTOBIO ASSETS

With reference to a real-world biomedical laboratory, AutoBio constructs dimensionally accurate
digital models of common biological experimental assets and integrates them into a virtual envi-
ronment. To support robotic manipulation, AutoBio meticulously preserves the physical interac-
tion properties of these digital assets—including collision characteristics and articulated relation-
ships—to ensure physical fidelity in simulation. All digital assets, along with their associated phys-
ical and visual properties, are formally described using the MJCF modeling language.

Table 2: Categories of AutoBio assets

Type Function Asset

Instrument Perform experimental procedures Centrifuge, Thermal Cycler, Mixer, Pipette, . . .
Container Handle and store samples Centrifuge tube, Cryovial, Pipette tip, . . .
Rack Host containers and tools Multiple-slot rack, Pipette rack, Tip box
Robot Execute manipulation UR5e, Aloha, Robotiq gripper, DexHand

Our assets are broadly categorized into four classes, as listed in Table 2. To ensure the visual and
geometrical fidelity of the instrument models, we propose a workflow that incorporates 3D Gaussian
Splatting (3DGS) (Kerbl et al., 2023) for modeling laboratory assets. As illustrated in Figure 2,
the process begins with multi-view video capture of real-world instruments. We then apply the
PGSR algorithm (Chen et al., 2024) to reconstruct high-quality 3DGS assets. Coarse 3D meshes are
subsequently extracted to achieve surface reconstruction. The raw mesh from 3DGS often contains
redundant vertices and irregular topology due to the discrete nature of Gaussian splats. To optimize
the mesh for physical simulation, we refine it in CAD modeling software, producing a smoothed,
watertight low-poly version while preserving critical geometric features with annotated articulations.
The refined model is exported in the glTF format, and then is processed with our custom automated
tools developed to accelerate the pipeline. First, the texture generation tool UV-unwraps the mesh
and bakes vertex colors from the high-poly source mesh onto a UV texture map, with features
such as automatic seam-aware padding, lighting normalization, and masking for unmatched regions.
Second, the gltf2mjcf converter transforms the textured and joint-annotated glTF model into a
simulation-ready MJCF file for MuJoCo via a lightweight configuration interface. More information

4
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Figure 3: AutoBio physics plugins

on AutoBio assets are presented in the Appendix, including the set of simulation-ready assets we
constructed and the implementation details of the automated tools.

3.2 AUTOBIO PHYSICS

AutoBio employs MuJoCo as its physics engine to simulate rigid-body dynamics, including inter-
actions among robots, labware and instruments. This framework supports accurate multi-articulated
system modeling with rich contact, which are essential for replicating laboratory operations such as
pipetting, tube handling, and instrument manipulation. In addition to MuJoCo’s native physics fea-
tures, AutoBio incorporates customized plugins to efficiently simulate laboratory-specific physical
behaviors. As depicted in Figure 3, these plugins include:

Thread mechanism models the assembly and mechanical properties of mating threads (e.g., the
cap-tube assemblies of centrifuge tubes). Inspired by the separation design of collision and visual
geometry in MuJoCo, we propose to use circular helix’s signed distance function (SDF) to substitute
thread meshes in the collision detection. An approximate method for computing this helix SDF is
provided in the Appendix. As illustrated in Figure 3a, the collision between the tube and the cap
is induced by a pair of coaxial helical threads with identical pitch. Leveraging MuJoCo’s SDF-
based collision solver, we are able to simulate screw motion between threaded objects as well as the
phenomenon of frictional self-locking (through appropriate friction coefficient settings). In contrast
to mesh-based collision detection, the SDF approach is agnostic to the convexity of shapes and
therefore avoids the need for convex decomposition of thread geometries. This substantially reduces
the computational burden of collision handling while preserving high physical fidelity.

Detent mechanism simulates incremental motion with discrete "click" positions in lab instruments,
such as stepped knobs or handles. Specifically, the detent mechanism provides tactile feedback via
passive spring force generated through relative displacement with the nearest gear position.

Eccentric mechanism generates oscillating motion through off-axis rotation, enabling realistic sim-
ulation of mixers (e.g., vortex mixer). The plugin achieves eccentric orbital motion through nega-
tively coupled rotations about two parallel joint axes.

