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ABSTRACT

Recently, notable advancements have been achieved in brain-to-image reconstruc-
tion. However, the assumption that the recorded brain activities faithfully mirror
the complete high-resolution images conflicts with the workings of human vi-
sion and cognitive systems. In this study, we present a novel approach, fMRI-
to-foveated image (FitFovea), which redefines the brain-to-image reconstruction
process to better align with cognitive science principles. FitFovea comprises three
key stages: pseudo-foveated image synthesis, fMRI-to-foveated image recon-
struction and stimulus image generation. In the first stage, FitFovea constructs
new {fMRI, pseudo-foveated image} pairs from existing fMRI-image data using
saliency prediction and foveated rendering techniques. Next, during the foveated
image reconstruction phase, the information captured by human vision is decoded
from fMRI signals with maximum accuracy. The final stage, stimulus image gen-
eration, is considered not as a strict reconstruction but rather as a postprocessing
step. This stage is akin to existing brain-to-image decoding methods, which of-
ten emphasize semantic fidelity rather than pixel-level reconstruction. To validate
our approach, we introduce the brain score metric to quantify the correlation be-
tween images and corresponding brain responses. The superior results validate the
rationale behind decoding pseudo-foveated images from fMRI data and demon-
strate the feasibility of our newly-devised pipeline based on synthesized pseudo-
foveated image training data.

1 INTRODUCTION

Deciphering the consciousness of the human brain has long been a dream of humanity. Today,
propelled by neuroimaging technologies such as functional magnetic resonance imaging (fMRI)
and artificial intelligence models like diffusion models (Ho et al., 2020; Rombach et al., 2022),
stimulus images of significantly higher quality than ever before have been generated from brain
activities (Ozcelik & VanRullen, 2023; Lu et al., 2023; Scotti et al., 2024; Takagi & Nishimoto,
2023). These methods typically adopt the following paradigm: initially, mapping an fMRI signal to
the corresponding image feature in the latent space; subsequently, reconstructing the stimulus image
based on the obtained image feature utilizing a strong generative model. Implicit in this framework
is the foundational assumption that the recorded brain activities faithfully capture the image in its
entirety. However, this assumption stands in contrast to prevailing theories regarding the “limited
capacity of perceptual experience and cognitive mechanisms” (Cohen et al., 2016; 2012; Luck &
Vogel, 2013; Scimeca & Franconeri, 2015; Block, 2011) in cognitive science and neuroanatomy. A
prime example can be found in our visual system, where evolution has crafted an elegant balance
between maximizing visual perception and minimizing neural resources (Perry & Geisler, 2002).
Through the utilization of a foveated retina, a large field of view is encoded at various resolutions,
with the central fovea experiencing the highest resolution (as shown in Figure 1). This indicates that
the rich visual details in a high-resolution natural scene image can hardly be perfectly encoded in
neural signals.

In light of this, a crucial query arises: what should be decoded from fMRI signals in the context of
brain-to-image reconstruction? Is the direct decoding of the stimulus image from brain activities the
most appropriate choice? Our position leans towards the negative. There is an inherent information
gap between fMRI signals and stimulus images (see Appendix A.1 for more theoretical analysis),
and striving to link the two could hinder the alignment between these two modalities. To solve this
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Figure 1: Visual comparison between normal images (left side of the arrows) and pseudo-foveated
images (right side of the arrows) with central fixation.

problem, we opt to take a step back and redirect the decoding target from stimulus images to foveated
images. Based on this, we present a novel approach, fMRI-to-foveated image (FitFovea), which
redefines the brain-to-image reconstruction process to better align with cognitive science principles.

FitFovea comprises three key stages: 1) pseudo-foveated image synthesis, 2) fMRI-to-foveated im-
age reconstruction, and 3) stimulus image generation, as depicted in Figure 2. Addressing the
challenge of no training data due to the scarcity of real foveated images, FitFovea proposes the cre-
ation of paired {fMRI, pseudo-foveated image} data based on existing {fMRI, image} pairs from
the Natural Scene Dataset (NSD) (Allen et al., 2022). To achieve this, saliency prediction models
and foveated rendering techniques are employed to generate pseudo-foveated images. Regarding
fMRI-to-foveated image reconstruction, the goal is not strictly defined as mere reconstruction. Im-
age representations (essential for verification experiments) or reconstructed pseudo-foveated images
are output as needed at this stage. To this end, an autoencoder is utilized to encode pseudo-foveated
images into latent representations, enabling the learning of a mapping function to predict pseudo-
foveated image representations from fMRI activities. These representations can be further fed into
the autoencoder’s decoder for pseudo-foveated image reconstruction. While it can be argued that
the brain decoding process in this study concludes with the output of the pseudo-foveated image,
whether in the form of its embedding or the image itself, the generation of stimulus images is re-
tained as a postprocessing step. This enables the creation of images with consistently high res-
olution across pixels. Similar to existing brain-to-image decoding methods, achieving pixel-level
reconstruction at this stage is often challenging due to incomplete guidance from brain signals.
Therefore, this stage emphasizes maintaining semantic fidelity for the generated images. Notably,
established brain-to-image reconstruction approaches can be seamlessly integrated with our method
at this stage, facilitating the creation of stimulus-related images.

To support our argument, in addition to common metrics for brain-to-image reconstruction, we in-
corporate the brain score metric introduced by Schrimpf et al. (2018; 2021) to evaluate the correla-
tion between images and brain activities. The superior results of our FitFovea not only demonstrate
the rationale for decoding pseudo-foveated images rather than normal images from brain activities
but also confirm feasibility of our pipeline built on the constructed pseudo-foveated images.

The main contributions of this work are summarized as follows:

• Rethinking existing brain-to-image reconstruction and developing a novel pipeline Fit-
Fovea, a method tailored to decode visual information from brain responses in a manner
that aligns more closely with human perceptual and cognitive systems. This approach of-
fers an insightful perspective on the entire process of brain-to-foveated image decoding.

• Introducing a pseudo-foveated image synthesis method that combines algorithms from
other fields, i.e. saliency prediction and foveated rendering.

