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Abstract
Score-based generative models (SGMs) learn a
family of noise-conditional score functions cor-
responding to the data density perturbed with
increasingly large amounts of noise. These
perturbed data densities are linked together by
the Fokker-Planck equation (FPE), a partial dif-
ferential equation (PDE) governing the spatial-
temporal evolution of a density undergoing a dif-
fusion process. In this work, we derive a cor-
responding equation called the score FPE that
characterizes the noise-conditional scores of the
perturbed data densities (i.e., their gradients). Sur-
prisingly, despite the impressive empirical perfor-
mance, we observe that scores learned through
denoising score matching (DSM) fail to fulfill the
underlying score FPE, which is an inherent self-
consistency property of the ground truth score.
We prove that satisfying the score FPE is desir-
able as it improves the likelihood and the degree
of conservativity. Hence, we propose to regular-
ize the DSM objective to enforce satisfaction of
the score FPE, and we show the effectiveness of
this approach across various datasets.

1. Introduction
Score-based generative models (SGMs), also referred to as
diffusion models (Sohl-Dickstein et al., 2015; Song & Er-
mon, 2019; Ho et al., 2020; Song et al., 2020b;a), have led to
major advances in the generation of synthetic images (Dhari-
wal & Nichol, 2021; Saharia et al., 2022; Rombach et al.,
2022; Kim et al., 2022) and audio (Kong et al., 2020). In
addition, SGMs have been applied to various downstream
tasks such as media content editing (Meng et al., 2021b;
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Cheuk et al., 2022), or restoration (Kawar et al., 2022; Saito
et al., 2022; Murata et al., 2023). An SGM involves a
stochastic forward and backward process. In the forward
process, also known as the diffusion process, noise with
gradually increasing variances is added to each data point
until the original structure is lost, transforming data into
pure noise. The backward process attempts to reverse the
diffusion process by using a neural network (called a noise-
conditional score model) that is trained to gradually denoise
the data, effectively transforming pure noise into clean data
samples. The neural network is trained with a denoising
score matching objective (Hyvärinen & Dayan, 2005; Vin-
cent, 2011) to estimate the score (i.e., the gradient of the
log-likelihood function) of the data density perturbed with
various amounts of noise (as in forward process).

The training can be interpreted as a joint estimation of the
scores of the original data density and all its perturbations.
Crucially, all these densities are closely related to each other,
as they correspond to the same data density perturbed with
various amounts of noise. With sufficiently small time steps,
the forward process is a diffusion (Song et al., 2020b) and
the spatial-temporal evolution of the data density is thus
governed by the classic Fokker-Planck partial differential
equation (PDE) (Øksendal, 2003). In principle, this implies
that with knowledge of the density for a single noise level,
we could recover all the densities by solving the Fokker-
Planck equation (FPE) without any additional learning.

Our contributions Building on the above notions, we de-
rive an associated system of PDEs that characterizes the
evolution of the scores (i.e., gradients) of the perturbed data
densities; we term it as score Fokker-Planck equation (score
FPE). In theory, the ground truth scores of the perturbed
data densities must satisfy the score FPE (self-consistency
property). Hence, we mathematically study the implica-
tions of satisfying the score FPE. We prove the following
effects of reducing the score FPE error: (a) improvement
in the log-likelihood of the probability flow ordinary differ-
ential equation (ODE) diffusion mode (Song et al., 2020b),
(Theorems 4.2 and 4.3); and (b) improvement in the degree
of conservativity of the models (Proposition 4.4). In addi-
tion, we prove that (c) score FPE error reduction can be
achieved by enforcing higher-order score matching (Meng
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et al., 2021a; Lu et al., 2022) (Proposition 4.6). In practice,
we observe that many existing, pre-trained score models
do not numerically satisfy the score FPE. Therefore, we
propose a new loss function for training diffusion models by
combining the traditional score matching objective with a
regularization term derived from the underlying score FPE
to enforce the consistency of models. Our proposed new
method is called FP-Diffusion. We show that FP-Diffusion
enables more accurate density estimation on synthetic data
and improves the likelihood on the MNIST, Fashion MNIST,
CIFAR-10 and ImageNet32 (ImageNet downsampled to
32× 32) (Chrabaszcz et al., 2017) datasets.

2. Background
Song et al. (2020b) unified denoising score matching (Song
& Ermon, 2019) and diffusion probabilistic models (Sohl-
Dickstein et al., 2015; Ho et al., 2020) via a stochastic
process x(t) with continuous time t ∈ [0, T ]. The process
is driven by the following forward SDE

dx(t) = f(x(t), t)dt+ g(t)dwt, (1)

where f(·, t) : RD → RD, g(·) : R → R are pre-assigned1

and wt is a standard Wiener process. Under moderate con-
ditions (Anderson, 1982), a reverse time SDE from T to 0
can be obtained as

dx(t) = [f(x(t), t)− g2(t)∇x log qt(x(t))]dt+ g(t)dw̄t,
(2)

where w̄t is a standard Wiener process in reverse time,
and qt(x) denotes the ground truth marginal density of
x(t) following Eq. (1). We can train a time-conditional
neural network sθ = sθ(x, t) to approximate ∇x log qt(x)
by minimizing a score matching objective (Hyvärinen &
Dayan, 2005) JSM(θ;λ(·)) :=

1

2

∫ T

0

λ(t)Ex∼qt(x)

[
∥sθ(x, t)−∇x log qt(x)∥22

]
dt.

As qt(x) is generally inaccessible, the denoising score
matching (DSM) loss (Vincent, 2011; Song et al., 2020b)
JDSM(θ;λ(·)) is exploited in practice instead

JDSM(θ;λ(·)) := 1

2

∫ T

0

λ(t)Ex(0)Eq0t(x(t)|x(0))[
∥sθ(x(t), t)−∇x log q0t(x(t)|x(0))∥22

]
dt,

(3)

where q0t(x(t)|x(0)) is the forward transition probabil-
ity from x(0) to x(t). After sθ(x, t) ≈ ∇x log qt(x) is
learned, we replace ∇x log qt(x) in Eq. (2) with sθ and

1With specific choices of f and g, there are two common
instantiations of the stochastic differential equation (SDE): VE and
VP. See Appendix A for details.

obtain a parametrized reverse-time SDE for a stochastic
process x̂θ(t)

dx̂θ(t) = [f(x̂θ(t), t)− g2(t)sθ(x̂θ(t), t)]dt+ g(t)w̄t,
(4)

Let pSDE
t,θ denote the marginal distribution of x̂θ(t) with an

initial distribution defined as the prior π, where we suppress
the dependence on π for compactness. We can design f and
g in Eq. (2), such that qT (x) approximates a simple prior
π; samples x̂θ(0) ∼ pSDE

0,θ can be generated by numerically
solving Eq. (4) backward with an initial sample from the
prior x̂θ(T ) ∼ π. Intuitively, x̂θ(0) should be close to a
sample from the data distribution.

Song et al. (2020b) also introduced a deterministic process
(with a zero diffusion term) that describes the evolution of
samples whose trajectories share the same marginal proba-
bility densities as the forward SDE (Eq. (4)). Specifically,
the process evolves through time according to the following
probability flow ODE

dx

dt
(t) = f(x(t), t)− 1

2
g2(t)∇x log qt(x(t)). (5)

As in the SDE case, the ground truth score in Eq. (5) is
approximated with the learned score model sθ(x, t) ≈
∇x log qt(x). This yields to the following parameterized
probability flow ODE

dx̃θ

dt
(t) = f(x̃θ(t), t)−

1

2
g2(t)sθ(x̃θ(t), t) (6)

We denote the marginal density of x̃θ as pODE
t,θ with an ini-

tial condition sampled from the prior π, For compactness,
we omit the dependence on π in the notation. By solv-
ing Eq. (6) numerically using an initial value x̃θ(T ) ∼ π,
we can generate a sample x̃θ(0) ∼ pODE

0,θ to approximate
sampling from the data distribution. Indeed, the determinis-
tic dynamics in Eq. (6) make it possible to compute exact
likelihoods for this generative model. Let x̃θ(t) ∈ RD

evolve in reverse time via Eq. (6), starting with x̃θ(T ) ∼ π.
The “instantaneous change of variables” (Chen et al., 2018)
characterizes the temporal changes in log pODE

t,θ along the
trajectory

{
x̃θ(t) : t ∈ [0, T ]

}
via the following ODE:

d log pODE
t,θ (x̃θ(t))

dt

=
1

2
g2(t)divx

(
sθ(x̃θ(t), t)

)
− divx

(
f(x̃θ(t), t)

)
.

Hence, the log-likelihood can be exactly calculated by nu-
merically solving the concatenated ODEs backward from T
to 0, after initialization with x̃θ(0) ∼ q0(x)

d

dt

[
x̃θ(t)

log pODE
t,θ (x̃θ(t))

]
=

[
f(x̃θ(t), t)− 1

2g
2(t)sθ(x̃θ(t), t)

1
2g

2(t)divx
(
sθ(x̃θ(t), t)

)
− divx

(
f(x̃θ(t), t)

)] .
2
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3. Score Fokker-Planck equation for diffusion
It is well known that the evolution of the ground truth density
qt(x) associated with Eq. (1) is governed by the Fokker-
Planck equation (FPE) (Øksendal, 2003)

∂tqt(x) = −
D∑

j=1

∂xj

(
F̃j(x, t)qt(x)

)
,

where F̃ (x, t) := f(x, t)− 1
2g

2(t)∇x log qt(x). As there
is a one-to-one mapping (up to a constant) between densities
and their scores, we derive (in Appendix G) an equivalent
system of PDEs for the ground truth scores ∇x log qt(x).
We designate it as the score Fokker-Planck equation or sim-
ply the score FPE.

Proposition 3.1 (Score FPE). Assume the ground truth
density qt(x) is sufficiently smooth on RD × [0, T ] with
its score denoted as s(x, t) := ∇x log qt(x). Then for all
(x, t) ∈ RD × [0, T ], its log-density satisfies the PDE

∂t log qt(x) =
1

2
g2(t)divx(s(x, t)) +

1

2
g2(t) ∥s(x, t)∥22

− ⟨f(x, t), s(x, t)⟩ − divx(f(x, t))
(7)

and its score s satisfies the following system of PDEs

∂ts(x, t) = ∇x

[1
2
g2(t)divx(s(x, t)) +

1

2
g2(t) ∥s(x, t)∥22

− ⟨f(x, t), s(x, t)⟩ − divx(f(x, t))
]
.

(8)

For notational simplicity, let L[·] := 1
2g

2divx(·) +
1
2g

2 ∥·∥22 − ⟨f , ·⟩ − divx(f) be the operator mapping vec-
tor fields to real-valued functions. Thus, Eq. (7) and
Eq. (8) can be expressed as ∂t log qt(x) = L[s](x, t) and
∂ts(x, t) = ∇xL[s](x, t), respectively.

Proposition 3.1 shows that the time-conditional scores
sθ(x, t) learned by score-based models (via Eq. (3)) are
highly redundant. In principle, given a ground truth score
at an initial time t0, we can theoretically recover scores for
all times t ≥ t0 by solving the score FPE. We explain it
intuitively by considering the special case when f ≡ 0 and
g ≡ 1, i.e., when, x(t) is obtained by adding Gaussian noise.
It is well-known that the densities qt and qt0 are related in a
convolutional way as qt = qt0 ∗ N (0, t), and that qt can be
analytically obtained from qt0 (Masry & Rice, 1992) (e.g.,
by applying a Fourier transform and dividing). Hence, all
scores can in principle be obtained analytically from the
score at a single time-step, without any further learning.

We provide empirical evidence to substantiate Proposi-
tion 3.1 from two distinct perspectives, as presented in
Section 6.1 and Appendix B.1, respectively.

3.1. Pre-trained scores fail to satisfy score FPEs

Theoretically, with sufficient data and model capacity, score
matching ensures that the optimal solution to Eq. (3) should
satisfy Eq. (8) as it should approximate the ground truth
score well. However, in our experiments, we observe that
pre-trained scores sθ learned via Eq. (3) do not fulfill the
score FPE. Therefore, we introduce an error term ϵ[sθ] :=
ϵ[sθ](x, t) to quantify how much sθ deviates from the score
FPE

ϵ[sθ](x, t) := ∂tsθ(x, t)−∇xL[sθ](x, t). (9)

Set T = 1, we define the average residual of the score FPE,
computed over x, as a function of t ∈ [0, 1]

rFP, trans.[sθ](t) :=
1

D
Ex(0)Ex(t)|x(0)

[
∥ϵ[sθ](x, t)∥2

]
.

We further consider the following averaged residual for
DSM

rDSM-like[sθ](t) :=
1

D
Ex(0)Ex(t)|x(0)

[
∥sθ(x(t), t)

−∇x(t) log q0t(x(t)|x(0))∥2
]
.

Compared to the integrand in the standard DSM loss in
Eq. (3), rDSM-like[sθ] uses the ℓ2-norm (instead of the MSE)
and drops the time-weighting function λ(t) to be consistent
with the averaged residuals of the score FPE.

Figure 1 plots these residuals for score models that were
pre-trained via DSM on the MNIST and CIFAR-10 datasets.
Despite achieving a low rDSM-like across all t (orange curve),
the pre-trained score models fail to satisfy the score FPE
equation, especially for small t (blue curve). This implies
that models learned by DSM do not satisfy the score FPE.

4. Theoretical implications of score FPE
In this section, we first study three implications of satis-
fying the score FPE. Specifically, we show in Section 4.1
that simultaneous minimization of quantities related to the
score FPE and the conventional score matching objective
can reduce the KL divergence between the data density
q0 and the density pODE

0,θ , determined by the parametrized
probability flow ODE (Eq. (6)). In Section 4.2 we prove
that controlling of ϵ[sθ] implicitly enforces the conserva-
tivity of sθ. Moreover, in Section 4.3 we prove that if the
score FPE is satisfied, then under certain conditions, sθ,
ground truth score s, ∇x log pSDE

t,θ , and ∇x log pODE
t,θ must

match. Here pSDE
t,θ and pODE

t,θ were defined in Section 2 as
the marginal density of the parametrized diffusion process
and the probability flow ODE, respectively. Finally, in Sec-
tion 4.4, we investigate the connection between higher-order
score matching (Meng et al., 2021a; Lu et al., 2022) and
the score FPE. We provide the proofs of all theorems in
Appendix G.
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(a) VE SDE; MNIST (b) VP SDE; MNIST (c) VE SDE; CIFAR-10 (d) VP SDE; CIFAR-10

Figure 1. Comparison of the numerical scales of rDSM-like[sθ](t) and rFP, trans.[sθ](t) for pre-trained scores sθ on MNIST and CIFAR-10.
We treat these errors as functions of time. The pre-trained models do not numerically satisfy the score FPE, in contrast to their DSM-like
errors. We attempt to explain this phenomenon in Sections. 4.2 and 4.4.