Quasi-static liquid provides an approximate yet efficient simulation of liquid shape deformation
within containers, complementing MuJoCo’s limitation in fluid modeling. Specifically, this module
treats the liquid surface as a planar interface, neglecting wave propagation and pouring effects.
This simplification allows us to describe liquid deformation using only two states: the liquid level
height and the surface normal vector. The motion of the surface normal is governed by a damped
spherical pendulum system in reponse to external container acceleration. We derive the ODE system
of the surface normal through analytical mechanics and Euler-Lagrange equation (see appendix for
details). After the normal vector acquired, the liquid body is computed as the intersection of the
oriented halfspace and container inner surface. We compute the surface height through volume
conservation constraint, thereby generating liquid geometry within the container.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Scene

Lightweight

Photorealistic

PBR
shader

(a) AutoBio rendering backends

Reactive display

Conditioning buttons

(b) Reactive user interface

Figure 4: AutoBio rendering features

3.3 AUTOBIO RENDERING

AutoBio adopts a flexible rendering strategy, offering two rendering backends to accommodate both
fast visualization and photorealistic rendering, as summarized by Figure 4a. Our simulation features
are equally supported by two backends, but with different visual fidelity. Additionally, it implements
real-time texture rendering for reactive panel interfaces in laboratory instruments.

Basic render directly utilizes MuJoCo’s native OpenGL renderer, which offers fast but limited
visualization. Rendering artifacts would occur when visualizing nested transparent objects, such
as transparent tubes containing liquids, due to depth sorting errors. So, we fallback to mark some
surfaces as opaque for more meaningful results.

Advanced render bridges MuJoCo simulation state to Blender’s rendering pipeline, leveraging its
physically based rendering (PBR) shaders to achieve photorealistic materials grounded in real-world
light behavior. Particularly for container-associated manipulation tasks, this solution enables accu-
rate rendering of transparent materials—including polyethylene, glass, and liquids—through con-
figurable optical parameters such as transmission coefficients, refractive indices, and surface rough-
ness.

Reactive user interface employs dynamically loaded texture maps to render control panels and
displays for some lab instruments, providing visual feedback for robotic manipulation, as shown
in Figure 4b. This module maintains full compatibility with both rendering backends described
previously.

4 AUTOBIO BENCHMARK

Building upon the capabilities of the AutoBio simulator, we develop the AutoBio benchmark, a suite
of biologically grounded tasks designed to evaluate robotic automation in laboratory settings.

4.1 TASK GENERATION

AutoBio benchmark tasks are defined through a unified procedure that specifies 1). randomized
scene initialization; 2). procedural demonstration generation; and 3) task evaluation, with each step
expanded below.

Randomized Scene Initialization. For each task, the environment is initialized with randomized
parameters to enhance diversity of generation. Randomization typically includes variations in the
robot’s initial joint angles and in the spatial placement of task-relevant objects (e.g., different initial
and target positions of centrifuge tubes in the transfer task). Additional domain randomization is
supported both in physics (e.g., injected control noise) and visualization (e.g., color and lighting),
with detailed task-specific settings provided in Appendix B.2.

Procedural Demonstration Generation. Expert demonstrations are generated via procedural poli-
cies that decompose each task into sequential subtasks (e.g., reach–grasp–lift in the “Pick up cen-
trifuge tube” task). For each subtask, we define an end-effector motion path conditioned on the
subtask’s initial state and annotated object keypoints. The corresponding joint-space trajectories
are computed using inverse kinematics combined with time-optimal path parameterization (TOPP),
and the resulting motions are executed via PD control. Subtasks are then concatenated to form a
complete expert trajectory.

6
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Figure 5: Task progression across three difficulty levels. Each step includes a bordered inset (top-
left) showing supplementary camera perspectives for contextual clarity.

Task Evaluation. Task progress and success are determined through predefined status checks.
These include monitoring contact events, object poses, and task-specific metrics. Trajectories that
fail to meet these success criteria are discarded and not recorded for training.

4.2 TASK CATEGORY

To systematically evaluate VLA models, AutoBio consists of 16 tasks that are categorized into
three difficulty levels (Figure 5), characterized by progressively increasing demands on precision,
language understanding, and visual reasoning:

• Level 1 (Easy): These tasks feature low demands on vision and manipulation precision, exem-
plified by straightforward actions like closing a thermal cycler lid (5a). Task requirements and
language instructions are generally static, making them suitable for initial system integration and
basic policy verification.

