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Abstract

Despite the success of recent deep learning001
techniques, they still perform poorly on ad-002
versarial examples with small perturbations.003
While gradient-based adversarial attack meth-004
ods are well-explored in the field of com-005
puter vision, it is impractical to directly ap-006
ply them in natural language processing due007
to the discrete nature of the text. To address008
the problem, we propose a unified framework009
to extend the existing gradient-based method010
to craft textual adversarial samples. In this011
framework, gradient-based continuous pertur-012
bations are added to the embedding layer and013
amplified in the forward propagation process.014
Then the final perturbed latent representations015
are decoded with a mask language model head016
to obtain potential adversarial samples. In017
this paper, we instantiate our framework with018
an attack algorithm named Textual Projected019
Gradient Descent (T-PGD). We conduct com-020
prehensive experiments to evaluate our frame-021
work by performing transfer black-box attacks022
on BERT, RoBERTa, and ALBERT on three023
benchmark datasets. Experimental results024
demonstrate that our method achieves an over-025
all better performance and produces more flu-026
ent and grammatical adversarial samples com-027
pared to strong baseline methods. All the code028
and data will be made public.029

1 Introduction030

Despite great success in real-world applications,031

deep neural networks (DNNs) are still vulnerable032

to adversarial samples, which are crafted by adding033

small and human-imperceptible perturbations to034

the inputs and can change the prediction label of035

the victim model (Szegedy et al., 2014; Goodfellow036

et al., 2015).037

In the field of CV, numerous adversarial attack038

methods have been proposed to evaluate the robust-039

ness of DNNs (Papernot et al., 2016a; Madry et al.,040

2019), and corresponding defense methods are also041

well-explored (Papernot et al., 2016c; Ross and042
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Figure 1: Comparison of our method with previous dis-
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Doshi-Velez, 2018). Adversarial attacks on images 043

are defined as an optimization problem of maxi- 044

mizing the loss function of the model on specific 045

samples, which can be approximated by gradient 046

ascent algorithms. 047

However, the textual adversarial attack is 048

more challenging due to the discrete and non- 049

differentiable nature of the text space. And the 050

methods that directly employ the gradients to craft 051

adversarial samples are not applicable in NLP. Cur- 052

rent practices of textual adversarial attacks that 053

employ first-order approximation to find substi- 054

tute words are less effective for one-off searching 055

and can violate the local linearization assumption 056

(Cheng et al., 2019; Behjati et al., 2019; Xu and 057

Du, 2020). 058

To bridge this gap, we propose a general frame- 059

work to adapt the existing gradient-based method 060

to NLP (See Figure 1). We successfully obtain 061

high-quality adversarial samples by conducting a 062

gradient-based search. Specifically, we employ the 063

gradient of the loss function concerning the em- 064

beddings of input tokens to make perturbations on 065

token embeddings rather than on the original text, 066

thus transforming the problem of searching for ad- 067

versarial samples from the discrete text space to 068
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the continuous and differentiable embedding space.069

