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Abstract

Despite the success of recent deep learning
techniques, they still perform poorly on ad-
versarial examples with small perturbations.
While gradient-based adversarial attack meth-
ods are well-explored in the field of com-
puter vision, it is impractical to directly ap-
ply them in natural language processing due
to the discrete nature of the text. To address
the problem, we propose a unified framework
to extend the existing gradient-based method
to craft textual adversarial samples. In this
framework, gradient-based continuous pertur-
bations are added to the embedding layer and
amplified in the forward propagation process.
Then the final perturbed latent representations
are decoded with a mask language model head
to obtain potential adversarial samples. In
this paper, we instantiate our framework with
an attack algorithm named Textual Projected
Gradient Descent (T-PGD). We conduct com-
prehensive experiments to evaluate our frame-
work by performing transfer black-box attacks
on BERT, RoBERTa, and ALBERT on three
benchmark datasets. Experimental results
demonstrate that our method achieves an over-
all better performance and produces more flu-
ent and grammatical adversarial samples com-
pared to strong baseline methods. All the code
and data will be made public.

1 Introduction

Despite great success in real-world applications,
deep neural networks (DNNs) are still vulnerable
to adversarial samples, which are crafted by adding
small and human-imperceptible perturbations to
the inputs and can change the prediction label of
the victim model (Szegedy et al., 2014; Goodfellow
etal., 2015).

In the field of CV, numerous adversarial attack
methods have been proposed to evaluate the robust-
ness of DNNs (Papernot et al., 2016a; Madry et al.,
2019), and corresponding defense methods are also
well-explored (Papernot et al., 2016¢; Ross and
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Doshi-Velez, 2018). Adversarial attacks on images
are defined as an optimization problem of maxi-
mizing the loss function of the model on specific
samples, which can be approximated by gradient
ascent algorithms.

However, the textual adversarial attack is
more challenging due to the discrete and non-
differentiable nature of the text space. And the
methods that directly employ the gradients to craft
adversarial samples are not applicable in NLP. Cur-
rent practices of textual adversarial attacks that
employ first-order approximation to find substi-
tute words are less effective for one-off searching
and can violate the local linearization assumption
(Cheng et al., 2019; Behjati et al., 2019; Xu and
Du, 2020).

To bridge this gap, we propose a general frame-
work to adapt the existing gradient-based method
to NLP (See Figure 1). We successfully obtain
high-quality adversarial samples by conducting a
gradient-based search. Specifically, we employ the
gradient of the loss function concerning the em-
beddings of input tokens to make perturbations on
token embeddings rather than on the original text,
thus transforming the problem of searching for ad-
versarial samples from the discrete text space to



the continuous and differentiable embedding space.
This provides the basis for applying gradient-based
methods investigated in CV to craft textual adver-
sarial samples. In this paper, we adapt PGD (Madry
et al., 2019) algorithm within our framework to per-
form textual adversarial attacks, denoted as T-PGD.
We iteratively generate small perturbations follow-
ing the gradient information and add them to the
embedding layer. The forward propagation process
will amplify the perturbations(Goodfellow et al.,
2015).

Then we need to transform the perturbed latent
representations back to the discrete text. Although
there exist some works exploring the feasibility of
directly perturbing token embeddings (Sato et al.,
2018; Cheng et al., 2019; Behjati et al., 2019), they
simply obtain candidate words using the first-order
approximation of the gradient and break the local
linearization hypothesis. However, recent work
finds that the mask language modeling (MLM)
head can reconstruct input sentences from their
hidden states with high accuracy, even after models
have been fine-tuned on specific tasks (Kao et al.,
2021). Inspired by this, we employ an MLM head
to decode the perturbed latent representations. With
the extensive linguistic knowledge of MLM-head,
the coherence and grammaticality of adversarial
samples can be guaranteed.

We conduct comprehensive experiments to eval-
uate the effectiveness of our method by performing
transfer black-box adversarial attacks, where only
the final decisions of victim models are accessi-
ble, against three victim models on three bench-
mark datasets. We use a local pre-trained language
model to construct potential adversarial samples
and then query the victim models for decisions. Ex-
perimental results demonstrate the effectiveness of
our framework and T-PGD algorithm. Specifically,
T-PGD significantly outperforms all baseline meth-
ods in terms of attack success rate and produces
more fluent and grammatical adversarial examples.