• Exploring individual differences in gaze behavior by synthesizing pesudo-foveated images
with fixation points at varying time intervals for each subject, allowing us to identify which
time intervals are most strongly related to different subjects’ brain activities.

• Adopting a new evaluation metric, brain score, to validate the rationale and feasibility of
our approach. Conducting extensive experiments across various backbones, investigating
different mapping methods such as ridge regression and MLPs, as well as different gener-
ative models, including VAEs and Diffusion models.
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2 BACKGROUND

Neural decoding. Bialek et al. (1989) took an initial step towards recovering the stimulus by decod-
ing the spike train in 1989. This pivotal moment signified a transition for researchers from encoding
familiar stimuli to interpreting the neural code. Subsequently, some studies have successfully de-
coded more intricate stimuli, such as motion direction (Kamitani & Tong, 2005; 2006) and object
categories (Haxby et al., 2001; Cox & Savoy, 2003), from recorded functional magnetic resonance
imaging (fMRI) signals. More remarkably, Stanley et al. (1999) have attempted to reconstruct movie
frames from responses obtained from the lateral geniculate nucleus (LGN). Due to limitations in data
and decoding technique, the reconstructed images appear somewhat blurred. Recently, significant
progress in cutting-edge artificial intelligence generative models such as variational autoencoders
(VAEs) (Van Den Oord et al., 2017; Child, 2020), generative adversarial networks (GANs) (Good-
fellow et al., 2014) and diffusion models (Ho et al., 2020; Rombach et al., 2022) has enabled the
decoding of stimulus images with unprecedented clarity from brain activities(Lin et al., 2022; Gu
et al., 2024; Ozcelik & VanRullen, 2023; Lu et al., 2023; Scotti et al., 2024; Takagi & Nishimoto,
2023; Fang et al., 2024). Beyond visual reconstruction, there is a burgeoning interest in investigating
the decoding of linguistic (Makin et al., 2020; Zou et al., 2022; Proix et al., 2022) information from
neural signals.

Foveation and pseudo-foveated image synthesis. In the human eye, the number of photoreceptors
diminishes swiftly from the fovea to the periphery (Curcio et al., 1990). This phenomenon of dimin-
ishing photoreceptor density, coupled with an increase in eccentricity, is termed foveation (Guenter
et al., 2012). Some previous studies explore foveation without the use of eye tracking (Funkhouser
& Séquin, 1993; Yee et al., 2001), while others utilize eye tracking hardware (Duchowski, 2002) or
foveated displays (Reingold et al., 2003; Duchowski & Çöltekin, 2007). According to the princi-
ple of foveation, several studies (Funkhouser & Séquin, 1993; Perry & Geisler, 2002; Viola et al.,
2004; Freeman & Simoncelli, 2011; He et al., 2014; Patney et al., 2016; Kaplanyan et al., 2019;
Meng et al., 2020; Li et al., 2021; Harrington et al., 2023) delve into pseudo-foveated image/video
synthesis based on fixation points within the images or videos. Perry & Geisler (2002) employ an
image encoding method using a multi-resolution pyramid, facilitating real-time variable resolution
displays. Harrington et al. (2023) utilize the Texture Tilling Model to construct the COCO-Periph
dataset, which stands as one of the largest datasets for peripheral vision modeling in deep neural
networks. Foveated rendering is the most studied technique among these works, given its vital role
in virtual reality. It has the potential to reduce the rendering workload while preserving the user’s
visual experience. Foveated rendering can be categorized as either fixed (Funkhouser & Séquin,
1993; Viola et al., 2004; Patney et al., 2016) or dynamic(He et al., 2014; Meng et al., 2020; Li et al.,
2021), depending on whether the gaze is assumed to be static or dynamic. In this study, we synthesis
pseudo-foveated images using fixed foveated rendering. Since this requires input fixation points, we
opt to employ current saliency prediction technique, which will be discussed in the following.

Saliency prediction. Exploring visual attention is crucial for understanding the human visual sys-
tem and its application in fields like computer graphics and human-computer interaction (Judd et al.,
2009; Chen et al., 2024). One common approach to study human attention is through the utilization
of saliency prediction models (Itti et al., 1998; Bruce & Tsotsos, 2005; Harel et al., 2006; Vig et al.,
2014; Huang et al., 2015; Bruce et al., 2016; Borji, 2019; Yang et al., 2022; Aydemir et al., 2023),
which are designed to detect fixation regions in images or videos. Saliency datasets consists of
datasets based on eye tracking data (Judd et al., 2009; Fosco et al., 2020) and those obtained through
mouse tracking to simulate eye tracking (Jiang et al., 2015). Early research focused more on static
saliency detection, while some recent studies aim to incorporating temporal evolution to generate
time-specific saliency (Aydemir et al., 2023). This paper adopts the temporal saliency model (Ay-
demir et al., 2023), which includes detected saliency in the same duration as the neural decoding
dataset utilized in this study, to derive fixation points for pseudo-foveated image synthesis.

3 METHOD

FitFovea comprises three primary components: 1) pseudo-foveated image synthesis, 2) fMRI-to-
foveated image reconstruction, and 3) stimulus image generation, as depicted in Figure 2. Given the
unavailability of real foveated images, we turn to saliency prediction and foveated rendering tech-
nologies to simulate foveation and synthesize pseudo-foveated images based on the NSD dataset as
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Figure 2: An overview of FitFovea. FitFovea comprises three key stages: 1) pseudo-foveated image
synthesis, 2) fMRI-to-foveated image reconstruction, and 3) stimulus image generation. Creation
of new {fMRI, pseudo-foveated image} pairs is achieved through saliency prediction and foveated
rendering techniques using existing fMRI-image data. An autoencoder is then utilized to encode
pseudo-foveated images, and a mapping function is learned to align brain responses with the latent
feature space of these images. During the stimulus image generation stage, our model integrates
with existing fMRI-to-image reconstruction methods, enabling us to harness the image generative
capability of pre-trained diffusion models and facilitate the creation of stimulus-related images.

alternatives. The goal of fMRI-to-foveated image reconstruction is not strictly defined as mere re-
construction. Image representations (essential for verification experiments) or reconstructed pseudo-
foveated images are produced as needed at this stage. Finally, the stimulus image generation stage
seamlessly integrates our method with existing brain-to-image decoding approaches to create natural
scene images. Detailed descriptions of these three parts are provided in the following sections.

