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Abstract

Cipher transformations have been studied historically in cryptography, but little1

work has explored how large language models (LLMs) represent and process2

them. We evaluate the ability of three models: Llama 3.1, Gemma 2, and Qwen 33

on performing translation and dictionary tasks across ten cipher systems from a va-4

riety of families, and compare it against a commercially available model, GPT-5.5

Beyond task performance, we analyze embedding spaces of Llama variants to ex-6

plore whether ciphers are internalized similarly to languages. Our findings suggest7

that cipher embeddings cluster together and, in some cases, overlap with lower-8

resource or less frequently represented languages. Steering-vector experiments9

further reveal that adjusting cipher-related directions in latent space can shift out-10

puts toward these languages, suggesting shared representational structures. This11

study provides an initial framework for understanding how LLMs encode ciphers,12

bridging interpretability, and security. By framing ciphers in a similar way to lan-13

guages, we highlight new directions for model analysis and for designing defenses14

against cipher-based jailbreaking attacks.15

1 Introduction16

As Large Language Models (LLMs) increase in scale and complexity, they exhibit the emergence of17

new capabilities. One such case is their ciphering ability. LLMs are remarkably skilled at encoding18

and decoding text in a wide range of ciphers, and can even generalize to novel ciphers after exposure19

to a few examples Jin et al. [2024].20

This ability has practical implications, both constructive and concerning. While it highlights the21

flexibility of LLMs in symbolic transformation tasks, it also raises significant safety risks. Prior22

work has shown that ciphers can be leveraged to circumvent guardrail mechanisms Jin et al. [2024],23

facilitate jailbreaks Handa et al. [2024], or covertly extract sensitive or secret information in a way24

that evades detection by filtering and monitoring systems Team [2025], Glukhov et al. [2023]. These25

findings underscore the difficult nature of LLM safety monitoring and even censorship.26

Despite its importance, not much is known about how LLMs internally represent and perform cipher-27

ing. A key question is whether models treat ciphers analogously to natural languages and engage in28

a form of translation between plain text and ciphered text. Insights from multilingual LLM literature29

suggest this to be plausible, as models often adopt pivot languages or intermediate representations30

when translating across languages Schut et al. [2025], Wendler et al. [2024]. To investigate this31

phenomenon, we use activation analysis and steering vector techniques to demystify this ability and32

characterize the internal mechanisms underlying ciphering behavior in LLMs.33
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2 Background and Related Work34

The internal representations and processing of ciphers in LLMs remain a largely understudied do-35

main in mechanistic interpretability. Much of the existing research has been concentrated on the36

multilingual capabilities of LLMs, which is in several respects parallel challenges faced by cipher-37

ing. For instance, Schut et al. [2025] investigates the internal multilingual mechanics of LLMs with38

LogitLens, causal tracing, and cross-lingual steering vectors, demonstrating that LLMs tend to rely39

on intermediate representations closly aligned with English before internally translating to the de-40

sired language output. Similary, Wendler et al. [2024] analyze models trained in predominantly41

English contexts and show that such models use English as a pivot language in translation. Their42

study uses LogitLens as well as prompt tasks such as a translation task, a repetition task, and a cloze43

task on a small curated dataset of words.44

3 Methodology45

Our goal is to explore the internal states of LLMs that correspond to specific ciphering algorithms.46

To this end, we designed two tasks where the next correct token can easily be inferred from the47

prompt, unambiguously. Although the answer is obvious in English, we then ask the LLM to output48

it in the specified cipher instead of English. Critically, we instruct LLMs to not think as we are49

interested in observing inherent ciphering abilities, and not solving the task through reasoning. In50

each prompt, we also give multiple examples to further boost task success. Inspired by Wendler51

et al. [2024], we designed two tasks: translation and reverse dictionary.52

3.1 Dataset Construction53

Task 1: Translation The prompt asks the LLM to translate a target word into a cipher (or another54

natural language, used as control). We use the following template (the actual prompt uses three55

examples):56

Task: Translate words from English to [Cipher Name]. Output only the translated answer
and nothing else.
English: example [Cipher Name]: [Cipher(example)]
English: target [Cipher Name]:

57

Task 2: Reverse Dictionary. The prompt asks the LLM to find the target word based on the brief58

(5-8 words, generated by ChatGPT) dictionary definition of that word. Here, the LLM never sees59

the correct answer in plain text, and, thus, it must answer the question first and translate it into a60

cipher. We use the following template (with two examples):61

Task: Find the word based on the definition. Translate the answer to [Cipher Name]. Output
only the translated answer and nothing else.
Definition: definition of the example word [Cipher Name]: [Cipher(example)]
Definition: definition of the target word [Cipher Name]:

62

List of words. We adopt the list of target words (also used to construct examples in each prompt)63

from Schut et al. [2025]. These are common words that vary in length and part of speech, each with64

a clear meaning, and for simplicity, have a single-token representation by LLM tokenizers.65

The selected words are: animal, beautiful, brother, chair, computer, drink, fruit, happy, horse, ma-66

chine, money, sister, speak, table, water.67

List of cipher algorithms. We selected ten cipher algorithms (that include substitution, transposi-68

tion, and encoding ciphers) by compiling a list of common ciphers from prior work. Our substitution69

ciphers are Caesar (cyclic shift of characters, we use 3-shift), ROT-13 (a type of Caesar cipher with70

13-shift), Vigenere (polyalphabetic substitution with key=key), and Leetspeak (ad-hoc character71

substitutions). Transposition ciphers are: Rail Fence (zig-zag reordering of characters, we use 272

rails) and Pig Latin (reordering letters within a word). Finally, letter encoding schemes are Morse73
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Code (encodes letters as dot/dash sequences), Binary (encodes text as 0s and 1s) and Base64 (en-74

codes binary data into a 64-character alphabet).75

Prompt Construction. We generate our dataset by populating our prompt templates for each task.76

Both templates are applied to all 15 words for all ten ciphers. This gives us a total of 300 prompts.77

Each prompt includes 2-3 examples that demonstrate the task.78

Ciphering Accuracy Evaluation. We prompt each selected LLM with 30 ciphering prompts and79

count the number of correct responses using the ground truth response (the output must exactly80

match the ground truth).81

3.2 LLM Analysis Methods82

For analysis, following prior work on analyzing multi-lingual LLM representations Wendler et al.83

[2024], Schut et al. [2025], we use steering vectors and logit lens.84

Steering Vectors. We use steering vectors to test whether the LLM’s ability to use ciphers in the85

latent space can be isolated. In particular, we steer the model toward outputting in a specific cipher86

(without being prompted to do so). We use IBM’s activation-steering library Lee et al. [2025]87

with contrastive pairs that include ciphered text and its English translation, for example: [ROT13:88

“Nofbyhgryl! V’q or qryvtugrq”] and [English: “Absolutely! I’d be delighted”].89

We use Leetspeak and ROT-13 for steering. The alpaca dataset Taori et al. [2023] was then paired90

with each of these outputs, and the steered vector was computed from the difference. Three different91

strength values were used for the models: 0.8, 1.0, 1.2. These values represent the multiplier for the92

steering vector. The vector was applied at layers 7-14 in the models. To evaluate this steering vector93

we used the Reverse-Dictionary Prompt without Translation using an unseen list of words: ballet,94

child, culture, hand, menu, radio, sea, slow, small, write. The models were also evaluated using 5095

normal, benign prompts that ask general knowledge or explanation questions, and 50 prompts that96

ask similar questions but request for the output to be in one of the ten aforementioned ciphers.97

Next, we use LLM-as-a-judge (GPT-4o) to assign the language to the steered model outputs. If the98

output contains multiple languages, each is counted in the final tally. If the output claims to use a99

language or cipher but does not use it correctly or in any recognizable way, it is classified as Alleged100

[language].101

Logit Lens. Logit lens, originally proposed by nostalgebraist [2020], applies “unembedding” op-102

eration prematurely in intermediate layers, allowing us to see the output token progression of the103

model. This technique gives us a rough idea about how the LLM processes tokens; we, especially,104

are interested in measuring whether ciphering ability emerges consistently after a certain layer. We105

apply the standard logit lens as-is without any modification.106

Selected LLMs. We use three open-weight, popular LLMs (trained by different organizations):107