To summarize, the main contributions of this
paper are as follows:

* We propose a general gradient-based textual ad-
versarial attack framework based on continuous
perturbations, bridging the gap between CV and
NLP on the study of adversarial attacks. Com-
mon gradient-based attack methods in CV can
be easily adapted to NLP within our framework.

* We propose a novel adversarial attack method
called T-PGD within our framework. We employ

a local model to construct adversarial samples by
iteratively adding perturbations to tokens’ em-
beddings, and accumulating these small pertur-
bations to search for potential adversarial sam-
ples.

* We successfully handle the challenge of black-
box attack where only the decisions of models
are accessible, which is rarely investigated in
NLP.

2 Related Work
2.1 Adversarial Attack in CV

In the field of computer vision, adding a small
amount of perturbations to input images to mis-
lead the classifier is possible (Szegedy et al., 2014).
Based on this observation, various adversarial at-
tack methods have been explored. FGSM (Good-
fellow et al., 2015) crafts adversarial samples using
the gradient of the model’s loss function to the in-
put images. BIM (Kurakin et al., 2017) straightfor-
wardly extends FGSM, iteratively applying adver-
sarial perturbations multiple times with a smaller
step size. MIM (Dong et al., 2018) exploits mo-
mentum when updating inputs, obtaining adversary
samples with superior quality. PGD (Madry et al.,
2019) employs uniform random noise as initializa-
tion. Both MIM and PGD are variants of BIM.

2.2 Adversarial Attack in NLP

Existing textual attack models can be roughly cate-
gorized into white-box and black-box attack mod-
els according to the accessibility to the victim mod-
els.

White-box attack methods, also known as
gradient-based attack methods, assume that the at-
tacker has full knowledge of the victim models, in-
cluding model structures and all parameters. There
are few application scenarios of white-box attacks
in real-world situations, so most white-box attack
models are explored to reveal the weakness of vic-
tim models, including universal adversarial triggers
(Wallace et al., 2019), fast gradient sign inspired
methods (Ebrahimi et al., 2018; Papernot et al.,
2016b). Although well explored in CV, these meth-
ods are not directly transferable to NLP due to the
discrete nature of the text. A recent work GBDA
(Guo et al., 2021) generates adversarial samples by
searching an adversarial distribution, optimizing
with a gradient-based algorithm that has been pre-
viously used in image adversarial attacks (Carlini
and Wagner, 2017).



Black-box attack models can be further divided
into two different attack settings, i.e. score-based
and decision-based. The first one assumes the at-
tacker can obtain the decisions and corresponding
confidence scores from victim models. Most re-
search works on black-box attacks focus on this
setting, exploring different word substitution meth-
ods and search algorithms to reduce the victim
models’ confidence scores. The word substitution
methods mainly focus on word embedding simi-
larity (Jin et al., 2020), WordNet synonyms (Ren
etal., 2019), HowNet synonyms (Zang et al., 2020),
and Masked Language Model (Li et al., 2020). The
search algorithms involve greedy search algorithm
(Ren et al., 2019; Jin et al., 2020), genetic algo-
rithm (Alzantot et al., 2018), and particle swarm
optimization (Zang et al., 2020). The other attack
setting assumes the attackers can only obtain deci-
sions from victim models, which is more challeng-
ing and less studied. Maheshwary et al. (2021) first
substitutes some words in the input sentences to flip
the labels and then conducts a search based on a ge-
netic algorithm, expecting to find the most semantic
preserved adversarial samples. Chen et al. (2021)
propose a learnable attack agent trained by imita-
tion learning to perform a decision-based attack.
There also exist some works exploring sentence-
level transformation, including syntax (Lyyer et al.,
2018) and text style (Qi et al., 2021), to launch
attack.

Note that although we apply gradient-based
methods, the gradients we employ to generate the
perturbations are obtained from the local model
rather than the victim model. We only have access
to the decisions of victim models. Therefore, we
consider our method as a decision-based black-box
attack.

3 Framework

In this section, we first present an overview of our
framework, and next, we will give the details of
how to add continuous perturbations and recon-
struct the text.