4.1. Minimization DKL
(
q0
∥∥pODE

0,θ

)
In this section, we show that under certain regularity con-
ditions (see Assumptions F.1 and F.2), simultaneous mini-
mization of JSM(θ) and certain score FPE related quantities
(see Eqs. (11) and (12)) can decrease the KL divergence
between q0 and pODE

0,θ , denoted as DKL
(
q0
∥∥pODE

0,θ

)
. This is

equivalent to improving the likelihood of data under pODE
0,θ .

First, we review an equation proposed by Lu et al. (2022)
that quantifies the exact gap between DKL

(
q0
∥∥pODE

0,θ

)
and the

score matching loss JSM(θ). For compactness, we denote
sODE
θ (x, t) := ∇x log pODE

t,θ (x).

Lemma 4.1 (Lu et al. (2022)). Set λ(t) = g2(t). Let q0 be
the data distribution, and qt be the marginal density of x(t)
following Eq. (1). Assume that Assumption F.1 is satisfied.
Then,

DKL
(
q0
∥∥pODE

0,θ

)
= DKL

(
qT
∥∥pODE

T,θ

)
+ JSM(θ) + JDiff(θ),

where

JDiff(θ) =
1

2

∫ T

0

g2(t)Eqt(x)

[(
sθ(x, t)− s(x, t)

)⊤
(
sODE
θ (x, t)− sθ(x, t)

)]
dt.

We now introduce the main theoretical results in this sec-
tion. First, we note that application of the Cauchy-Schwartz
inequality to JDiff(θ) gives

|JDiff(θ)| ≤
√
JSM(θ) ·

√
JFisher(θ).

Here, JFisher(θ) is a Fisher-like divergence in terms of the
two scores sθ(x, t) and sODE

θ (x, t), defined as JFisher(θ) :=

1

2

∫ T

0

g2(t)Ex∼qt(x)

∥∥sθ(x, t)− sODE
θ (x, t)

∥∥2
2
dt.

Next, in Theorem. 4.2, we show that under Assumption F.1,
JFisher(θ) can be bounded from above by the averaged resid-
ual of the score FPE M(θ):

JFisher(θ) ≲ M(θ) +
√
M(θ) + C1, (10)

where C1 > 0 is a constant, ≲ denotes multiplicative con-
stants independent of θ are concealed, and M(θ) :=

sup
t∈[0,T ]

Ex∼qt(x)

[∫ T

0

∥ϵ[sθ](x, τ)∥22 dτ

]
. (11)

Furthermore, we can compute

M(θ) ≤ sup
x

[∫ T

0

∥ϵ[sθ](x, τ)∥22 dτ

]
,

meaning that this upper bound measures the worst time-
averaged score FPE error. In Appendix G.3, we consider
more interpretable quantities than M(θ) by introducing the
density weighting pτ (x) in τ -integrand and derive similar
estimations as in Ineq. (10).

Moreover, we prove in Theorem. 4.3 that with a different
regularity condition (Assumption F.2), JFisher(θ) is upper
bounded by M(θ) and a “time-derivative taming” term that
can be derived from Eq. (7) which is defined as

m(θ) := sup
x

∫ T

0

|L[sθ](x, τ)| dτ. (12)

More specifically,

JFisher(θ) ≲ M(θ) +m(θ) + C2, (13)

where C2 is another constant, distinct from C1.

Hence, Lemma. 4.1 together with Ineq. (10) or (13) implies
that DKL

(
q0
∥∥pODE

0,θ

)
decreases when “M(θ) and JSM(θ)”

or “M(θ), m(θ), and JSM(θ)” are reduced simultaneously.
We now rigorously state these theorems.

Theorem 4.2. We have(
JDiff(θ)

)2
≤ JSM(θ) · JFisher(θ). (14)

Moreover, if Assumption. F.1 is fulfilled, then there is another
finite constant C1 > 0 independent of θ such that we can
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further bound Ineq. (14) above by(
JDiff(θ)

)2
≲ JSM(θ) ·

(
M(θ) +

√
M(θ) + C1

)
. (15)

Thus, DKL
(
q0
∥∥pODE

0,θ

)
≲ DKL

(
qT
∥∥pODE

T,θ

)
+JSM(θ) + J 1/2

SM (θ)
(
M(θ) +

√
M(θ) + C1

)1/2
.

Theorem 4.3. If Assumption. F.2 is satisfied, then there is
another finite constant C2 > 0 independent of θ such that(

JDiff(θ)
)2

≲ JSM(θ) ·
(
M(θ) +m(θ) + C2

)
. (16)

It is noticed that constants C1 and C2 involve regularity
bounds of the ground truth density and Lipschitz constants
of networks. Hence, the upper bounds in Ineq. (15) and (16)
are difficult to compare.

As the ground truth score should follow the score FPE, it
is intuitive that reduction of the score FPE residual encour-
ages the network-parametrized score to approach the ground
truth score (a special case is proved in Proposition 4.5). The-
orems 4.2 and 4.3 support that reduction of these quantities
related to the score FPE may also reduce the gap (in the KL
divergence) of their corresponding densities. In Section 7,
we empirically support these claims.

4.2. Conservativity

The ground truth score s(x, t) = ∇x log qt(x) is a conser-
vative vector field. That is, it can be expressed as a gradient
of some real-valued function. However, scores learned in
practice do not satisfy this property (Salimans & Ho, 2021).
Below, we prove that we can implicitly enforce conserva-
tivity by minimizing the time-averaged error ϵ[sθ](x, τ) of
the score FPE.

Proposition 4.4. If there is a tθ ∈ [0, T ] so that
sθ(x, tθ) = ∇x log qtθ (x) for all x ∈ RD, then there
exists a real-valued function Ψθ : RD × [0, T ] → R (with
an explicit expression) that satisfies

sθ(x, t)−∇xΨθ(x, t) =

∫ t

tθ

ϵ[sθ](x, τ)dτ, (17)

for all (x, t) ∈ RD × [0, T ]. In particular,

∥sθ(x, t)−∇xΨθ(x, t)∥2 ≤
∣∣∣∣∫ tθ

t

∥ϵ[sθ](x, τ)∥2 dτ
∣∣∣∣ .

(18)

Eq. (17) indicates that the error of the score FPE quan-
tifies the degree of conservativity of sθ. We further ex-
plain this idea via Ineq. (18), from which we easily obtain
∥sθ(x, t)−∇xΨθ(x, t)∥2 ≤

∣∣∣∫ tθ
t

∥ϵ[sθ](x, τ)∥2 dτ
∣∣∣ ≤

∫ T

0
∥ϵ[sθ](x, τ)∥2 dτ , for any x and t. Thus, if the θ-

parametrized score approximately satisfies the score FPE,
giving a small score FPE error

∫ T

0
∥ϵ[sθ](x, τ)∥2 dτ , then

the estimated score should nearly be conservative, i.e., close
to the gradient of a scalar function Ψθ(x, t). We empirically
support this fact in Section 6.2.

Proposition 4.4 necessitates a precise alignment of scores
at a given timestep. However, we propose a modification
that allows for a small discrepancy by incorporating an error
term into the score matching process. As a result, we present
an expanded proposition, namely Proposition G.4, which is
detailed in Appendix G.5.

4.3. Equivalence of scores

We now investigate another implication of satisfying the
score FPE which connects the score sθ with the ground
truth s, sSDE

θ , and sODE
θ . The following proposition provides

conditions under which all of these scores are identical if
we train to reach a zero residual for the score FPE for all
(x, t).

Proposition 4.5. (1) Suppose in some suitable function
space, 0 is the unique strong solution to the PDEs ∂tv −
∇x

[
1
2g

2divx(v) + 1
2g

2
(
∥v∥22 + 2⟨v, s⟩

)
− ⟨f ,v⟩

]
= 0

with a zero initial condition v(x, 0) ≡ 0 and a zero
boundary condition. If there is some θ0 so that for all
(x, t) ϵ[sθ0

](x, t) = 0 and that sθ0
(x, 0) = s(x, 0), then

sθ0(x, t) = s(x, t), for all (x, t) .

(2) Moreover, suppose the PDEs ∂tv +∇x

[
1
2g

2divx(v) +
1
2g

2 ∥v∥22+ ⟨f ,v⟩
]
= 0 with zero initial and boundary con-

dition have 0 as the unique strong solution. Then ϵ[sθ0
] ≡ 0

and sθ0
(x, 0) ≡ sSDE

θ0
(x, 0) implies sθ0

≡ sSDE
θ0

.

(3) Lastly, if there is some θ0 such that ∂tv−∇x

[
⟨ 12g

2sθ0−
f ,v⟩

]
= 0 with zero initial and boundary conditions ad-

mit 0 as the unique strong solution, then ϵ[sθ0
] ≡ 0 and

sθ0(x, 0) ≡ sODE
θ0

(x, 0) implies sθ0 ≡ sODE
θ0

.

Proposition 4.5 implies that if the parametric scores match
with the ground truth score at the initial time, the only global
minimum is the ground truth score. Essentially, the scores
at any given time can be obtained solely by achieving a
flawless alignment of scores at a single timestep through
the dynamics of PDE. This indicates the score FPE resid-
ual is a proper quantity to measure the gaps between the
ground truth and parametric scores. Indeed, this proposi-
tion is an extreme case of “the continuous dependence of
PDE solutions on parameters θ” (Artstein, 1975). A more
sophisticated analysis (Lunardi, 2012; Papageorgiou, 1994)
can be applied to prove for instance, that as ∥ϵ[sθ]∥ → 0,∥∥sθ − sSDE

θ

∥∥ → 0 if f ≡ 0 (with a careful choice of
norms). However, such technical generalization is outside
this work’s scope.
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4.4. Higher-order score matching

Higher-order derivatives of the score can yield additional
information about the data distribution (Meng et al., 2021a;
Lu et al., 2022). We prove that bounding of the higher-order
score matching loss can further control the FPE residual∥∥∥∫ t

0
ϵ[sθ](x, τ)dτ

∥∥∥
2

for all t ∈ [0, T ]. This partially ex-
plains why scores learned via JDSM do not satisfy the score
FPE, as DSM only matches gradients, while higher-order
derivatives may still deviate from the ground truth.
Proposition 4.6. Assume that on RD × [0, T ], higher-
order score matchings admit the following error
bounds: ∥s− sθ∥2 ≤ δ0, ∥∇x(s− sθ)∥F ≤ δ1,
∥∇xdivx(s− sθ)∥2 ≤ δ2.

Then for all (x, t) ∈ RD × [0, T ],
∥∥∥∫ t

0
ϵ[sθ](x, τ)dτ

∥∥∥
2

≤ 2δ0 +
1

2
(δ2 + 2δ1δ0)

∫ t

0

g2(τ)dτ

+ δ1

∫ t

0

(
g2(τ) ∥s(x, τ)∥2 + ∥f(x, τ)∥2

)
dτ

+ δ0

∫ t

0

(
g2(τ) ∥∇xs(x, τ)∥F + ∥∇xf(x, τ)∥F

)
dτ.

5. Training with score FPE-regularizer
We showed in Section 3.1 that score models learned via
JDSM (Eq. (3)) do not satisfy the score FPE, a property
that ground truth scores should satisfy a priori. Motivated
by this fact and Theorem 4.3, we hence devise a novel
regularization term which is called score FPE-regularizer
and defined as RFP(θ) = RFP(θ;α, β, λFP(·),m) :=

Et∼U [0,T ]Ex(0)Ex(t)|x(0)

[
α · 1

Dm
∥λFP(t)ϵ[sθ](x, t)∥m2

+ β · |L[sθ](x, t)|
]
.

Here, α, β ≥ 0 are parameters controlling the regular-
ization strength, λFP(·) is the time-weighting function for
the score FPE residual, and m is an integer. RFP con-
sists of the score FPE residual and time-derivative tam-
ing term, which respectively imitate Eq. (11) and Eq. (12).
With the score FPE-regularizer, we propose a new loss
JFP which comprises JDSM and RFP with JFP(θ) =
JFP(θ;λ(·), α, β, λFP(·),m) :=

JDSM(θ;λ(·)) +RFP(θ;α, β, λFP(·),m), (19)

We refer to a model trained with our proposed JFP as FP-
Diffusion. We remark that Eq. (19) returns the vanilla DSM
loss (Eq. (3)) with α = β = 0.0. Hereafter, we take λ(·) =
g2(·) in JDSM.

Because ϵ[sθ] in RFP is generally expensive to calculate for
high dimensional data, we propose efficient approximations
for ∂tsθ and divx(sθ).

Finite difference (Fornberg, 1988) for ∂tsθ ∂tsθ can
be efficiently approximated by finite difference method as
the derivative is one-dimensional. For high dimensional
datasets, we set (hs, hd) = (0.001, 0.0005) and approxi-
mate ∂tsθ(x, t) by

h2
ssθ(x, t+ hd) + (h2

d − h2
s)sθ(x, t)− h2

dsθ(x, t− hs)

hshd(hs + hd)
.

Hutchinson’s estimator (Hutchinson, 1989) for divx(sθ)
Hutchinson’s trace estimator stochastically estimates the
trace of any square matrix. As divx(sθ) = tr

(
∇xsθ

)
, we

can apply Hutchinson’s trick and replace the divx(sθ) term
with an estimation

1

M

M∑
j=1

vj∇xsθ(x, t)v
T
j ,

where vj ∼ N (0, I). We set M = 1, following Song et al.
(2020a) which works well in practice.

In Appendix C, we present supplementary information en-
compassing a theoretical analysis of the error involved in
estimating the score FPE, as well as a potential technique
that can enhance computational efficiency in this regard.
Moreover, we supplement with runtime comparison in Ap-
pendix E.2.