Llama 3.1 8B-Instruct, Qwen 3-8B, and Gemma 2-9B-IT. We also use OpenAI’s GPT-5 to measure108

the ability of frontier models to follow ciphers compared to open-weight ones.109

4 Experiments110

4.1 Ciphering Ability111

Table 1 presents the ciphering accuracy scores for the Llama, Gemma, Qwen, and GPT models. The112

three open-weight models demonstrated varying levels of performance in the tasks. Among them,113

Qwen exhibited the most consistent capability, successfully following all cipher rules at least once114

and achieving its highest accuracy with Leetspeak and the Caesar ciphers. In contrast, both LLama115

and Gemma showed a weaker ability, failing at most ciphers, while both demonstrated ability to116

follow Leetspeak. In addition to Leetspeak, Gemma also produced strong results in Base64 and Pig117

Latin. This shows that even smaller, open-weight models have non-trivial inherent abilities to output118

ciphered text, hinting at an internal mechanism that they use to cipher tokens. Interestingly, models119

also show diverse abilities across cipher algorithms. As expected, GPT-5 performed all ciphering120

tasks with near-perfect accuracy. This suggests that ciphering capabilities scale in proportion to121
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Cipher Name Llama 3.1 8B-Instruct Gemma 2 9B-IT Qwen 3 8B GPT-5
ROT13 0 0 5/30 30/30
Morse code 0 0 7/30 30/30
Leetspeak 12/30 24/30 13/30 30/30
Base64 0 16/30 1/30 30/30
Pig Latin 6/30 13/30 8/30 29/30
Rail Fence 2/30 0 5/30 30/30
Binary 0 0 7/30 30/30
Atbash 0 0 6/30 30/30
Vigenère 0 0 2/30 30/30
Caesar cipher 0 0 12/30 30/30

Table 1: Comparison of model performance across translation and dictionary cipher tasks.

general LLM abilities, highlighting the emerging risks such as jailbreaking Jin et al. [2024], Handa122

et al. [2024].123

4.2 Logit Lens124

To apply the logit lens, we input an open-weight LLM only the ciphering prompts that it was able to125

answer correctly (one from translation and one from reverse-dictionary tasks).126

Figure 1 illustrates a Logit Lens output from Llama 3.1 on a translation prompt, where the target127

word water is rendered in Leetspeak as w4t3r. For Llama, the logit lens shows that the model128

retrieves the English word around layers 22-24 and starts to splice the word at layer 28, and encodes129

the letters (as required by the cipher) in the last two layers, 31 and 32. Interestingly, this encoding130

behavior occurs in the latter half of the layers, and the true letter transformation only happens at the131

very end.132

For Qwen, we see a similar behavior: the word is retrieved at layer 32, spliced into characters at133

layers 34-35, and converted into the ciphered characters at the last layers 35-36.134

Gemma, on the other hand, gives rise to a different pattern than the prior two models regarding135

Base64 encoding. Overall, the model exhibits a high probability of tokens in early and later layers,136

no matter the token. With Base64, Gemma never ‘thinks’ the word in plain English; it just jumps137

straight into outputting the first two characters. When it performs the dictionary task with leetspeak,138

it thinks the English word at layer 33 and encodes it at layer 40, similar to Llama and Qwen.139

In a second experiment, we evaluate reverse translation: the target word is provided in cipher form,140

and the LLM must translate it back into English. For example, when presented with ‘ROT-13:141

znpuvar’, the expected output is machine. Interestingly, in this task, the model did not do letter-by-142

letter translation and instead just outputted the entire word as the first token. Regardless of cipher143

types, such as Leetspeak versus Base64, this behavior was consistent.144

Takeaways. We observed cases where cipher translation follows a layered progression, first the145

plain English word is retrieved and then spliced into into the ciphered output in the last few layers.146

These findings mirror those from Wendler et al. [2024], Schut et al. [2025] on multilingual LLMs,147

where tokens are translated into target languages predominantly in the final layers. This highlights an148

interesting connection between cipher languages and natural languages in internal representations,149

which we explore further next using steering vectors.150

4.3 Steering Vectors151

Our results show that steering vectors for Qwen and Gemma exhibited resistance at strengths below152