3.1 Overview

Next, we present an overview of our gradient-
based textual adversarial attack framework under
the encoder-decoder architecture (See Figure 2).
Specifically, a local BERT model fine-tuned on
our local dataset is applied to encode each discrete
text instance into continuous token embeddings
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Figure 2: Overview of our framework. Continuous per-

turbations (7;) are calculated as gradients of the loss

function with respect to token embeddings. The MLM

head is employed to decode the perturbed hidden states

to obtain potential adversarial samples.

with gradient-based perturbations, and then the
added perturbations may be amplified through the
forward propagation process. The final perturbed
latent representations is decoded with an MLM-
head to generate candidate adversarial samples.
With the help of our proposed framework, it is
easier to adapt various gradient-based adversarial
attach methods in CV for textual adversarial sam-
ples generation. In this paper, we take account of
PGD (Madry et al., 2019) to obtain gradient-based
perturbations for generation (See Section 4).

3.2 Latent-space Perturbation

Previous work has shown that the latent represen-
tations of transformer-based pre-trained language
models are effective in providing semantic and syn-
tactic features (Clark et al., 2019; Jawahar et al.,
2019), and thus we use a local BERT model fine-
tuned on our local dataset as the encoder for our
framework.

For each text input, we first calculate the task-
specific loss in the forward propagation process,
and then perform backward propagation to obtain
the gradients of the loss with respect to the token
embeddings of the input text. The generated gra-
dients are viewed as the information for updating
the perturbations added to the token embeddings,
which can be obtained by solving an optimization
problem as follows:

d =argmax L (E + 0,y;0), (1
8:[|8]l<e



where 0 is the perturbation, E stands for the em-
beddings of input tokens, ¥ is the golden label, 0
denotes current parameters of our local model, and
L (+) is the loss function.

The closed-form solution to the optimization
problem is hard to directly obtain (Goodfellow
et al., 2015), which is thus relaxed to obtain an
approximate solution. For example, various meth-
ods in CV usually linearize the loss function with
gradient information to approximate the perturba-
tions ¢ (Goodfellow et al., 2015; Kurakin et al.,
2017; Madry et al., 2019).

In NLP, most existing gradient-based methods
commonly employ first-order approximation to ob-
tain substitution words (Cheng et al., 2019; Be-
hjati et al., 2019; Xu and Du, 2020). However,
these one-off approaches may result in large step
size perturbations, violating the hypothesis of local
linearization (See Figure 3). To ensure the local
linearization hypothesis, we consider adjusting the
continuous perturbations added to the token embed-
dings with a minor change at each step, and then
iteratively update the token embeddings of the in-
put instance with the perturbations until generating
a meaningful adversarial sample for attacking.

3.3 Reconstruction

By means of continuous perturbations, we need to
reconstruct the meaningful adversarial text from
the optimized token embeddings. The MLM-head
is observed to be able to reconstruct input sentences
from hidden states in middle layers with high ac-
curacy, even after models have been fine-tuned on
specific tasks (Kao et al., 2021). Inspired by this,
we adopt the MLM-head as the decoder for: 1)
MLM-head is capable of interpreting any repre-
sentation embeddings in the hidden space, which
is crucial to search adversarial examples continu-
ously; 2) MLM-head has been fully trained during
the pre-trained stage so it acquires linguistic knowl-
edge together with the language model and can
reconstruct sentences considering the contextual
information.

Without loss of generality, we take an exam-
ple in Figure 3 to illustrate the discrepancy be-
tween the one-off based attack models and our pro-
posed iterative-attack based model. One-off attack
models prone to choose the token b to serve as
the substitute of token a because cos(m , J) <

— = .
cos(at, a¢). However, in our framework, the one-
step perturbation aty does not cross the decoding
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Figure 3: The process of searching for the substitute
token of the original instance a in the hidden space. In
this case, the one-off attack models are prone to select
token b after one-step perturbation (left), while our iter-
ative perturbation based method is more likely to find
the optimal solution token c (right).

boundary, and thus the decoding results remain un-
changed if only using one-step perturbation. Based
on the iterative search, the perturbations can be
accumulated to the extent to cross the decision
boundary and reach the transition point ¢3, which
will be decoded as the optimal solution c. Then a
is replaced by c to obtain the adversarial sample to
query the victim model for its decision. If this ad-
versarial sample fails to fool the victim model, we
start the next searching iteration from the current
perturbed token embedding, i.e. ¢3 in Figure 3, but
not from the embedding of the decoded token c. By
exploiting virtual embeddings as transition points,
this iterative attack framework can preserve accu-
mulated gradient information and avoid breaking
local linearization assumptions.