6. Empirical implications of score FPE
In this section, we investigated two implications of the score
FPE. First, we examined the solvability of scores through a
Cauchy problem associated with the score FPE (as stated in
Proposition 3.1). Second, we investigated how reducing the
score FPE residual enhances the conservativity of a model
(as described in Proposition 4.4).

6.1. Scores learning by solving Cauchy problems

Here, we consider the data distribution as a 2D GMM
1
5N
(
(−5,−5), I

)
+ 4

5N
(
(5, 5), I

)
. The diffusion process

is taken as VE SDE (Eq. (22)). The ground truth score of
a 2D GMM, denoted as sGMM, can be expressed explicitly
in a closed form throughout the diffusion (as the diffusion
process is linear in x). In Section 3, we explained that the
score at all times can theoretically be solved, given the score
at a single time step. That is, the score is a solution s̃ to the
following Cauchy problem on the system of PDEs:{

∂ts̃(x, t) = ∇xL[s̃](x, t), (x, t) ∈ RD × (0, T ]

s̃(x, 0) = sGMM(x, 0), x ∈ RD,
(20)

where we recall L[s̃] = 1
2g

2divx(s̃) + 1
2g

2 ∥s̃∥22. We fulfill
this idea by parametrizing solutions of Eq. (20) via neural
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networks s̃GMM
θ (Raissi et al., 2019; Blechschmidt & Ernst,

2021) and learning an optimal θ to minimize:

Et∼U [0,T ]Ex(0)Eq0t(x(t)|x(0))
∥∥ϵ[s̃GMM

θ ](x, t)
∥∥
2

+ Ex(0)

∥∥s̃GMM
θ (x, 0)− sGMM(x, 0)

∥∥
2
.

(21)

Interestingly, as shown in Figures 2(a) and (b), respectively,
s̃GMM
θ generates satisfactory samples and enables good den-

sity estimation. This supports our argument that all temporal
score information can be obtained by solving the score FPE.
Generally, an initial condition to match the ground truth
score is impractical. Nevertheless, this opens up the pos-
sibility of learning diffusion models from noisy data by
substituting the exact score matching (with the ground truth)
at the initial time with a noise-contaminated score matching
(i.e., denoising score matching trick).

(a) Generated samples by s̃GMM
θ (b) Estimated density by s̃GMM

θ

Figure 2. (a) visualizes instances generated by s̃GMM
θ . (b) shows the

estimated density via the probability flow ODE of s̃GMM
θ . Scores

at all times can be obtained by solving a Cauchy problem of the
score FPE.

6.2. Reduction of score FPE residual implies
conservativity

We take the 2D GMM described in Section 6.1 as the
data distribution. It is known that a vector field F :=
(F1, F2, F3) : R3 → R3 is conservative if and only if its
“curl”,

(
∂x2

F3 − ∂x3
F2, ∂x3

F1 − ∂x1
F3, ∂x1

F2 − ∂x2
F1

)
,

is zero. Thus, considering the mean squared error (MSE)
of their curls quantifies the degree of conservativity of the
score. We compared these values for the following four
cases: scores trained (a) from Eq. (3), (b) from Eq. (19)
with (α, β, λFP(·),m) = (0.001, 0.0, 1.0, 1), (c) and from
Eq. (19) with (α, β, λFP(·),m) = (0.01, 0.0, 1.0, 1), along
with (d) the ground truth score. Figure 3 plots the MSEs
of the curls of the trained and ground truth scores for each
timestep. The time-averaged MSEs of curls of the four
scores are 2.22, 1.89, 0.60, and 3.73e − 13, respectively.
We observed that the ground truth score is numerically con-
servative by its nature, and that scores trained with the score
FPE-regularizer tend to be conservative, which empirically
supports Proposition 4.4.

Figure 3. Comparison of the MSEs of curls. Scores trained with
the score FPE-regularizer tend to be conservative.

7. Density Estimation Experiments
We examined the effectiveness of JFP on three synthetic
datasets, MNIST, Fashion MNIST, CIFAR-10, and Ima-
geNet32. Appendix D gives the implementation details and
Appendix E.3 visualizes randomly generated examples. We
released our code at https://github.com/sony/
FP-Diffusion.

7.1. Synthetic datasets

We compared and visualized density estimation via mod-
els trained with vanilla JDSM (Eq. (3)) and the pro-
posed JFP (Eq. (19)) with fixed (α, β, λFP(·),m) =
(0.0015, 0.0, 1.0, 1). Here, the forward SDE is taken as a
VE type. We examined the models’ performance across
three synthetic datasets: a 1D GMM with three modes
3
10N

(
− 6

7 , (
1
70 )

2
)
+ 3

10N
(
− 2

7 , (
1
70 )

2
)
+ 4

10N
(
4
7 , (

1
7 )

2
)
,

a 2D checkerboard, Swiss rolls, and a 2D Gaussian mixture
models (GMM) with eight modes whose means are located
equidistant on the unit circle and with a standard deviation
1. We refer to Appendix D.1 for more details.

For all datasets, scores trained with the score FPE-
regularizer, as shown in Figure 4(b) and Figures 5(b), (d),
and (f), can approximate the data density well, with improve-
ment over vanilla score matching, as shown in Figure 4(c)
and Figures 5(a), (c), and (e). This reinforces the impli-
cation of Theorem 4.2 that the score FPE-regularizer may
improve density estimation of the probability flow ODE, as
it enforces a known self-consistency property of the ground
truth score.

7.2. MNIST and Fashion MNIST

We trained models with the proposed JFP on MNIST and
Fashion MNIST with different α’s values from scratch, and
we evaluated the test set negative log-likelihood (NLL) in
terms of bits/dim (bpd). In FP-Diffusion, the rest of param-
eters were fixed as (β, λFP(·),m) = (0.0, 1.0, 1). Table 1
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(a) Data density (b) Vanilla DSM (α = β = 0.0) (c) FP-Diffusion (with α = 0.0015)

Figure 4. (a) demonstrates the ground truth data density. We compare (b) estimated density by probability flow ODE with sθ trained with
α = β = 0.0, and (c) with α = 0.0015. Score FPE-regularizer improves density estimation.

(a) Vanilla DSM
(α = β = 0.0)

(b) FP-Diffusion
(with α = 0.0015)

(c) Vanilla DSM
(α = β = 0.0)

(d) FP-Diffusion
(with α = 0.0015)

(e) Vanilla DSM
(α = β = 0.0)

(f) FP-Diffusion
(with α = 0.0015)

Figure 5. Estimated densities on a 2D checkerboard, multiple Swiss rolls, and eight GMMs, respectively. (a), (c), and (e) show estimated
densities via the probability flow ODE of sθ trained with α = β = 0.0 (vanilla DSM). In contrast, (b), (d), and (e) show the densities via
training with α = 0.0015. The score FPE-regularizer estimated the data densities well.

reports the averaged NLLs over five repeated runs of like-
lihood computations and three different initializations for
training across two instantiations of the forward SDE (in-
cluding VE, and VP) of various choices of α. A lower NLL
indicates a better performance. We observed a general im-
provement in the NLL with α = 0.1. To better understand
the choice of the hyper-parameter α, ignoring dirt effects
that result from different training initializations, we com-
pare the NLLs via fine-tuning from pre-trained models in
Appendix E.1.

Table 1. NLL comparisons on MNIST and Fashion MNIST
MNIST Fashion MNIST

Method VE VP VE VP
Vanilla (Song et al., 2020b) 3.73 3.24 4.76 4.46
FP-Diffusion (α = 0.001) 3.64 3.17 4.67 4.50
FP-Diffusion (α = 0.01) 3.58 3.12 4.61 4.36
FP-Diffusion (α = 0.1) 3.42 2.98 4.40 4.21
FP-Diffusion (α = 1.0) 3.30 3.11 4.44 4.36
FP-Diffusion (α = 10.0) 3.31 3.21 4.46 4.67

7.3. CIFAR-10 and ImageNet32

We fine tuned the pre-trained VE models from the check-
points of Song et al. (2020b); Lu et al. (2022) by training
them for 0.1M additional iterations on CIFAR-10 and Ima-
geNet32, respectively. Here, we set the hyper-parameters of
FP-Diffusion as (α, β, λFP(·),m) = (0.15, 0.01, g2(·), 2),
but we also explored different choices as described in Ap-

pendix E.1. Table 2 reports the averaged NLLs of prob-
ability flow ODE on the test dataset over five repeated
runs. Compared with vanilla DSM (Song et al., 2020b),
FP-Diffusion significantly improved the NLL. Moreover,
FP-Diffusion was competitive with higher-order DSM (Lu
et al., 2022), where we re-computed the NLL based on their
checkpoints but also indicated their reported results in the
parentheses. On CIFAR-10, we noticed that FP-Diffusion
trained with VE and VE-deep architectures may obtain in-
ferior FID scores: 10.83 and 4.51, respectively; compared
with FID scores of vanilla models: 3.33 and 2.44. However,
the difference is generally imperceptible (see Appendix E.3
for illustration and quantitative measurements). Moreover,
Appendix B.2 provides empirical evidence demonstrating
that FP-Diffusion exhibits superior adherence to the score
FPE compared to the vanilla model.

Table 2. NLL comparisons on CIFAR-10 and ImageNet32
CIFAR-10 ImageNet32

Method VE VE-deep VE
FP-Diffusion 3.36 3.32 3.77
Vanilla (Song et al., 2020b) 3.61 (3.66) 3.42 4.01 (4.21)
2nd DSM (Lu et al., 2022) 3.44 3.35 3.82 (4.06)
3rd DSM (Lu et al., 2022) 3.38 3.31 (3.27) 3.80 (4.02)

8. Related work and discussions
Conservativity is a key property for understanding the con-
sistency between the learned density and the ground truth
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density, as the latter is inherently conservative. Despite the
dominance of diffusion models over energy-based methods
(which are inherently conservative), exploring conservativ-
ity can offer valuable insights into their underlying mecha-
nisms and potentially enhance both types of models.

Salimans & Ho (2021) adopted a special parameterization
to ensure conservativity and compared with energy-based
models. In contrast, Chao et al. (2022) imposed a penalty to
reach zero curl (i.e., conservativity), independently of the
model architecture. In addition, they empirically showed
that non-conservative scores may incur rotational vector
fields tangent to the true score function, leading to inef-
ficient updates during the sampling processes. However,
how the non-conservativity affects the sampling theoreti-
cally and empirically is not well studied in the literature of
diffusion models. Although enforcement of conservativity
of diffusion models is not the main purpose of this work,
conservativity is one of the outcomes by reducing the score
FPE residual. Nevertheless, score FPE provides a different
framework from the PDE perspective, which is theoretically
solid and may stimulate further study.

On the other hand, researchers have also attempted to theo-
retically explain the success of diffusion models by studying
the gap between the data and learned densities. De Bor-
toli et al. (2021) proved error bounds for these densities in
terms of the total variation. Song et al. (2021) showed the
likelihood of the diffusion model can be bounded by the
score matching objective with a specific choice of temporal
weighting. Chen et al. (2022) provided a convergence anal-
ysis for any data distribution with second-order moment in
KL divergence. Kwon et al. (2022) found that minimiza-
tion of the score matching loss may implicitly reduce the
Wasserstein-2 distance between the data and learned density.
Meng et al. (2021a) introduced the concept of estimating
higher-order gradients of a data distribution. Later, Lu et al.
(2022) extended the idea and showed that the likelihood
from the deterministic trajectory of a diffusion model may
be improved by matching higher-order scores.

Shen et al. (2022) showed that the asymptotic fixed point of
the velocity field associated with the classic FPE (Fokker,
1914; Planck, 1917) (governing the density evolution) can
recover the solution of FPE in the Wasserstein-2 sense. How-
ever, its study was neither adapted to diffusion models nor
generative models.

9. Conclusion
We introduce the score FPE and theoretically study its re-
lationship with likelihood improvements, conservativity,
higher-order score matching, and scores induced by a para-
metric reverse diffusion. Moreover, we propose to regularize
models by enforcing consistency properties of the ground

truth score through the score FPE, and show this achieves
better density estimation and likelihoods on various datasets.
We empirically support our theory by finding that reduc-
tion of the score FPE residual improves the conservativity
of a model. The Cauchy problem defined with the score
FPE can be used to obtain time-conditioned scores directly
by PDEs solving. Incorporating more advanced numerical
methods for solving PDEs is an interesting avenue for future
research.
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A. Instantiations of forward SDEs and corresponding score FPEs
Song et al. (2020b) categorizes the forward SDE into three types based on the behavior of the variance during evolution.
Here, we focus on two types: the Variance Explosion (VE) SDE and Variance Preserving (VP) SDE.

VE SDE With a zero drift term f = 0 and a diffusion term g(t) =
√

dσ2(t)
dt for some function σ(t), the forward SDE

(Eq. (1)) becomes the following:

dx(t) =

√
dσ2(t)

dt
dwt. (22)

A typical instance of a VE SDE is Score Matching of Langevin Dynamics (SMLD) (Song & Ermon, 2019), where

σ(t) := σmin

(
σmax
σmin

)t
for t ∈ (0, 1]. In our implementation, we follow the conventional setup of (σmin, σmax) := (0.01, 50).

12
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VP SDE Let β be a non-negative function of t. A VP SDE has a linear drift term f(x, t) = − 1
2β(t)x and a diffusion

term g(t) =
√
β(t). Thus, the forward SDE is

dx(t) = −1

2
β(t)x(t)dt+

√
β(t)dwt.

A classic example of a VP SDE is Denoising Diffusion Probabilistic Modeling (DDPM) (Sohl-Dickstein et al., 2015; Ho
et al., 2020), where β(t) := βmin + t(βmax − βmin) for t ∈ [0, 1]. We adopt the common setup of (βmin, βmax) := (0.1, 20)
in our implementation.

Table 3 summarizes the aforementioned SDE instantiations and their associated score FPEs.

