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Abstract

Cipher transformations have been studied historically in cryptography, but little
work has explored how large language models (LLMs) represent and process
them. We evaluate the ability of three models: Llama 3.1, Gemma 2, and Qwen 3
on performing translation and dictionary tasks across ten cipher systems from a va-
riety of families, and compare it against a commercially available model, GPT-5.
Beyond task performance, we analyze embedding spaces of Llama variants to ex-
plore whether ciphers are internalized similarly to languages. Our findings suggest
that cipher embeddings cluster together and, in some cases, overlap with lower-
resource or less frequently represented languages. Steering-vector experiments
further reveal that adjusting cipher-related directions in latent space can shift out-
puts toward these languages, suggesting shared representational structures. This
study provides an initial framework for understanding how LLMs encode ciphers,
bridging interpretability, and security. By framing ciphers in a similar way to lan-
guages, we highlight new directions for model analysis and for designing defenses
against cipher-based jailbreaking attacks. We share our source code and data for
reproduction research on GitHub.

1 Introduction

As Large Language Models (LLMs) increase in scale and complexity, they exhibit the emergence of
new capabilities. One such case is their ciphering ability. LLMs are remarkably skilled at encoding
and decoding text in a wide range of ciphers, and can even generalize to novel ciphers after exposure
to a few examples [ ].

This ability has practical implications, both constructive and concerning. While it highlights the
flexibility of LLMs in symbolic transformation tasks, it also raises significant safety risks. Prior

work has shown that ciphers can be leveraged to circumvent guardrail mechanisms [ 1,
facilitate jailbreaks [ ], or covertly extract sensitive or secret information in a way
that evades detection by filtering and monitoring systems [ 1, [ ]. These

findings underscore the difficult nature of LLM safety monitoring and even censorship.

Despite its importance, not much is known about how LLMs internally represent and perform cipher-
ing. A key question is whether models treat ciphers analogously to natural languages and engage in
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a form of translation between plain text and ciphered text. Insights from multilingual LLM literature
suggest this to be plausible, as models often adopt pivot languages or intermediate representations
when translating across languages [ 1, [ ]. To investigate this
phenomenon, we use activation analysis and steering vector techniques to demystify this ability and
characterize the internal mechanisms underlying ciphering behavior in LLMs.

2 Background and Related Work

The internal representations and processing of ciphers in LLMs remain a largely understudied do-
main in mechanistic interpretability. Much of the existing research has been concentrated on the
multilingual capabilities of LLMs, which is in several respects parallel challenges faced by cipher-
ing. For instance, [ ] investigates the internal multilingual mechanics of LLMs with
LogitLens, causal tracing, and cross-lingual steering vectors, demonstrating that LLMs tend to rely
on intermediate representations closly aligned with English before internally translating to the de-
sired language output. Similary, [ ] analyze models trained in predominantly
English contexts and show that such models use English as a pivot language in translation. Their
study uses LogitLens as well as prompt tasks such as a translation task, a repetition task, and a cloze
task on a small curated dataset of words.

3 Methodology

Our goal is to explore the internal states of LLMs that correspond to specific ciphering algorithms.
To this end, we designed two tasks where the next correct token can easily be inferred from the
prompt, unambiguously. Although the answer is obvious in English, we then ask the LLM to output
it in the specified cipher instead of English. Critically, we instruct LLMs to not think as we are
interested in observing inherent ciphering abilities, and not solving the task through reasoning. In
each prompt, we also give multiple examples to further boost task success. Inspired by

[ ], we designed two tasks: translation and reverse dictionary.

3.1 Dataset Construction

Task 1: Translation The prompt asks the LLM to translate a target word into a cipher (or another
natural language, used as control). We use the following template (the actual prompt uses three
examples):

Task: Translate words from English to [Cipher Name]. Output only the translated answer
and nothing else.

English: example [Cipher Name]: [Cipher(example)]

English: farget [Cipher Name]:

Task 2: Reverse Dictionary. The prompt asks the LLM to find the rarget word based on the brief
(5-8 words, generated by ChatGPT) dictionary definition of that word. Here, the LLM never sees
the correct answer in plain text, and, thus, it must answer the question first and translate it into a
cipher. We use the following template (with two examples):

Task: Find the word based on the definition. Translate the answer to [Cipher Name]. Output
only the translated answer and nothing else.

