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Abstract

Large Language Models (LLMs) which are ca-001
pable of generating human-like, fluent text, are002
increasingly involved in the text editing process003
by humans, leading to a growing number of004
texts co-authored by LLMs and humans. This005
raises the question of whether LLMs can assess006
the factuality of texts co-authored by LLMs and007
humans. In this paper, we have created a bi-008
nary dataset composed of texts co-authored by009
LLMs and humans. The dataset utilizes an au-010
tomated generation approach, allowing for the011
easy expansion of the dataset’s size, and it fea-012
tures a high degree of similarity between pos-013
itive and negative examples, which increases014
the difficulty of model inference on this dataset.015
After observing that the performance of LLMs016
on this dataset did not meet expectations, we017
introduced a confidence score for the output018
results of LLMs based on their output consis-019
tency, thereby significantly enhancing the pre-020
cision of the model’s predictive results.021

1 Introduction022

The rapid development of LLMs has significantly023

enhanced their capability to generate coherent and024

contextually relevant text, establishing them as ex-025

tremely useful tools for many Natural Language026

Processing (NLP) tasks. However, LLMs remain027

prone to generating factual inaccuracies or halluci-028

nated content - textual outputs that deviate from es-029

tablished facts or introduce unverified claims(Friel030

and Sanyal, 2023). This limitation raises substan-031

tial challenges for real-world applications of LLMs032

in domains requiring stringent factual accuracy,033

such as news generation, educational tools, and034

decision support systems.035

There is already a large body of work (Dhuli-036

awala et al., 2023) on the detection and mitigation037

of hallucination phenomena. The ultimate aim is038

to eliminate hallucinations in LLM-generated re-039

sponses. To advance this aim, much current work is040

focused on detecting hallucinations made by LLMs.041

The detection techniques themselves vary in the 042

extent to which they rely on LLMs. For exam- 043

ple, there are now a number of variations based 044

on self-consistency (Wang et al., 2022), where the 045

final answer is chosen as the most frequently occur- 046

ring response across various samples produced by 047

an LLM. Alternatively, (Dhuliawala et al., 2023) 048

havine the LLM generate the initial question and 049

also prompt the LLM to produce a series of related 050

validation questions. Subsequently, the LLM is 051

tasked with independently answering these valida- 052

tion questions. Based on the outcomes of these 053

answers and the initial response, the LLM then 054

regenerates the final answer. 055

Employing LLMs to detect hallucinations is of 056

course like getting a student to check their own 057

work. One may expect this not to work well since 058

the LLM carrying out the hallucination detection 059

relies on the same statistical patterns in training 060

data which causes the hallucinations in the first 061

place. Therefore, perhaps surprisingly, Manakul 062

et al. (2023) have shown that this is a promising 063

direction. 064

However, current hallucination detection 065

datasets predominantly adopt the following ap- 066

proach to dataset generation: 1) collecting factual 067

statements from web sources, 2) preprocessing 068

them into question-answer pairs, and 3) feeding 069

questions to LLMs for alternative answer genera- 070

tion. Consequently, most studies rely on datasets 071

that inadequately capture the subtle distinctions 072

between factual and non-factual statements in 073

real-world scenarios. For example, Lee et al. 074

(2024) introduces the NEC dataset, which requires 075

a model to distinguish the correct responses to 076

questions, misaligned responses generated under 077

misleading conditions, and fabricated responses 078

based on non-existent concepts. In these cases 079

the non-factual content is often very different 080

semantically from factual content, making it fairly 081

straightforward to detect. 082
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This study introduces the NEC dataset, which083