This provides the basis for applying gradient-based070

methods investigated in CV to craft textual adver-071

sarial samples. In this paper, we adapt PGD (Madry072

et al., 2019) algorithm within our framework to per-073

form textual adversarial attacks, denoted as T-PGD.074

We iteratively generate small perturbations follow-075

ing the gradient information and add them to the076

embedding layer. The forward propagation process077

will amplify the perturbations(Goodfellow et al.,078

2015).079

Then we need to transform the perturbed latent080

representations back to the discrete text. Although081

there exist some works exploring the feasibility of082

directly perturbing token embeddings (Sato et al.,083

2018; Cheng et al., 2019; Behjati et al., 2019), they084

simply obtain candidate words using the first-order085

approximation of the gradient and break the local086

linearization hypothesis. However, recent work087

finds that the mask language modeling (MLM)088

head can reconstruct input sentences from their089

hidden states with high accuracy, even after models090

have been fine-tuned on specific tasks (Kao et al.,091

2021). Inspired by this, we employ an MLM head092

to decode the perturbed latent representations. With093

the extensive linguistic knowledge of MLM-head,094

the coherence and grammaticality of adversarial095

samples can be guaranteed.096

We conduct comprehensive experiments to eval-097

uate the effectiveness of our method by performing098

transfer black-box adversarial attacks, where only099

the final decisions of victim models are accessi-100

ble, against three victim models on three bench-101

mark datasets. We use a local pre-trained language102

model to construct potential adversarial samples103

and then query the victim models for decisions. Ex-104

perimental results demonstrate the effectiveness of105

our framework and T-PGD algorithm. Specifically,106

T-PGD significantly outperforms all baseline meth-107

ods in terms of attack success rate and produces108

more fluent and grammatical adversarial examples.109

To summarize, the main contributions of this110

paper are as follows:111

• We propose a general gradient-based textual ad-112

versarial attack framework based on continuous113

perturbations, bridging the gap between CV and114

NLP on the study of adversarial attacks. Com-115

mon gradient-based attack methods in CV can116

be easily adapted to NLP within our framework.117

• We propose a novel adversarial attack method118

called T-PGD within our framework. We employ119

a local model to construct adversarial samples by 120

iteratively adding perturbations to tokens’ em- 121

beddings, and accumulating these small pertur- 122

bations to search for potential adversarial sam- 123

ples. 124

• We successfully handle the challenge of black- 125

box attack where only the decisions of models 126

are accessible, which is rarely investigated in 127

NLP. 128

2 Related Work 129

2.1 Adversarial Attack in CV 130

In the field of computer vision, adding a small 131

amount of perturbations to input images to mis- 132

lead the classifier is possible (Szegedy et al., 2014). 133

Based on this observation, various adversarial at- 134

tack methods have been explored. FGSM (Good- 135

fellow et al., 2015) crafts adversarial samples using 136

the gradient of the model’s loss function to the in- 137

put images. BIM (Kurakin et al., 2017) straightfor- 138

wardly extends FGSM, iteratively applying adver- 139

sarial perturbations multiple times with a smaller 140

step size. MIM (Dong et al., 2018) exploits mo- 141

mentum when updating inputs, obtaining adversary 142

samples with superior quality. PGD (Madry et al., 143

2019) employs uniform random noise as initializa- 144

tion. Both MIM and PGD are variants of BIM. 145

2.2 Adversarial Attack in NLP 146

Existing textual attack models can be roughly cate- 147

gorized into white-box and black-box attack mod- 148

els according to the accessibility to the victim mod- 149

els. 150

White-box attack methods, also known as 151

gradient-based attack methods, assume that the at- 152

tacker has full knowledge of the victim models, in- 153

cluding model structures and all parameters. There 154

are few application scenarios of white-box attacks 155

in real-world situations, so most white-box attack 156

models are explored to reveal the weakness of vic- 157

tim models, including universal adversarial triggers 158

(Wallace et al., 2019), fast gradient sign inspired 159

methods (Ebrahimi et al., 2018; Papernot et al., 160

2016b). Although well explored in CV, these meth- 161

ods are not directly transferable to NLP due to the 162

discrete nature of the text. A recent work GBDA 163

(Guo et al., 2021) generates adversarial samples by 164

searching an adversarial distribution, optimizing 165

with a gradient-based algorithm that has been pre- 166

viously used in image adversarial attacks (Carlini 167

and Wagner, 2017). 168
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Black-box attack models can be further divided169

into two different attack settings, i.e. score-based170

and decision-based. The first one assumes the at-171

tacker can obtain the decisions and corresponding172

confidence scores from victim models. Most re-173

search works on black-box attacks focus on this174

setting, exploring different word substitution meth-175

ods and search algorithms to reduce the victim176

models’ confidence scores. The word substitution177

methods mainly focus on word embedding simi-178

larity (Jin et al., 2020), WordNet synonyms (Ren179

et al., 2019), HowNet synonyms (Zang et al., 2020),180

and Masked Language Model (Li et al., 2020). The181

search algorithms involve greedy search algorithm182

(Ren et al., 2019; Jin et al., 2020), genetic algo-183

rithm (Alzantot et al., 2018), and particle swarm184

optimization (Zang et al., 2020). The other attack185

setting assumes the attackers can only obtain deci-186

sions from victim models, which is more challeng-187

ing and less studied. Maheshwary et al. (2021) first188

substitutes some words in the input sentences to flip189

the labels and then conducts a search based on a ge-190

netic algorithm, expecting to find the most semantic191

preserved adversarial samples. Chen et al. (2021)192

propose a learnable attack agent trained by imita-193

tion learning to perform a decision-based attack.194

There also exist some works exploring sentence-195

level transformation, including syntax (Iyyer et al.,196

2018) and text style (Qi et al., 2021), to launch197

attack.198

Note that although we apply gradient-based199

methods, the gradients we employ to generate the200

perturbations are obtained from the local model201

rather than the victim model. We only have access202

to the decisions of victim models. Therefore, we203

consider our method as a decision-based black-box204

attack.205

3 Framework206

In this section, we first present an overview of our207

framework, and next, we will give the details of208

how to add continuous perturbations and recon-209

struct the text.210

3.1 Overview211

Next, we present an overview of our gradient-212

based textual adversarial attack framework under213

the encoder-decoder architecture (See Figure 2).214

Specifically, a local BERT model fine-tuned on215

our local dataset is applied to encode each discrete216

text instance into continuous token embeddings217
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Figure 2: Overview of our framework. Continuous per-
turbations (ri) are calculated as gradients of the loss
function with respect to token embeddings. The MLM
head is employed to decode the perturbed hidden states
to obtain potential adversarial samples.