4 Method

We denote each sample as a pair of instance, i.e.,
(x € X,y € V), where x denotes the input text, y
denotes its corresponding label. In particular, the
hidden state of x is regarded as h and the neural
network is implied by a mapping function f, which
consists of three components, i.e., fy, f1 and fo,
holding:

f(x) = f2 (fr (fo (2))), 2

where fj is the embedding layer, f; denotes the hid-
den layers that map embeddings to hidden states of
a certain layer, and f> denotes the rest of the neural
network. Then the forward propagation process
can be described as:

e=fo(z),h=file),y=fa(h) )



4.1 T-PGD Algorithm

We instantiate our framework with PGD (Madry
et al., 2019) algorithm, and name our attack model
as Textual-PGD (T-PGD). The algorithm flow of
T-PGD is shown in Appendix A. To solve the opti-
mization problem in Eq. (1), we iteratively search
the optimal solution by adding the gradient-based
perturbations to the token embeddings with the fol-
lowing formula:

Gadv = V§L (Ea Y; 0)

. 4)
5i+1 = Proj (52 + O‘gadv/HgadeF) ’

where g,4, 1s the gradient of the loss with respect to
the continuous perturbation J, « is the step size of
0, and ¢ denotes the current iteration step. Proj (-)
performs a re-initialization when § reaches beyond
the e-neighborhood of the original embedding.

For each sample, we first map it to the token
embeddings, where continuous perturbations can
be added to. After obtaining the gradient of the
loss function with respect to the token embeddings
in (i+1)-th iteration, perturbations d; 1 are gener-
ated according to Eq. (4) and then added to the
token embeddings. Then the perturbations are am-
plified through the forward propagation process
(Goodfellow et al., 2015). Next, the hidden sates
with perturbations is decoded for reconstructing the
crafted adversarial samples:

adviy1 = Dec(hit1), &)

where adv; 1 denotes the adversarial sample ob-
tained in the ¢ + 1 iteration. We query the victim
model only when adv; 1 satisfying: (1) it varies
from advg to adv;; (2) it is more similar to the orig-
inal sentences, compared to previous potential ad-
versarial samples. Here we employ the USE score
to measure the similarity between sentences. If at-
tack succeeds and USE(advt1,x) > T, where T
is a tunable threshold for USE score, then adv;1 is
considered as the adversarial sample of the original
input. For each sample, the maximum iteration of
the searching process is pre-defined to avoid the
infinite loop problem.

4.2 Heuristic Strategies

4.2.1 Random Masking for Diversity

To enhance the diversity of adversarial samples, we
randomly mask one token in each input sentence
to random initialize the searching for a broader
searching scope. Specifically, we tokenize x to a

list of tokens, Ztoken = [T0, .-, Tiy ..., Tn). Then
we randomly select ¢-th index token using the uni-
form distribution and replace it with a special to-
ken [MASK]. Next, the MLM-head-based decoder
will predict the masked word according to its con-
text, which will diversify the generated adversarial
samples with semantically consistent consideration.
Then, these processed sentences are embedded into
continuous token embeddings as mentioned.

4.2.2 Input Reconstruction Task

Intuitively, the quality of generated adversarial sam-
ples is largely affected by the reconstruction accu-
racy of the MLM-head-based decoder. If failing
to recover the original sentence even no pertur-
bations are added, its capacity to generate fluent
adversarial samples from perturbed hidden states
is limited. To reduce the risk of a catastrophic drop
in the quality of adversarial samples generated by
continuous perturbation, external constraints on
the MLM-head-based decoder should be consid-
ered to ensure reconstruction accuracy. Note that
the MLM-head has been pre-trained to precisely
fill the masked word, which is also fitted to our
task. We add an additional loss term to force the
added perturbations to minimize the loss of input
reconstruction task, which will be optimized si-
multaneously with the adversarial loss so that the
adversarial samples can fool the models with mini-
mal perturbations. Specifically, the loss function is
defined with two components:

where L£; (E, y; 0) is the original loss of the local
model on specific tasks (e.g. CE loss in sentiment
classification), L2 (E,y;0) is the cross-entropy
loss of the input reconstruction task, and 3 is a
weighting constant. Note that we aim to reduce
the decoding loss Lo while increasing £ (E,y;6)
along the gradient direction, so 3 should be nega-
tive. Taking two losses into account jointly, we can
adjust the perturbation searching target on success-
fully fooling the victim models with fewer modifi-
cations.