3.1 PSEUDO-FOVEATED IMAGE SYNTHESIS

3.1.1 FIXATION PREDICTION

1s 2s 3s 4s 5s

Figure 3: Synthesized pseudo-foveated images based on predicted fixation points (denoted by red
crosses) at one-second intervals.

Given that the paired {fMRI, image} data, e.g. NSD (Allen et al., 2022), are collected alongside
subjects’ image-viewing activities over a defined period, we utilize the temporal saliency prediction
model, TempSAL (Aydemir et al., 2023), to produce fixation points. The original TempSAL archi-
tecture comprises an image encoder and two saliency decoders: a temporal saliency decoder and a
global saliency decoder. With our focus on acquiring fixation points at different time points, the out-
put solely from the temporal saliency decoder suffices. To initiate this process, an image I is input
into a pre-trained network, PNASNet-5 (Liu et al., 2018), to extract multi-level features xi, where i
ranges from 1 to 5. Subsequently, the temporal saliency decoder integrates these features through a
sequence of four 3 × 3 convolutional layers, followed by two additional convolutional layers and a
sigmoid function. This finally yields five distinct saliency maps, each corresponding to one-second
temporal interval. Within each map, the fixation point is identified as the most salient point, serving
as the crucial basis for synthesizing a pseudo-foveated image in subsequent steps. Figure 3 illustrates
examples of generated fixation points. In practice, given a 3-second display duration per image in a
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scan trial, we retain the first three saliency maps/fixation points representing time intervals of 1s, 2s,
and 3s, respectively. One of the three fixation points will be used for synthesizing pseudo-foveated
images in the subsequent step.

3.1.2 FIXED FOVEATED RENDERING

I0

I1
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0 0
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Figure 4: Left: Illustration of a resolution map resembling a normal individual’s vision (schematic
diagram; see Perry & Geisler (2002) for the resolution map estimated from the “visual fields” using
a Goldmann perimeter). Right: First four levels of a multi-resolution pyramid example.

After obtaining the fixation points, we implement the simulation method detailed in Perry & Geisler
(2002), known for its efficient processing speed, to transform the original image into a pseudo-
foveated form. This method simulates the phenomenon of foveation by gradually reducing resolu-
tion in images. It involves generating a series of images with varying resolutions based on the input
image and employing a blending function to merge these multi-resolution images into the desired
pseudo-foveated image.

Technically, starting with an input image I , a multi-resolution pyramid, as depicted in the right
portion of Figure 4, is constructed through iterative filtering and down-sampling operations. In
Figure 4, the original image I (also I0) represents the initial level. To generate the next level,
i.e. image I1, I0 is convolved with a small weighting function, followed by down-sampling of the
resulting blurred image in both dimensions. The computation for the remaining levels follows a
similar pattern: I2 is derived from I1, I3 from I2, and so forth. Each level within the pyramid
corresponds to a specific degree of blur. In our experiments, We employ six pyramid levels, a
number commonly deemed sufficient for most applications, as noted in Perry & Geisler (2002).
To facilitate the subsequent synthesis stage, the images need to be resized to match the size of the
original image via up-sampling and interpolation. These resized images are denoted as Pi, with
i = 0, . . . , 5.

On the other hand, blending functions are computed based on the predetermined resolution map and
the designated fixation point. The original resolution map (an example is depicted in the left portion
of Figure 4) is shared among all images. When applied to a specific image, it is adjusted relative to
the fixation point to ensure the point aligns with the map’s center. Let Ri denotes the fixed spatial
resolution corresponding to the i-th level of the resolution pyramid, and Bi(x, y) is the blending
function for an adjacent pair of Ri and Ri−1. In Perry & Geisler (2002), Perry and Geisler define a
transfer function f(·), from which Bi(x, y) for Ri < R(x, y) < Ri−1 is derived:

Bi(x, y) =
0.5− fi(R(x, y))

fi−1(R(x, y))− fi(R(x, y))
, (1)

where R(x, y) represents the resolution map function. When R(x, y) ≤ Ri, Bi(x, y) is set to 0;
when R(x, y) ≥ Ri−1, Bi(x, y) is assigned a value of 1. For a six-level pyramid, there are five
blending functions, with B1 blending pixels between levels P0 and P1, B2 blending pixels between
levels P1 and P2, and so on. The output image O(x, y) is thus defined as:

O(x, y) = Bi(x, y)Pi(x, y) + (1−Bi(x, y))Pi−1(x, y). (2)
Examples of rendered images corresponding to different fixation points are showcased in Figure 3.
The pseudo-foveated images are used to replace the original stimulus images in NSD, forming new
{fMRI, pseudo-foveated image} pairs for the subsequent stages.

3.2 FMRI-TO-FOVEATED IMAGE RECONSTRUCTION

In this stage, the objective is to decode foveated images from corresponding fMRI activities, either
in the form of image embedding or the image itself. The image embedding can be utilized in veri-
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fication experiments or for further investigation of normal and foveated images in the future, while
the image displays reconstruction outcomes. To this end, autoencoders are employed, which can
provide both forms of images through their encoder and decoder architecture. Here we simply se-
lect the Stable Diffusion (Rombach et al., 2022) from the diffusion family, and the decoding process
is introduced as follows.