with gradient-based perturbations, and then the 218

added perturbations may be amplified through the 219

forward propagation process. The final perturbed 220

latent representations is decoded with an MLM- 221

head to generate candidate adversarial samples. 222

With the help of our proposed framework, it is 223

easier to adapt various gradient-based adversarial 224

attach methods in CV for textual adversarial sam- 225

ples generation. In this paper, we take account of 226

PGD (Madry et al., 2019) to obtain gradient-based 227

perturbations for generation (See Section 4). 228

3.2 Latent-space Perturbation 229

Previous work has shown that the latent represen- 230

tations of transformer-based pre-trained language 231

models are effective in providing semantic and syn- 232

tactic features (Clark et al., 2019; Jawahar et al., 233

2019), and thus we use a local BERT model fine- 234

tuned on our local dataset as the encoder for our 235

framework. 236

For each text input, we first calculate the task- 237

specific loss in the forward propagation process, 238

and then perform backward propagation to obtain 239

the gradients of the loss with respect to the token 240

embeddings of the input text. The generated gra- 241

dients are viewed as the information for updating 242

the perturbations added to the token embeddings, 243

which can be obtained by solving an optimization 244

problem as follows: 245

δ = arg max
δ:‖δ‖2≤ε

L (E + δ, y; θ) , (1) 246
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where δ is the perturbation, E stands for the em-247

beddings of input tokens, y is the golden label, θ248

denotes current parameters of our local model, and249

L (·) is the loss function.250

The closed-form solution to the optimization251

problem is hard to directly obtain (Goodfellow252

et al., 2015), which is thus relaxed to obtain an253

approximate solution. For example, various meth-254

ods in CV usually linearize the loss function with255

gradient information to approximate the perturba-256

tions δ (Goodfellow et al., 2015; Kurakin et al.,257

2017; Madry et al., 2019).258

In NLP, most existing gradient-based methods259

commonly employ first-order approximation to ob-260

tain substitution words (Cheng et al., 2019; Be-261

hjati et al., 2019; Xu and Du, 2020). However,262

these one-off approaches may result in large step263

size perturbations, violating the hypothesis of local264

linearization (See Figure 3). To ensure the local265

linearization hypothesis, we consider adjusting the266

continuous perturbations added to the token embed-267

dings with a minor change at each step, and then268

iteratively update the token embeddings of the in-269

put instance with the perturbations until generating270

a meaningful adversarial sample for attacking.271

3.3 Reconstruction272

By means of continuous perturbations, we need to273

reconstruct the meaningful adversarial text from274

the optimized token embeddings. The MLM-head275

is observed to be able to reconstruct input sentences276

from hidden states in middle layers with high ac-277

curacy, even after models have been fine-tuned on278

specific tasks (Kao et al., 2021). Inspired by this,279

we adopt the MLM-head as the decoder for: 1)280

MLM-head is capable of interpreting any repre-281

sentation embeddings in the hidden space, which282

is crucial to search adversarial examples continu-283

ously; 2) MLM-head has been fully trained during284

the pre-trained stage so it acquires linguistic knowl-285

edge together with the language model and can286

reconstruct sentences considering the contextual287

information.288

Without loss of generality, we take an exam-289

ple in Figure 3 to illustrate the discrepancy be-290

tween the one-off based attack models and our pro-291

posed iterative-attack based model. One-off attack292

models prone to choose the token b to serve as293

the substitute of token a because cos(
−→
at1,
−→
ab) <294

cos(
−→
at1,
−→ac). However, in our framework, the one-295

step perturbation
−→
at1 does not cross the decoding296
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Figure 3: The process of searching for the substitute
token of the original instance a in the hidden space. In
this case, the one-off attack models are prone to select
token b after one-step perturbation (left), while our iter-
ative perturbation based method is more likely to find
the optimal solution token c (right).