4.2.3 Antonym Filtering

Li et al. (2019) reports that semantically opposite
words are quite close in their representation em-
beddings since antonyms usually appear in similar
contexts. Therefore, we filter antonyms of original
words using WordNet (Fellbaum, 2010) to prevent
from crafting invalid adversarial samples.



Dataset #Class Train Test Avg Len BERT Acc RoBERTa Acc ALBERT Acc
SST-2 2 7K 1.8K 16.5 89.9 94.2 92.8
MNLI 3 433K 10K 31.7 82.8 83.6 82.3
AG’s News 4 30K 1.9K 39.3 91.2 94.7 94.2
Table 1: Detailed information of datasets and original accuracy of victim models.
Dataset Model BERT RoBERTa ALBERT
ASR% USE AI APPL | ASR% USE Al APPL | ASR% USE AI  APPL
PWWS 75.12 0.83 0.29 533.86 77.03 0.82 041 837.7 72.00 0.82 040 531.85
Textfooler 85.36 0.81 0.33  480.14 87.28 0.82 0.32 924.09 72.68 0.79 025 706.83
SST-2 PSO 85.60 0.75 0.10 501.12 85.50 0.74  0.09 479.27 91.49 0.77 0.14 397.77
BERT-Attack 90.36 0.81 0.51 378.79 93.53 0.88 045 38795 92.43 0.79 0.81 348.37
GBDA 57.19 0.64 042 186.21 58.05 0.64 0.22 2745 54.31 0.64 047 153.94
TPGD 97.00 0.92 0.62 343.65 94.75 0.89 0.63 302.70 93.59 090 0.69 291.00
PWWS 75.12 0.83 034 51695 71.65 0.84 0.3 715.42 45.88 0.77 4.17 744.49
Textfooler 72.34 0.83 0.31 780.8 77.27 0.87 0.3 640.21 82.47 0.81 0.31 854.73
MNLI PSO 75.85 0.8 0.11 481.43 76.08 0.80 0.11 411.12 89.41 0.79 022 42448
BERT-Attack 87.68 0.87 0.55 484.27 91.26 0.89 0.23  604.22 89.65 0.89 025 456.31
GBDA 61.28 0.67 0.08 265.38 59.31 0.67 0.12 316.18 62.65 0.67 0.10 288.37
TPGD 93.96 0.92 -0.95 296.82 94.55 091 -097 261.62 | 94.65 093 -098 259.57
PWWS 65.46 0.84 0.65 394.28 54.70 0.84 0.82 49148 48.53 0.84 471 476.81
Textfooler 88.71 0.81 0.61 454.13 78.25 0.82 0.59 372.9 73.21 0.84 1.32  367.66
AG's News PSO 66.22 0.79 0.25 539.25 64.63 0.79 0.29 508.76 76.37 0.84 0.15 28273
BERT-Attack 81.25 0.84 048 43147 82.58 0.85 0.07 307.74 91.28 0.81 252 289.52
GBDA 77.66 0.69 -0.16 85.69 68.97 0.69 -0.59 96.95 66.67 0.73 0.20 5491
TPGD 94.47 0.75 -0.05 625.08 99.30 0.87 -142 285.12 99.24 0.87 -1.14 260.64

Table 2: The results of automatic evaluation metrics on SST-2, MNLI, and AG’s News. ASR denotes the attack
success rate, USE denotes the similarity of original and adversarial samples, Al and APPL denotes the increase
of grammar errors and perplexity. We conduct Student’s t-tests to measure the significant difference. Bold num-
bers indicate significant advantage with p-value 0.05 as the threshold and underline numbers mean no significant

difference.

S Experiments

We conduct comprehensive experiments to evaluate
our general framework and T-PGD algorithm on
the task of sentiment analysis, natural language in-
ference, and news classification. We consider both
automatic and human evaluations to analyze our
method in terms of attack performance, semantic
consistency, and grammaticality.

5.1 Datasets and Victim Models

For sentiment analysis, we choose SST-2 (Socher
et al.,, 2013), a binary sentiment classification
benchmark dataset. For natural language inference,
we choose the mismatched MNLI (Williams et al.,
2018) dataset. For news classification, we choose
AG’s News (Zhang et al., 2015) multi-classification
datasets with four categories: World, Sports, Busi-
ness, and Science/Technology. We randomly sam-
ple 1,000 samples that models can classify correctly
from the test set and perform adversarial attacks on
those samples.