Definition: definition of the example word  [Cipher Name]: [Cipher(example)]
Definition: definition of the target word  [Cipher Name]:

List of words. We adopt the list of target words (also used to construct examples in each prompt)
from [ ]. These are common words that vary in length and part of speech, each with
a clear meaning, and for simplicity, have a single-token representation by LLM tokenizers.

The selected words are: animal, beautiful, brother, chair, computer, drink, fruit, happy, horse, ma-
chine, money, sister, speak, table, water.



List of cipher algorithms. We selected ten cipher algorithms (that include substitution, transposi-
tion, and encoding ciphers) by compiling a list of common ciphers from prior work. Our substitution
ciphers are Caesar (cyclic shift of characters, we use 3-shift), ROT-13 (a type of Caesar cipher with
13-shift), Vigenere (polyalphabetic substitution with key=key), and Leetspeak (ad-hoc character
substitutions). Transposition ciphers are: Rail Fence (zig-zag reordering of characters, we use 2
rails) and Pig Latin (reordering letters within a word). Finally, letter encoding schemes are Morse
Code (encodes letters as dot/dash sequences), Binary (encodes text as Os and 1s) and Base64 (en-
codes binary data into a 64-character alphabet).

Prompt Construction. We generate our dataset by populating our prompt templates for each task.
Both templates are applied to all 15 words for all ten ciphers. This gives us a total of 300 prompts.
Each prompt includes 2-3 examples that demonstrate the task.

Ciphering Accuracy Evaluation. We prompt each selected LLM with 30 ciphering prompts and
count the number of correct responses using the ground truth response (the output must exactly
match the ground truth).

3.2 LLM Analysis Methods

For analysis, following prior work on analyzing multi-lingual LLM representations
[ 1, [ ], we use steering vectors and logit lens.

Steering Vectors. We use steering vectors to test whether the LLM’s ability to use ciphers in the
latent space can be isolated. In particular, we steer the model toward outputting in a specific cipher
(without being prompted to do so). We use IBM’s activation-steering library [ ]
with contrastive pairs that include ciphered text and its English translation, for example: [ROT13:
“Notbyhgryl! V’q or qryvtugrq”] and [English: “Absolutely! I’d be delighted”].

We use Leetspeak and ROT-13 for steering. Based upon the results for ROT-13, we also repeated
the experiments used ROT-7 and ROT-21. The alpaca dataset [ ] was then paired
with each of these outputs, and the steered vector was computed from the difference. Three different
strength values were used for the models: 0.8, 1.0, 1.2. These values represent the multiplier for the
steering vector. The vector was applied at layers 7-14 in the models. To evaluate this steering vector
we used the Reverse-Dictionary Prompt without Translation using an unseen list of words: ballet,
child, culture, hand, menu, radio, sea, slow, small, write. The models were also evaluated using 50
normal, benign prompts that ask general knowledge or explanation questions, and 50 prompts that
ask similar questions but request for the output to be in one of the ten aforementioned ciphers.

Next, we use LLM-as-a-judge (GPT-40) to assign the language to the steered model outputs. If the
output contains multiple languages, each is counted in the final tally. If the output claims to use a
language or cipher but does not use it correctly or in any recognizable way, it is classified as Alleged
[language].

Logit Lens. Logit lens, originally proposed by [ ], applies “unembedding” op-
eration prematurely in intermediate layers, allowing us to see the output token progression of the
model. This technique gives us a rough idea about how the LLM processes tokens; we, especially,
are interested in measuring whether ciphering ability emerges consistently after a certain layer. We
apply the standard logit lens as-is without any modification. Three prompt types were used for each
model: an English to [Cipher] translation request, a [Cipher] to English translation request, and the
Reverse-Dictionary prompt. The ciphers used for each model were decided based upon the results
in 1.

Selected LLLMs. We use three open-weight, popular LLMs (trained by different organizations):
Llama 3.1 8B-Instruct, Qwen 3-8B, and Gemma 2-9B-IT. We also use OpenAI’s GPT-5 to measure
the ability of frontier models to follow ciphers compared to open-weight ones.