Table 3. Summary of forward SDEs and their score FPEs
VE SDE VP SDE

f(x, t) 0 − 1
2
β(t)x

g(t) σmin

(
σmax
σmin

)t√
2 log

(
σmax
σmin

) √
β(t)

SDE dx(t) = g(t)dwt dx(t) = − 1
2
β(t)x(t)dt+

√
β(t)dwt

Score FPE ∂ts = ∇x

[
1
2
g2(t)divx(s) +

1
2
g2(t) ∥s∥22

]
∂ts = 1

2
β(t)∇x

[
divx(s) + ∥s∥22 + ⟨x, s⟩

]

B. How scores satisfy score FPEs
B.1. Supportive experiments for Section 3

In this section, we further demonstrate how score functions should satisfy the score FPE empirically. We treat the data
distribution as a 2D GMM 1

5N
(
(−5,−5), I

)
+ 4

5N
(
(5, 5), I

)
as in Section 6.1 and use the same notations. The diffusion

process is taken as a VE SDE (Eq. (22)).

We examine whether sGMM satisfies the score FPE by computing rFP[s
GMM](t). Figure 6(a) shows its residual as a function

of time (blue curve) and supplements with the time residual of s̃GMM
θ , obtained by solving Eq. (21). The score FPE residual

of the ground truth is almost zero, which empirically supports Proposition 3.1.

In addition, Figure 6(b) shows the computed residual of the score FPE as a function of time for a score sGMM
θ learned by

DSM (Eq. (3)). We observed that sGMM
θ also does not satisfy the score FPE. This phenomenon matches with the results

shown in Figure 1 for realistic datsets.

(a) FP residuals of the ground truth score and the score
learned from Eq. (21)

(b) FP residuals of the score learned from Eq. (3)

Figure 6. Comparison of the score FPE residuals of sGMM, s̃GMM
θ and sGMM

θ for a 2D GMM. (a) shows that both the (closed-form) ground
truth score sGMM and the score s̃GMM

θ obtained by solving the score FPE (Eq. (20)) numerically satisfy the score FPE. On the other hand,
(b) provides further evidence that sGMM

θ , which is learned from DSM, does not satisfy the score FPE.

13
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B.2. FP-Diffusion enforces satisfaction of score FPE

In this section, we compared the score FPE residuals as a function of time (i.e., rFP, trans.[sθ](t)) between a vanilla DSM model
(trained for 0.1M additional iterations) and FP-Diffusion respectively trained on CIFAR-10 with various α ∈ {1.0, 0.5, 0.15}
and a fixed (β, λFP(·),m) = (0.01, g2(·), 2). The forward SDE was taken as the VE type. For demonstration purpose, we
only plotted the residuals at representative timesteps {10−5, 0.1, 0.2, · · · , 1.0} in Figure 7 and recorded their corresponding
numerical values in Table 4. We remark that α = 0.15 achieves the best NLL reported in Table 2. Thanks to the score
FPE-regularizer, FP-Diffusion generally obtains smaller residuals compared with the vanilla model (i.e., scores satisfy the
score FPE better).

Figure 7. Comparison of the score FPE residuals as a function of time of vanilla DSM model and FP-Diffusion trained with α = 1.0, 0.5,
and 0.15, respectively.

Table 4. Values of score FPE residuals as a function of time of vanilla DSM model and FP-Diffusion trained with α = 1.0, 0.5, and 0.15,
respectively. For each timestep, we mark the largest value in bold.

Model/Time 10−5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vanilla (Song et al., 2020b) 8.401 2.889 1.331 0.383 0.152 0.067 0.023 0.008 0.005 0.002 0.003
FP-Diffusion (α = 1.0) 5.399 1.512 0.565 0.242 0.097 0.030 0.009 0.003 0.001 0.000 0.001
FP-Diffusion (α = 0.5) 7.121 2.728 0.745 0.421 0.110 0.046 0.015 0.005 0.002 0.001 0.000
FP-Diffusion (α = 0.15) 8.922 2.597 0.796 0.335 0.132 0.058 0.014 0.006 0.004 0.001 0.001

C. More details on techniques for efficient score FPE computation
As explained in Section 5, the computation of ϵ[sθ](x, t) in RFP(θ) is generally expensive; hence, we applied two techniques,
the finite difference trick and Hutchinson’s trace estimator, to replace the expensive computations of certain components in
ϵ[sθ](x, t).

C.1. Trick to reduce computation cost of ∂tsθ

Typically, ∂tsθ can be computed via automatic differentiation. However, it can be efficiently approximated by finite
differences as the derivative is one-dimensional. We review the one-dimensional finite difference method and summarize its
estimation error in the following lemma.
Lemma C.1. (Fornberg, 1988) Let α : [0, 1] → RD be a vector-valued function that is continuously differentiable up to
third order derivatives. Let hs and hd be step-size hyper-parameters. Then, we have the following estimate of α′(t):

h2
sα(t+ hd) + (h2

d − h2
s)α(t)− h2

dα(t− hs)

hshd(hs + hd)
+O

(hdh
2
s + hsh

2
d

hs + hd

)
.

In particular, if hs = hd =: h, then the estimate becomes

α(t+ h)− α(t− h)

2h
+O(h2).
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In implementation for a high-dimensional dataset, we consider α(·) := sθ(x, ·); hence, ∂tsθ(x, t) is approximated as

h2
ssθ(x, t+ hd) + (h2

d − h2
s)sθ(x, t)− h2

dsθ(x, t− hs)

hshd(hs + hd)
,

where we set (hs, hd) = (0.001, 0.0005).

C.2. Trick to reduce computation cost of divx(sθ)

Hutchinson’s trace estimator (Hutchinson, 1989) stochastically estimates the trace tr(A) of any square matrix A. The
idea is to choose a distribution pv so that Ev∼pv [v] = 0 and Ev∼pv [vv

T ] = I . Hence, tr(A) = tr(AEv∼pv [vv
T ]) =

Ev∼pv [tr(AvvT )] = Ev∼pv [tr(vAvT )] = Ev∼pv [vAvT ]. By i.i.d. sampling {vj}Mj=1 from pv, we can use an unbiased
estimator

1

M

M∑
j=1

vjAvT
j

to estimate tr(A). Note that divx(sθ(x, t)) = tr
(
∇xsθ

)
. Thus, we can apply Hutchinson’s trick and replace the divx(sθ)

term with the following estimation:
1

M

M∑
j=1

vj∇xsθ(x, t)v
T
j .

In implementation, pv is usually taken as a standard normal distribution or a Rademacher distribution.

We set M = 1 in our implementation.

C.3. Error analysis of score FPE estimation

In this section, we provide a theoretical error analysis of score FPE by using finite difference approximation and Hutchinson’s
estimation.

Here we consider the case of taking the Rademacher distribution for Hutchinson’s estimation. The proof is differed to
Appendix G.8. As for the case of normal distribution, we may utilize a statistical bound in (Roosta-Khorasani & Ascher,
2015) and obtain a similar statistical estimate by following the identical argument.

Proposition C.2. Let s(x, t) be a vector field on RD × [t0, T ], where t0 > 0 and g be a continuous function defined on
[t0, T ] which achieves minimum at t∗ ∈ [t0, T ] and that g∗ := g2(t∗) > 0. Denote

V [s] := ∂ts− 1

2
g2tr(∇s)

and
V̂ [s] := FD(s)− 1

2
g2trH(M)(∇s).

Here we denote a finite difference approximation in t with parameters hs, hd > 0 as FD(s), and a Hutchinson’s estimator
with M samples from Rademacher distribution as trH(M)(∇s) (see Section 5 for their explicit definitions). Let T [s] :=

∂ts − FD(s), H [s] := 1
2g

2
(
tr(∇s) − trH(M)(∇s)

)
and E [s] := V [s] − V̂ [s]. Notice from Lemma C.1 that there is a

constant C > 0 so that ∥F [s]∥D < CDh, where h =
h2
shd+hdh

2
s

hs+hd
and ∥·∥D indicates the ℓD-norm. For any ϵ ∈ (0, 3

8g
∗),

if h ∈ (0, ϵ
2CD ), then

P
(
∥E [s]∥D < ϵ

)
≥ 1− exp

−
(

Mϵ2

2(g∗− 8
3
ϵ)

)
.

C.4. Potential technique to compute ϵ[sθ] more efficiently

In this section, we propose another potential trick to reduce the computation cost of differentiation. Recall that

ϵ[sθ](x, t) = ∂tsθ︸︷︷︸
(I)

−∇x

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f)

]
︸ ︷︷ ︸

(II)

(23)
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The use of automatic differentiation to compute the gradient in ϵ[sθ](x, t) (part (II) in Eq. (23)) is generally cumbersome for
high dimensional data. We thus propose to use random projection to replace the gradient computation (multi-dimensional)
with a directional derivative (one-dimensional). Then, we can apply the finite difference trick introduced in above to further
reduce the computation effort. We first recall a fundamental property before rigorously formulating the technique.

Lemma C.3. Let M := M(x, t) : RD × [0, T ] → R be a continuously differentiable function of x. For any v ∈ RD,

DvM(x, t) = ⟨∇xM(x, t),v⟩,

where DvM(x, t) denotes the directional derivative of M in x along the direction v and is defined as follows:

DvM(x, t) := lim
h→0

M(x+ hv, t)−M(x, t)

h
=

d

dh
M(x+ hv, t)

∣∣∣
h=0

.

For simplicity, we let M(x, t) := 1
2g

2(t)divx(sθ) + 1
2g

2(t) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f) and let v ∈ RD be an arbitrary
vector. We project ϵ[sθ](x, t) along direction v and apply Lemma C.3:

⟨ϵ[sθ](x, t),v⟩ = ⟨∂tsθ −∇xM(x, t),v⟩ = ⟨∂tsθ,v⟩ − ⟨ d

dh
M(x+ hv, t)

∣∣∣
h=0

,v⟩.

Note that both ∂tsθ and d
dhM(x+ hv, t)

∣∣
h=0

entail one-dimensional differentiation and can be estimated via Lemma C.1,
thus avoiding automatic differentiation. That is, we may have the estimation

ϵ[sθ](x, t) ≈ Ev∼pv ⟨ϵ[sθ](x, t),v⟩, (24)

where pv is the distribution of a random vector v ∈ RD. However, the performance may be degraded by using the estimate
in Eq. (24) possibly because of the inaccurate approximation of the exact score FPE. Hence, we will need further study on
lowering the computation costs while preventing performance degradation.

D. Implementation details
In this section, we describe the details of our implementation on synthetic dataset, MNIST/Fashion MNIST, and CIFAR-
10/ImageNet32.

D.1. Synthetic dataset

We conducted our experiments on 4 NVIDIA GeForce RTX 3090 GPUs.

2D GMM. For all experiments of the 2D GMM 1
5N
(
(−5,−5), I

)
+ 4

5N
(
(5, 5), I

)
, we exploited a network structure

similar to the one in a particular repository2 for all . In that repository, we modified the forward SDE modified to be a VE
SDE or VP SDE (see Appendix A), but we simply replaced all convolutional layers with fully connected layers. We trained
for 2, 000 epochs with a learning rate of 10−3 and a batch size of 500.

Checkerboard, Swiss rolls, eight-mode 2D GMM, and 1D GMM. The neural network setups for the results shown in
Figures 5 and 4 were the same as the toy model structures provided in the repository of Lu et al. (2022) 3. We show our
detailed data preparation below, as modified from the same repository. We trained the models for 0.1M iterations with a
learning rate of 10−3 and a batch size of 500. For both training and inference, the start time was 10−3.

Listing 1. Checkerboard dataset
import numpy
import torch
x1 = np.random.rand(batch_size) * 4 - 2
x2_ = np.random.rand(batch_size) - np.random.randint(0, 2, batch_size) * 2
x2 = x2_ + (np.floor(x1) % 2)
checkerboard = torch.from_numpy(np.concatenate([x1[:, None], x2[:, None]], 1).float() * 2

2https://colab.research.google.com/drive/120kYYBOVa1i0TD85RjlEkFjaWDxSFUx3?usp=sharing
3https://github.com/LuChengTHU/mle_score_ode
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Listing 2. Swiss rolls dataset
import numpy
import torch
import sklearn
data = sklearn.datasets.make_swiss_roll(n_samples=batch_size, noise=1.0)[0]
data = data.astype("float32")[:, [0, 2]]
data /= 4.
data = torch.from_numpy(data).float()
r = 4.5
data1 = data.clone() + torch.tensor([-r, -r])
data2 = data.clone() + torch.tensor([-r, r])
data3 = data.clone() + torch.tensor([r, -r])
data4 = data.clone() + torch.tensor([r, r])
swiss_roll = torch.cat([data, data1, data2, data3, data4], axis=0)

Listing 3. 8 modes 2D GMM dataset
import numpy
import torch
num_mixture = 8
radius = 1.0
sigma = 0.1
mix_probs = [1/num_mixture] * num_mixture
std = torch.stack([torch.ones(dim) * sigma for i in range(len(mix_probs))], dim=0)
mix_probs = torch.tensor(mix_probs)
mix_idx = torch.multinomial(mix_probs, n, replacement=True)
thetas = np.linspace(0, 2 * np.pi, num_mixture, endpoint=False)
xs = radius * np.sin(thetas, dtype=np.float32)
ys = radius * np.cos(thetas, dtype=np.float32)
center = np.vstack([xs, ys]).T
center = torch.tensor(centers)
centers = centers[mix_idx]
stds = std[mix_idx]
eight_GMM = torch.randn_like(centers) * stds + centers

D.2. MNIST and Fashion MNIST

We conducted our experiments on 4 NVIDIA GeForce RTX 3090 GPUs.

We trained score networks on MNIST and Fashion MNIST from scratch for 200 epochs with a learning rate of 10−3 and
batch size of 32 by using the setup as in the repository4, with the forward SDE modified to be a VE SDE or VP SDE. For
both training and inference, the start time was 10−3.

D.3. CIFAR-10 and ImageNet32

For CIFAR-10 and ImageNet32, we followed the same model architectures and experimental setups as in Song et al.
(2020b)5 and Lu et al. (2022)6, respectively. More precisely, we used NCSN++ cont. for the VE and NCSN++ cont. deep for
the VE-deep. We conducted our experiments on 4 NVIDIA A100 GPUs (40 GiB). The batch size was fixed as 48. Instead of
training from scratch, we ued the pre-trained VE models provided by the two repositories and fine tuned them by training for
0.1M additional iterations. As we have found that a smaller batch size may decrease the NLL of the probability flow ODE,
for a fair comparison, we also trained the vanilla DSM models for 0.1M additional iterations. Table 2 reports the results.

We used uniform dequantization (Ho et al., 2019) for likelihood evaluation. To reduce the variance, we computed the NLL
(in bpd) over five repeated runs and took their average. For both training and inference, we chose a start time of 10−5.

