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Abstract

Large Language Models (LLMs) which are ca-
pable of generating human-like, fluent text, are
increasingly involved in the text editing process
by humans, leading to a growing number of
texts co-authored by LLMs and humans. This
raises the question of whether LLMs can assess
the factuality of texts co-authored by LLMs and
humans. In this paper, we have created a bi-
nary dataset composed of texts co-authored by
LLMs and humans. The dataset utilizes an au-
tomated generation approach, allowing for the
easy expansion of the dataset’s size, and it fea-
tures a high degree of similarity between pos-
itive and negative examples, which increases
the difficulty of model inference on this dataset.
After observing that the performance of LLMs
on this dataset did not meet expectations, we
introduced a confidence score for the output
results of LLMs based on their output consis-
tency, thereby significantly enhancing the pre-
cision of the model’s predictive results.

1 Introduction

The rapid development of LLMs has significantly
enhanced their capability to generate coherent and
contextually relevant text, establishing them as ex-
tremely useful tools for many Natural Language
Processing (NLP) tasks. However, LLMs remain
prone to generating factual inaccuracies or halluci-
nated content - textual outputs that deviate from es-
tablished facts or introduce unverified claims(Friel
and Sanyal, 2023). This limitation raises substan-
tial challenges for real-world applications of LLMs
in domains requiring stringent factual accuracy,
such as news generation, educational tools, and
decision support systems.

There is already a large body of work (Dhuli-
awala et al., 2023) on the detection and mitigation
of hallucination phenomena. The ultimate aim is
to eliminate hallucinations in LLM-generated re-
sponses. To advance this aim, much current work is
focused on detecting hallucinations made by LLMs.

The detection techniques themselves vary in the
extent to which they rely on LLMs. For exam-
ple, there are now a number of variations based
on self-consistency (Wang et al., 2022), where the
final answer is chosen as the most frequently occur-
ring response across various samples produced by
an LLM. Alternatively, (Dhuliawala et al., 2023)
havine the LLM generate the initial question and
also prompt the LLM to produce a series of related
validation questions. Subsequently, the LLM is
tasked with independently answering these valida-
tion questions. Based on the outcomes of these
answers and the initial response, the LLM then
regenerates the final answer.

Employing LL.Ms to detect hallucinations is of
course like getting a student to check their own
work. One may expect this not to work well since
the LLM carrying out the hallucination detection
relies on the same statistical patterns in training
data which causes the hallucinations in the first
place. Therefore, perhaps surprisingly, Manakul
et al. (2023) have shown that this is a promising
direction.

However, current hallucination detection
datasets predominantly adopt the following ap-
proach to dataset generation: 1) collecting factual
statements from web sources, 2) preprocessing
them into question-answer pairs, and 3) feeding
questions to LLMs for alternative answer genera-
tion. Consequently, most studies rely on datasets
that inadequately capture the subtle distinctions
between factual and non-factual statements in
real-world scenarios. For example, Lee et al.
(2024) introduces the NEC dataset, which requires
a model to distinguish the correct responses to
questions, misaligned responses generated under
misleading conditions, and fabricated responses
based on non-existent concepts. In these cases
the non-factual content is often very different
semantically from factual content, making it fairly
straightforward to detect.



This study introduces the NEC dataset, which
comprises three distinct categories of LLM-
generated responses correct responses to questions,
misaligned responses generated under misleading
conditions, and fabricated responses based on non-
existent fictional concepts.

Everyday experience tells us that hallucinations
made by LLMs are often very close to the truth,
which is what makes them plausible to the reader.
In generation, the substitution of a semantically
similar word or insertion of a modifier can be very
plausible but lead to the generated sentence hav-
ing different truth conditions. For example, sub-
stituting the word feline for canine in the sentence
"Beethoven is the canine hero from the film se-
ries Beethoven, who is pet to the Newton family."
would lead to a very plausible but untrue statement.