• Level 2 (Medium): Tasks at this level, such as unscrewing a centrifuge tube cap (5b), present
increased challenges in visual perception and manipulation precision. Language instructions may
vary based on randomized task parameters (e.g., target position), requiring models to exhibit ba-
sic generalization and instruction following capability beyond memorization. These tasks are
designed to evaluate fundamental VLA model performance.

• Level 3 (Hard): High-demand tasks like operating a thermal mixer panel (5c) require visual
reasoning, fine-grained manipulation, and robust instruction interpretation. Successful completion
often necessitates effective closed-loop control and the ability to perform complex cross-modal
reasoning. These tasks are intended to rigorously challenge the capabilities of state-of-the-art
VLA models in scientifically relevant scenarios.

5 EXPERIMENTS

5.1 BASELINES AND EXPERIMENTAL SETTINGS

We choose 3 tasks from each difficulty level (Table 3) to evaluate VLA capabilities. For each task,
we generate 100 demonstration trajectories at a frequency of 50Hz formatted as a LeRobot (Cadene
et al., 2024) dataset. The total training set consists of over 792k frame of data, equivalent to 4.4

7
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Table 3: VLA evaluation score measured over 100 episodes on AutoBio tasks with increasing level
of difficulty. The score is reported in percentage by computing the value and the standard error of
the mean over three runs.

# Demo 20 100 20 100 20 100

Easy level
Close thermal cycler lid Open thermal cycler lid Pick up centrifuge tube

π0.5 96.3± 0.9 99.4± 0.3 57.3± 0.9 95.6± 1.4 31.3± 1.2 95.9± 0.9
π0 96.3± 0.7 99.7± 0.3 73.0± 3.1 96.0± 2.1 13.3± 0.9 53.7± 5.9

RDT 100.0± 0.0 100.0± 0.0 100.0± 0.0 99.0± 0.6 45.3± 6.8 57.7± 1.2

Medium level
Unscrew centrifuge tube cap Aspirate with pipette Transfer centrifuge tube

π0.5 1.0± 0.6 11.7± 1.1 0.7± 0.3 18.3± 1.0 0.3± 0.3 37.3± 11.3
π0 1.3± 1.3 21.3± 1.5 4.3± 0.3 42.7± 1.8 2.0± 0.6 40.7± 5.4

RDT 2.0± 1.5 2.7± 1.2 0.0± 0.0 0.3± 0.3 0.3± 0.3 2.0± 1.2

Hard level
Screw on centrifuge tube cap Operate thermal mixer panel Load centrifuge rotor

π0.5 1.0± 0.0 1.7± 0.2 2.2± 0.4 11.3± 1.2 2.0± 0.6 16.0± 0.3
π0 0.7± 0.3 2.0± 0.6 0.8± 0.2 7.5± 0.6 2.0± 0.6 14.7± 1.3

RDT 3.3± 1.2 8.3± 4.4 0.2± 0.1 1.6± 0.5 1.7± 1.2 1.0± 1.0

hours of continuous recording. All tasks except Operate thermal mixer panel are scored binarily
(1 for success, 0 for failure). For Operate thermal mixer panel, we use a relative progress score to
better reflect performance difference due to observed policy difficulties. Task details are provided in
the appendix.

We evaluate three open-source VLAs: π0.5 (Black et al., 2025), π0 (Black et al., 2024) and RDT
(Liu et al., 2025). We adapt our data to each model’s requirements (proprioception dimensions, im-
age history, normalization), then finetune with default fine-tuning configurations starting with their
pretrained checkpoints (π0.5-base, π0-base and RDT-1B). Adaptation details and model differences
can be found in the appendix.

To examine data scaling effects, we train each model on both full (100 episodes) and reduced (20
episodes) datasets while maintaining consistent normalization. Each configuration undergoes three
seeded runs, trained for 30000 steps with batch size 32. A single run takes between 10 to 14 hours
on an NVIDIA H800 GPU, resulting in a total runtime of approximately 2000 GPU hours.

In addition to the main VLA experiments, we conduct two supplementary experiments about imita-
tion learning baselines and long-horizon task setting, with experimental settings and results detailed
in subsection 5.3 and appendix B.4 respectively.

5.2 EXPERIMENTAL RESULTS

Policies are evaluated over 100 episodes per task, with final scores (mean ± SEM across runs)
reported as percentages in Table 3. Our results reveal distinct characteristics of both VLAs from al-
gorithmic and task-specific perspectives. While neither model demonstrates clear superiority, RDT
shows more consistent performance on easy tasks, whereas π0 excels in challenging scenarios. No-
tably, the performance of π0.5, an evolved version of π0, is similar overall, with the key difference
that it achieves significantly higher success on the easy-level task Pick up centrifuge tube, pushing
all three easy tasks to near 100% success rate. For medium to hard level tasks, however, π0.5’s
performance does not improve compared to π0, suggesting that the open challenges we identified
remain and require further exploration.