For each dataset, we evaluate T-PGD by attack-
ing BERT (Devlin et al., 2019), RoBERTa (Liu
etal., 2019), and ALBERT (Lan et al., 2020) with

a local fine-tuned BERT model to generate poten-
tial adversarial samples. Details of datasets and
the original accuracy of victim models are listed in
Table 1.

5.2 Experimental Setting

Baseline Methods. We select four strong score-
based attacks as baselines: (1) PWWS (Ren et al.,
2019); (2) Textfooler (Jin et al., 2020); (3) PSO
(Zang et al., 2020); (4) BERT-Attack (Li et al.,
2020). Note that all of them require the confi-
dence scores of victim models, while our model
only assumes the decisions are available, which
is more challenging. We also make a comparison
with GBDA (Guo et al., 2021).

Evaluation Metrics. We evaluate our method
considering the attack success rate and adversarial
samples quality. (1) Attack Success Rate (ASR)
is the proportion of adversarial samples that suc-
cessfully mislead victim models’ predictions. (2)
Quality of adversarial samples is evaluated by two
automatic metrics and human evaluation, includ-
ing their semantic consistency, grammaticality, and
fluency. Specifically, we use Universal Sentence
Encoder (Cer et al., 2018) to compute the semantic



similarity between the original text and the corre-
sponding adversarial sample, Language-Tool! to
calculate the increase of grammar errors, and GPT-
2 (Radford et al., 2019) to compute the perplexity
of adversarial samples as a measure of fluency. We
also conduct a human evaluation to measure the
validity and quality of adversarial samples.

5.3 Experimental Results

The results of automatic evaluation metrics are
listed in Table 2.

Attack Performance. T-PGD consistently out-
performs the strong score-based attack methods
considering the attack success rate. We attribute
the success of our attack method to the more effec-
tive searching process following the guidance of
the gradient information.

Adversarial Sample Quality. We observe that
the quality of the adversarial samples generated by
T-PGD increases with the text length. Our adver-
sarial samples yield overall higher USE scores than
baseline models. Although our method’s gram-
matical performance is not optimal on SST-2 that
mostly contains shorter text (See Table 1), the ad-
versarial samples crafted by our method on MNLI
and AG’s News have the fewest grammatical er-
rors and the lowest perplexity, since the embedding
space of longer text is broader and has a better
optimal solution.

5.4 Human Evaluations

To further study the quality and validity of adver-
sarial samples, we randomly selected 100 original
SST-2 sentences and 100 adversarial samples from
the SOTA baseline BERT-Attack and T-PGD re-
spectively for human evaluation. Following (Li
et al., 2020), we shuffle the 300 samples and ask 3
independent human judges to evaluate the quality
(300 samples per person). For semantic consistency
evaluation, we ask humans to predict the labels
of mixed texts. For grammar and fluency, human
judges score from 1 to 5 on the above examples.
All annotators have no knowledge about the source
of text, and all their evaluation results are averaged
(shown in Table 3).

Semantic Consistency. Since human judges
have high accuracy on the original text, the predic-
tion results on texts can be regarded as the ground

"https://github.com/jxmorrisl2/
language_tool_python

Source Accuracy Grammar & Fluency
Original 0.92 4.63
BERT-Attack 0.48 3.41
T-PGD 0.68 3.52

Table 3: Human evaluation on SST-2 in terms of pre-
diction accuracy, grammar correctness, and fluency.

T-PGD Random
Model
ASR USE ASR USE
BERT 97.00 0.92 47.48 0.79
RoBERTa | 94.75 0.89 56.59 0.79
ALBERT | 93.59 0.90 51.36 0.79

Table 4: Ablation results of gradient information on
SST-2. Random corresponds to adding random pertur-
bations to the embeddings.

truth labels. Therefore, human accuracy can be a
criterion for semantic consistency between original
sentences and adversarial ones. From the results,
human judges achieve 0.68 accuracy on adversar-
ial samples crafted by T-PGD, significantly higher
than the baseline method. This result verifies that
the adversarial samples crafted by T-PGD have a
better semantic consistency.

Grammar and Fluency. We can also conclude
from Table 3 that adversarial samples crafted by
T-PGD have better quality compared to the base-
line method considering the grammar and fluency,
evaluated by human annotators. However, both
BERT-Attack and T-PGD suffer a decline in gram-
matical correctness and fluency of adversarial text,
leaving room for improvement in future research.