Cipher Name \ Llama 3.1 8B-Instruct Gemma 2 9B-IT Qwen38B GPT-5

ROT13 0 0 5/30 30/30
Morse code 0 0 7/30 30/30
Leetspeak 12/30 24/30 13/30 30/30
Base64 0 16/30 1/30 30/30
Pig Latin 6/30 13/30 8/30 29/30
Rail Fence 2/30 0 5/30 30/30
Binary 0 0 7/30 30/30
Atbash 0 0 6/30 30/30
Vigenere 0 0 2/30 30/30
Caesar cipher 0 0 12/30 30/30

Table 1: Comparison of model performance across translation and dictionary cipher tasks.

4 Experiments

4.1 Ciphering Ability

Table 1 presents the ciphering accuracy scores for the Llama, Gemma, Qwen, and GPT models. The
scores are the count of how many correct translations were made out of the total prompts given.
The three open-weight models demonstrated varying levels of performance in the tasks. For many
prompts, Llama and Gemma showed some understanding of the ciphers, but were off by 1-2 char-
acters and thus scored a 0. This can be attributed to their training data and model size. Among
the models, Qwen exhibited the most consistent capability, successfully following all cipher rules
at least once and achieving its highest accuracy with Leetspeak and the Caesar ciphers. In contrast,
both LLama and Gemma showed a weaker ability, failing at most ciphers, while both demonstrated
ability to follow Leetspeak. In addition to Leetspeak, Gemma also produced strong results in Base64
and Pig Latin. This shows that even smaller, open-weight models have non-trivial inherent abilities
to output ciphered text, hinting at an internal mechanism that they use to cipher tokens. Interest-
ingly, models also show diverse abilities across cipher algorithms. As expected, GPT-5 performed
all ciphering tasks with near-perfect accuracy. This suggests that ciphering capabilities scale in
proportion to general LLM abilities, highlighting the emerging risks such as jailbreaking

[2024], [2024].

4.2 Logit Lens

To apply the logit lens, we input an open-weight LLM using only the ciphering prompts that it
was able to answer correctly. Each model was given three prompts for a translation from cipher to
English, a translation from English to cipher, and the reverse dictionary task. Each task revealed
patterns in processing that were consistent throughout the three models. When Qwen, Llama, and
Gemma translated a work from cipher to English, the logit lens showed the models do not do letter
by letter translation, and instead output the whole English word as one token.

In contrast, when translating from English to a cipher, in most cases all models broken the word into
chunks and then translated. Figure 6 illustrates a logit lens output from Llama 3.1 on a translation
prompt, where the target word water is rendered in Leetspeak as w4¢3r. For Llama, the logit lens
shows that the model retrieves the English word around layers 22-24 and starts to splice the word
at layer 28, and encodes the letters (as required by the cipher) in the last two layers, 31 and 32.
When Llama translated water to Leetspeak in the middle layers, water gets broken down into ’wat’,
then wa’ then w is outputted. For the next token, water becomes "ate’ then 4 is correctly outputted.
Interestingly, this encoding behavior occurs in the latter half of the layers, and the true letter trans-
formation only happens at the very end. An exception to this was Gemma, which gives rise to a
different pattern than the prior two models regarding Base64 encoding.

With Base64, Gemma never ‘thinks’ the word in plain English or breaks the word into chunks to
translate; it just jumps straight into outputting the first two characters. Overall, Gemma exhibits a
high probability of tokens in early and later layers, no matter the token.

The reverse dictionary task is where the target word is provided in cipher form, and the LLM must
translate it back into English. For example, when presented with ‘ROT-13: znpuvar’, the expected



output is machine. When Gemma performs the dictionary task with Leetspeak, it thinks the English
word at layer 33 and encodes it at layer 40, with Llama and Qwen showing similar behavior. Across
all models, the English word matching the given was thought and reiterated in middle layers, and
was only broken down and translated in the last 2-3 layers for each model.

For Qwen, we see a similar behavior: the word is retrieved at layer 32, spliced into characters at
layers 34-35, and converted into the ciphered characters at the last layers 35-36.