comprises three distinct categories of LLM-084

generated responses correct responses to questions,085

misaligned responses generated under misleading086

conditions, and fabricated responses based on non-087

existent fictional concepts.088

Everyday experience tells us that hallucinations089

made by LLMs are often very close to the truth,090

which is what makes them plausible to the reader.091

In generation, the substitution of a semantically092

similar word or insertion of a modifier can be very093

plausible but lead to the generated sentence hav-094

ing different truth conditions. For example, sub-095

stituting the word feline for canine in the sentence096

"Beethoven is the canine hero from the film se-097

ries Beethoven, who is pet to the Newton family."098

would lead to a very plausible but untrue statement.099

Therefore, there is a pressing need for more chal-100

lenging benchmark datasets that better reflect the101

complexity of real-world hallucination detection102

tasks, particularly in cases where factual and non-103

factual statements exhibit high semantic similarity.104

In response to this research gap, we have designed105

a method to semi-automatically generate a binary106

dataset for hallucination detection. We use a large-107

scale QA dataset as our seed dataset, concatenating108

the questions and answers to create positive sam-109

ples with correct facts. We then employ various110

automatic generation methods to produce incor-111

rect answers, and by concatenating the questions112

with these automatically generated incorrect an-113

swers, we create negative samples i.e., erroneous114

facts. The dataset generated using this method has115

a high degree of textual similarity between negative116

and positive samples because the negative samples117

are entirely derived from the positive ones, which118

makes our dataset more challenging.119

Subsequently, we focus on the ability of LLMs120

in detecting hallucinations in text, postulating that121

a LLM which is better able to detect certain halluci-122

nations is less likely to make similar hallucinations.123

Further, if a LLM can detect hallucinations in LLM124

generated text, then a simple method to reduce hal-125

lucinations is to set up a pipeline where one LLM126

generates text and it is approved by another LLM127

as hallucination-free before returning to the user.128

We recognize that the lengthy text in our dataset129

might contain only a small portion of erroneous fac-130

tual information, while the majority of the context131

remains accurate. The LLM might struggle to pre-132

cisely identify the incorrect information embedded133

within the correct content, potentially leading to 134

suboptimal performance. Therefore, we investigate 135

the extent to which the LLM performance can be 136

improved by shortening the text length. 137

We also investigate the extent to which providing 138

contextual evidence helps the LLM in detecting the 139

hallucinated statement. It may be that the statement 140

alone seems plausible enough, but if it is given the 141

correct information as context in the prompt, will it 142

be able to distinguish fact from hallucinated near- 143

fact in this case? 144

Finally, we adopt a method inspired by self- 145

consistency which uses sampling and aggregation 146

to define the confidence of LLMs in their response. 147

However, rather than requiring a binary decision as 148

to the factuality of the input statement, our method 149

allows the LLM to conclude that it “unknown” if 150

its confidence is low. Thus we investigate the ex- 151

tent to which precision of the LLM’s hallucination 152

detection abilities can be increased. If we eliminate 153

cases where there is disagreement in the responses, 154

do we eliminate hallucinations? Or are there cases 155

when the LLM is completely convinced that a non- 156

factual statement is true? 157

In summary, this paper addresses a number of 158

research gaps by introducing a novel dataset and 159

conducting a comprehensive analysis of the limi- 160

tations of LLMs in handling such complex hallu- 161

cination detection challenges. Our contributions 162

are four-fold. First, we provide a binary classifica- 163

tion fact-checking dataset co-authored by humans 164

and LLMs. This dataset presents a higher level of 165

difficulty due to the high semantic similarity be- 166

tween positive and negative examples. Second, we 167

demonstrate that the suboptimal performance of 168

the LLM on our dataset is not related to the length 169

of the text data. Even when the LLM processes 170

shorter and more concise texts, its ability to detect 171

hallucinations remains poor. Third, we show that, 172

even when the LLMs are provided with the neces- 173

sary evidence for reasoning, their performance on 174

our dataset remains suboptimal, highlighting the 175

dataset’s inherent challenges. Fourth, we demon- 176

strate that current LLMs perform poorly on our 177

dataset, even when employing techniques like self- 178

consistency, indicating limited effectiveness in han- 179

dling the dataset’s complexity. 180

2 Related Work 181

In this section, we survey existing approaches to 182

hallucination detection as the foundational task. 183
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Next, we investigate three potential factors that184