boundary, and thus the decoding results remain un- 297

changed if only using one-step perturbation. Based 298

on the iterative search, the perturbations can be 299

accumulated to the extent to cross the decision 300

boundary and reach the transition point t3, which 301

will be decoded as the optimal solution c. Then a 302

is replaced by c to obtain the adversarial sample to 303

query the victim model for its decision. If this ad- 304

versarial sample fails to fool the victim model, we 305

start the next searching iteration from the current 306

perturbed token embedding, i.e. t3 in Figure 3, but 307

not from the embedding of the decoded token c. By 308

exploiting virtual embeddings as transition points, 309

this iterative attack framework can preserve accu- 310

mulated gradient information and avoid breaking 311

local linearization assumptions. 312

4 Method 313

We denote each sample as a pair of instance, i.e., 314

(x ∈ X , y ∈ Y), where x denotes the input text, y 315

denotes its corresponding label. In particular, the 316

hidden state of x is regarded as ~h and the neural 317

network is implied by a mapping function f , which 318

consists of three components, i.e., f0, f1 and f2, 319

holding: 320

f (x) = f2 (f1 (f0 (x))) , (2) 321

where f0 is the embedding layer, f1 denotes the hid- 322

den layers that map embeddings to hidden states of 323

a certain layer, and f2 denotes the rest of the neural 324

network. Then the forward propagation process 325

can be described as: 326

e = f0 (x) , h = f1 (e) , y = f2 (h) (3) 327
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4.1 T-PGD Algorithm328

We instantiate our framework with PGD (Madry329

et al., 2019) algorithm, and name our attack model330

as Textual-PGD (T-PGD). The algorithm flow of331

T-PGD is shown in Appendix A. To solve the opti-332

mization problem in Eq. (1), we iteratively search333

the optimal solution by adding the gradient-based334

perturbations to the token embeddings with the fol-335

lowing formula:336

gadv = ∇δL (E, y; θ)