User prompt:

Task: You are an expert at ciphers. Your task is to convert the exact English word into
the requested cipher. Rules: 1. Output ONLY the ciphered word — neothing else. 2. Do NOT
explain, do NOT add punctuation or extra text. 3. Treat the word literally as given,
including quotes if present. 4. Use the standard rules of the cipher exactly. Examples:
English: hand -> Leetspeak (I33t): h4nd English: dog -> Leetspeak (I33t): dOg English
word: water -> Cipher: Leetspeak (I33t) Output:

t=1 t=2 t=3 t=4 t=5
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Figure 1: LogitLens of Llama 3.1 8B on a Translation Task.

Takeaways. We observed cases where cipher translation follows a layered progression, first the
plain English word is retrieved and then spliced into into the ciphered output in the last few layers.
These findings mirror those from Wendler et al. [2024], Schut et al. [2025] on multilingual LLMs,
where tokens are translated into target languages predominantly in the final layers. This highlights an
interesting connection between cipher languages and natural languages in internal representations,
which we explore further next using steering vectors.

4.3 Steering Vectors
Llama 3.1 8B Aggregated Prompt Language Frequency, s=0.8
70
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strengths below 20.0, with higher values 501

yielding mostly random outputs. This limi- £ 40

tation may stem from not identifying the ap- 8 3

propriate layers or prompts for extracting ef- 2

fective vectors; thus, we defer this challenge

to future work and restrict our steering exper- 1o

iments to Llama. o 0 S P P e e o
In contrast, Llama was highly steerable and ® ‘V“qé\&"“‘wa e og&”i&* @ZQ“‘%*

displayed diverse behaviors across steering
levels. Notably, applying a ROT-13 steering
vector at levels 0.8 and 1.0 led the model
to generate outputs in multiple natural lan-

Figure 2: Histogram of Llama 3.1 8B for ROT13
Steering Vector



guages, including low-resource ones. We labeled these outputs using the LLM-as-a-judge method
(Section 3.2), and Figure 2 presents a histogram of the resulting language distribution.

At strength 0.8, languages such Swabhili, Welsh, Somali, and Greek occurred multiple times over all
the prompts (dictionary, normal, and cipher prompts). Other languages like Inuktitut (Indigenous
Alaskan), Gujarati (Indo-Aryan language), and even Esperanto, the "univeral language" occurred
once. For the prompts that requested ciphered output, the only ciphers outputted were ROT13, Pig
Latin, or Base64. At strength 1.0, languages such as Lithuanian, Yiddish, Welsh, and Croatian
occurred multiple times over all the prompts (dictionary, normal and cipher prompts). Even Khmer,
the official language of Cambodia, occurred 3 times. Surprisingly, Llama officially supports only
eight languages, none of which overlap with these emergent outputs.

4.3.1 Embeddings Examination

To investigate whether this phenomenon is universal or at least recurring in Llama models, we
additionally added a Llama 3.2 3B Instruct model. Compared to Llama 3.1 8B, the 3.2 3B variant
produced a greater number of alleged language outputs, likely due to its smaller scale and reduced
reliability in correctly generating the languages it claimed to represent. Regardless, the cipher-
language connection persisted, albeit in a weaker form. Specifically, the model outputted Welsh, Old
English, and German, while also claiming to generate text in Polish, Greek, Latin, and Norwegian,
though these outputs were not faithful to the alleged languages.
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Figure 3: Language and Cipher Prompt Embedding Scatter Plot for Llama 3.1 8B
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Figure 4: Language and Cipher Prompt Embedding Scatter Plot for Llama 3.2 3B

To further analyze this behavior, we compute the mean semantic embeddings of 45 prompts for each
of 16 natural languages and 10 cipher systems, on both Llama 3.1 and Llama 3.2. As illustrated in
Figures 3 and 4, embeddings for cipher outputs consistently cluster together, while typologically or
geographically related languages—such as German, French, Spanish, and Japanese—form distinct



clusters. In contrast, several Indigenous languages such as Inupiaq, Amharic, and Kalaallisut appear
in closer proximity to the cipher cluster, particularly ROT-13. This observation aligns with model
behavior, in Llama 3.1 8B, reducing the strength of the ROT-13 steering vector resulted in outputs
shifting toward Indigenous and less frequently represented languages. On the other hand, in Llama
3.2 3B, increasing the strength of the Rot-13 steering vector induced similar outputs, corroborating
the embedding-level clustering patterns observed in the figures.