4https://colab.research.google.com/drive/120kYYBOVa1i0TD85RjlEkFjaWDxSFUx3?usp=sharing
5https://github.com/yang-song/score_sde_pytorch
6https://github.com/LuChengTHU/mle_score_ode/
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E. Supplemental results
E.1. Sensitivity to hyper-parameters

Fine-tuning pre-trained models on MNIST and Fashion MNIST. In Section 7.2, we trained models from scratch on
MNIST and Fashion MNIST, and compared vanilla DSM models with FP-Diffusion with various α’s. However, different
initializations and optimization dynamics may lead to variances of NLLs. To avoid this issue, we followed our training
strategy for CIFAR-10 and ImageNet32 by fine tuning pre-trained models instead. More precisely, we first trained vanilla
DSM models for 100 epochs and fine tuned with different α’s for additional 100 epochs. Table 5 shows the NLL comparisons,
where we can observe general improvements with FP-Diffusion.

Table 5. NLL comparisons on MNIST and Fashion MNIST (trained by fine-tuning)
MNIST Fashion MNIST

Method VE VP VE VP
Vanilla (Song et al., 2020b) 3.67 3.27 4.78 4.49
FP-Diffusion (α = 0.001) 3.63 3.15 4.61 4.50
FP-Diffusion (α = 0.01) 3.60 3.10 4.58 4.46
FP-Diffusion (α = 0.1) 3.47 3.01 4.42 4.23
FP-Diffusion (α = 1.0) 3.23 3.09 4.39 4.27
FP-Diffusion (α = 10.0) 3.30 3.17 4.41 4.43

Fine-tuning pre-trained models on CIFAR-10. We compared the proposed FP-Diffusion with the VE SDE trained
on CIFAR-10 with different hyper-parameter choices. Table 6 reports the test set NLL results, which were computed by
averaging over five repeated runs to reduce variances. We found that (α, β, λFP(·),m) = (0.15, 0.01, g2(·), 2) generally
works well on more complicated datasets such as CIFAR-10 and ImageNet32. We remark that the choice of β makes
the scale of |L[sθ](x, t)| in Eq. (19) be comparable with JDSM, where β ≈ 10−2 is generally a reasonable value for both
CIFAR-10 and ImageNet32. Additionally, we motivate the choice of λFP(·) as g2(·) in Appendix G.3.

General recipe for searching hyper-parameters. A general recipe for the selection of hyper-parameters is (1) to set α be at
the scale of 10−1; (2) may need β (roughly at the scale of 10−2) for more complicated datasets. However. hyper-parameters
to obtain the best results may depend on the optimization and the structure of datasets as the landscapes of loss functions
are totally different. We generally observed that a larger α (roughly at the scale of 100) is preferable for relatively sparse
datasets such as MNIST and Fashion MNIST. In contrast, a smaller α (roughly at the scale of 10−1) and β (roughly at the
scale of 10−2) is preferable for more complicated datasets such as CIFAR-10 and ImageNet32. As for synthetic datasets,
(α, β) ≈ (10−2, 0.0) works well. Nevertheless, FP-Diffusion overall improves NLLs against the vanilla training.

Table 6. FP-Diffusion with different of hyper-parameter choices for the VE SDE trained on CIFAR-10.
(α, β, λFP(·),m) NLL (bpd) on CIFAR-10
Vanilla DSM α = β = 0.0 3.61
(0.15, 0.01, g2(·), 2) 3.36
(1.0, 0.01, g2(·), 2) 3.40
(0.5, 0.01, g2(·), 2) 3.38
(0.2, 0.01, g2(·), 2) 3.37
(0.1, 0.01, g2(·), 2) 3.37
(0.0, 0.01, ∗, ∗) 3.37
(1.0, 0.0, g2(·), 2) 3.57

E.2. Runtime discussion

In this section, we compared the runtime of vanilla diffusion model (trained with JDSM) and the proposed FP-Diffusion
on CIFAR-10. We fixed the training batch size as 48 and examined their runtime on VE type model NCSN++ cont. with
PyTorch. The hardware was 4 NVIDIA A100 GPUs (40 GiB). We believe the computation time of FP-Diffusion can be
improved with a more optimized code and setup of the environment.
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Table 7. Runtime comparison of vanilla diffusion and FP-Diffusion trained on CIFAR-10. The forward SDE was taken as the VE type.
Method Time per iteration (sec) Memory (GiB)
Vanilla (Song et al., 2020b) 0.17 23.48
FP-Diffusion 2.08 49.01
(α, β, λFP(·),m) = (0.15, 0.01, g2(·), 2)

E.3. Illustration and quality of generated samples

We visualized randomly generated samples with models trained on MNIST, Fashion MNIST, and CIFAR-10 in Figures 8, 9,
and 10, respectively. In Table 8, we reported numerical results of sample quality with models trained on CIFAR-10. Even
though FP-Diffusion has inferior numerical measurements compared with vanilla models, the differences are imperceptible
by comparing their generated samples.

Table 8. Sample quality on CIFAR-10.
FID ↓ IS ↑

Method VE VE-deep VE VE-deep
Vanilla (Song et al., 2020b) 3.33 2.44 9.19 9.80
FP-Diffusion 10.83 3.33 8.88 9.14

(a) VE (α = β = 0.0) (b) VE (α = 1.0) (c) VP (α = β = 0.0) (d) VP (α = 1.0)

Figure 8. Samples generated with models trained on MNIST by using (a, c) vanilla DSM and (b, d) FP-Diffusion with the setup described
in Section 7.2.

(a) VE (α = β = 0.0) (b) VE (α = 1.0) (c) VP (α = β = 0.0) (d) VP (α = 1.0)

Figure 9. Samples generated with models trained on Fashion MNIST by using (a, c) vanilla DSM and (b, d) FP-Diffusion with the setup
described in Section 7.2.

F. Theoretical assumptions
Here, we introduce some regularity conditions to establish Theorems .4.2 and 4.3 which are commonly used in theoretical
studies of score-based models (Song et al., 2021; Lu et al., 2022; Pidstrigach, 2022; Kwon et al., 2022).
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(a) VE (vanilla α = β = 0.0)
on CIFAR-10

(b) VE (FP-Diffusion) on
CIFAR-10

(c) VE-deep (vanilla
α = β = 0.0) on CIFAR-10

(d) VE-deep (FP-Diffusion)
on CIFAR-10

Figure 10. Illustration of generated samples with VE and VE-deep models trained on CIFAR-10. (a) and (c) show samples generated by
vanilla DSM. (b) and (d) show samples generated by FP-Diffusion with the setup described in Section 7.3.

Assumption F.1. We assume there are finite constants L > 0, which is sufficiently large (may assume L ≥ 1), and δT > 0
such that the following conditions hold for all x,y ∈ RD and t ∈ [0, T ]

(a) Bounded 2nd non-central moment: Eq0(x)[∥x∥
2
2] ≤ L, or supt∈[0,T ]

{
Ex∼qt(x)[∥x∥

2
2]
}
≤ L to streamline the proof,

(b) ∥sθ(x, t)∥2 ≤ L(1 + ∥x∥2),

(c) ∥sθ(x, t)− sθ(y, t)∥2 ≤ L ∥x− y∥2,

(d) ∥f(x, t)∥2 ≤ L(1 + ∥x∥2),

(e) ∥f(x, t)− f(y, t)∥2 ≤ L ∥x− y∥2,

(f)
∥∥sODE

θ (x, t)
∥∥
2
≤ L(1 + ∥x∥2),

(g)
∥∥sODE

θ (x, t)− sODE
θ (y, t)

∥∥
2
≤ L ∥x− y∥2,

(h) ∥s(x, t)∥2 ≤ L(1 + ∥x∥2),

(i) ∥s(x, t)− s(y, t)∥2 ≤ L ∥x− y∥2,

and that

(j) supt∈[0,T ]

{
Eqt(x)

[ ∥∥sθ(x, T )− sODE
θ (x, T )

∥∥2
2

]}
≤ δ2T , or supx∈RD

∥∥sθ(x, T )− sODE
θ (x, T )

∥∥2
2
≤ δ2T ,

(k) For any t ∈ [0, T ], there is a k > 0 so that as ∥x∥2 → ∞, qt(x) = O
(
e−∥x∥k

2

)
and pODE

t (x) = O
(
e−∥x∥k

2

)
.

Assumption F.2. We assume there is a finite constant L > 0 such that for all x,y ∈ RD and t ∈ [0, T ] the following
conditions hold

(c’) ∥∇xsθ(x, t)−∇xsθ(y, t)∥2 ≤ L ∥x− y∥2,

(e’) ∥∇xf(x, t)−∇xf(y, t)∥2 ≤ L ∥x− y∥2,

(g’)
∥∥∇xs

ODE
θ (x, t)−∇xs

ODE
θ (y, t)

∥∥
2
≤ L ∥x− y∥2.
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G. Proofs and discussions
G.1. Proof of Proposition 3.1

Proof. We prove the result with a more general forward SDE

dx = F (x, t)dt+G(x, t)dwt, (25)

where F (·, t) : RD → RD and G(·, t) : RD → RD×D.

We know that the density qt(x) satisfies the Fokker-Planck equation (Øksendal, 2003)

∂tqt(x) = −
D∑

j=1

∂xj

(
F̃j(x, t)qt(x)

)
, (26)

where F̃ (x, t) := F (x, t) − 1
2∇ · [G(x, t)G(x, t)T ] − 1

2G(x, t)G(x, t)T∇x log qt(x). We further denote A(x, t) :=
F (x, t)− 1

2∇ · [G(x, t)G(x, t)T ] and B(x, t) := − 1
2G(x, t)G(x, t)T .

Now F̃ (x, t) = A(x, t) +B(x, t)s(x, t), and we have

∂t log qt(x) =
1

qt(x)
∂tqt(x)

= − 1

qt(x)

D∑
j=1

∂xj

(
F̃j(x, t)qt(x)

)
= − 1

qt(x)

D∑
j=1

(
∂xj

F̃j(x, t)qt(x) + F̃j(x, t)∂xj
qt(x)

)
= −

D∑
j=1

(
∂xj

F̃j(x, t) + F̃j(x, t)∂xj
log qt(x)

)
= −

(
divx(F̃ ) + ⟨F̃ , s⟩

)
= −

[
divx

(
Bs
)
+ ⟨Bs, s⟩+ ⟨A, s⟩+ divx(A)

]
=

1

2
divx

(
GGTs

)
+

1

2

∥∥GTs
∥∥2
2
− ⟨A, s⟩ − divx(A).

Since log qt(x) is sufficiently smooth, we can swap the order of differentiations and get ∂ts = ∂t∇x log qt(x) =
∇x∂t log qt(x). Hence, the statement is proved.

Remark G.1. In Eq. (1) where G does not depend on x, namely G(x, t) ≡ g(t)I , then F̃ (x, t) = f(x, t) −
1
2g

2(t)∇x log qt(x) and

∂t log qt(x) =
1

2
g2(t)divx(s) +

1

2
g2(t) ∥s∥22 − ⟨f , s⟩ − divx(f)

∂ts = ∇x

[1
2
g2(t)divx(s) +

1

2
g2(t) ∥s∥22 − ⟨f , s⟩ − divx(f)

]
.

G.2. Proof of Theorem 4.2

Lemma G.2 (Grönwall’s inequality (Gronwall, 1919)). Assume that α, β, and u are continuous functions on [0, T ]. If β is
non-negative on [0, T ] and if u satisfies the integral inequality

u(t) ≤ α(t) +

∫ T

t

β(τ)u(τ)dτ, for all t ∈ [0, T ]
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then

u(t) ≤ α(t) +

∫ T

t

α(τ)β(τ) exp
( ∫ τ

t

β(r)dr
)
dτ, for all t ∈ [0, T ]

In particularly, if α is non-decreasing (especially, a constant independent of t), then

u(t) ≤ α(t) exp
( ∫ T

t

β(τ)dτ
)
, for all t ∈ [0, T ].

Proof. Grönwall’s inequality

Consider the function

v(τ) := exp
(
−
∫ T

τ

β(r)dr
)∫ T

τ

β(r)u(r)dr.

Taking the derivative by the product rule leads to

v′(τ) =
(
− u(τ) +

∫ T

τ

β(r)u(r)dr
)
β(τ) exp

(
−
∫ T

τ

β(r)dr
)

≥ −α(τ)β(τ) exp
(
−
∫ T

τ

β(r)dr
)
.

Integrating the above inequality from τ = t to τ = T proves the statement.

Proof. Theorem 4.2

We first prove the Ineq. (14). Notice that we can rearrange JDiff as

JDiff(θ) =
1

2

∫ T

0

g2(t)Ex∼qt(x)

[(
sθ(x, t)−∇x log qt(x)

)⊤(
sODE
θ (x, t)− sθ(x, t)

)]
dt

=

∫ T

0

∫
RD

[
g(t)

√
qt(x)

2

(
sθ(x, t)−∇x log qt(x)

)]⊤[
g(t)

√
qt(x)

2

(
sODE
θ (x, t)− sθ(x, t)

)]
dtdx.

The claim is established by applying Cauchy-Schwartz inequality to functions g(t)
√

qt(x)
2

(
sθ(x, t)−∇x log qt(x)

)
and

g(t)
√

qt(x)
2

(
sODE
θ (x, t)− sθ(x, t)

)
.

Now, we prove the Ineq. (15), in which we just need to consider the case when M(θ) :=

supt∈[0,T ] Ex∼qt(x)

[ ∫ T

0
∥ϵ[sθ](x, τ)∥2 dτ

]
< ∞; otherwise, the result holds obviously. Throughout the proof,

we simply use the notation ≲ to express ≲T,δT ,g,L, which indicates the estimation depends only on T, δT , g, L.

Recall that the probability flow ODE (Song et al., 2020b) associated to Eq. (4) is defined as

dx

dt
(t) = f(x(t), t)− 1

2
g2(t)sθ(x(t), t).