6 Further Analysis

6.1 Importance of Gradient Information

T-PGD employs the gradient of the loss function to
approximate the perturbations. To verify the effec-
tiveness of the gradient information, we conduct an
ablation experiment on SST-2 by adding only ran-
dom perturbations in the embedding space without
exploiting the gradient information. In detail, we
generate a Gaussian noise with the same mean and
variance as the random perturbations. The results
in Table 4 demonstrate the importance of exploiting
gradient directions in the perturbation generation.

6.2 Importance of Reconstruction Task

We show the importance of adding a reconstruc-
tion loss (Lo in Eq.( 6)) for generating more accu-
rate reconstructions. We conduct an ablation study
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Figure 4: The curve of ASR and USE on SST-2 with 3
changing.

on SST-2. The results are shown in Table 5. On
all three victim models, the attack performances
(ASR) improve while the quality of adversarial
samples deteriorates, with USE score decreasing
and grammar errors and perplexity increasing. This
validates our claim that in the absence of recon-
struction loss, the adversarial samples may mislead
model predictions by breaking the semantics of the
original text, leading to invalid adversarial attacks.
We further tune 5 to study the trend of ASR and
USE score. Results on BERT are shown in Figure
4. We observe that as the absolute value of [ in-
creases, ASR continues to decline while USE score
stops growing.

Vietim TPGD 5=0
ASR USE AI PPL | ASR USE AI  PPL

BERT |97.00 092 0.62 343.65| 100 0.79 145 875.64
RoBERTa | 9475 0.89 0.63 30270 | 100 0.84 136 466.56
ALBERT | 93.59 090 0.69 291.00 | 100 0.83 150 693.39

Table 5: Ablation results on the reconstruction loss.

[B=0 denotes the setting without the reconstruction loss.

6.3 Transferability

We investigate the transferability of adversarial ex-
amples. We sample 1,000 samples from SST-2 and
craft adversarial samples by T-PGD and baseline
methods by attacking BERT. Then we test the at-
tack success rate of these adversarial samples on
RoBERTa to evaluate the transferability of adver-
sarial samples. As seen in Table 6, adversarial
samples crafted by T-PGD achieves the best trans-
ferability performance.

Method PWWS  Textfooler PSO
Transfer ASR | 28.21 18.00 44.73 11.02

BERT-Attack  TPGD
45.29

Table 6: The ASR on SST-2 of attacking RoBERTa us-
ing adversarial samples crafted on BERT.

6.4 Adversarial Training

We explore to enhance models’ robustness against
adversarial attacks through adversarial training on
SST-2 with BERT. Specifically, we first generate ad-
versarial samples using the original training dataset.
Then we fine-tune the BERT model using the train-
ing dataset augmented with generated adversarial
samples. We evaluate the model’s original accu-
racy on the test set and robustness against different
adversarial attack methods. As seen in Table 7, the
model shows generally better robustness through
adversarial training. Besides, the accuracy on the
test set is also improved from 89.90 to 90.48, which
is different from previous textual adversarial at-
tacks where accuracy is sacrificed for robustness
(Ren et al., 2019; Zang et al., 2020).

Ori Acc 89.90%
Adv.T Acc 90.48 %
Method PWWS | Textfooler | PSO | BERT-Attack | T-PGD
Ori ASR 69.94 86.38 82.03 86.55 92.22
Adv.T ASR | 66.78 87.41 73.34 84.84 83.78

Table 7: Results of adversarial training. Adv.T denotes
the adversarial training paradigm.

7 Conclusion and Future Work

In this paper, we propose a general framework to
adapt gradient-based adversarial attack methods
investigated in CV to NLP. In our framework, the
problem of searching textual adversarial samples
is transformed from the discrete text space to the
embedding layer, where continuous gradient-based
perturbations can be directly added to. The per-
turbations will be amplified in the forward propa-
gation process. Then an MLM-head is employed
to decode the perturbed latent representations. We
instantiate our framework with T-PGD to perform
a decision-based black-box attack. We conduct
extensive experiments to evaluate our framework
and T-PGD algorithm. Experimental results show
the superiority of our method in terms of attack
performance and adversarial samples quality.

In the future, we will adopt other gradient-based
methods in CV with our framework and explore
to improve models’ robustness through adversarial
training. Besides, we find that our framework is
quite general and can be employed to bridge the gap
between CV and NLP in many fields like backdoor
learning, membership inference, and counterfactual
samples generation. We will further explore in this
direction.