Therefore, there is a pressing need for more chal-
lenging benchmark datasets that better reflect the
complexity of real-world hallucination detection
tasks, particularly in cases where factual and non-
factual statements exhibit high semantic similarity.
In response to this research gap, we have designed
a method to semi-automatically generate a binary
dataset for hallucination detection. We use a large-
scale QA dataset as our seed dataset, concatenating
the questions and answers to create positive sam-
ples with correct facts. We then employ various
automatic generation methods to produce incor-
rect answers, and by concatenating the questions
with these automatically generated incorrect an-
swers, we create negative samples i.e., erroneous
facts. The dataset generated using this method has
a high degree of textual similarity between negative
and positive samples because the negative samples
are entirely derived from the positive ones, which
makes our dataset more challenging.

Subsequently, we focus on the ability of LLMs
in detecting hallucinations in text, postulating that
a LLM which is better able to detect certain halluci-
nations is less likely to make similar hallucinations.
Further, if a LLM can detect hallucinations in LLM
generated text, then a simple method to reduce hal-
lucinations is to set up a pipeline where one LLM
generates text and it is approved by another LLM
as hallucination-free before returning to the user.

We recognize that the lengthy text in our dataset
might contain only a small portion of erroneous fac-
tual information, while the majority of the context
remains accurate. The LLM might struggle to pre-
cisely identify the incorrect information embedded

within the correct content, potentially leading to
suboptimal performance. Therefore, we investigate
the extent to which the LLLM performance can be
improved by shortening the text length.

We also investigate the extent to which providing
contextual evidence helps the LLM in detecting the
hallucinated statement. It may be that the statement
alone seems plausible enough, but if it is given the
correct information as context in the prompt, will it
be able to distinguish fact from hallucinated near-
fact in this case?

Finally, we adopt a method inspired by self-
consistency which uses sampling and aggregation
to define the confidence of LLMs in their response.
However, rather than requiring a binary decision as
to the factuality of the input statement, our method
allows the LLM to conclude that it “unknown” if
its confidence is low. Thus we investigate the ex-
tent to which precision of the LLLM’s hallucination
detection abilities can be increased. If we eliminate
cases where there is disagreement in the responses,
do we eliminate hallucinations? Or are there cases
when the LLM is completely convinced that a non-
factual statement is true?

In summary, this paper addresses a number of
research gaps by introducing a novel dataset and
conducting a comprehensive analysis of the limi-
tations of LLMs in handling such complex hallu-
cination detection challenges. Our contributions
are four-fold. First, we provide a binary classifica-
tion fact-checking dataset co-authored by humans
and LLMs. This dataset presents a higher level of
difficulty due to the high semantic similarity be-
tween positive and negative examples. Second, we
demonstrate that the suboptimal performance of
the LLM on our dataset is not related to the length
of the text data. Even when the LLLM processes
shorter and more concise texts, its ability to detect
hallucinations remains poor. Third, we show that,
even when the LLMs are provided with the neces-
sary evidence for reasoning, their performance on
our dataset remains suboptimal, highlighting the
dataset’s inherent challenges. Fourth, we demon-
strate that current LLMs perform poorly on our
dataset, even when employing techniques like self-
consistency, indicating limited effectiveness in han-
dling the dataset’s complexity.

2 Related Work

In this section, we survey existing approaches to
hallucination detection as the foundational task.



Next, we investigate three potential factors that
may influence the LLMs’ performance in halluci-
nation detection which will be further analyzed in
experiments.

Hallucination Detection Hallucination in NLP
was first introduced by Wiseman et al. (2017), re-
ferring to phenomena where models generate text
containing logical errors or factual errors. Then,
many researchers have proposed hallucination de-
tection methods to mitigate the risks.