The performance advantage of π0 and π0.5 are likely stems from their PaliGemma-style architec-
ture with joint attention across modalities and fully trainable weights, compared to RDT’s static
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Table 4: Evaluation scores of baseline imitation learning methods measured over 100 episodes on
AutoBio tasks with increasing level of difficulty.

Easy level Medium level Hard level

DP 100.0±0.0 99.7±0.3 16.3±0.9 0.0±0.0 0.3±0.3 1.0±0.6 0.0±0.0 24.7±2.2 5.7±1.2

ACT 100.0±0.0 100.0±0.0 98.7±0.7 3.3±3.3 38.3±1.8 71.3±3.3 4.7±1.9 4.7±0.3 7.3±2.3

pretrained encoders. This architectural advantage enables π0 to better adapt to complex tasks like
Operate thermal mixer panel.

Data scaling effects differ markedly: π0 and π0.5 benefits from more data across most tasks, while
RDT shows limited improvement. This aligns with their architectures - 3B trainable parameters of
π-series are more data-hungry, whereas RDT’s frozen backbones constrain its learning capacity.

Task difficulty rankings are validated by results. Easy task failures primarily involve gripper slip-
page, while medium and hard tasks reveal precision limitations in current VLAs’ imitation learning
approach. Compounding errors in precise manipulations (e.g., screwing/unscrewing) highlight the
need to explore reinforcement learning or similar approaches for improved closed-loop performance.

Language understanding limitations emerge in Transfer centrifuge tube, where policies frequently
select incorrect slots. The challenge intensifies in Operate thermal mixer panel, where models
struggle to connect language instructions with visual feedback, exacerbated by low input resolutions
that obscure display numbers, leading to more oscillating loss curves (see appendix) than other tasks.
This suggests the need for more efficient high-resolution vision processing pipeline.

Visual reasoning demands in Aspirate with pipette (liquid level sensing) and Load centrifuge
rotor (symmetry maintenance) expose current VLA limitations. The models fail to adapt to visual
cues effectively, and current memoryless architecture faces difficulty when reasoning targets leave
the camera view. This indicates the necessity for visual chain-of-thought reasoning and memory
mechanisms to maintain execution consistency.

5.3 IMITATION LEARNING BASELINES

To provide additional context for the performance of the VLA models, we include experiments
with two smaller baseline models: Diffusion Policy (DP, ∼262M parameters, Chi et al. (2023)) and
Action Chunking Transformer (ACT, ∼52M parameters, Zhao et al. (2023)). Since neither DP nor
ACT incorporates language input modalities, variable parameters were extracted from the prompt
text for relevant tasks and provided to the models as vectorized environmental observations. The
results for each task are summarized in Table 4.

The results demonstrate that both DP and ACT can achieve performance comparable to the VLA
models on several tasks. However, these methods struggle to adapt a single model to the full set of
diverse tasks due to variations in the environmental state spaces (e.g., the state for Transfer centrifuge
tube is [row, column] versus [set_rpm, set_temp, set_time] for Operate thermal mixer panel). In
contrast, VLA models represent environmental states directly as language prompts, enabling unified
processing across tasks. This characteristic endows VLA with greater potential for achieving a “one
policy for multiple tasks” paradigm and executing detailed protocols as a long-term goal.

6 SUMMARY

This paper introduce AutoBio, a simulation framework and benchmark designed to evaluate robotic
automation in biology laboratory environments. By extending laboratory asset modeling, physics
simulation, and rendering capabilities, the AutoBio simulator streamlines the biological experiment
simulation inspired by practical operation primitives. Built upon this simulator, we propose the Au-
toBio benchmark with manipulation tasks across three levels of difficulty, to systematically assess
the capabilities of vision-language-action (VLA) models. The experimental results show critical
limitations of current VLA models in precision manipulation, instruction following and visual rea-
soning, and suggest potential improvements in model architecture and training methodologies.

9
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A AUTOBIO SIMULATION

A.1 AUTOBIO ASSETS OVERVIEW

Figure 6 presents the collection of simulation-ready digital assets included in AutoBio.