By the special case of FPE (Eq. (26)) with zero diffusion term, we obtain the PDE characterizes the evolution of pODE
t,θ

∂pODE
t,θ

∂t
(x, t) = divx

((1
2
g2(t)sθ(x, t)− f(x, t)

)
pODE
t,θ (x)

)
Hence,

∂ log pODE
t,θ

∂t
=

1

pODE
t,θ

∂pODE
t,θ

∂t

=
1

2
g2(t)divx(sθ)− divx(f) + ⟨sODE

θ ,
1

2
g2(t)sθ − f⟩,
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where we apply the product rule of divergence in the last equality. After taking the gradient from the both sides, we obtain7

∂sODE
θ

∂t
(x, t) = ∇x

∂ log pODE
t,θ

∂t

= ∇x

[1
2
g2(t)divx(sθ)− divx(f)

]
+∇x

[
⟨sODE

θ ,
1

2
g2(t)sθ − f⟩

]
= ∇x

[1
2
g2(t)divx(sθ)− divx(f)

]
+∇x

[1
2
g2(t)⟨sODE

θ , sθ⟩ − ⟨f , sODE
θ ⟩

] (27)

By rearranging Eq. (9) and combining with Eq. (27), it results in

ϵ[sθ](x, t) = ∂tsθ −∇x

[1
2
g2(t)divx(sθ)− divx(f)

]
−∇x

[1
2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩

]
= ∂tsθ − ∂ts

ODE
θ −∇x

[1
2
g2(t)⟨sθ − sODE

θ , sθ⟩ − ⟨f , sθ − sODE
θ ⟩

]

That is,

∂t
(
sθ(x, t)− sODE

θ (x, t)
)
= ϵ[sθ](x, t) +∇x

[1
2
g2(t)⟨sθ − sODE

θ , sθ⟩ − ⟨f , sθ − sODE
θ ⟩

]
(28)

Fix a t ∈ [0, T ]. We integrate both sides of the above equation from τ = T to τ = t

sθ(x, t)− sODE
θ (x, t) = sθ(x, T )− sODE

θ (x, T )

+

∫ t

T

ϵ[sθ](x, τ)dτ +

∫ t

T

∇x

[1
2
g2(t)⟨sθ − sODE

θ , sθ⟩ − ⟨f , sθ − sODE
θ ⟩

]
dτ.

Applying the ℓ2-norm

∥∥sθ(x, t)− sODE
θ (x, t)

∥∥
2
≤
∥∥sθ(x, T )− sODE

θ (x, T )
∥∥
2

+

∫ T

t

∥ϵ[sθ](x, τ)∥2 dτ (29)

+

∫ T

t

∥∥∥∥∇x

[1
2
g2(t)⟨sθ − sODE

θ , sθ⟩ − ⟨f , sθ − sODE
θ ⟩

]∥∥∥∥
2

dτ.

In the last term, we may compute ∇x

[
1
2g

2(t)⟨sθ − sODE
θ , sθ⟩ − ⟨f , sθ − sODE

θ ⟩
]

as

1

2
g2(τ)

(
∇xsθ · sθ −∇xs

ODE
θ · sθ

)
+

1

2
g2(τ)

(
∇xsθ ·

(
sθ − sODE

θ

))
−∇xf ·

(
sθ − sODE

θ

)
−∇xsθ · f +∇xs

ODE
θ · f

(30)

7Indeed, Eq. (27) can also be derived from Proposition 3.1.
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Hence, we can further estimate the last term of Ineq. (29) as∫ T

t

∥∥∥∥∇x

[1
2
g2(t)⟨sθ − sODE

θ , sθ⟩ − ⟨f , sθ − sODE
θ ⟩

]∥∥∥∥
2

dτ

≤
∫ T

t

1

2
g2(τ) ∥∇xsθ · sθ∥2 dτ +

∫ T

t

1

2
g2(τ)

∥∥∇xs
ODE
θ · sθ

∥∥
2
dτ

+

∫ T

t

1

2
g2(τ)

∥∥∇xsθ ·
(
sθ − sODE

θ

)∥∥
2
dτ +

∫ T

t

∥∥∇xf ·
(
sθ − sODE

θ

)∥∥
2
dτ

+

∫ T

t

∥∇xsθ · f∥2 dτ +

∫ T

t

∥∥∇xs
ODE
θ · f

∥∥
2
dτ

≤
∫ T

t

1

2
g2(τ) ∥∇xsθ∥op ∥sθ∥2 dτ +

∫ T

t

1

2
g2(τ)

∥∥∇xs
ODE
θ

∥∥
op ∥sθ∥2 dτ

+

∫ T

t

1

2
g2(τ) ∥∇xsθ∥op

∥∥sθ − sODE
θ

∥∥
2
dτ +

∫ T

t

∥∇xf∥op

∥∥sθ − sODE
θ

∥∥
2
dτ

+

∫ T

t

∥∇xsθ∥op ∥f∥2 dτ +

∫ T

t

∥∥∇xs
ODE
θ

∥∥
op ∥f∥2 dτ

≤

[
L2(

∫ T

0

g2(τ)dτ)(1 + ∥x∥2)

]
+

[∫ T

t

(L
2
g2(τ) + L

) ∥∥sθ − sODE
θ

∥∥
2
dτ

]
+

[
2L2T (1 + ∥x∥2)

]

≤ C1(L, T, g)(1 + ∥x∥2) +
∫ T

t

(L
2
g2(τ) + L

) ∥∥sθ − sODE
θ

∥∥
2
dτ

where ∥A∥op := maxx ̸=0
∥Ax∥2

∥x∥2
denotes the operator norm of the matrix A. In the second-to-last inequality, we apply

Assumption F.1 together with the Rademacher’s theorem (Evans & Garzepy, 2018) which bounds the total differentiations
of sθ, sODE

θ , and f by their Lipschitz constants. Moreover, we summarize constant terms into C1 := C1(L, T, g), which
depends on L, T , and the function g.

Combining this estimation with Ineq. (29), we have

∥∥sθ(x, t)− sODE
θ (x, t)

∥∥
2
≤
∥∥sθ(x, T )− sODE

θ (x, T )
∥∥
2
+

∫ T

0

∥ϵ[sθ](x, τ)∥2 dτ + C1(L, T, g)(1 + ∥x∥2)

+

∫ T

t

(L
2
g2(τ) + L

) ∥∥sθ(x, τ)− sODE
θ (x, τ)

∥∥
2
dτ.

Consider the following functions in Lemma G.2

u(t) :=
∥∥sθ(x, t)− sODE

θ (x, t)
∥∥
2

α(t) :=
∥∥sθ(x, T )− sODE

θ (x, T )
∥∥
2
+

∫ T

0

∥ϵ[sθ](x, τ)∥2 dτ + C1(L, T, g)(1 + ∥x∥2)

β(t) :=
L

2
g2(t) + L.

We remark that α ≡ α(t) is actually independent of t. Then the lemma implies

u(t) ≤ α exp
( ∫ T

t

β(τ)dτ
)

≲
[ ∥∥sθ(x, T )− sODE

θ (x, T )
∥∥
2
+

∫ T

0

∥ϵ[sθ](x, τ)∥2 dτ + (1 + ∥x∥2)
]
,

where we bound exp
( ∫ T

t
β(τ)dτ

)
by exp

( ∫ T

0
β(τ)dτ

)
which is a constant, and we absorb all constant terms.
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We are going to square both sides of the above estimation and take the expectation over qt(x). For the sake of simplicity, we
denote eθ(x) :=

∫ T

0
∥ϵ[sθ](x, τ)∥2 dτ and δθ(x) :=

∥∥sθ(x, T )− sODE
θ (x, T )

∥∥
2
, and hence, we obtain

Eqt(x)

[
u2(t)

]
≲ Eqt(x)

(
δθ(x) + eθ(x) + (1 + ∥x∥2)

)2

≲

{
Eqt(x)

[
δ2θ(x)

]
+ Eqt(x)

[
e2θ(x)

]
+ Eqt(x)

[
(1 + ∥x∥2)

2
]

+ Eqt(x)

[
δθ(x)eθ(x)

]
+ Eqt(x)

[
δθ(x)(1 + ∥x∥2)

]
+ Eqt(x)

[
eθ(x)(1 + ∥x∥2)

]}
.

(31)

The last three terms of the above inequality can be further bounded via Cauchy–Schwarz inequality

Eqt(x)

[
δθ(x)eθ(x)

]
≤
√
Eqt(x)

[
δ2θ(x)

]√
Eqt(x)

[
e2θ(x)

]
Eqt(x)

[
δθ(x)(1 + ∥x∥2)

]
≤
√
Eqt(x)

[
δ2θ(x)

]√
Eqt(x)

[
(1 + ∥x∥2)2

]
Eqt(x)

[
eθ(x)(1 + ∥x∥2)

]
≤
√
Eqt(x)

[
e2θ(x)

]√
Eqt(x)

[
(1 + ∥x∥2)2

]
.

It is noticed that Assumption F.1.(a) indeed implies the following estimation which bounds 1st- and 2nd- central moments for
all t ∈ [0, T ]

sup
t∈[0,T ]

{
Ex∼qt(x)[∥x∥2]

}
≤ L and sup

t∈[0,T ]

{
Ex∼qt(x)[∥x∥

2
2]
}
≤ L (32)

as by Cauchy Schwartz inequality that Ex∼q0(x)[∥x∥2] ≤
(
Ex∼q0(x)[∥x∥

2
2]
)1/2 ≤ L1/2 and the transition density

q0t(x(t)|x(0)) has bounded covariance matrices as a function in t ∈ [0, T ]. With Ineq. (32) and Assumption F.1.(j),
Ineq. (31) becomes

Eqt(x)

[ ∥∥sθ(x, t)− sODE
θ (x, t)

∥∥2
2

]
≲

{
δ2T + Eqt(x)

[
e2θ(x)

]
+ (1 + 3L)

+ δT

√
Eqt(x)

[
e2θ(x)

]
+ δT

√
1 + 3L+

√
1 + 3L

√
Eqt(x)

[
e2θ(x)

]}
≲
(
Eqt(x)

[
e2θ(x)

]
+
√
Eqt(x)

[
e2θ(x)

]
+ C1(L, T, g, δT )

)
≲
(
M(θ) +

√
M(θ) + C1(L, T, g, δT )

)
.

Here we use that e2θ(x) =
( ∫ T

0
∥ϵ[sθ](x, τ)∥2 dτ

)2 ≤ T
∫ T

0
∥ϵ[sθ](x, τ)∥22 dτ . Again, we we abuse of the notation and

summarize constants into C1 = C1(L, T, g, δT ). Therefore, after combining the Ineq. (14) and the estimation above, we
obtain (with a fusion of constant term)(

JDiff(θ)
)2

≲ JSM(θ) · JFisher(θ)

≲ JSM(θ) ·
(
M(θ) +

√
M(θ) + C1(L, T, g, δT )

)

G.3. Discussions on Theorem 4.2

Tighter bounds of Theorem 4.2. We remark that one can easily extend Theorem 4.2 and obtain a sharper bound by
checking carefully the tightness of each estimation. We provide an approach as an instance. Let us assume there is a constant
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δODE > 0 to control the distance between ∇xs
ODE
θ and ∇xsθ instead (in this case, we do not require Assumption F.1.(g)).

That is,

sup
RD×[0,T ]

∥∥∇x

(
sθ − sODE

θ

)∥∥
2
≤ δODE. (33)

Notice that Eq. (30) can be rewritten as

1

2
g2(τ)

(
∇x

(
sθ − sODE

θ

)
· sθ
)
+

1

2
g2(τ)

(
∇xsθ ·

(
sθ − sODE

θ

))
−∇xf ·

(
sθ − sODE

θ

)
−∇x

(
sθ − sODE

θ

)
· f .

Following the same argument as the proof of Theorem. 4.2 together with the help of Ineq. (33), JFisher(θ) can be upper
bounded by a constant which depends monotonically increasingly on δODE. Therefore, we can get a sharper estimation if
δODE is smaller.

Variants of Theorem 4.2. M(θ) describes one of the worst case scenarios by searching the largest time-averaged
residuals among all time slices. Theoretically it is a legit quantity. While we can obtain similar results as Theorems 4.2
and 4.3 (however, need additional assumptions) with more interpretable bounds. Here we just focus on the discussion on
Theorem 4.2, and a similar argument can be adopted to Theorem 4.3.

First, we introduce a variant of M(θ) which is defined as

M̃(θ) := sup
t∈[t0,T ]

Ex∼qt(x)

[∫ T

t0

qτ (x) ∥ϵ[sθ](x, τ)∥22 dτ

]
. (34)

M̃(θ) is more interpretable in the sense that for any time slice t and sample xt ∼ qt(x), if τ is deviating from t when taking
the time average, the marginal density qτ (xt) can reduce the effect of the score FPE residual at that by providing a lighter
weight.

Notice that if we assume that there is positive constants Q∗ and q∗ so that q∗ ≤ qt(x) ≤ Q∗ for all x ∈ supp(qt) and
t ∈ [t0, T ], then q∗M(θ) ≤ M̃(θ) ≤ Q∗M(θ).
Theorem G.3 (A variant of Theorem 4.2). Let t0 > 0 be a constant indicating the terminal time of the backward diffusion
process (or equivalently the initial time of the forward process). Suppose in addition to Assumption F.1 that we have bounded
4th non-central moment: Eq0(x)[∥x∥

4
2] ≤ L. If there is positive constants Q∗ and q∗ so that Q∗ ≥ qt(x) ≥ q∗ for all

x ∈ supp(qt) and t ∈ [t0, T ]. Then we can obtain an upper bound for JFisher(θ) in terms of M̃(θ) as

JFisher(θ) ≲ M̃(θ) +

√
M̃(θ) + C3,

where C3 > 0 is a constant independent of θ and different from C1 and C2.

Proof. Theorem G.3

We start from Eq. (28) in the proof of Theorem 4.2.

∂t
(
sθ(x, t)− sODE

θ (x, t)
)
= ϵ[sθ](x, t) +∇x

[1
2
g2(t)⟨sθ − sODE

θ , sθ⟩ − ⟨f , sθ − sODE
θ ⟩

]
.