For example, Chen et al. (2023) trained a small
binary classification model using LLM-generated
content and human annotations to evaluate the fac-
tual accuracy of generated text. Other work re-
quires LLMs to verify their own claims in some
way. While, Friel and Sanyal (2023) uses sampling
& aggregation. Here, the LLM repeatedly performs
binary judgments on whether its own output con-
tains hallucinations and provides reasoning. The
percentage of "yes" responses is counted to calcu-
late a hallucination probability score. An alterna-
tive approach Dhuliawala et al. (2023) is to gener-
ate multiple verification questions about the gener-
ated text. The LLM independently answers these
questions to check for errors in the original output.
Another alternative, InterrogateLLM (Yehuda et al.,
2024), is to reconstruct the original query from
the generated answer and measure the inconsis-
tency between the reconstructed query and the orig-
inal query to detect hallucinations. More recently,
Zhang et al. (2024) proposed a Self-Alignment-
based fact-checking method. This approach breaks
down the original LLM output into multiple atomic
claims. Then, the model is directed to score the
factual accuracy of each claim using its internal
knowledge, in order to determine the overall fac-
tual correctness of the generated content.

Input Length To our knowledge, the effect of
input length on LLM performance at fact-checking
and hallucination detection has not been looked
at before. However, Levy et al. (2024) evaluated
5 long-context LLMs and found that all models
showed clear performance drops in reasoning tasks
as input length increased. This happened even
when the input was much shorter than their input
limitation. In addition, when key paragraphs were
placed at the end of the input, the models usually
achieved the highest accuracy. This suggests a re-
cency bias in their processing. In Li et al. (2024)’s
study, researchers observed that LLMs became sig-

nificantly worse at understanding task definitions
as context length grew.

Retrieval-augmented Generation In order to
supplement the limited and potentially out-dated
knowledge in LLM training data, retrieval-
augmented generation (RAG) have been been pro-
posed which combine the generative power of
LLMs with external knowledge bases which pro-
vide access newer, broader or more-focussed infor-
mation. For example, Peng et al. (2023) developed
LLM-AUGMENTER, which uses external knowl-
edge and automated feedback to greatly reduce
hallucinations in ChatGPT while keeping gener-
ated responses fluent and informative. In another
study by Quelle and Bovet (2024), providing LLMs
with context retrieved from external sources was
found to significantly improve their performance
in fact-checking tasks. The models also became
better at explaining their reasoning. Furthermore,
Wang et al. (2024b) showed that retrieval augmenta-
tion allows LLMs to use up-to-date information not
included in their pre-trained knowledge, making
them more practical for real-world applications.

Based on this evidence, one would expect an
LLM prompted with the correct information to be
better at detecting hallucinations and factual inac-
curacies in subsequent information. We test this
hypothesis empirically in our work.

Self-consistency It has been seen that the per-
formance of LLMs can often be enhanced by em-
ploying a "sample and select” strategy that involves
generating multiple samples and evaluating their re-
sponses before making a final choice. One widely
recognized and effective method within this general
approach is Self-Consistency(Wang et al., 2022),
which determines the final answer based on the
most frequently occurring response across various
samples produced by LLMs. In subsequent re-
search, several variations have emerged from the
original SC method.

Wang et al. (2024a) introduced Soft Self-
Consistency (SOFT-SC), which replaces SC’s bi-
nary scoring with a continuous score derived from
model likelihoods. This modification allows for
selection even when the actions are sparsely dis-
tributed. SOFT-SC has demonstrated better perfor-
mance than SC when LLMs generate fewer sam-
ples. Chen et al. (2024) proposed Universal Self-
Consistency (USC), extending the concept of SC to
tasks that involve free-form answers, such as code



generation and summarization. USC leverages the
LLMs themselves to identify the most consistent
answer. Huang et al. (2023) proposed the Multi-
Perspective Self-Consistency (MPSC) framework,
which incorporates both inter and intra-consistency
across outputs from multiple perspectives. MPSC
enhances the coding performance of LLMs by inte-
grating consistency across solutions, specifications,
and test cases. It selects the most reliable code by
analyzing a tripartite graph that represents these
perspectives.