δi+1 = Proj (δi + αgadv/‖gadv‖F ) ,
(4)337

where gadv is the gradient of the loss with respect to338

the continuous perturbation δ, α is the step size of339

δ, and i denotes the current iteration step. Proj (·)340

performs a re-initialization when δ reaches beyond341

the ε-neighborhood of the original embedding.342

For each sample, we first map it to the token343

embeddings, where continuous perturbations can344

be added to. After obtaining the gradient of the345

loss function with respect to the token embeddings346

in (i+1)-th iteration, perturbations δi+1 are gener-347

ated according to Eq. (4) and then added to the348

token embeddings. Then the perturbations are am-349

plified through the forward propagation process350

(Goodfellow et al., 2015). Next, the hidden sates351

with perturbations is decoded for reconstructing the352

crafted adversarial samples:353

advi+1 = Dec(hi+1), (5)354

where advi+1 denotes the adversarial sample ob-355

tained in the i + 1 iteration. We query the victim356

model only when advi+1 satisfying: (1) it varies357

from adv0 to advi; (2) it is more similar to the orig-358

inal sentences, compared to previous potential ad-359

versarial samples. Here we employ the USE score360

to measure the similarity between sentences. If at-361

tack succeeds and USE(advi+1, x) > T , where T362

is a tunable threshold for USE score, then advi+1 is363

considered as the adversarial sample of the original364

input. For each sample, the maximum iteration of365

the searching process is pre-defined to avoid the366

infinite loop problem.367

4.2 Heuristic Strategies368

4.2.1 Random Masking for Diversity369

To enhance the diversity of adversarial samples, we370

randomly mask one token in each input sentence371

to random initialize the searching for a broader372

searching scope. Specifically, we tokenize x to a373

list of tokens, xtoken = [x0, ..., xi, ..., xn]. Then 374

we randomly select i-th index token using the uni- 375

form distribution and replace it with a special to- 376

ken [MASK]. Next, the MLM-head-based decoder 377

will predict the masked word according to its con- 378

text, which will diversify the generated adversarial 379

samples with semantically consistent consideration. 380

Then, these processed sentences are embedded into 381

continuous token embeddings as mentioned. 382

4.2.2 Input Reconstruction Task 383

Intuitively, the quality of generated adversarial sam- 384

ples is largely affected by the reconstruction accu- 385

racy of the MLM-head-based decoder. If failing 386

to recover the original sentence even no pertur- 387

bations are added, its capacity to generate fluent 388

adversarial samples from perturbed hidden states 389

is limited. To reduce the risk of a catastrophic drop 390

in the quality of adversarial samples generated by 391

continuous perturbation, external constraints on 392

the MLM-head-based decoder should be consid- 393

ered to ensure reconstruction accuracy. Note that 394

the MLM-head has been pre-trained to precisely 395

fill the masked word, which is also fitted to our 396

task. We add an additional loss term to force the 397

added perturbations to minimize the loss of input 398

reconstruction task, which will be optimized si- 399

multaneously with the adversarial loss so that the 400

adversarial samples can fool the models with mini- 401

mal perturbations. Specifically, the loss function is 402

defined with two components: 403

L (E, y; θ) = L1 (E, y; θ) + βL2 (E, y; θ) , (6) 404

where L1 (E, y; θ) is the original loss of the local 405

model on specific tasks (e.g. CE loss in sentiment 406

classification), L2 (E, y; θ) is the cross-entropy 407

loss of the input reconstruction task, and β is a 408

weighting constant. Note that we aim to reduce 409

the decoding loss L2 while increasing L (E, y; θ) 410

along the gradient direction, so β should be nega- 411

tive. Taking two losses into account jointly, we can 412

adjust the perturbation searching target on success- 413

fully fooling the victim models with fewer modifi- 414

cations. 415

4.2.3 Antonym Filtering 416

Li et al. (2019) reports that semantically opposite 417

words are quite close in their representation em- 418

beddings since antonyms usually appear in similar 419

contexts. Therefore, we filter antonyms of original 420

words using WordNet (Fellbaum, 2010) to prevent 421

from crafting invalid adversarial samples. 422
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Dataset #Class Train Test Avg Len BERT Acc RoBERTa Acc ALBERT Acc
SST-2 2 7K 1.8K 16.5 89.9 94.2 92.8
MNLI 3 433K 10K 31.7 82.8 83.6 82.3

AG’s News 4 30K 1.9K 39.3 91.2 94.7 94.2

Table 1: Detailed information of datasets and original accuracy of victim models.

Dataset Model BERT RoBERTa ALBERT
ASR% USE ∆I ∆PPL ASR% USE ∆I ∆PPL ASR% USE ∆I ∆PPL

SST-2

PWWS 75.12 0.83 0.29 533.86 77.03 0.82 0.41 837.7 72.00 0.82 0.40 531.85
Textfooler 85.36 0.81 0.33 480.14 87.28 0.82 0.32 924.09 72.68 0.79 0.25 706.83

PSO 85.60 0.75 0.10 501.12 85.50 0.74 0.09 479.27 91.49 0.77 0.14 397.77
BERT-Attack 90.36 0.81 0.51 378.79 93.53 0.88 0.45 387.95 92.43 0.79 0.81 348.37

GBDA 57.19 0.64 0.42 186.21 58.05 0.64 0.22 27.45 54.31 0.64 0.47 153.94
TPGD 97.00 0.92 0.62 343.65 94.75 0.89 0.63 302.70 93.59 0.90 0.69 291.00

MNLI

PWWS 75.12 0.83 0.34 516.95 71.65 0.84 0.3 715.42 45.88 0.77 4.17 744.49
Textfooler 72.34 0.83 0.31 780.8 77.27 0.87 0.3 640.21 82.47 0.81 0.31 854.73

PSO 75.85 0.8 0.11 481.43 76.08 0.80 0.11 411.12 89.41 0.79 0.22 424.48
BERT-Attack 87.68 0.87 0.55 484.27 91.26 0.89 0.23 604.22 89.65 0.89 0.25 456.31

GBDA 61.28 0.67 0.08 265.38 59.31 0.67 0.12 316.18 62.65 0.67 0.10 288.37
TPGD 93.96 0.92 -0.95 296.82 94.55 0.91 -0.97 261.62 94.65 0.93 -0.98 259.57

AG’s News

PWWS 65.46 0.84 0.65 394.28 54.70 0.84 0.82 491.48 48.53 0.84 4.71 476.81
Textfooler 88.71 0.81 0.61 454.13 78.25 0.82 0.59 372.9 73.21 0.84 1.32 367.66

PSO 66.22 0.79 0.25 539.25 64.63 0.79 0.29 508.76 76.37 0.84 0.15 282.73
BERT-Attack 81.25 0.84 0.48 431.47 82.58 0.85 0.07 307.74 91.28 0.81 2.52 289.52

GBDA 77.66 0.69 -0.16 85.69 68.97 0.69 -0.59 96.95 66.67 0.73 0.20 54.91
TPGD 94.47 0.75 -0.05 625.08 99.30 0.87 -1.42 285.12 99.24 0.87 -1.14 260.64

Table 2: The results of automatic evaluation metrics on SST-2, MNLI, and AG’s News. ASR denotes the attack
success rate, USE denotes the similarity of original and adversarial samples, ∆I and ∆PPL denotes the increase
of grammar errors and perplexity. We conduct Student’s t-tests to measure the significant difference. Bold num-
bers indicate significant advantage with p-value 0.05 as the threshold and underline numbers mean no significant
difference.