During the training phase, the encoder diffusion model begins by taking a pseudo-foveated image as
input and produces a latent variable with the dimensions of 4×64×64, which serves as the pseudo-
foveated image embedding. This latent variable acts as the initial point for the decoder diffusion
model to reconstruct the input image. Concurrently, a mapping function is trained to convert fMRI
data to pseudo-foveated image embeddings. In this study, we explore two mapping approaches:
ridge regression and multilayer perceptrons (MLPs), both of which have been demonstrated to be
effective in brain decoding (Ozcelik & VanRullen, 2023; Scotti et al., 2024). During inference, no
image is provided and only fMRI data is utilized in the decoding process. The fMRI data is input
into the mapping function obtained in the training phase to latent variables. These representations
can then be fed into the decoder of the diffusion model to reconstruct the original input image.

Alternative autoencoders. While Stable Diffusion is employed in this context, various alternatives
are available, such as variational autoencoders (VAEs). For more information see Appendix A.2.
The results of employing these two different frameworks are detailed in the experimental section.

3.3 STIMULUS IMAGE GENERATION

In this study, the brain decoding process to a certain degree wraps up with the earlier pseudo-foveated
image reconstruction phase. The subsequent step of stimulus image generation is perceived as post-
processing, enabling the creation of images with consistent high resolution among pixels. This
output conforms to standard image generation practices and allows for comparisons with existing
brain-to-construction approaches. The output of our fMRI-to-foveated image reconstruction stage
can be seamlessly integrated with these methods to harness the image generative potential of pre-
trained diffusion models and facilitate the creation of stimulus-related images.

In our experiments, we combine the proposed method with two cutting-edge approaches (Ozcelik
& VanRullen, 2023; Scotti et al., 2024) due to their good performance in image generation. These
methods utilize predicted CLIP features (image and text features) and a middle image containing
structure information as inputs to a pretrained diffusion model for image creation. We substitute
their middle image input with the output image from our autoencoder’s decoder, keeping other
settings unchanged. By using the reconstructed pseudo-foveated images or their embeddings, our
approach can be intergrated with various existing reconstruction models, circumventing the need to
replicate studies in this phase.

4 EXPERIMENTS

We use the Natural Scenes Dataset (NSD) (Allen et al., 2022), one of the largest vision-brain
datasets, for all experiments. NSD comprises whole-brain 7T fMRI of eight subjects, each exposed
to 9000-10000 images from the MSCOCO (Lin et al., 2014) dataset. Each of the eight subjects
underwent a unique viewing experience of 9000 images, along with a shared pool of 1000 images
that served as the test set. During the fMRI scanning sessions, subjects were presented with images
using a design of 4-s trials (3-s ON/1-s OFF) and they needed to judge whether the presented im-
age had been encountered previously. Follow prior studies (Ozcelik & VanRullen, 2023; Takagi &
Nishimoto, 2023; Scotti et al., 2024), we conduct experiments on four out of the eight subjects while
adhering to the same train/test split. Unless otherwise specified, the results presented are averages
across the four subjects. We utilize Stable Diffusion and the very deep VAE (VDVAE) model (Child,
2020) as the autoencoder for our experiments. For more information see Appendix A.2.

4.1 RATIONALITY OF DECODING FOVEATED IMAGES FROM FMRI

To validate the rationality of decoding foveated images from fMRI rather than decoding normal
images, we adopt the brain score metric introduced by Schrimpf et al. (2018), which evaluates
the similarity between an image embedding and the corresponding fMRI scan. To compute the
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Table 1: Brain scores for latent variable-to-fMRI prediction. “Normal” denotes normal images,
while “Foveated” refers to pseudo-foveated images.

Method
Stable Diffusion VDVAE

MLP Ridge layer 1 layer 2 layer 3 layer 4 layer 5 avg all

Normal .282 .213 .162 .100 .169 .125 .131 .137 .201
Foveated .297 .230 .164 .108 .171 .132 .145 .144 .210

brain score, an encoder is first utilized to produce an image embedding for an image. This source
embedding is then mapped to the target voxels for predicting the brain response y′i using ridge
regression. Subsequently, the predicted response is compared to the groundtruth response yi by
calculating the Pearson correlation coefficient r:

r =

∑n
i=1(yi − ȳ)(y′i − ȳ′)√∑n

i=1(yi − ȳ)2
√∑n

i=1(y′
i − ȳ′)2

. (3)

We perform comparative experiments on pseudo-foveated images and normal images to determine
which group of images has more brain-like latent variables. The regression coefficient is estimated
using the training data and then applied to the test data to compute the brain score. We adopt the
encoders described in section 3.2 to encode images (see Appendix A.2 for more details).

Specifically, we compare two encoder models: Stable Diffusion and VDVAE. The results are de-
picted in Table 1. For Stable Diffusion, we employ two mapping functions: MLPs and ridge re-
gression. We observe relative improvements of 5.3% for MLP and 8.0% for ridge regression in
predicting brain responses based on pseudo-foveated images. The MLP mapping method yields
higher brain scores. Regarding the latent variables of VDVAE, we report the scores for the first
five layers individually and their average. Additionally, we employ the concatenated latent variable
from the first 31 layers to predict voxels, following the method in Ozcelik & VanRullen (2023), and
present the outcomes in the “all” column. As expected, pseudo-foveated images yield higher scores
when utilizing the latent variables either independently or collectively.When used collectively, the
brain score rises from 0.201 to 0.210, indicating a relative improvement of 4.5%. These results
suggest that pseudo-foveated images exhibit a stronger correlation with fMRI activities compared to
normal images, thus validating the rationality of our method.

4.2 FIXATION POINT SELECTION FOR PSEUDO-FOVEATED IMAGE SYNTHESIS

Figure 5: Comparison of brain scores for normal images,
pseudo-foveated images synthesized with central fixation
(center), and with fixation points predicted at different time
intervals (1s, 2s, 3s).