3 Dataset

Since we focus on the factual errors in hallucina-
tion, we start by creating a dataset of facts and
near-facts which can be considered as truth and
hallucination, derived from a QA dataset. Here
we use the WikiQA dataset(Yang et al., 2015), but
in principle the method could be applied to other
QA datasets. WikiQA is a dataset for open-domain
question answering. The question is from Bing
query logs and the answers are selected sentences
from a Wikipedia page. Since the main informa-
tion in these QAs is general knowledge(Yang et al.,
2015), rather than opinions, the answers can be
considered as true facts. There are three parts to
each item in the WikiQA dataset: Questions, Long
Answers and Short Answers. As illustrated in the
example in Table 1, both the Short Answer (“Pom
Klementieft”) and the Long Answer (“Pom Kle-
mentieff (born 3 May 1986) is a French actress....”)
can be considered to answer the Question (“Who
played mantis guardians of the galaxy 2”). A Short
Answer is the key information inside of the Long
Answer, and the remaining part of the Long Answer
can be considered as the context of the Short An-
swer. Actually, the Long Answers are also single
sentences extracted from Documents correspond-
ing to the Questions. But we only utilized the
Documents in Section 4.2 as evidence.

We build up our own binary classification fact
checking dataset based on this WikiQA Dataset.
Since the Long Answers can correctly answer the
Questions, the combination of Long Answer and
Question can be identified as true fact, i.e., a posi-
tive sample. For the negative samples, we replace
the Short Answers in the Long Answers with Syn-
thetic Short Answers. The synthetic Short Answers
differ from the Original Short Answers in seman-
tics, and therefore are unlikely to answer the ques-
tion correctly. Thus, the combination of Synthetic

Long Answer and Question can be identified as a
potential False fact, i.e., a candidate negative sam-
ple.

Since we want our negative samples to be "near-
facts" and appear plausible to an LLM, we generate
the Synthetic Short Answers by replacing the Short
Answers in Long Answers.

Automatic Generation of the Dataset To
generate diverse Synthetic Long Answers, we
masked the Short Answer segments in Original
Long Answers with <MASK> tokens and im-
plemented multiple automated generation strate-
gies. These included using a masked language
model (MLM)(Devlin et al., 2019) to predict to-
kens for the masked positions, prompting(Radford
and Narasimhan, 2018) GPT-3.5-turbo to gener-
ate contextually appropriate text replacements, and
employing in-context learning(Brown et al., 2020)
with GPT-3.5-turbo by providing example pairs
of masked Long Answers and their corresponding
synthetic versions. Through multiple strategies,
we were able to produce 7 distinct Synthetic Short
Answers for each instance.

3.1 Filter dataset

@ A person who buys goods is a...

A person who buys goods is

Not similar i
Negative |}

similarity
calculater

Greater than
the threshold

Yes

too similar
Positive

Figure 1: Illustration of negative sample filtering pro-
cess

One drawback of our automatic generation
method is that the generated content is uncontrol-
lable. Thus there is a strong possibility that at least
some of the generated Synthetic Short Answers still
answer the Questions correctly. As illustrated in
Figure 1, we employ a binary classification method
that classifies Synthetic Short Answers as positive
samples if they can correctly answer the Question,
and as negative samples otherwise.

We assume that only the Synthetic Short An-
swers that have the same semantic meaning as the
Original Short Answers can answer the Questions
correctly, and hence need to be re-labelled as pos-
itive samples. We acknowledge that it is possible



Question

Who played Mantis in Guardians of the Galaxy 2?

Long Answer

Pom Klementieff (born 3 May 1986) is a French actress. She was trained at the
Cours Florent drama school and has appeared in several films including "Oldboy"
and "Guardians of the Galaxy Vol. 2".