Centrifuge 5910ri

Thermal mixerDesktop centrifuge Vortex mixer Cell culture dish/flask

96-well plate

Pipette rack

Pipette tip box

Pipette

60-slot micro tube rack

1.8ml cryovial
with screw cap

1.5ml centrifuge
tube with screw cap

50ml centrifuge
tube with screw cap

15ml centrifuge
tube with screw cap

multi-slot tube rack

Aloha arm Aloha arm

UR5e arm

DexHand 021

Robotiq 2f-85
gripper

Thermal cycler Centrifuge 5430

Tip

Figure 6: The overview of AutoBio’s simulation-ready digital assets.

A.2 IMPLEMENTATION DETAILS OF ASSETS DEVELOPING TOOLS

Texture generation tool. The meshes extracted from 3DGS describe color information with vertex
color, which cannot be applied directly to the refined meshes. This tool handles this issue by transfer-
ring vertex colors to UV texture maps by ray casting, with features including seam-aware padding,
lighting normalization (color correction), and masking of unmatched regions. This produces a tex-
ture with reasonable out-of-box appearance, as well as allowing subsequent manual editing.

gltf2mjcf converter is a utility we developed to streamline the integration of CAD-designed assets
into MuJoCo. It automatically transforms joint-annotated glTF models—exported from SolidWorks
or Blender—into simulation-ready MJCF files through a lightweight configuration interface. This
eliminates the need for manual MJCF editing and significantly accelerates the process of preparing
complex articulated models for physics simulation.

A configuration file specifies global model metadata (e.g., name, scale, timestep options) as well
as body hierarchies, joint definitions, and actuator properties. Each section corresponds to a glTF
node and may optionally include additional parameters such as damping, stiffness, or control ranges,
thereby providing a flexible mechanism for defining both kinematics and dynamics. A sample file
in toml style is provided below:

[__meta__]
name = "vortex_mixer_genie_2"
scale = 76.25 # 0.0016 m -> 0.122 m
option = {timestep="0.001"}

[body]
# Vortex mixer body
[platform]
# Rubber platform: 600-3200 RPM -> 62.83-335.10 rad/s
parent = "body"
[platform.joint]
type = "orbital"
reference = "platform-joint"
offset = [0, -0.002, 0] # in body frame

12
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extra = {damping="0.01", armature="0.1"}
actuator = { kind="velocity", kv="1", ctrlrange="0 400" }
[switch]
# Switch: on/off/touch (truncated)
[knob]
# Knob: speed control 0~10 (truncated)

Asset creation time analysis. We report the typical time required to build a single simulation-ready
asset with our proposed workflow. The process begins with approximately 3 minutes of manual
video capture, followed by about 40 minutes of automated 3DGS training and mesh extraction.
Subsequent CAD refinement and joint annotation, performed by experienced users, generally take
30 to 60 minutes depending on model complexity. The remaining downstream automated steps,
including texture generation and MJCF conversion, require around 3 minutes.

A.3 THREAD MECHANISM

A parameterized circular helix in three-dimensional space can be mathematically expressed as:

H(t; r1, p) = [x, y, z]⊤ = [r1 cos t, r1 sin t, pt]
⊤.

In practical applications, a helix is always bounded. For the above helix formulation, we denote these
bounds 2πl ≤ t ≤ 2πh, where l and h represent the starting and ending thread counts measured
from the zero position. Within this framework, the approximate SDF becomes:

t0 = atan2(Py, Px),

k =

⌊
Pz − t0p

2πp

⌉
, l′ =

⌈
l − t0
2π

⌉
, h′ =

⌊
h− t0
2π

⌋
,

SDF (P ) =


dP (2kπ + t0) l′ ≤ k ≤ h′

min{dP (2πl), dP (2l′π + t0)} k < l′

min{dP (2πh), dP (2h′π + t0)} h′ < k

,

where dP (t) represents the Euclidean distance between point P and the corresponding position on
the helix parameterized by t:

dP (t) = ∥H (t; r1, p)− P∥2 .
This approximation remains valid when the helix angle is sufficiently small.

In practical implementation, the plugin has been adapted to MuJoCo as an sdf extension. While al-
ternative methods exist to approximate screw motion—such as parenting the nut to the bolt within a
kinematic tree and adding a coupled hinge joint and slide joint constrained by screw motion—these
approaches present two significant limitations: (1) The self-locking mechanism does not naturally
emerge from such couplings and proves challenging to implement artificially; (2) Modeling tran-
sitional states between fully coupled and completely free bolt-nut pairs becomes problematic. By
employing SDF to characterize these interactions in a manner more faithful to real-world physics,
we address both challenges gracefully.