may influence the LLMs’ performance in halluci-185

nation detection which will be further analyzed in186

experiments.187

Hallucination Detection Hallucination in NLP188

was first introduced by Wiseman et al. (2017), re-189

ferring to phenomena where models generate text190

containing logical errors or factual errors. Then,191

many researchers have proposed hallucination de-192

tection methods to mitigate the risks.193

For example, Chen et al. (2023) trained a small194

binary classification model using LLM-generated195

content and human annotations to evaluate the fac-196

tual accuracy of generated text. Other work re-197

quires LLMs to verify their own claims in some198

way. While, Friel and Sanyal (2023) uses sampling199

& aggregation. Here, the LLM repeatedly performs200

binary judgments on whether its own output con-201

tains hallucinations and provides reasoning. The202

percentage of "yes" responses is counted to calcu-203

late a hallucination probability score. An alterna-204

tive approach Dhuliawala et al. (2023) is to gener-205

ate multiple verification questions about the gener-206

ated text. The LLM independently answers these207

questions to check for errors in the original output.208

Another alternative, InterrogateLLM (Yehuda et al.,209

2024), is to reconstruct the original query from210

the generated answer and measure the inconsis-211

tency between the reconstructed query and the orig-212

inal query to detect hallucinations. More recently,213

Zhang et al. (2024) proposed a Self-Alignment-214

based fact-checking method. This approach breaks215

down the original LLM output into multiple atomic216

claims. Then, the model is directed to score the217

factual accuracy of each claim using its internal218

knowledge, in order to determine the overall fac-219

tual correctness of the generated content.220

Input Length To our knowledge, the effect of221

input length on LLM performance at fact-checking222

and hallucination detection has not been looked223

at before. However, Levy et al. (2024) evaluated224

5 long-context LLMs and found that all models225

showed clear performance drops in reasoning tasks226

as input length increased. This happened even227

when the input was much shorter than their input228

limitation. In addition, when key paragraphs were229

placed at the end of the input, the models usually230

achieved the highest accuracy. This suggests a re-231

cency bias in their processing. In Li et al. (2024)’s232

study, researchers observed that LLMs became sig-233

nificantly worse at understanding task definitions 234

as context length grew. 235

Retrieval-augmented Generation In order to 236

supplement the limited and potentially out-dated 237

knowledge in LLM training data, retrieval- 238

augmented generation (RAG) have been been pro- 239

posed which combine the generative power of 240

LLMs with external knowledge bases which pro- 241

vide access newer, broader or more-focussed infor- 242

mation. For example, Peng et al. (2023) developed 243

LLM-AUGMENTER, which uses external knowl- 244

edge and automated feedback to greatly reduce 245

hallucinations in ChatGPT while keeping gener- 246

ated responses fluent and informative. In another 247

study by Quelle and Bovet (2024), providing LLMs 248

with context retrieved from external sources was 249

found to significantly improve their performance 250

in fact-checking tasks. The models also became 251

better at explaining their reasoning. Furthermore, 252

Wang et al. (2024b) showed that retrieval augmenta- 253

tion allows LLMs to use up-to-date information not 254

included in their pre-trained knowledge, making 255

them more practical for real-world applications. 256

Based on this evidence, one would expect an 257

LLM prompted with the correct information to be 258

better at detecting hallucinations and factual inac- 259

curacies in subsequent information. We test this 260

hypothesis empirically in our work. 261

Self-consistency It has been seen that the per- 262

formance of LLMs can often be enhanced by em- 263

ploying a "sample and select" strategy that involves 264

generating multiple samples and evaluating their re- 265

sponses before making a final choice. One widely 266

recognized and effective method within this general 267