Short Answer | Pom Klementieff

Table 1: An Example Entry from the WikiQA Dataset

for some questions to have multiple different an-
swers (with different meanings) but these are very
rare in practice. Even in contrived examples, a
fully correct answer would normally list all of the
possible answers. In our initial evaluation of 300
examples, we did not find any where an answer
with sufficiently different meaning to the Original
Short Answer was also correct.

Consequently, here, we output the rep-
resentations by sentence transformers
(paraphrase-MinilM-L6-v2)(Reimers and
Gurevych, 2019) of Synthetic Short Answers and
Original Short Answers and calculate the cosine
similarity of the two representations. Synthetic
Short Answers with cosine similarity above a
threshold will be eliminated.

A rational method is required to ascertain the
threshold to filter the Synthetic Short Answers.
This process can be defined as a binary classifi-
cation task, where we set the threshold by max-
imising the F1 score on a sample. We manually
annotated 300 data instances, which consist of Syn-
thetic Short Answers and their corresponding Orig-
inal Short Answers to determine if they share the
same semantic meaning. Instances with identi-
cal meanings are categorized as positive samples,
while those with different meanings are considered
negative samples.

To set the threshold we use the Elbow method:
Given that the distribution of similarity ranges from
0 to 1, we sequentially set the threshold from O to
1, with increments of 0.01. For each threshold, we
calculate the corresponding F1 score. Ultimately,
the threshold that yields the highest F1 score is
selected as the final threshold.

4 Experimental Methodology

The overall aim is to examine the extent to which
LLMs can detect their own fabrications, as pro-
vided in our dataset. As described in more detail in
Sections 4.1 - 4.3, we present each sample indepen-
dently to the LLM as a binary decision task where
it must decide whether the statement is true or false.

Furthermore, in Section 4.4, we introduce a method
based on sampling and aggregation to define the
confidence of LLMs in their output results.

4.1 Performance of LLMs on Hallucination
Detection Task

Here, we investigate the ability of currently main-
stream LLMs, GPT-3.5 and Gemini-2. @, to distin-
guish positive and negative samples in our dataset.
However, both Long Answers and Short Answers
are designed to be plausible answers to the Ques-
tions. Hence, our initial experiments concentrated
on which of these answers which was provided to
the LLM in the prompt in addition to the Question,
resulting in two settings: long answer and short
answer.

We note that in the short answer setting, the
length of the text is shorter and it contains only the
key information. This contrasts to the long answer
setting, where the Short Answer, containing the
key information, is surrounded by context. Since
the key information in the short setting is more
obvious, we hypothesised that performance of the
LLMs would be higher in this setting.

4.2 Analyzing the Role of Evidence Length

When LLMs fail to determine whether a instance
contains hallucinations, one potential reason is their
parametric inner knowledge lacks sufficient infor-
mation for making determination. This raises a
critical research question: If this missing informa-
tion is provided as external knowledge in the input,
do LLMs demonstrate sufficient reasoning capabil-
ities to evaluate the instance?

Therefore, we tested the impact of evidence of
different lengths on the final results. We used
the Original Long Answer from the dataset as
1-sentence evidence. We employed a sentence-
transformer to embed every sentence in the doc-
ument and calculated the semantic similarity be-
tween the 1-sentence evidence and all other sen-
tences using cosine-similarity. We selected the
sentences with the highest similarity and, accord-



ing to their order of appearance in the document,
reassembled them to form 5-sentence.

Since the subject of our statement is the Long
Answer or Short Answer, which is almost identical
to the 1-sentence evidence, theoretically, the diffi-
culty of 1-sentence evidence is the lowest, and the
difficulty increases progressively with the length of
the evidence.

4.3 Impact of Generated Positive Samples

In our dataset, the positive samples consist of two
categories: original positive samples and generated
positive samples. In these experiments, we evaluate
LLM performance on both types of positive sam-
ples to demonstrate that generated positive samples
can serve as an effective augmented data.