A.4 DETENT MECHANISM

The detent mechanism is modeled using a passive force function f(q, q̇)that depends exclusively on
the generalized position and velocity—states intrinsic to any dynamic system. For a knob with n
discrete positions, the force calculation follows:

f(q, q̇) = −k(q − qj)− λq̇,

where the target position index is determined by:

j = argmin
i

|q − qi|, i = 0, . . . , n− 1.

In practical implementation, this mechanism is adapted to MuJoCo as a passive force exten-
sion.

13
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A.5 ECCENTRIC MCHANISM

Planar eccentric motion can be mathematically represented through a planar transformation matrix,
which admits the following decomposition:(

1 0 t cos θ
0 1 t sin θ
0 0 1

)
=

(
cos θ − sin θ t cos θ
sin θ cos θ t sin θ
0 0 1

)(
cos θ sin θ 0
− sin θ cos θ 0

0 0 1

)
, (1)

where t denotes the throw of the eccentric. The right-hand side matrices correspond to the motions
of two negatively-coupled hinge joints. Instruments employing eccentric mechanisms, such as vor-
tex mixers, typically operate at high RPMs. Under these conditions, coupling two joints through
equality constraints proves more robust than alternative solutions.

A.6 QUASI-STATIC LIQUID

The surface normal dynamics are governed by a damped spherical pendulum system. Following
analytical mechanics conventions, we present the system’s Lagrangian and generalized force as:

L =
1

2
ml2

(
ϕ̇2 sin2 θ + θ̇2

)
+ml (gx sin θ cosϕ+ gy sinϕ sin θ − gz cos θ) ,

Q = [−λϕϕ̇,−λθ θ̇]
⊤.

[ϕ, θ] are the spherical coordinates of the normal vector and the generalized coordinates of the sys-
tem. l represents the characteristic length, and m is system mass (which ultimately cancels out
in the final equations). The vector g = [gx, gy, gz]

⊤ captures time-varying accelerations resulting
from both gravity and inertial forces. λϕ, λθ are configurable damping coefficients. Applying the
Euler-Lagrange equation:

d

dt

dL

dq̇i
− dL

dqi
= Qi,

we derive the following system of ordinary differential equations:

d

dt
ϕ = ϕ̇,

d

dt
θ = θ̇,

d

dt
ϕ̇ =

−2ml2vϕvθ sin θ cos θ +ml (−gx sinϕ+ gy cosϕ) sin θ − λϕvϕ

ml2 sin2 θ
,

d

dt
θ̇ =

ml2v2ϕ sin θ cos θ +ml (gx cosϕ cos θ + gy sinϕ cos θ + gz sin θ)− λθvθ

ml2
.

In practical implementation, to avoid numerical instabilities when the system approaches simple
pendulum behavior, we modify the denominator in the d

dt ϕ̇ equation to ml2 max{sin2 θ, ϵ}. The
system initializes with states aligned to gravity direction and zero velocity. The normal direction
components are computed as:

x = sin θ cosϕ,

y = sin θ sinϕ,

z = − cosϕ.

Following surface normal determination at each timestep, we compute the liquid body as the in-
tersection between the oriented halfspace and the container’s inner surface. This implementation
involves computing triangle-plane relations for the manifold mesh. Surface height computation pro-
ceeds through volume conservation constraints, employing the previous height as an initial guess
before refining via Newton-Bisect search.

A.7 RENDERING

The MuJoCo renderer utilizes the legacy OpenGL fixed-function pipeline for scene rendering, which
offers limited customization capabilities. Notably, its reliance on fixed-function lighting creates
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visual inconsistencies between textured and untextured surfaces under specular and ambient lighting
conditions. For this renderer, we provide best-effort support, with certain scene elements (such as
liquid representations) appearing in simplified forms to minimize visual artifacts.

We develop a bridging mechanism to translate MuJoCo’s scene definition (MjModel) and simula-
tion state (MjData) into Blender’s environment. While conceptually similar to MuJoCo’s ongoing
USD (Universal Scene Description) exporter, our solution specifically accommodates our workflow
by enabling: (1) Importation of tuned assets from Blender gallery files, and (2) Direct generation
of fully configured Blender scenes capable of rendering features beyond MuJoCo’s representational
capacity.