5 Experiments423

We conduct comprehensive experiments to evaluate424

our general framework and T-PGD algorithm on425

the task of sentiment analysis, natural language in-426

ference, and news classification. We consider both427

automatic and human evaluations to analyze our428

method in terms of attack performance, semantic429

consistency, and grammaticality.430

5.1 Datasets and Victim Models431

For sentiment analysis, we choose SST-2 (Socher432

et al., 2013), a binary sentiment classification433

benchmark dataset. For natural language inference,434

we choose the mismatched MNLI (Williams et al.,435

2018) dataset. For news classification, we choose436

AG’s News (Zhang et al., 2015) multi-classification437

datasets with four categories: World, Sports, Busi-438

ness, and Science/Technology. We randomly sam-439

ple 1,000 samples that models can classify correctly440

from the test set and perform adversarial attacks on441

those samples.442

For each dataset, we evaluate T-PGD by attack-443

ing BERT (Devlin et al., 2019), RoBERTa (Liu444

et al., 2019), and ALBERT (Lan et al., 2020) with445

a local fine-tuned BERT model to generate poten- 446

tial adversarial samples. Details of datasets and 447

the original accuracy of victim models are listed in 448

Table 1. 449

5.2 Experimental Setting 450

Baseline Methods. We select four strong score- 451

based attacks as baselines: (1) PWWS (Ren et al., 452

2019); (2) Textfooler (Jin et al., 2020); (3) PSO 453

(Zang et al., 2020); (4) BERT-Attack (Li et al., 454

2020). Note that all of them require the confi- 455

dence scores of victim models, while our model 456

only assumes the decisions are available, which 457

is more challenging. We also make a comparison 458

with GBDA (Guo et al., 2021). 459

Evaluation Metrics. We evaluate our method 460

considering the attack success rate and adversarial 461

samples quality. (1) Attack Success Rate (ASR) 462

is the proportion of adversarial samples that suc- 463

cessfully mislead victim models’ predictions. (2) 464

Quality of adversarial samples is evaluated by two 465

automatic metrics and human evaluation, includ- 466

ing their semantic consistency, grammaticality, and 467

fluency. Specifically, we use Universal Sentence 468

Encoder (Cer et al., 2018) to compute the semantic 469
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similarity between the original text and the corre-470

sponding adversarial sample, Language-Tool1 to471

calculate the increase of grammar errors, and GPT-472

2 (Radford et al., 2019) to compute the perplexity473

of adversarial samples as a measure of fluency. We474

also conduct a human evaluation to measure the475

validity and quality of adversarial samples.476

5.3 Experimental Results477

The results of automatic evaluation metrics are478

listed in Table 2.479

Attack Performance. T-PGD consistently out-480

performs the strong score-based attack methods481

considering the attack success rate. We attribute482

the success of our attack method to the more effec-483

tive searching process following the guidance of484

the gradient information.485

Adversarial Sample Quality. We observe that486

the quality of the adversarial samples generated by487

T-PGD increases with the text length. Our adver-488

sarial samples yield overall higher USE scores than489

baseline models. Although our method’s gram-490

matical performance is not optimal on SST-2 that491

mostly contains shorter text (See Table 1), the ad-492

versarial samples crafted by our method on MNLI493

and AG’s News have the fewest grammatical er-494

rors and the lowest perplexity, since the embedding495

space of longer text is broader and has a better496

optimal solution.497

5.4 Human Evaluations498

To further study the quality and validity of adver-499

sarial samples, we randomly selected 100 original500

SST-2 sentences and 100 adversarial samples from501

the SOTA baseline BERT-Attack and T-PGD re-502

spectively for human evaluation. Following (Li503

et al., 2020), we shuffle the 300 samples and ask 3504

independent human judges to evaluate the quality505

(300 samples per person). For semantic consistency506

evaluation, we ask humans to predict the labels507

of mixed texts. For grammar and fluency, human508

judges score from 1 to 5 on the above examples.509

All annotators have no knowledge about the source510

of text, and all their evaluation results are averaged511

(shown in Table 3).512

Semantic Consistency. Since human judges513

have high accuracy on the original text, the predic-514

tion results on texts can be regarded as the ground515

1https://github.com/jxmorris12/
language_tool_python

Source Accuracy Grammar & Fluency
Original 0.92 4.63

BERT-Attack 0.48 3.41
T-PGD 0.68 3.52

Table 3: Human evaluation on SST-2 in terms of pre-
diction accuracy, grammar correctness, and fluency.

Model
T-PGD Random

ASR USE ASR USE
BERT 97.00 0.92 47.48 0.79

RoBERTa 94.75 0.89 56.59 0.79
ALBERT 93.59 0.90 51.36 0.79

Table 4: Ablation results of gradient information on
SST-2. Random corresponds to adding random pertur-
bations to the embeddings.