4.4 Consistency augmentation

Since large language models (LLMs) underper-
formed on our dataset, we employed a sampling
and aggregation approach to enhance their perfor-
mance. We conducted two sets of experiments
with different sampling strategies. First, we em-
ployed Multi-Prompt Sampling, where, for each
input instance, we generated 9 responses using 8
semantically similar prompts alongside the original
prompt. These variant prompts were produced by a
generative model and verified by human reviewers
to ensure semantic consistency. Second, we em-
ployed Same-Prompt Sampling, where we ran the
same prompt 9 times for each input. Due to the
randomness in the LLM’s generation process, the
model produced different outputs each time despite
receiving identical inputs(Wiher et al., 2022).

After completing the sampling process, we ob-
tained 9 outputs for each data point in both exper-
imental groups. We first performed aggregation
using a voting-based approach. Due to the inher-
ent randomness in the generative model’s decoding
process, the voting method integrates all 9 outputs,
providing a more robust result compared to using a
single output. This helps mitigate occasional errors
that may occur in individual LLM outputs. We
used the voting results as the baseline for this set
of experiments.

While the voting method aggregates all 9 outputs,
it fails to capture the model’s uncertainty when the
results are closely split (e.g., 5 True and 4 False).
To address this, we introduced a consistency-based
threshold to refine the voting outcome.

Specifically, we added an "unknown" label to the
voting scheme. For a label to be accepted, it must

win the majority among the 9 outputs, and meet or
exceed a predefined threshold. For instance, if the
outputs contain 5 True and 4 False with a thresh-
old of 6, the final label becomes "unknown", even
though True outnumbers False, it lacks sufficient
consistency. This threshold quantifies the degree
of agreement required for the LL.M’s output to be
deemed confident.

5 Experimental Results

5.1 Performance of LLMs on Hallucination
Detection Task

As shown in Table 2, all four experimental groups
exhibit high recall but low precision on positive
samples, indicating that the LLMs consistently clas-
sify many of the data as non-hallucinated (positive)
samples. There are much more negative samples
than positive samples in our dataset, leading to
many negative samples being misclassified as pos-
itive. This suggests a systematic bias in LLMs
toward predicting samples as positive in our task.

For negative samples, all groups show high pre-
cision but low recall, implying that while LLMs are
highly conservative in labeling hallucinated con-
tent, their predictions for hallucinations are highly
reliable when made.

The overall accuracy and F1-scores remain low
across all experiments. Even the best-performing
setting (GPT+short) achieves only 0.608 accuracy.
LLMs struggle with our dataset demonstrating the
difficulty of our proposed benchmark.

Compared to GPT, Gemini demonstrates more
balanced predictions on the long setting dataset.
While GPT aggressively classifies most data as
positive samples, Gemini shows improved perfor-
mance with higher accuracy and F1-scores for both
positive and negative samples. However, Gemini
still exhibits a tendency to over-predict samples as
non-hallucinated (positive.

When comparing LLMs’ performance on the
long and short settings, we observe distinct pat-
terns. For GPT models, recall for positive samples
decreased to 0.602 while recall for negative sam-
ples increased to 0.610, achieving balanced per-
formance, which indicates GPT now handles both
sample types more equitably, significantly miti-
gating its previous tendency to over-predict pos-
itive samples. Consequently, both accuracy and
F1-score for negative samples improved, making
this the best-performing setting among the four
experiments.



Setting Acc  Prec  Rec F1 NegPrec NegRec NegF1
GPT+long 0.432  0.294 0.932 0.448 0.923 0.269 0.416
Gemini-2.0+long  0.530 0.326 0.851 0.472 0.897 0.425 0.577
GPT+short 0.608 0.335 0.602 0.431 0.824 0.610 0.701
Gemini-2.0+short  0.536 0.310 0.719 0433 0.838 0.476 0.607

Table 2: Evaluating LLMs on hallucination detection. Average results from Repeated Experiments(3 Runs). “+short”
indicates using dataset contains short answers. NegPrec, NegRec and NegF1 represent the precision, recall, and
F1-score for the negative class. Standard errors of Acc, F1 and NegF1 all within (0.001 - 0.005)

In contrast, Gemini showed no significant perfor-
mance differences between dataset settings. This
suggests GPT is more sensitive to text length varia-
tions, while Gemini maintains stronger inherent ro-
bustness in predictions. Although Gemini showed
slight improvements in the short setting, the differ-
ences were not significant.