A.8 REACTIVE UI

Our user interfaces currently operate in retained mode, meaning it only repaints when changes oc-
cur. For the MuJoCo renderer, UI updates in the 3D environment are achieved through calls to
mjr_uploadTexture following repainting. In the Blender renderer, the UI is passed to the
Image Texture node as either static images or video streams.

B EXPERIMENT DETAILS

B.1 ROBOT CONFIGURATION

The AutoBio benchmark currently supports two primary robotic arm configurations:

• Aloha: This arm is equipped with its native gripper. Characterized by a smaller reach and lower
payload capacity, it is primarily employed in tasks involving lighter objects, such as handling
individual centrifuge tubes.

• UR5e: This arm offers greater reach and payload. We provide two end-effector options for the
UR5e: (a) UR5e-Robotiq: The UR5e paired with a Robotiq 2F-85 parallel gripper. This configu-
ration is suited for tasks requiring interaction with larger instruments or a wider operational range.
(b) UR5e-DexHand: The UR5e equipped with a DexHand 021, a 19-DOF dexterous hand. This
setup is intended for tasks demanding more dexterity, such as precise pipette operation. Recog-
nizing that current VLA models are often optimized for simpler, low-DOF end-effectors, we offer
a simplified control mode for the DexHand. In this mode, most of its DOFs are pre-configured
and fixed, with only the metacarpophalangeal (MCP) joint of the thumb actuated collectively to
mimic a gripper-like open/close action.

B.2 BENCHMARK TASKS

In the experiment section, we evaluated VLA capabilities across 9 AutoBio tasks. Below we describe
the details of each task, as well as additional tasks not present in the main experiment.

Init. #1 #2 Term.

Close thermal cycler lid (easy, ∼20 s): “close the lid of the thermal cycler” Close and lock the
thermal cycler lid using a UR5e-Robotiq robot, testing trajectory following for articulated object
manipulation. The joint angles of the robotic arms are perturbed to add randomness to the task.
This randomization also applies to all tasks below.
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Init. #1 #2 Term.

Open thermal cycler lid (easy, ∼17 s): “open the lid of the thermal cycler” Unlock and open
the thermal cycler lid using a UR5e-Robotiq robot, testing trajectory following for articulated
object manipulation.

Init. #1 #2 Term.

Pick up centrifuge tube (easy, ∼10 s): “pick up the centrifuge tube on the rack” Pick up a
centrifuge tube from its rack using an Aloha robot, focusing on basic visual positioning. The
tube is placed in a random rack slot to promote generalization. This also applies to all tasks
below involving tubes and racks.

Init. #1 #2 Term.

Unscrew centrifuge tube cap (medium, ∼27 s): “dual-Aloha arms unscrewing centrifuge tube
cap: one stabilizes tube while the other twists cap” Remove the centrifuge tube cap using two
Aloha robots. This evaluates dual-arm coordination and manipulation precision.

Term.#2#1Init.

Aspirate with pipette (medium, ∼14 s): “dual-UR5e pipetting: one arm lifts centrifuge tube,
the other aligns pipette tip and aspirates liquid” Aspirate liquid from a tube using a UR5e-
Robotiq (holder) and UR5e-DexHand (pipette operator). This tests dual-arm coordination, pre-
cision, and visual reasoning. The liquid volume in the tube is randomized to test liquid level
sensing capabilities.
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Init. #1 #2 Term.

Transfer centrifuge tube (medium, ∼11 s): “pick up the centrifuge tube and move it to the other
rack, row {target_row}, column {target_col}” Transfer a tube to a specified rack slot
using a UR5e-Robotiq robot, requiring precise manipulation, visual positioning, and language
instruction following. The target rack slot is randomized to verify instruction following.

Init. #1 #2 Term.

Screw on centrifuge tube cap (hard, ∼31 s): “dual-Aloha arms screwing on centrifuge tube
cap: one grips tube while the other twists cap” The inverse of unscrewing, but with stricter
precision requirements for proper alignment.

Init. #1 #2 Term.

Operate thermal mixer panel (hard, ∼16 s): “Adjust thermal mixer parameters, with speed
set to {set_rpm} rpm, temperature set to {set_temp} °C, and time set to {set_time}
seconds” Set parameters (time, temperature, frequency) on a mixer panel using a UR5e-Robotiq
robot following language instruction and UI feedback, evaluating visual reasoning, language
understanding, and high-precision manipulation. The parameters are randomized to test cross-
modal reasoning.