Multiplying qt(x) from the both sides and integrating from τ = T to τ = t, we get the following equation with integration
by part

LHS :=

∫ t

T

∂τ
(
sθ(x, τ)− sODE

θ (x, τ)
)
qτ (x) dτ

=
(
sθ(x, τ)− sODE

θ (x, τ)
)
qτ (x)

∣∣∣τ=t

τ=T
−
∫ t

T

(
sθ(x, τ)− sODE

θ (x, τ)
)
∂τqτ (x) dτ

=
(
sθ(x, t)− sODE

θ (x, t)
)
qt(x)−

[(
sθ(x, T )− sODE

θ (x, T )
)
qT (x) +

∫ t

T

(
sθ(x, τ)− sODE

θ (x, τ)
)
∂τqτ (x) dτ

]
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and

RHS :=

∫ t

T

ϵ[sθ](x, τ)qτ (x) dτ +

∫ t

T

∇x

[1
2
g2(t)⟨sθ − sODE

θ , sθ⟩ − ⟨f , sθ − sODE
θ ⟩

]
qτ (x) dτ.

Hence, we have

(
sθ(x, t)− sODE

θ (x, t)
)
qt(x) =

[(
sθ(x, T )− sODE

θ (x, T )
)
qT (x) +

∫ t

T

(
sθ(x, τ)− sODE

θ (x, τ)
)
∂τqτ (x)dτ

]
+

∫ t

T

ϵ[sθ](x, τ)qτ (x)dτ +

∫ t

T

∇x

[1
2
g2(t)⟨sθ − sODE

θ , sθ⟩ − ⟨f , sθ − sODE
θ ⟩

]
qτ (x)dτ.

Applying the ℓ2-norm and using the fact that Q∗ ≥ qt(x) ≥ q∗ for all x ∈ supp(qt) and t ∈ [t0, T ] (or alternatively, we
may choose sufficiently large L > 0 so that L ≥ qt(x) ≥ 1/L),

qt(x)
∥∥sθ(x, t)− sODE

θ (x, t)
∥∥
2
≲
∥∥sθ(x, T )− sODE

θ (x, T )
∥∥
2
+

∫ t

T

∥∥sθ(x, τ)− sODE
θ (x, τ)

∥∥ |∂τqτ (x)| dτ
+

∫ T

t

qτ (x) ∥ϵ[sθ](x, τ)∥2 dτ (35)

+

∫ T

t

∥∥∥∥∇x

[1
2
g2(t)⟨sθ − sODE

θ , sθ⟩ − ⟨f , sθ − sODE
θ ⟩

]∥∥∥∥
2

dτ.

With the classic Fokker-Planck equation and s(x, τ) = ∇xqτ (x)/qτ (x)

∂τqτ (x) = −
[
(divx(f)−

1

2
g2(τ)divx(s))qτ + ⟨f − 1

2
g2(τ)s, s⟩qτ

]
,

we can bound the term
∫ t

T

∥∥sθ(x, τ)− sODE
θ (x, τ)

∥∥ |∂τqτ (x)| dτ ≤ C3(1+∥x∥2)
2, where C3 := C3(L, T, g,Q

∗, q∗) > 0

is a constant depending on L, T , Q∗, q∗, and the function g.

In the last term of Ineq. (29), we may compute ∇x

[
1
2g

2(t)⟨sθ − sODE
θ , sθ⟩ − ⟨f , sθ − sODE

θ ⟩
]

as

1

2
g2(τ)

(
∇xsθ · sθ −∇xs

ODE
θ · sθ

)
+

1

2
g2(τ)

(
∇xsθ ·

(
sθ − sODE

θ

))
−∇xf ·

(
sθ − sODE

θ

)
−∇xsθ · f +∇xs

ODE
θ · f
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Hence, we can further estimate the last term of Ineq. (35) as∫ T

t

∥∥∥∥∇x

[1
2
g2(t)⟨sθ − sODE

θ , sθ⟩ − ⟨f , sθ − sODE
θ ⟩

]∥∥∥∥
2

dτ

≤
∫ T

t

1

2
g2(τ) ∥∇xsθ · sθ∥2 dτ +

∫ T

t

1

2
g2(τ)

∥∥∇xs
ODE
θ · sθ

∥∥
2
dτ

+

∫ T

t

1

2
g2(τ)

∥∥∇xsθ ·
(
sθ − sODE

θ

)∥∥
2
dτ +

∫ T

t

∥∥∇xf ·
(
sθ − sODE

θ

)∥∥
2
dτ

+

∫ T

t

∥∇xsθ · f∥2 dτ +

∫ T

t

∥∥∇xs
ODE
θ · f

∥∥
2
dτ

≤
∫ T

t

1

2
g2(τ) ∥∇xsθ∥op ∥sθ∥2 dτ +

∫ T

t

1

2
g2(τ)

∥∥∇xs
ODE
θ

∥∥
op ∥sθ∥2 dτ

+

∫ T

t

1

2
g2(τ) ∥∇xsθ∥op

∥∥sθ − sODE
θ

∥∥
2
dτ +

∫ T

t

∥∇xf∥op

∥∥sθ − sODE
θ

∥∥
2
dτ

+

∫ T

t

∥∇xsθ∥op ∥f∥2 dτ +

∫ T

t

∥∥∇xs
ODE
θ

∥∥
op ∥f∥2 dτ

≤

[
L2(

∫ T

0

g2(τ)dτ)(1 + ∥x∥2)

]
+

[∫ T

t

(L
2
g2(τ) + L

) ∥∥sθ − sODE
θ

∥∥
2
dτ

]
+

[
2L2T (1 + ∥x∥2)

]

≤ C3(L, T, g)(1 + ∥x∥2) +
∫ T

t

(L
2
g2(τ) + L

) ∥∥sθ − sODE
θ

∥∥
2
dτ

where ∥A∥op := maxx ̸=0
∥Ax∥2

∥x∥2
denotes the operator norm of the matrix A. In the second-to-last inequality, we apply

Assumption F.1 together with the Rademacher’s theorem which bounds the total differentiations of sθ , sODE
θ , and f by their

Lipschitz constants. Moreover, we summarize constant terms into C3 := C3(L, T, g,Q
∗, q∗).

By dividing both side of Ineq. (35) with qt(x) and using that 1
Q∗ ≤ 1

qt(x)
≤ 1

q∗ for all t ∈ [t0, T ] and x ∈ supp(qt), we
combine above estimations which leads to∥∥sθ(x, t)− sODE

θ (x, t)
∥∥
2
≤ 1

q∗
∥∥sθ(x, T )− sODE

θ (x, T )
∥∥
2
+

1

q∗

∫ T

t0

∥ϵ[sθ](x, τ)∥2 dτ

+ C3(L, T, g, q
∗)[(1 + ∥x∥2) + (1 + ∥x∥2)

2]

+

∫ T

t

1

q∗
(L
2
g2(τ) + L

) ∥∥sθ(x, τ)− sODE
θ (x, τ)

∥∥
2
dτ.

Consider the following functions in the Lemma G.2 (Grönwall’s inequality)

u(t) :=
∥∥sθ(x, t)− sODE

θ (x, t)
∥∥
2

α(t) :=
1

q∗
∥∥sθ(x, T )− sODE

θ (x, T )
∥∥
2
+

1

q∗

∫ T

t0

qτ (x) ∥ϵ[sθ](x, τ)∥2 dτ

+ C3(L, T, g, q
∗)[(1 + ∥x∥2) + (1 + ∥x∥2)

2]

β(t) :=
1

q∗
(L
2
g2(t) + L

)
.

We remark that α ≡ α(t) is actually independent of t. Then the lemma implies

u(t) ≤ α exp
( ∫ T

t

β(τ)dτ
)

≲
[ ∥∥sθ(x, T )− sODE

θ (x, T )
∥∥
2
+

∫ T

t0

qτ (x) ∥ϵ[sθ](x, τ)∥2 dτ + (1 + ∥x∥2) + (1 + ∥x∥2)
2
]
,

28



FP-Diffusion: Improving Score-based Diffusion Models by Enforcing the Underlying Score Fokker-Planck Equation

where we bound exp
( ∫ T

t
β(τ)dτ

)
by exp

( ∫ T

t0
β(τ)dτ

)
which is a constant, and we absorb all constant terms.

We are going to square both sides of the above estimation and take the expectation over qt(x). For the sake of simplicity, we
denote eθ(x) :=

∫ T

t0
qτ (x) ∥ϵ[sθ](x, τ)∥2 dτ and δθ(x) :=

∥∥sθ(x, T )− sODE
θ (x, T )

∥∥
2
, and hence, we obtain

Eqt(x)

[
u2(t)

]
≲ Eqt(x)

(
δθ(x) + eθ(x) +

(
2 + 3 ∥x∥2 + ∥x∥22

))2

≲

{
Eqt(x)

[
δ2θ(x)

]
+ Eqt(x)

[
e2θ(x)

]
+ Eqt(x)

[(
2 + 3 ∥x∥2 + ∥x∥22

)2]
+ Eqt(x)

[
δθ(x)eθ(x)

]
+ Eqt(x)

[
δθ(x)

(
2 + 3 ∥x∥2 + ∥x∥22

)]
+ Eqt(x)

[
eθ(x)

(
2 + 3 ∥x∥2 + ∥x∥22

)]}
.

(36)
The last three terms of the above inequality can be further bounded via Cauchy–Schwarz inequality

Eqt(x)

[
δθ(x)eθ(x)

]
≤
√
Eqt(x)

[
δ2θ(x)

]√
Eqt(x)

[
e2θ(x)

]
Eqt(x)

[
δθ(x)

(
2 + 3 ∥x∥2 + ∥x∥22

)]
≤
√
Eqt(x)

[
δ2θ(x)

]√
Eqt(x)

[(
2 + 3 ∥x∥2 + ∥x∥22

)2]
Eqt(x)

[
eθ(x)

(
2 + 3 ∥x∥2 + ∥x∥22

)]
≤
√
Eqt(x)

[
e2θ(x)

]√
Eqt(x)

[(
2 + 3 ∥x∥2 + ∥x∥22

)2]
.

It is noticed that bounded 4th non-central moment Eq0(x)[∥x∥
4
2] ≤ L indeed implies the following estimation which bounds

all lower non-central moments for all t ∈ [t0, T ]

sup
t∈[t0,T ]

{
Ex∼qt(x)[∥x∥2]

}
, sup

t∈[t0,T ]

{
Ex∼qt(x)[∥x∥

2
2]
}
, sup

t∈[t0,T ]

{
Ex∼qt(x)[∥x∥

3
2]
}
, sup

t∈[t0,T ]

{
Ex∼qt(x)[∥x∥

4
2]
}
≤ L

(37)
as by Cauchy Schwartz inequality and the transition density q0t(x(t)|x(0)) has bounded covariance matrices as a function
in t ∈ [t0, T ]. With Ineq. (37) and Assumption F.1.(j), Ineq. (36) becomes

Eqt(x)

[ ∥∥sθ(x, t)− sODE
θ (x, t)

∥∥2
2

]
≲

{
δ2T + Eqt(x)

[
e2θ(x)

]
+ (4 + 32L)

+ δT

√
Eqt(x)

[
e2θ(x)

]
+ δT

√
4 + 32L+

√
4 + 32L

√
Eqt(x)

[
e2θ(x)

]}
≲
(
Eqt(x)

[
e2θ(x)

]
+
√
Eqt(x)

[
e2θ(x)

]
+ C3(L, T, g, δT )

)
≲
(
M̃(θ)) +

√
M̃(θ) + C3(L, T, g, q

∗, δT )
)
,

Again, we we abuse of the notation and summarize constants into C3 = C3(L, T, g,Q
∗, q∗, δT ). Therefore, after combining

the Ineq. (14) and the estimation above, we obtain (with a fusion of constant term)(
JDiff(θ)

)2
≲ JSM(θ) · JFisher(θ)

≲ JSM(θ) ·
(
M̃(θ)) +

√
M̃(θ) + C3(L, T, g,Q

∗, q∗, δT )
)

Tighter bounds of Theorem G.3. Indeed, we can obtain tighter upper bound from Ineq. (38). Let us revisit the argument in
Ineq. (38):

Eqt(x)

[ ∥∥sθ(x, t)− sODE
θ (x, t)

∥∥2
2

]
≲
(
Eqt(x)

[
e2θ(x)

]
+
√

Eqt(x)

[
e2θ(x)

]
+ C3(L, T, g,Q

∗, q∗, δT )
)
.
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This implies

JFisher(θ) =
1

2

∫ T

t0

g2(t)Eqt(x)

[ ∥∥sθ(x, t)− sODE
θ (x, t)

∥∥2
2

]
dt

≲
∫ T

t0

g2(t)Eqt(x)

[
e2θ(x)

]
dt+

∫ T

t0

g2(t)
√

Eqt(x)

[
e2θ(x)

]
dt+ C3(L, T, g,Q

∗, q∗, δT ).

By applying Cauchy-Schwartz inequality,∫ T

t0

g2(t)
√

Eqt(x)

[
e2θ(x)

]
dt =

∫ T

t0

(
g(t)

√
Eqt(x)

[
e2θ(x)

])
· g(t)dt

≤
(∫ T

t0

g2(t)Eqt(x)

[
e2θ(x)

]
dt
)1/2(∫ T

t0

g2(t)dt
)1/2

.

Therefore, we obtain

JFisher(θ) :=
1

2

∫ T

t0

g2(t)Eqt(x)

[ ∥∥sθ(x, t)− sODE
θ (x, t)

∥∥2
2

]
dt

≲
∫ T

t0

g2(t)Eqt(x)

[
e2θ(x)

]
dt+ ∥g∥L2([0,T ])

√∫ T

t0

g2(t)Eqt(x)

[
e2θ(x)

]
dt+ C3(L, T, g,Q

∗, q∗, δT ). (38)

We further define

˜̃
M(θ) :=

∫ T

t0

g2(t)Ex∼qt(x)

[∫ T

t0

qτ (x) ∥ϵ[sθ](x, τ)∥22 dτ

]
dt.

Then Ineq. (38) can be rewritten as

JFisher(θ) ≲
˜̃
M(θ) + ∥g∥L2([0,T ])

√˜̃
M(θ) + C3(L, T, g,Q

∗, q∗, δT ).

Indeed, g2(·) in ˜̃M motivates the choice of time-weighting function λFP(·) as g2(·) in the score FPE-regularizer for the
training of more complicated datasets such as CIFAR-10 and ImageNet32.

Let gmax := maxt∈[t0,T ] g
2(t). At last, we summarize a relation between all bounds ˜̃M(θ), M̃(θ), and M(θ):

˜̃
M(θ) ≤ Tgmax · M̃(θ) and q∗M(θ) ≤ M̃(θ) ≤ Q∗M(θ).