5.2 Analyzing the Role of Evidence Length

Setting Evd Length  Acc F1 NegF1
long 1 0475 0454 0.495
5 0470 0453 0.487

all 0.470 0.449  0.490

short 1 0.543  0.457  0.605
0.550 0.461 0.614

all 0.544 0453 0.609

Table 3: Performance of Gemini-2.0 on evidence-
based hallucination detection with varying evidence
lengths (Evd Length = number of sentences in evi-
dence).

Table 3 reveals that in both the long and short
settings, the metrics remain stable regardless of
variations in evidence length. The best perform-
ing configuration in our experiments was the 5-
sentence evidence setting within the short group,
but its performance advantage over other settings
in the same group was marginal (all metric dif-
ferences < 0.03). In particular, even the theoreti-
cally simplest 1-sentence evidence configuration
did not show significant performance differences
compared to other settings.

This indicates that the model simply lacks the
ability to solve the problem we proposed, regard-
less of the length of the evidence. Moreover, this
also shows that the model can maintain consistent
results with short texts even under long-text condi-
tions, demonstrating the model’s effectiveness in
processing long texts.

Setting Orig Pos Acc  Gen Pos Acc
GPT+long 0.863 0.680
Gemini-2.0+long 0.466 0.330
GPT+short 0.967 0.947
Gemini-2.0+short 0.523 0.464

Table 4: Comparative Performance on Original and
Generative Positive Samples.

5.3 Comparison between Original and
Generative Positive Sample

The experimental results in Table 4 demonstrate
that the performance of LLMs on original positive
samples consistently surpasses that on generated
positive samples across all experimental settings.

We note that our dataset may not be entirely
clean. Although we filtered the data by comput-
ing semantic similarity between Original Short An-
swers and Synthetic Short Answers, a subset of
Synthetic Short Answers classified as positive sam-
ples may exhibit high semantic similarity to Orig-
inal Short Answers without conveying the same
meaning. For instance, in date-related short an-
swers (e.g.,“March 30th” and “January 1st”), the
semantic similarity score might be high despite
referring to distinct dates.

However, the performance gap remains marginal.
Particularly in the GPT+short experimental group,
the accuracy difference is merely 0.02, indicating
generated positive samples exhibit high similarity
to original positive samples and serve as effective
augmented data.

5.4 Consistency augmentation

We first compared the voting results (Table 5) with
the single-run performance of Gemini-2.0 (Table 2).
The results show that voting, whether using multi-
prompt or same-prompt sampling, consistently out-
performed single-run outputs, which demonstrates
that the voting approach can enhance result robust-
ness by reducing the impact of occasional errors
in LLM generations. However, the overall per-



Setting Threshold Acc Prec Rec F1 U+ Rate NegPrec NegRec NegFl U- Rate
multi prompt+voting - 0.647 0392 0.782 0522 - 0.894 0.602 0720 -
same prompt+voting - 0.526 0.326 0.866 0474 - 0.904 0.415 0.569 -
multi prompt+unknown 6 0.599 0413 0.754 0.534 0.046 0.894 0.549 0.680 0.101
7 0.549 0431 0.708 0.536 0.117 0.897 0.497 0.640  0.196
8 0.493 0.468 0.668 0.550 0.189 0.903 0.436 0.588 0.316
9 0416 0.540 0.611 0.573 0.291 0.916 0.352 0.508  0.478
same prompt+unknown 6 0.506 0.337 0.855 0.483 0.022 0.906 0.392 0.547  0.057
7 0.483 0.345 0.839 0.489 0.051 0911 0.367 0523  0.112
8 0.453 0.356 0.815 0.495 0.091 0.916 0.335 0491  0.181
9 0.408 0.382 0.787 0.514 0.130 0912 0.284 0433  0.298