Since we lack real foveated image
data, it is crucial to identify the
pseudo-foveated image (synthesized
with fixation points at varying time
intervals) that closely resembles a
real one. Given the variability in
gaze behavior among individuals, we
conduct experiments for each subject.
The evaluation metric aligns with that
used in Section 4.1. We present the
results for subject 01 in Figure 5,
employing VDVAE as the image en-
coder and mapping latent variables to
fMRI using ridge regression. Within
each bar chart set, progression from
left to right represents the normal image, the pseudo-foveated image synthesized based on central
fixation, and those with predicted fixation points at 1, 2, and 3 seconds. The results of the “all”
group are given the most weight when selecting the fixation point for a subject. The results in Fig-
ure 5 indicates that the pseudo-foveated image at the first second exhibits the highest correlation
with the corresponding brain response. Furthermore, experimenting with our synthesized image,
regardless of using fixation points from 1, 2, or 3 second, outperforms the normal image or using
central fixation. For results pertaining to other subjects, please refer to Appendix A.3. The results of
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the remaining three subjects all highlight the 2-second images. When aggregating results across all
four subjects, it appears that during a 3-second image display, content attracting early to mid-level
attention is more likely to be reflected in fMRI scans.

4.3 FMRI-TO-FOVEATED IMAGE RECONSTRUCTION

Table 2: Pearson correlation coefficient results for fMRI-to-latent variables prediction. “Normal”
denotes normal images, while “Foveated” refers to pseudo-foveated images.

Method
Stable Diffusion VDVAE

MLP Ridge layer 1 layer 2 layer 3 layer 4 layer 5 avg

Normal .370 .335 .595 .433 .372 .433 .237 .414
Foveated .542 .464 .797 .704 .379 .461 .439 .556

To further assess the quality of fMRI decoding, we calculate the Pearson correlation coefficient be-
tween the predicted latent variables from fMRI and the target latent variables generated by feeding
the corresponding image into an image encoder. This process can be seen as a reverse operation com-
pared to brain score analysis. Again, the encoders utilized are Stable Diffusion and VDVAE, with an
exploration of voxel mapping to either the embedding space of normal or pseudo-foveated images.
Detailed results are presented in Table 2. When mapping fMRI data to the latent space of Stable
Diffusion using MLP, the result improves from 0.37 for normal images to 0.542 for pseudo-foveated
images, reflecting a 46.5% relative increase. Utilizing ridge regression yields a relative improve-
ment of 38.5%. A similar pattern emerges with VDVAE. For layers 1 and 2 of VDVAE, a significant
performance boost is observed when transitioning to predicting pseudo-foveated images, likely due
to the lower dimensionality of the latent variables than deeper layers. The average correlation across
layers 1-5 is 0.414 for normal images and 0.556 for pseudo-foveated images, showcasing a 34.3%
relative improvement. This time, the prediction of the concatenated latent variable for VDVAE is
omitted due to the substantial challenge posed by its high dimensionality of 91168. The increased
correlation not only indicates enhanced prediction accuracy for the embeddings of specific image
type but also suggests the predictability of this image type. These findings reinforce the rationale
for decoding foveated images from fMRI rather than decoding normal images.

For evaluation of reconstructed pseudo-foveated images, we adopt the evaluation metrics outlined
in Scotti et al. (2024); Ozcelik & VanRullen (2023). This involves assessing the methods using
low-level metrics such as pixel-wise correlation (PixCorr), and the structural similarity index metric
(SSIM), as well as high-level metrics like the average correlation distances of EfficientNet-B1 (Eff)
and SwAV-ResNet50 (SwAV). Furthermore, two-way identification based on the output embeddings
of AlexNet (Krizhevsky et al., 2012) (the second layer and the fifth layer), Inception V3 (Szegedy
et al., 2016) (last pooling layer), and CLIP (Radford et al., 2021) (final layer of ViT-L/14) is also
performed. Table 3 and Table 4 provide a detailed examination of the performance of output images
generated by the Stable Diffusion decoder. In Table 3, the evaluation is based on calculating the
metrics between the generated images and synthesized pseudo-foveated images. Superior perfor-

Table 3: Comparison of normal (-Normal) and pseudo-foveated (-Foveated) image reconstruction in
the fMRI-to-foveated image reconstruction stage. The results are evaluated by computing the met-
ric between the generated images and pseudo-foveated images. (S1 denotes subject 01; if marked
as “Ridge”, ridge regression is emplyed, otherwise, MLPs are used; see Appendix A.4 for detailed
individual subject results.)

Method
Low-Level High-Level

PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ Eff ↓ SwAV ↓
SD-Normal-S1(Ridge) .404 .546 84.4% 74.9% 56.3% 52.7% .935 .570

SD-Foveated-S1(Ridge) .407 .568 84.7% 77.9% 57.4% 52.8% .906 .543
SD-Normal-S1 .471 .629 82.4% 76.9% 58.2% 55.1% .890 .557

SD-Foveated-S1 .482 .636 90.3% 90.4% 66.4% 63.8% .874 .524
SD-Normal .401 .621 82.4% 81.9% 63.7% 59.5% .881 .525

SD-Foveated .405 .628 85.1% 85.8% 65.6% 62.1% .873 .524
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Table 4: Comparison of normal (-Normal) and pseudo-foveated (-Foveated) image reconstruction
in the fMRI-to-foveated image reconstruction stage. The results are evaluated by calculating the
metrics between the generated images and groundtruth stimulus images. (See Appendix A.4 for
detailed individual subject results.)

Method
Low-Level High-Level

PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ Eff ↓ SwAV ↓
SD-Normal-S1(Ridge) .385 .432 83.7% 73.7% 55.3% 52.8% .995 .662

SD-Foveated-S1(Ridge) .386 .438 84.0% 74.5% 55.8% 53.0% .992 .664

SD-Normal-S1 .456 .493 87.1% 84.1% 61.6% 62.4% .992 .638
SD-Foveated-S1 .464 .489 89.1% 89.5% 65.9% 66.3% .975 .621

SD-Normal .360 .479 78.1% 74.8% 58.7% 59.2% 1.00 .663
SD-Foveated .391 .478 83.4% 83.4% 63.5% 63.7% .984 .623

Stimuli Baseline OursFoveated Stimuli Baseline OursFoveated

Figure 6: Exemplary reconstructed pseudo-foveated images (Ours) and normal images (Baseline)
from the fMRI data of subject 01. The first two columns showcase stimulus images (Stimuli) and
pseudo-foveated images (Foveated) synthesized in Section 3.1.

mance is exhibited when decoding pseudo-foveated images compared to normal images across all
low-level and high-level metrics. Table 4 focuses on computing the metrics between the generated
images and groundtruth stimulus images, showing superior performance in most metrics. Example
reconstructed pseudo-foveated images can be found in Figure 6, where “Baseline” refers to nor-
mal image reconstruction and “Ours” denotes pseudo-foveated image reconstruction. The first two
columns showcase stimulus images (Stimuli) and pseudo-foveated images (Foveated). In compari-
son to the baseline outcomes, key objects in the reconstructed pseudo-foveated images are clearer,
with more accurate shapes, positions and details.