G.4. Proof of Theorem 4.3

Proof. Now we prove Ineq. (16). As the argument of Theorem 4.2, we also start with Ineq. (14) and attempt to seek for its
upper bound.

By rearranging Eq. (9) and combining with Eq. (27), it results in

ϵ[sθ](x, t) = ∂tsθ −∇x

[1
2
g2(t)divx(sθ)− divx(f)

]
−∇x

[1
2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩

]
= ∂tsθ − ∂ts

ODE
θ −∇x

[1
2
g2(t)⟨sθ − sODE

θ , sθ⟩ − ⟨f , sθ − sODE
θ ⟩

]
That is,

∂t
(
sθ(x, t)− sODE

θ (x, t)
)
= ϵ[sθ](x, t) +∇x

[1
2
g2(t)⟨sθ − sODE

θ , sθ⟩ − ⟨f , sθ − sODE
θ ⟩

]
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Fix a t ∈ [0, T ], we integrate both sides of the above equation from τ = T to τ = t

sθ(x, t)− sODE
θ (x, t) = sθ(x, T )− sODE

θ (x, T )

+

∫ t

T

ϵ[sθ](x, τ)dτ +

∫ t

T

∇x

[1
2
g2(t)⟨sθ − sODE

θ , sθ⟩ − ⟨f , sθ − sODE
θ ⟩

]
dτ.

(39)

In the last term, we may compute ∇x

[
1
2g

2(t)⟨sθ − sODE
θ , sθ⟩ − ⟨f , sθ − sODE

θ ⟩
]

as

∇x

[1
2
g2(t) ∥sθ∥2 − ⟨f , sθ⟩ −

1

2
g2(t)⟨sODE

θ , sθ⟩+ ⟨f , sODE
θ ⟩

]
=∇x

[
L[sθ] + divx(f)−

1

2
g2(t)divx(sθ)−

1

2
g2(t)⟨sODE

θ , sθ⟩+ ⟨f , sODE
θ ⟩

]
=∇xL[sθ] +∇x

[
divx(f)−

1

2
g2(t)divx(sθ)−

1

2
g2(t)⟨sODE

θ , sθ⟩+ ⟨f , sODE
θ ⟩

]
,

(40)

where L[sθ](x, t) := 1
2g

2(t) ∥sθ(x, t)∥2 − ⟨f(x, t), sθ(x, t)⟩ + 1
2g

2(t)divx(sθ(x, t)) − divx(f(x, t)). We apply the
Taylor expansion at any fixed point x0 to ∇xL[sθ] and get

L[sθ](x0, t)− L[sθ](x, t) = ∇xL[sθ](x, t) · (x0 − x) +O(∥x− x0∥22). (41)

Now set x0 := x+ sθ(x, t)− sODE
θ (x, t) and re-denote it as xθ. Combining Eq. (39), Eq. (40), and Eq. (41), and taking

the dot product with xθ − x from the both side of Eq. (39), we obtain

∥∥sθ(x, t)− sODE
θ (x, t)

∥∥2
2
≤
∣∣⟨sθ(x, T )− sODE

θ (x, T ),xθ − x⟩
∣∣+ ∣∣∣∣⟨∫ t

T

ϵ[sθ](x, τ)dτ,xθ − x⟩
∣∣∣∣

+

∫ t

T

|L[sθ](x0, τ)− L[sθ](xθ, τ)| dτ +O(∥xθ − x∥22)

+

∣∣∣∣⟨∫ t

T

∇x

[
divx(f)−

1

2
g2(t)divx(sθ)−

1

2
g2(t)⟨sODE

θ , sθ⟩+ ⟨f , sODE
θ ⟩

]
,xθ − x⟩

∣∣∣∣
(42)

With Assumption F.1 (b)-(f),

∥∥sθ(x, t)− sODE
θ (x, t)

∥∥2
2
≤
∥∥sθ(x, T )− sODE

θ (x, T )
∥∥ ∥xθ − x∥+

∫ T

0

∥ϵ[sθ](x, τ)∥ dτ ∥xθ − x∥

+ 2 sup
x

∫ T

0

|L[sθ](x, τ)| dτ +O(∥xθ − x∥22) +
(
1 + ∥x∥

)
∥xθ − x∥

≲
∫ T

0

∥ϵ[sθ](x, τ)∥ dτ ·
(
1 + ∥x∥

)
+ sup

x

∫ T

0

|L[sθ](x, τ)| dτ

+
(
1 + ∥x∥

)
+
(
1 + ∥x∥

)2
(43)

Taking the expectation over qt(x) and applying Cauchy-Schwartz inequality, we obtain

Eqt(x)

[ ∥∥sθ(x, t)− sODE
θ (x, t)

∥∥2
2

]
≲ δTEqt(x)

[(
1 + ∥x∥

)]
+ Eqt(x)

[ ∫ T

0

∥ϵ[sθ](x, τ)∥ dτ
]
· Eqt(x)

[(
1 + ∥x∥

)]
+ 2 sup

x

∫ T

0

|L[sθ](x, τ)| dτ + Eqt(x)

[(
1 + ∥x∥2

)]
+ Eqt(x)

[(
1 + ∥x∥2

)2]
≲ Eqt(x)

[ ∫ T

0

∥ϵ[sθ](x, τ)∥ dτ
]
+ sup

x

∫ T

0

|L[sθ](x, τ)| dτ + C2(L, T, δT , g).

(44)
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G.5. Proof and discussion of Proposition 4.4

Proof. Integrating the following equation w.r.t. time from τ = tθ to τ = t with t ∈ [0, T ] fixed,

∂tsθ = ∇x

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f)

]
+ ϵ[sθ](x, t),

leads to

sθ(x, t)− sθ(x, tθ) = ∇x

{∫ t

tθ

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩−divx(f)

]
dτ
}

+

∫ t

tθ

ϵ[sθ](x, t)dτ,

where the swap of integration and differentiation is valid if the integrand is sufficiently smooth.

With the assumption, we obtain that for all t ∈ [0, T ]

sθ(x, t)−∇x

{
log qtθ (x) +

∫ t

tθ

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩−divx(f)

]
dτ
}

=

∫ t

tθ

ϵ[sθ](x, τ)dτ.

We let Ψθ(x, t) = log qtθ (x) +
∫ t

tθ

[
1
2g

2(τ)divx(sθ) +
1
2g

2(τ) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f)
]
dτ . By taking the norm of the

above equation, one can obtain

∥sθ(x, t)−∇xΨθ(x, t)∥2 =

∥∥∥∥∫ t

tθ

ϵ[sθ](x, τ)dτ

∥∥∥∥
2

.

From which we obtain

∥sθ(x, t)−∇xΨθ(x, t)∥2 =

∥∥∥∥∫ t

tθ

ϵ[sθ](x, τ)dτ

∥∥∥∥
2

≤
∣∣∣∣∫ t

tθ

∥ϵ[sθ](x, τ)∥2 dτ
∣∣∣∣ .

Hence, the proposition is proved.

Proposition 4.4 requests a perfect match of scores at some single timestep tθ ∈ [0, T ]: sθ(x, tθ) = ∇x log qtθ (x) for all
x. However, we can involve an error term when the scores are not matched exactly and formulate an extended version of
Proposition 4.4 as the following.
Proposition G.4. Suppose that there is a constant δ > 0 so that for any θ, there is a single timestep tθ ∈ [0, T ] such
that ∥sθ(x, tθ)−∇x log qtθ (x)∥2 ≤ δ, then there exists a real-valued function Ψθ : RD × [0, T ] → R (with an explicit
expression) that satisfies

∥sθ(x, t)−∇xΨθ(x, t)∥2 ≤ δ +

∣∣∣∣∫ tθ

t

∥ϵ[sθ](x, τ)∥2 dτ
∣∣∣∣ .

Proof. The proof is almost identical to the original one. We start with

sθ(x, t)− sθ(x, tθ) = ∇x

{∫ t

tθ

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩−divx(f)

]
dτ
}

+

∫ t

tθ

ϵ[sθ](x, t)dτ.

By inserting the term ∇x log qtθ (x), we have

sθ(x, t)−∇x

{
log qtθ (x) +

∫ t

tθ

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f)

]
dτ
}

=
(
sθ(x, tθ)−∇x log qtθ (x)

)
+

∫ t

tθ

ϵ[sθ](x, τ)dτ.
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We now let Ψθ(x, t) = log qtθ (x) +
∫ t

tθ

[
1
2g

2(τ)divx(sθ) + 1
2g

2(τ) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f)
]
dτ . By taking the norm

of the above equation, we establish the claim.

G.6. Proof of Proposition 4.5

Lemma G.5. Let sθ be a score obtained from denoising score matching (Eq. (3)) and write sSDE
θ (·, t) := ∇x log pSDE

t,θ . Then

1. (Lu et al., 2022) Eq. (4) associates with the following forward SDE whose marginal density is sSDE
θ :

dxθ(t) =
[
f(xθ(t), t) + g2(t)

(
sSDE
θ (xθ(t), t)− sθ(xθ(t), t)

)]
dt+ g(t)wt

2. sSDE
θ satisfies the following score FPE:

∂ts
SDE
θ −∇x

[1
2
g2(t)divx

(
2sθ − sSDE

θ

)
+

1

2
g2(t)

(
2⟨sθ, sSDE

θ ⟩ −
∥∥sSDE

θ

∥∥2
2

)
− ⟨f , sSDE

θ ⟩ − divx(f)
]
= 0. (45)

Proof. Lemma G.5

The proof of the first statement can be found in (Lu et al., 2022). We now prove the second statement.

Consider
F (x, t) := f(x, t) + g2(t)(sSDE

θ − sθ) and G(x, t) := g(t)I

in Eq. (25), and apply Proposition 3.1, the lemma is then established.

Proof. Proposition 4.5

We recall Eq. (9), which indicates

∂tsθ −∇x

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f)

]
− ϵ[sθ] = 0. (46)

First, we subtract Eq. (45) by the above equation and get

∂t(s
SDE
θ − sθ)−∇x

[1
2
g2(t)divx(sθ − sSDE

θ )− 1

2
g2(t)

∥∥sθ − sSDE
θ

∥∥2
2
− ⟨f , sθ − sSDE

θ ⟩
]
+ ϵ[sθ] = 0. (47)

Consider when θ = θ0 and let uθ0
:= sSDE

θ0
− sθ0

. Then the PDEs become

∂tuθ0 +∇x

[1
2
g2(t)divx(uθ0) +

1

2
g2(t) ∥uθ0∥

2
2 + ⟨f ,uθ0⟩

]
= 0.

Here, uθ0
is a solution to the PDEs. It is noticed that this system of PDEs has a zero initial condition and zero boundary

condition as both sθ0
and sSDE

θ0
share the same initial/boundary condition. Thus, from the assumption of the uniqueness of

solution, we know that uθ0
≡ 0, and hence, sSDE

θ0
≡ sθ0

.

We repeat the same trick to subtract Eq. (8) by Eq. (46) from which we can obtain sθ0
≡ s. Similarly, the same argument

can be applied to Eq. (28) to prove sODE
θ0

≡ sθ0
.

G.7. Proof of Proposition 4.6

Proof. By subtracting the following two equations

∂tsθ = ∇x

[1
2
g2(t)divx(sθ) +

1

2
g2(t) ∥sθ∥22 − ⟨f , sθ⟩ − divx(f)

]
+ ϵ[sθ]

∂ts = ∇x

[1
2
g2(t)divx(s) +

1

2
g2(t) ∥s∥22 − ⟨f , s⟩ − divx(f)

]
,
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we obtain

∂t(sθ − s) = ∇x

[1
2
g2(t)divx(sθ − s) +

1

2
g2(t)

(
∥sθ∥22 − ∥s∥22

)
− ⟨f , sθ − s⟩

]
+ ϵ[sθ]

Notice that ∥sθ∥22 − ∥s∥22 = ∥sθ − s∥22 + 2⟨sθ − s, s⟩. Integrating over time from τ = 0 to τ = t, we obtain

∫ t

0

ϵ[sθ](x, τ)dτ =
(
sθ(x, t)− s(x, t)

)
−
(
sθ(x, 0)− s(x, 0)

)
−
∫ t

0

1

2
g2(τ)∇xdivx(sθ − s)dτ

−
∫ t

0

g2(τ)
[
⟨∇x(sθ − s), sθ − s⟩+ ⟨∇x(sθ − s), s⟩+ ⟨sθ − s,∇xs⟩

]
dτ

+

∫ t

0

[
⟨∇xf , sθ − s⟩+ ⟨f ,∇x(sθ − s)⟩

]
dτ

By applying the ℓ2-norm and Cauchy-Schwartz inequality while noting the relation ∥A∥2 ≤ ∥A∥F for a general square
matrix A, the statement is proved.

G.8. Proof of Proposition C.2

Proof. For any δ which is small enough, by (Skorski, 2021), we have

P
(
∥H [s]∥D ≥ δ

)
≤ exp

−
(

4M
g∗ δ2

2(1− 16
3g∗ )δ

)
. (48)

On the other hand, Lemma C.1 implies that there is a C > 0 so that ∥F [s]∥D < CDh, where h =
h2
shd+hdh

2
s

hs+hd
and ∥·∥D

indicates the ℓD-norm. Hence, we have

P
(
∥F [s]∥D ≥ CDh

)
≤ 0. (49)

Now rearranging, we have

E [s] =
(
∂ts− FD(s)

)
−
(1
2
g2tr(∇s)− 1

2
g2trH(M)(∇s)

)
= T [s]− H [s].

With the statistical bounds (48) and (49), we obtain

P
(
∥E [s]∥D ≥ δ + CDh

)
≤ P

(
∥F [s]∥D ≥ δ

)
+ P

(
∥H [s]∥D ≥ CDh

)
≤ exp

−
(

4M
g∗ δ2

2(1− 16
3g∗ )δ

)
If h and ϵ is selected small enough (as the assumption), by taking δ = ϵ− CDh, we observe that ϵ > δ > ϵ

2 and that

exp
−
(

4Mϵ2

2(g∗− 16
3

ϵ)

)
≤ exp

−
(

4M
g∗ δ2

2(1− 16
3g∗ )δ

)
≤ exp

−
(

Mϵ2

2(g∗− 8
3
ϵ)

)
.

Thus, the claimed error bound is established.
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