Table 5: Gemini-2.0 Performance on Hallucination Detection: 9-Run Voting Results. Shows performance across
different thresholds in unknown experiments. U+ Rate, U- Rate represent the ratio of sample predicted as unknown

in all positive samples and negative samples.

formance of voting remained unsatisfactory. This
indicates that while voting improves reliability, it
does not fundamentally address the core challenge
of hallucination detection in LLMs.

As the threshold increases, more instances are
predicted as "unknown", with both U+ Rate and
U- Rate showing an upward trend. Notably, across
all experimental groups, U- Rate consistently re-
mains higher than U+ Rate, typically by a factor
of approximately two. This finding demonstrates
that LLMs exhibit significantly greater uncertainty
when judging negative samples compared to posi-
tive ones.

The introduction of the “unknown” label leads
to decreases in accuracy, recall, and negative recall.
This occurs because some instances that should
have been correctly classified are instead cate-
gorized as “unknown”, resulting in uncontrolled
degradation of these metrics. Meanwhile, precision
improves with increasing thresholds. This indicates
that under the influence of the “unknown’ mecha-
nism, LLMs become more conservative in predict-
ing True labels: some instances that would have
been classified as True but with low confidence are
now assigned to the unknown category.

From the perspective of F1-score, the F1 on pos-
itive samples increases, while the F1 on negative
samples decreases. Since the U- Rate is signifi-
cantly higher than the U+ Rate, the introduction
of the “unknown” class enable negative samples
more likely to be classified as “unknown” leading
to a marked drop in recall for negative samples. Al-
though the precision for negative samples improves,
the F1-score (which tends to be closer to the lower
value between precision and recall) decreases due
to the sharp decline in recall. In contrast, the re-

call for positive samples remains relatively stable,
while their precision increases, resulting in an over-
all improvement in F1 for positive samples.

Overall, even though part of metrics improved
after adding the “unknown” label, LLMs still strug-
gle to reliably complete this task. However, the
sampling and aggregation method helps LLMs pro-
vide answers more cautiously. For example, during
sampling, LLMs generate answers multiple times
and use voting to avoid rare errors. In aggregation,
when uncertain, LLMs output “unknown” instead
of randomly choosing “True” or “False”. However,
a significant portion of the data contains halluci-
nations that LLMs lack sufficient information to
detect. Even though sampling and aggregation im-
proves reasoning performance, LLMs still find it
hard to judge these cases correctly.

6 Conclusion

In this work, we explore the capabilities of LLMs
in performing fact checking tasks on synthetic data.
A dataset has been constructed from synthetic data,
along with a pipeline for building the dataset, which
can easily facilitate the large-scale creation of fact-
checking datasets. In our experiments, we verify
the limitations of LLMs in this task, thereby high-
lighting the uniqueness and necessity of the dataset
we have proposed. To address the shortcomings of
LLMs, we introduce a method that leverages consis-
tency to enhance the precision of LLMs’ predictive
outcomes, essentially gauging the confidence of
LLMs in their results through the consistency of
their multiple output iterations. In terms of results,
this approach has effectively improved the accuracy
of LLMs in identifying false facts.



7 Limitations

In this study, we exclusively focused on evaluating
the hallucination detection capabilities of LLMs on
English text, without considering their performance
in other languages. Regarding the selection of
LLMs for experimentation, due to the rapid devel-
opment of LLMs, several popular LLMs were not
included in our experiments. Additionally, in the
automated dataset generation process, we did not
fully incorporate all existing generation method-
ologies. This partial selection approach may result
in insufficient diversity within the automatically
generated dataset, potentially impacting the gener-
alizability of our experimental findings.
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