4.4 RESULTS OF STIMULUS IMAGE GENERATION

Based on BrainDiffuser (Ozcelik & VanRullen, 2023) and MindEye (Scotti et al., 2024), we can
finally complete the image generation process. In Figure 7, exemplary images created by Brain-
Diffuser, MindEye, and the combination of our FitFovea with MindEye (Ours) using fMRI signals
of subject 01 are showcased. By incorporating our generated pseudo-foveated images, the stimulus
images produced by our method exhibit enhanced structural and positional information. Additional
images created from fMRI signals of all subjects see Appendix Figure 8 and 9. To quantitatively
contrast with other methods, we present the results of comparing the generated images with the
groundtruth stimulus images in Table 5. It is exciting to discover that, when combined with our Fit-
Fovea, BrainDiffuser and MindEye both demonstrate improved performance overall. This could be
attributed to the more precise visual information captured by FitFovea being successfully conveyed
in the generated results. Furthermore, our methodology demonstrates significant enhancements in
low-level metrics such as PixCorr and SSIM. This suggests that FitFovea excels more in pixel-level
reconstruction, which is paramount in brain-to-image reconstruction.
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Stimuli Foveated BrainDiffuser MindEye Ours

Figure 7: Exemplary images produced by BrainDiffuser (Ozcelik & VanRullen, 2023) , MindEye
(Scotti et al., 2024), and MindEye+FitFovea (Ours) using fMRI signals of subject 01. The first two
columns showcase stimulus images (Stimuli) and pseudo-foveated images (Foveated).

Table 5: Comparison of the performance in stimulus image generation using FitFovea combined
with two brain-to-image reconstruction methods against other models. The results are based on
computing the metrics between the generated images and groundtruth stimulus images.

Method
Low-Level High-Level

PixCorr ↑SSIM ↑Alex(2) ↑Alex(5) ↑ Incep ↑CLIP ↑Eff ↓SwAV ↓
MindReader (Lin et al., 2022) – – – – 78.2% – – –

LDM (Takagi & Nishimoto, 2023) – – 83.0% 83.0% 76.0% 77.0% – –
Cortex2Image (Gu et al., 2023) .150 .325 – – – – .862 .465

BrainDiffuser (Ozcelik & VanRullen, 2023) .254 .356 94.2% 96.2% 87.2% 91.5% .775 .423
BrainDiffuser+ours .264 .360 94.2% 96.6% 89.7% 91.8% .750 .429

MindEye (Scotti et al., 2024) .309 .323 94.7% 97.8% 93.8% 94.1% .645 .367
MindEye+ours .327 .342 95.1% 97.5% 94.3% 94.4% .642 .372

5 CONCLUSION

In this study, we have redesigned the brain-to-image reconstruction process by drawing on insights
from human cognitive science and neuroanatomy, leading to the development of a novel recon-
struction pipeline called FitFovea. FitFovea effectively addresses the issue of lack of training data
and achieves fMRI-to-foveated image reconstruction based on synthesized pseudo-foveated images.
The experimental findings validate the rationale for decoding pseudo-foveated images from brain
activities and proves the viability of our decoding approach. We aspire that our reconsideration of
brain-to-image reconstruction and the introduction of FitFovea will stimulate further exploration in
this field, encouraging the development of decoding and reconstruction networks that better emulate
human brain processing, and further propelling the integration and progression of cognitive science
and artificial intelligence.
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Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio Torralba. Learning to predict where humans
look. In Proceedings of the IEEE international conference on computer vision, pp. 2106–2113,
2009.

Yukiyasu Kamitani and Frank Tong. Decoding the visual and subjective contents of the human
brain. Nature neuroscience, 8(5):679–685, 2005.

Yukiyasu Kamitani and Frank Tong. Decoding seen and attended motion directions from activity in
the human visual cortex. Current biology, 16(11):1096–1102, 2006.

Anton S Kaplanyan, Anton Sochenov, Thomas Leimkühler, Mikhail Okunev, Todd Goodall, and
Gizem Rufo. Deepfovea: Neural reconstruction for foveated rendering and video compression
using learned statistics of natural videos. ACM Transactions on Graphics, 38(6):1–13, 2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in neural information processing systems, volume 25,
2012.

David Li, Ruofei Du, Adharsh Babu, Camelia D Brumar, and Amitabh Varshney. A log-rectilinear
transformation for foveated 360-degree video streaming. IEEE Transactions on Visualization and
Computer Graphics, 27(5):2638–2647, 2021.

Sikun Lin, Thomas Sprague, and Ambuj K Singh. Mind reader: Reconstructing complex images
from brain activities. In Advances in Neural Information Processing Systems, pp. 29624–29636,
2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Proceedings of
the European conference on computer vision, pp. 740–755, 2014.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In
Proceedings of the European conference on computer vision, pp. 19–34, 2018.

Yizhuo Lu, Changde Du, Qiongyi Zhou, Dianpeng Wang, and Huiguang He. Minddiffuser: Con-
trolled image reconstruction from human brain activity with semantic and structural diffusion. In
Proceedings of the 31st ACM International Conference on Multimedia, pp. 5899–5908, 2023.

Steven J Luck and Edward K Vogel. Visual working memory capacity: from psychophysics and
neurobiology to individual differences. Trends in cognitive sciences, 17(8):391–400, 2013.