Init. #1 #2 Term.

Load centrifuge rotor (hard, ∼11 s): “Insert a second centrifuge tube into the slot that is sym-
metrically opposite to the currently placed tube” Load a tube into the correct rotor slot while
maintaining symmetry with the existing tube, testing advanced visual reasoning and precise po-
sitioning. The target rotor slot are randomized by setting the currently placed tube to different
slots, and the rotor angle are also randomized.
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Init. #1 #2 Term.

Close centrifuge lid (easy, ∼15 s): “Close the lid of the centrifuge” Close and lock the cen-
trifuge lid using a UR5e-Robotiq robot, testing multi-step trajectory following for articulated
object manipulation.

Init. #1 #2 Term.

Close large centrifuge lid (easy, ∼15 s): “Close the lid of the centrifuge” Close and lock the
centrifuge lid using a UR5e-Robotiq robot, testing multi-step trajectory following for articulated
object manipulation.

Init. #1 #2 Term.

Close mini centrifuge lid (easy, ∼10 s): “Close the lid of the centrifuge” Close the centrifuge
lid using a UR5e-Robotiq robot, testing trajectory following for articulated object manipulation.

Init. #1 #2 Term.

Vortex mix centrifuge tube (hard, ∼60 s): “dual-Aloha arms vortex mix the centrifuge tube
on the vortex mixer: one holds the tube, the other operates the vortex mixer to gear {gear}”
Vortex mix a centrifuge tube with two Aloha robots. This experiment comprehensively tests dual
arm coordination, articulated object handing, UI reading, and long-horizon performance.

The evaluation time limits extended by approximately 50% compared to demonstration horizon
to accommodate imperfect policy execution. All tasks except Operate thermal mixer panel are
scored binarily (1 for success, 0 for exceeding time limit) based on pose and contact requirements
at checkpoints and terminal states. For Operate thermal mixer panel, we implement a weighted
relative progress score to better reflect performance difference due to observed policy difficulties:

Score =

3∑
i=1

wi max

{
1− |finali − targeti|

|initiali − targeti|
, 0

}
,

normalized to [0, 1].
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B.3 BASELINES

We summarize key differences of our baselines (π0, π0.5 and RDT) in Table 5, where some of them
(proprioception dimensions, image history, normalization) lead to difference in data adaptation.

Table 5: Key differences between π0 and RDT baselines
π0, π0.5 RDT

Architecture Decoder-only Encoder-decoder
Vision backbone SigLIP So400m/14 224 SigLIP So400m/14 384
Language backbone Gemma 2B+300M T5 v1.1 XXL
Trainable weights Full V & L backbone frozen
Action sampling Flow matching Diffusion
Normalization All Gripper width only
State dimension 32 128
Action horizon 50 64
Image history 0 (None) 1

B.4 ADDITIONAL EXPERIMENT RESULTS FOR LONG-HORIZON TASK

Human operators naturally decompose complex experiments into atomic subtasks, and execute step
by step—a capability we test by combining Close/Open thermal cycler lid episodes (200 in total)
to evaluate trajectory concatenation. We assess performance by executing one subtask to completion
before switching prompts (Table 6).

Table 6: Trajectory concatenation evaluation result

Close Open Close-Open Open-Close
π0.5 99.3± 0.3 95.7± 0.9 3.7± 0.9 15.3± 2.0
π0 100.0± 0.0 96.0± 0.6 3.0± 1.2 87.3± 2.7

RDT 98.7± 0.3 88.0± 3.2 4.3± 2.8 8.7± 2.2

After training on mixed data, the performance of RDT drops slightly on the two original tasks Close
and Open, while π0’s performance mostly remains the same. Regarding concatenated tasks, since
the terminal robot pose of Open aligns well with Close’s trajectory, π0 could achieve reasonable
transition in Open-Close, yet RDT fails to effectively interpolate in-between. Close-Open fails
more frequently for both models, due to handle grip orientation differences in demonstration at
transition location. This suggests current VLAs primarily memorize trajectories during fine-tuning,
with limited ability to generalize or smoothly transition between related tasks.

C LLM USAGE DISCLOSURE

In accordance with the ICLR 2026 policy on LLM disclosure, we acknowledge the use of LLM in
the preparation of this paper. The model was used strictly as a tool to aid and polish the writing. All
scientific content is the original work of the authors.
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