truth labels. Therefore, human accuracy can be a 516

criterion for semantic consistency between original 517

sentences and adversarial ones. From the results, 518

human judges achieve 0.68 accuracy on adversar- 519

ial samples crafted by T-PGD, significantly higher 520

than the baseline method. This result verifies that 521

the adversarial samples crafted by T-PGD have a 522

better semantic consistency. 523

Grammar and Fluency. We can also conclude 524

from Table 3 that adversarial samples crafted by 525

T-PGD have better quality compared to the base- 526

line method considering the grammar and fluency, 527

evaluated by human annotators. However, both 528

BERT-Attack and T-PGD suffer a decline in gram- 529

matical correctness and fluency of adversarial text, 530

leaving room for improvement in future research. 531

6 Further Analysis 532

6.1 Importance of Gradient Information 533

T-PGD employs the gradient of the loss function to 534

approximate the perturbations. To verify the effec- 535

tiveness of the gradient information, we conduct an 536

ablation experiment on SST-2 by adding only ran- 537

dom perturbations in the embedding space without 538

exploiting the gradient information. In detail, we 539

generate a Gaussian noise with the same mean and 540

variance as the random perturbations. The results 541

in Table 4 demonstrate the importance of exploiting 542

gradient directions in the perturbation generation. 543

6.2 Importance of Reconstruction Task 544

We show the importance of adding a reconstruc- 545

tion loss (L2 in Eq.( 6)) for generating more accu- 546

rate reconstructions. We conduct an ablation study 547

7

https://github.com/jxmorris12/language_tool_python
https://github.com/jxmorris12/language_tool_python


Figure 4: The curve of ASR and USE on SST-2 with β
changing.

on SST-2. The results are shown in Table 5. On548

all three victim models, the attack performances549

(ASR) improve while the quality of adversarial550

samples deteriorates, with USE score decreasing551

and grammar errors and perplexity increasing. This552

validates our claim that in the absence of recon-553

struction loss, the adversarial samples may mislead554

model predictions by breaking the semantics of the555

original text, leading to invalid adversarial attacks.556

We further tune β to study the trend of ASR and557

USE score. Results on BERT are shown in Figure558

4. We observe that as the absolute value of β in-559

creases, ASR continues to decline while USE score560

stops growing.561

Victim
T-PGD β=0

ASR USE ∆I PPL ASR USE ∆I PPL
BERT 97.00 0.92 0.62 343.65 100 0.79 1.45 875.64

RoBERTa 94.75 0.89 0.63 302.70 100 0.84 1.36 466.56
ALBERT 93.59 0.90 0.69 291.00 100 0.83 1.50 693.39

Table 5: Ablation results on the reconstruction loss.
β=0 denotes the setting without the reconstruction loss.

6.3 Transferability562

We investigate the transferability of adversarial ex-563

amples. We sample 1,000 samples from SST-2 and564

craft adversarial samples by T-PGD and baseline565

methods by attacking BERT. Then we test the at-566

tack success rate of these adversarial samples on567

RoBERTa to evaluate the transferability of adver-568

sarial samples. As seen in Table 6, adversarial569

samples crafted by T-PGD achieves the best trans-570

ferability performance.571

Method PWWS Textfooler PSO BERT-Attack TPGD
Transfer ASR 28.21 18.00 44.73 11.02 45.29

Table 6: The ASR on SST-2 of attacking RoBERTa us-
ing adversarial samples crafted on BERT.

6.4 Adversarial Training 572

We explore to enhance models’ robustness against 573

adversarial attacks through adversarial training on 574

SST-2 with BERT. Specifically, we first generate ad- 575

versarial samples using the original training dataset. 576

Then we fine-tune the BERT model using the train- 577

ing dataset augmented with generated adversarial 578

samples. We evaluate the model’s original accu- 579

racy on the test set and robustness against different 580

adversarial attack methods. As seen in Table 7, the 581

model shows generally better robustness through 582

adversarial training. Besides, the accuracy on the 583

test set is also improved from 89.90 to 90.48, which 584

is different from previous textual adversarial at- 585

tacks where accuracy is sacrificed for robustness 586

(Ren et al., 2019; Zang et al., 2020). 587

Ori Acc 89.90%
Adv.T Acc 90.48%

Method PWWS Textfooler PSO BERT-Attack T-PGD
Ori ASR 69.94 86.38 82.03 86.55 92.22

Adv.T ASR 66.78 87.41 73.34 84.84 83.78

Table 7: Results of adversarial training. Adv.T denotes
the adversarial training paradigm.

7 Conclusion and Future Work 588

In this paper, we propose a general framework to 589

adapt gradient-based adversarial attack methods 590

investigated in CV to NLP. In our framework, the 591

problem of searching textual adversarial samples 592

is transformed from the discrete text space to the 593

embedding layer, where continuous gradient-based 594

perturbations can be directly added to. The per- 595

turbations will be amplified in the forward propa- 596

gation process. Then an MLM-head is employed 597

to decode the perturbed latent representations. We 598

instantiate our framework with T-PGD to perform 599

a decision-based black-box attack. We conduct 600

extensive experiments to evaluate our framework 601

and T-PGD algorithm. Experimental results show 602

the superiority of our method in terms of attack 603

performance and adversarial samples quality. 604

In the future, we will adopt other gradient-based 605

methods in CV with our framework and explore 606

to improve models’ robustness through adversarial 607

training. Besides, we find that our framework is 608

quite general and can be employed to bridge the gap 609

between CV and NLP in many fields like backdoor 610

learning, membership inference, and counterfactual 611

samples generation. We will further explore in this 612

direction. 613
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Ethical Consideration614