Joseph G Makin, David A Moses, and Edward F Chang. Machine translation of cortical activity to
text with an encoder–decoder framework. Nature neuroscience, 23(4):575–582, 2020.

Xiaoxu Meng, Ruofei Du, and Amitabh Varshney. Eye-dominance-guided foveated rendering. IEEE
transactions on visualization and computer graphics, 26(5):1972–1980, 2020.

Furkan Ozcelik and Rufin VanRullen. Natural scene reconstruction from fmri signals using genera-
tive latent diffusion. Scientific Reports, 13(1):15666, 2023.

Anjul Patney, Joohwan Kim, Marco Salvi, Anton Kaplanyan, Chris Wyman, Nir Benty, Aaron
Lefohn, and David Luebke. Perceptually-based foveated virtual reality. In International
Conference on Computer Graphics and Interactive Techniques, pp. 1–2. 2016.

Jeffrey S Perry and Wilson S Geisler. Gaze-contingent real-time simulation of arbitrary visual fields.
In Human vision and electronic imaging VII, volume 4662, pp. 57–69. SPIE, 2002.

JS Pointer and RF Hess. The contrast sensitivity gradient across the human visual field: With
emphasis on the low spatial frequency range. Vision research, 29(9):1133–1151, 1989.

Timothée Proix, Jaime Delgado Saa, Andy Christen, Stephanie Martin, Brian N Pasley, Robert T
Knight, Xing Tian, David Poeppel, Werner K Doyle, Orrin Devinsky, et al. Imagined speech can
be decoded from low-and cross-frequency intracranial eeg features. Nature communications, 13
(1):48, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763, 2021.

Eyal M Reingold, Lester C Loschky, George W McConkie, and David M Stampe. Gaze-contingent
multiresolutional displays: An integrative review. Human factors, 45(2):307–328, 2003.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10684–10695, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J Majaj, Rishi Rajalingham, Elias B Issa, Ko-
hitij Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, et al. Brain-score: Which
artificial neural network for object recognition is most brain-like? BioRxiv, pp. 407007, 2018.

Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A Hosseini, Nancy Kan-
wisher, Joshua B Tenenbaum, and Evelina Fedorenko. The neural architecture of language: In-
tegrative modeling converges on predictive processing. Proceedings of the National Academy of
Sciences, 118(45):e2105646118, 2021.

Jason M Scimeca and Steven L Franconeri. Selecting and tracking multiple objects. Wiley
Interdisciplinary Reviews: Cognitive Science, 6(2):109–118, 2015.

Paul Scotti, Atmadeep Banerjee, Jimmie Goode, Stepan Shabalin, Alex Nguyen, Aidan Dempster,
Nathalie Verlinde, Elad Yundler, David Weisberg, Kenneth Norman, et al. Reconstructing the
mind’s eye: fmri-to-image with contrastive learning and diffusion priors. In Advances in Neural
Information Processing Systems, 2024.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Claude Elwood Shannon and Warren Weaver. The mathematical theory of communication. The
University of Illinois Press, 1963.

Garrett B Stanley, Fei F Li, and Yang Dan. Reconstruction of natural scenes from ensemble re-
sponses in the lateral geniculate nucleus. Journal of Neuroscience, 19(18):8036–8042, 1999.

Emma EM Stewart, Matteo Valsecchi, and Alexander C Schütz. A review of interactions between
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A APPENDIX

A.1 MORE THEORETICAL ANALYSIS

The retina is the initial site for capturing visual information, converting light into neural signals
transmitted to the brain (Guilherme & Leon, 1999). According to information theory (Shannon,
1948; Shannon & Weaver, 1963), specifically the data-processing inequality (Shannon & Weaver,
1963), information sent through noisy communication channels experiences inevitable loss that can-
not be recaptured through further processing. This principle suggests that the visual information
processed by the visual systems is constrained by what the retina initially captures. Besides, the
anatomical structure of the retina (Curcio & Allen, 1990; Curcio et al., 1990) determines inher-
ent differences between the fovea and peripheral regions, with resolution peaking at the fovea and
declines toward the periphery (Curcio et al., 1990). Statistical analyses also support this observa-
tion (Cohen et al., 2016; Freeman & Simoncelli, 2011). The blur and distortion in the periphery of
foveated images (Pointer & Hess, 1989; Stewart et al., 2020) signify a noteworthy reduction in infor-
mation compared to the original stimuli. Given that the maximum visual information conveyed by
brain acitivity cannot exceed that captured by the retina, we surmise that foveated images correlate
more strongly with brain activity than the original stimuli.

A.2 MORE DATA INFORMATION AND EXPERIMENTAL DETAILS

Following previous studies (Ozcelik & VanRullen, 2023; Takagi & Nishimoto, 2023; Scotti
et al., 2024), we conduct experiments involving four subjects who completed all imaging ses-
sions—subjects 01, 02, 05, and 07. Each subject was exposed to different training images, while
the test set remained consistent. Each subject underwent three scan sessions for each image. Our
experiments involve averaging brain activities for the test set images following Takagi & Nishimoto
(2023); Scotti et al. (2024), while data from all scan sessions for training images are separately used.
For the fMRI-to-foveated image reconstruction stage, models are trained using a single A100. Dur-
ing the stimulus image generation stage, we directly use the model weights provided by Ozcelik &
VanRullen (2023); Scotti et al. (2024).

When using VDVAE as the alternative autoencoder in Section 3.2, during the training phase, a
pseudo-foveated image is first fed into the 75-layer encoder to generate a group of latent variables
from bottom to up. Due to the high dimensionality of the latent variables from all layers, we only
employ ridge regression as the mapping approach. We take two mapping strategies. Firstly, the
fMRI data is individually mapped to the latent variable of each layer, achieved by training a distinct
ridge regression model for each mapping. Secondly, the fMRI data is mapped to the concatenation
of latent variables of 31 layers, this forms a variable of 91168 dimension and only a single ridge
regression model is required in this case. During inference, no image is provided and only fMRI data
is utilized in the decoding process. The fMRI data is input into the ridge regression models obtained
in the training phase to produce a series of latent variables or a variable for 31 layers together. These
representations can then be fed into the decoder of VDVAE to reconstruct the original input image.
When using Stable Diffusion, we experiment with both ridge regression and MLPs as mappining
functions. In the case of MLPs, the fMRI voxels are initially processed by an MLP, producing an
output with dimensions of 64×16×16, which is then upsampled to align with the dimension of the
latent variable. The MLP is trained using the mean squared error (MSE) loss between the predicted
and target latent variables.