Ethical Consideration

In this section, we discuss the potential broader
impact and ethical considerations of our paper.

Intended Use. In this paper, we design a general
framework to adapt existing gradient-based meth-
ods in CV to NLP, and further, propose a decision-
based textual attack method with impressive per-
formance. Our motivations are twofold. First, we
attempt to introduce adversarial attack methods of
CV to NLP, since image attack methods have been
well-explored and proved to be effective, therefore
helping these two fields better share research re-
sources hence accelerating the research process on
both sides. Second, we hope to find insights about
the interpretability and robustness of current black-
box DNNs from our study.

Potential Risk. There is a possibility that our at-
tack methods may be used maliciously to launch
adversarial attacks against off-the-shelf commer-
cial systems. However, studies on adversarial at-
tacks are still necessary since it is important for
the research community to understand these pow-
erful attack models before defending against these
attacks.

Energy Saving. We will public the settings of
hyper-parameters of our method, to prevent people
from conducting unnecessary tuning and help re-
searchers to quickly reproduce our results. We will
also release the checkpoints including all victim
models to avoid repeated energy costs.
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A T-PGD Algorithm

The algorithm flow of T-PGD is shown in Algo-
rithm 1.

B Train on Different Datasets

We explore the effectiveness of T-PGD when the
local victim model is trained on the different dataset
from the true victim model. Specifically, we train a
local victim BERT model on IMDB and attack the
victim model on SST-2. We compared the results
with attacking with the local victim model trained
on the same dataset as the true victim model (See
Table 8. We can see that T-PGD can also achieve
great attack performance, even the training dataset
is different from the true victim model.

Victim BERT-SST-2

Dataset ASR USE AI APPL

SST-2 97.00 0.92 0.62 343.65

IMDB 93.30 0.90 0.70 204.18
Table 8: Results of attack performance. The local

model is fine-tuned on SST-2 and IMDB respectively.

C Ablation Study of Random Masking

We conduct an ablation study of random masking.
Our intuition is that random masking can broaden
the searching scope of adversarial examples, and
thus lead to diverse adversarial samples and higher
attack success rate. To prove this, we attack BERT
on SST-2, with and without our random masking
strategy. Result are shown in Table 9.

w/o
ASR USE
92.20 0.91

\
ASR USE
97.00 0.92

Model

BERT

Table 9: Ablation results of random masking on SST-2
against BERT.

D Trade-off between performance and
efficiency

Selection of Step Number. Users can make their
trade-offs between ASR and efficiency when us-
ing our model. The MaxStep in Algorithm 1
determined the perturbation searching scope in
embedding space, which contributes to the attack
success rate as well as semantic coherence. Intu-
itively, extending the searching scope boosts per-
formance but costs more time. To determine the
proper value range, we conduct experiments to
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study the statistic of step numbers when obtain-
ing final adversaries.Results on SST-2 with three
models are shown in Figure 5. We can observe
that most of the attacks finished before step 30.
Therefore, M axStep = 50 is virtually enough for
an adequate search, and it can also be adjusted to
trade-off time costs and attack success rate.
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Algorithm 1 T-PGD

Require: Original input x sampled from X
Ensure: Adversary of

1: Randomly mask one word in x

2 Ey=f(z)

3: AdvList=[]

4: for j < Maxlter do

5 for i < MaxStep do

6: Jadv = Vs L (Ei, y;0;)

7: bi+1 = Projys| < (6 + @Gadv/ || gadvl )

3

9

Eip1=Ei+ i1
: hiv1i = fi(Eiy1)
10: Advi+1 = Dec(hi_H)

11: i1 =0i - N Gadv

12: if Adv;;1 not in AdvList then

13: Append Adv; 1 to AdvList

14: Query victim model with Adv;4

15: if attack succeed and USE(Adv, Ori) > USE_GATE and no antonyms then
16: return Adv;

17: end if

18: end if

19: end for

20: Eg=FEy+ \/;[TUm'form (—¢,¢)
0

21: end for

120 140
100

100 120

100
80
80
60
40
40
: : Ml
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Perturbation Accumulate Step Perturbation Accumulate Step Perturbation Accumulate Step

Count
Count

o
o

N
o

Figure 5: The statistic of perturbation step numbers when successfully obtaining final adversaries. The three
pictures represent results on BERT, RoBERTa, and ALBERT in turn.
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