In this section, we discuss the potential broader615

impact and ethical considerations of our paper.616

Intended Use. In this paper, we design a general617

framework to adapt existing gradient-based meth-618

ods in CV to NLP, and further, propose a decision-619

based textual attack method with impressive per-620

formance. Our motivations are twofold. First, we621

attempt to introduce adversarial attack methods of622

CV to NLP, since image attack methods have been623

well-explored and proved to be effective, therefore624

helping these two fields better share research re-625

sources hence accelerating the research process on626

both sides. Second, we hope to find insights about627

the interpretability and robustness of current black-628

box DNNs from our study.629

Potential Risk. There is a possibility that our at-630

tack methods may be used maliciously to launch631

adversarial attacks against off-the-shelf commer-632

cial systems. However, studies on adversarial at-633

tacks are still necessary since it is important for634

the research community to understand these pow-635

erful attack models before defending against these636

attacks.637

Energy Saving. We will public the settings of638

hyper-parameters of our method, to prevent people639

from conducting unnecessary tuning and help re-640

searchers to quickly reproduce our results. We will641

also release the checkpoints including all victim642

models to avoid repeated energy costs.643
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A T-PGD Algorithm851

The algorithm flow of T-PGD is shown in Algo-852

rithm 1.853

B Train on Different Datasets854

We explore the effectiveness of T-PGD when the855

local victim model is trained on the different dataset856

from the true victim model. Specifically, we train a857

local victim BERT model on IMDB and attack the858

victim model on SST-2. We compared the results859

with attacking with the local victim model trained860

on the same dataset as the true victim model (See861

Table 8. We can see that T-PGD can also achieve862

great attack performance, even the training dataset863

is different from the true victim model.864

Victim BERT-SST-2
Dataset ASR USE ∆I ∆PPL
SST-2 97.00 0.92 0.62 343.65
IMDB 93.30 0.90 0.70 204.18

Table 8: Results of attack performance. The local
model is fine-tuned on SST-2 and IMDB respectively.

C Ablation Study of Random Masking865

We conduct an ablation study of random masking.866

Our intuition is that random masking can broaden867

the searching scope of adversarial examples, and868

thus lead to diverse adversarial samples and higher869

attack success rate. To prove this, we attack BERT870

on SST-2, with and without our random masking871

strategy. Result are shown in Table 9.872

Model
w w/o

ASR USE ASR USE
BERT 97.00 0.92 92.20 0.91

Table 9: Ablation results of random masking on SST-2
against BERT.

D Trade-off between performance and873

efficiency874

Selection of Step Number. Users can make their875

trade-offs between ASR and efficiency when us-876

ing our model. The MaxStep in Algorithm 1877

determined the perturbation searching scope in878

embedding space, which contributes to the attack879

success rate as well as semantic coherence. Intu-880

itively, extending the searching scope boosts per-881

formance but costs more time. To determine the882

proper value range, we conduct experiments to883

study the statistic of step numbers when obtain- 884

ing final adversaries.Results on SST-2 with three 885

models are shown in Figure 5. We can observe 886

that most of the attacks finished before step 30. 887

Therefore, MaxStep = 50 is virtually enough for 888

an adequate search, and it can also be adjusted to 889

trade-off time costs and attack success rate. 890
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Algorithm 1 T-PGD
Require: Original input x sampled from X
Ensure: Adversary of x

1: Randomly mask one word in x
2: E0 = f (x)
3: AdvList=[]
4: for j < MaxIter do
5: for i < MaxStep do
6: gadv = ∇δL (Ei, y; θi)
7: δi+1 = Proj‖δ‖F≤ε (δi + αgadv/‖gadv‖F )
8: Ei+1 = Ei + δi+1

9: hi+1 = f1(Ei+1)
10: Advi+1 = Dec(hi+1)
11: θi+1 = θi - η·gadv
12: if Advi+1 not in AdvList then
13: Append Advi+1 to AdvList
14: Query victim model with Advi+1

15: if attack succeed and USE(Adv, Ori) > USE_GATE and no antonyms then
16: return Advi+1

17: end if
18: end if
19: end for
20: E0 = E0 + 1√

NE0

Uniform (−ε, ε)
21: end for

Figure 5: The statistic of perturbation step numbers when successfully obtaining final adversaries. The three
pictures represent results on BERT, RoBERTa, and ALBERT in turn.
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