For the experiments conducted in Section 4.1, we utilize the pre-trained VDVAE as detailed in Child
(2020), without any further fine-tuning. Thus the same VDVAE model is utilized for encoding both
normal images and pseudo-foveated images. When employing Stable Diffusion for image encoding,
we finetune the pre-trained model with normal images before extracting embeddings for normal im-
ages. Additionally, for pseudo-foveated images, we finetune it with pseudo-foveated images before
extracting the corresponding embeddings.

A.3 SUBJECT-SPECIFIC FIXATION POINT SELECTION

Here, we present the brain scores for latent variable-to-fMRI prediction and the Pearson correlation
coefficient results for fMRI-to-latent variable prediction in Table 6, individually for each subject.
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Table 6: Comparison of brain scores for normal images, pseudo-foveated images synthesized with
central fixation (center), and with fixation points predicted at different time intervals (1s, 2s, 3s),
reported for each subject. Pearson correlation coefficient results for fMRI-to-latent variables predic-
tion are also presented in the right portion.

Subject Image
Latent to fMRI fMRI to latent

layer 1 layer 2 layer 3 layer 4 layer 5 all layer 1 layer 2 layer 3 layer 4 layer 5

Subj01

normal .152 .095 .165 .129 .134 .206 .613 .453 .402 .499 .269
center .152 .098 .168 .135 .129 .208 .783 .702 .405 .526 .462

1s .152 .103 .170 .138 .152 .214 .798 .712 .406 .525 .469
2s .155 .099 .168 .139 .143 .213 .808 .719 .408 .528 .457
3s .156 .098 .167 .139 .140 .209 .811 .720 .408 .523 .449

Subj02

normal .161 .099 .175 .125 .130 .210 .595 .430 .376 .445 .247
center .163 .108 .177 .132 .131 .209 .772 .691 .375 .473 .458

1s .160 .111 .179 .132 .155 .216 .789 .702 .380 .473 .454
2s .164 .109 .177 .134 .143 .221 .800 .707 .381 .474 .441
3s .166 .108 .180 .135 .140 .220 .804 .710 .384 .467 .440

Subj05

normal .199 .124 .201 .141 .153 .233 .603 .456 .364 .392 .213
center .199 .134 .202 .147 .150 .231 .776 .696 .366 .420 .438

1s .197 .131 .202 .147 .182 .239 .793 .702 .372 .422 .435
2s .201 .134 .202 .149 .168 .244 .802 .711 .372 .421 .432
3s .202 .132 .201 .151 .162 .241 .808 .714 .370 .422 .421

Subj07

normal .136 .080 .135 .104 .106 .156 .569 .396 .348 .395 .220
center .135 .084 .138 .106 .105 .153 .758 .668 .355 .424 .434

1s .135 .088 .140 .105 .125 .158 .777 .682 .360 .426 .434
2s .137 .085 .138 .108 .118 .161 .788 .686 .357 .425 .422
3s .136 .085 .141 .109 .115 .156 .792 .692 .360 .423 .413

The assessment involves comparing the outcomes based on normal images, pseudo-foveated images
synthesized with central fixation and fixation points predicted at different time intervals.

A.4 SUBJECT-SPECIFIC IMAGE RECONSTRUCTION RESULTS

Table 7: Quantitative results of pseudo-foveated image reconstruction for individual subjects in
the fMRI-to-foveated image reconstruction stage. Evaluation is based on computing the metrics
between the generated images and pseudo-foveated images. Aggregated average scores across
subjects are shown in Table 3.

Subject
Low-Level High-Level

PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ Eff ↓ SwAV ↓
Subj01 .482 .636 90.3% 90.4% 66.4% 63.8% .874 .524
Subj02 .421 .633 88.1% 88.8% 67.1% 63.1% .868 .521
Subj05 .368 .621 81.9% 83.4% 65.2% 61.5% .872 .528
Subj07 .350 .621 79.9% 80.4% 63.7% 59.9% .877 .525

Table 8: Quantitative results of pseudo-foveated image reconstruction for individual subjects in
the fMRI-to-foveated image reconstruction stage. Evaluation is based on computing the metrics
between the generated images and groundtruth stimulus images. Aggregated average scores across
subjects are shown in Table 4.

Subject
Low-Level High-Level

PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ Eff ↓ SwAV ↓
Subj01 .464 .489 89.1% 89.5% 65.9% 66.3% .975 .621
Subj02 .406 .480 86.3% 86.2% 64.1% 64.5% .981 .619
Subj05 .355 .471 80.3% 79.8% 62.8% 62.9% .987 .627
Subj07 .339 .470 77.8% 77.9% 61.1% 61.2% .991 .626
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Here we showcase the results of pseudo-foveated image reconstruction for individual subjects in
Table 7 and 8.

A.5 MORE RECONSTRUCTIONS AND GENERATIONS

Additional images created from fMRI signals of all subjects during the stimulus image generation
phase can be found in Figure 8 and Figure 9.

Stimuli Foveated BrainDiffuser MindEye Ours

Figure 8: Additional exemplary images produced by BrainDiffuser (Ozcelik & VanRullen, 2023) ,
MindEye (Scotti et al., 2024), and MindEye+FitFovea (Ours) using fMRI signals of subject 01. The
first two columns showcase stimulus images (Stimuli) and pseudo-foveated images (Foveated).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Stimuli Subj 01 Subj 02 Subj 05 Subj 07

Figure 9: Additional exemplary images produced by our method using the fMRI signal of four
subjects. The first column showcases the stimulus images (Stimuli).
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