4.3.2 Expanding beyond ROT-13

Based on these findings for ROT-13, the experiments were repeated with ROT-7 and ROT-21, which
were chosen at random, to see if the behavior was consistent with alternative ROT versions. Sim-
ilarly to ROT-13, Llama 3.1 8B exhibited unusual behavior at a steering strength below 1, while
Llama 3.2 3B needed a strength greater than 1.1.

For normal question answering prompts, under ROT-7 steering, Llama 3.2 3B responded in English,
ROT-13, Caesar ciphers, Azerbaijan, Tibetan, and Sanskrit characters. With ROT-21 steering, En-
glish, ROT-13, Caesar ciphers, Korean, Slovak/Czech, Polish, and Lithuanian were used to respond
by the model. This is similar to the results with ROT-13, which saw low-resource languages used in
response to normal question and answering prompts.

For reverse-dictionary prompts and cipher translation prompts, the model responded predominantly
in ROT-13 with some English for the ROT-7 steering and ROT-21 steering. The appearance of ROT-
13 and Caesar cipher (shift of 3) under both ROT-7 and ROT-21 show that while steering is pushing
toward shifts of 7 and 21, the model is more comfortable and familiar with a shift of 3 or 13 and will
default to this even when steered with a different vector.

Meanwhile, Llama 3.1 8B showed more varying behavior for reverse-dictionary prompts and cipher
translation prompts and used ROT-13, Pig Latin, Atbash, and many reversed text responses. The nor-
mal prompts continued to show language output with low-resource languages such as Pali/Sanskrit,
Norwegian, Slovak, Latvian, Somoan, and Yoruba showing up for ROT-7. ROT-21 had predom-
inantly English, but languages such as ROT-13, Korean, Polish/Slovak, Greek, Russian, Chinese,
Lithuanian also appeared.

5 Conclusion

There remains substantial work to be done in demystifying how language models handle ciphers.
Open questions include how models of varying scales internally represent different cipher systems,
how effectively they generalize this representation for novel ciphers through few-shot learning, and
how steering vectors can be leveraged across both models and cipher types. Nonetheless, our study
provides an important first step toward an interpretability framework for ciphers, with results sug-
gesting that many cipher transformations are processed and translated in ways parallel to natural
language translations. Moreover, the findings indicate a potential relationship between certain ci-
phers and lower-resource languages in the Llama family of models. Future research can extend these
insights to develop more robust security mechanisms aimed at mitigating cipher-based jailbreaking
attempts.
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7 Appendix

7.1 LogitLens

Graphs from the Logit Lens experiments can be seen below. The Cipher to English translations
example from Gemma 2 9B shows that for a Base64 cipher, Gemma has no internal processing and
jumped right to English translations at layer 37, however the model does not get the correct token
until layer 40. This behavior was consistent across other models as well for the cipher to English
translations.

User prompt:

Task: Translate words from Base64 encoding to English. Output only the translated answer
and nothing else. Base64: d2F0ZXI= Translation: water Base64: aGFwcHk= Translation:
happy Base64: bWFjaGluZQ== Translation: machine Base64: YWS5pbWFs Translation:
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Figure 5: LogitLens of Gemma 2 9B on a Translation Task.

The Reverse-Dictionary example from Qwen 3 8B model shows internal word recovery starting at
Layer 27, and correctly recovering the word at Layer 32. From there, it is in the final two layers that
the word gets broken down and translated to the Leetspeak cipher. For the second and third token,
the rest of the word, "able’ and *ble’ is shown only at the second to last layer.

User prompt:

Task: Find the word based on the definition. Translate the answer to
Leetspeak (133t). Output only the translated word and nothing else.
Definition: Having a high temperature; very warm Leetspeak (I33t): hO+
Definition: A small domesticated mammal that meows Leetspeak (133t): c4+
Definition: Furniture with flat top. Leetspeak (I33t):

=1 2 =3 =4
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Figure 6: LogitLens of Qwen 3 8B on a Reverse-Dictionary Task.
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