20.0, with higher values yielding mostly random outputs. This limitation may stem from not identi-153

fying the appropriate layers or prompts for extracting effective vectors; thus, we defer this challenge154

to future work and restrict our steering experiments to Llama.155

In contrast, Llama was highly steerable and displayed diverse behaviors across steering levels. No-156

tably, applying a ROT-13 steering vector at levels 0.8 and 1.0 led the model to generate outputs157

in multiple natural languages, including low-resource ones. We labeled these outputs using the158

4



Figure 1: LogitLens of Llama 3.1 8B on a Translation Task.

LLM-as-a-judge method (Section 3.2), and Figure 2 presents a histogram of the resulting language159

distribution.160

Figure 2: Histogram of Llama 3.1 8B for ROT13
Steering Vector

At strength 0.8, languages such Swahili,161

Welsh, Somali, and Greek occurred multiple162

times over all the prompts (dictionary, nor-163

mal, and cipher prompts). Other languages164

like Inuktitut (Indigenous Alaskan), Gujarati165

(Indo-Aryan language), and even Esperanto,166

the "univeral language" occurred once. For167

the prompts that requested ciphered output,168

the only ciphers outputted were ROT13, Pig169

Latin, or Base64. At strength 1.0, lan-170

guages such as Lithuanian, Yiddish, Welsh,171

and Croatian occurred multiple times over172

all the prompts (dictionary, normal and ci-173

pher prompts). Even Khmer, the official lan-174

guage of Cambodia, occurred 3 times. Sur-175

prisingly, Llama officially supports only eight176

languages, none of which overlap with these177

emergent outputs.178
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4.3.1 Embeddings Examination179

To investigate whether this phenomenon is universal or at least recurring in Llama models, we180

additionally added a Llama 3.2 3B Instruct model. Compared to Llama 3.1 8B, the 3.2 3B variant181

produced a greater number of alleged language outputs, likely due to its smaller scale and reduced182

reliability in correctly generating the languages it claimed to represent. Regardless, the cipher-183

language connection persisted, albeit in a weaker form. Specifically, the model outputted Welsh, Old184

English, and German, while also claiming to generate text in Polish, Greek, Latin, and Norwegian,185

though these outputs were not faithful to the alleged languages.186

Figure 3: Language and Cipher Prompt Embedding Scatter Plot for Llama 3.1 8B

Figure 4: Language and Cipher Prompt Embedding Scatter Plot for Llama 3.2 3B

To further analyze this behavior, we compute the mean semantic embeddings of 45 prompts for each187

of 16 natural languages and 10 cipher systems, on both Llama 3.1 and Llama 3.2. As illustrated in188

Figures 3 and 4, embeddings for cipher outputs consistently cluster together, while typologically or189

geographically related languages—such as German, French, Spanish, and Japanese—form distinct190

clusters. In contrast, several Indigenous languages such as Inupiaq, Amharic, and Kalaallisut appear191

in closer proximity to the cipher cluster, particularly ROT-13. This observation aligns with model192

behavior, in Llama 3.1 8B, reducing the strength of the ROT-13 steering vector resulted in outputs193

shifting toward Indigenous and less frequently represented languages. On the other hand, in Llama194

3.2 3B, increasing the strength of the Rot-13 steering vector induced similar outputs, corroborating195

the embedding-level clustering patterns observed in the figures.196

5 Conclusion197

There remains substantial work to be done in demystifying how language models handle ciphers.198

Open questions include how models of varying scales internally represent different cipher systems,199

how effectively they generalize this representation for novel ciphers through few-shot learning, and200

how steering vectors can be leveraged across both models and cipher types. Nonetheless, our study201

provides an important first step toward an interpretability framework for ciphers, with results sug-202

gesting that many cipher transformations are processed and translated in ways parallel to natural203

language translations. Moreover, the findings indicate a potential relationship between certain ci-204

phers and lower-resource languages in the Llama family of models. Future research can extend these205

insights to develop more robust security mechanisms aimed at mitigating cipher-based jailbreaking206

attempts.207
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