approach is Self-Consistency(Wang et al., 2022), 268

which determines the final answer based on the 269

most frequently occurring response across various 270

samples produced by LLMs. In subsequent re- 271

search, several variations have emerged from the 272

original SC method. 273

Wang et al. (2024a) introduced Soft Self- 274

Consistency (SOFT-SC), which replaces SC’s bi- 275

nary scoring with a continuous score derived from 276

model likelihoods. This modification allows for 277

selection even when the actions are sparsely dis- 278

tributed. SOFT-SC has demonstrated better perfor- 279

mance than SC when LLMs generate fewer sam- 280

ples. Chen et al. (2024) proposed Universal Self- 281

Consistency (USC), extending the concept of SC to 282

tasks that involve free-form answers, such as code 283
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generation and summarization. USC leverages the284

LLMs themselves to identify the most consistent285

answer. Huang et al. (2023) proposed the Multi-286

Perspective Self-Consistency (MPSC) framework,287

which incorporates both inter and intra-consistency288

across outputs from multiple perspectives. MPSC289

enhances the coding performance of LLMs by inte-290

grating consistency across solutions, specifications,291

and test cases. It selects the most reliable code by292

analyzing a tripartite graph that represents these293

perspectives.294

3 Dataset295

Since we focus on the factual errors in hallucina-296

tion, we start by creating a dataset of facts and297

near-facts which can be considered as truth and298

hallucination, derived from a QA dataset. Here299

we use the WikiQA dataset(Yang et al., 2015), but300

in principle the method could be applied to other301

QA datasets. WikiQA is a dataset for open-domain302

question answering. The question is from Bing303

query logs and the answers are selected sentences304

from a Wikipedia page. Since the main informa-305

tion in these QAs is general knowledge(Yang et al.,306

2015), rather than opinions, the answers can be307

considered as true facts. There are three parts to308

each item in the WikiQA dataset: Questions, Long309

Answers and Short Answers. As illustrated in the310

example in Table 1, both the Short Answer (“Pom311

Klementieff”) and the Long Answer (“Pom Kle-312

mentieff (born 3 May 1986) is a French actress....”)313

can be considered to answer the Question (“Who314

played mantis guardians of the galaxy 2”). A Short315

Answer is the key information inside of the Long316

Answer, and the remaining part of the Long Answer317

can be considered as the context of the Short An-318

swer. Actually, the Long Answers are also single319

sentences extracted from Documents correspond-320

ing to the Questions. But we only utilized the321

Documents in Section 4.2 as evidence.322

We build up our own binary classification fact323

checking dataset based on this WikiQA Dataset.324

Since the Long Answers can correctly answer the325

Questions, the combination of Long Answer and326

Question can be identified as true fact, i.e., a posi-327

tive sample. For the negative samples, we replace328

the Short Answers in the Long Answers with Syn-329

thetic Short Answers. The synthetic Short Answers330

differ from the Original Short Answers in seman-331

tics, and therefore are unlikely to answer the ques-332

tion correctly. Thus, the combination of Synthetic333

Long Answer and Question can be identified as a 334

potential False fact, i.e., a candidate negative sam- 335

ple. 336

Since we want our negative samples to be "near- 337

facts" and appear plausible to an LLM, we generate 338

the Synthetic Short Answers by replacing the Short 339

Answers in Long Answers. 340

Automatic Generation of the Dataset To 341

generate diverse Synthetic Long Answers, we 342

masked the Short Answer segments in Original 343

Long Answers with <MASK> tokens and im- 344

plemented multiple automated generation strate- 345

gies. These included using a masked language 346

model (MLM)(Devlin et al., 2019) to predict to- 347

kens for the masked positions, prompting(Radford 348

and Narasimhan, 2018) GPT-3.5-turbo to gener- 349

ate contextually appropriate text replacements, and 350

employing in-context learning(Brown et al., 2020) 351

with GPT-3.5-turbo by providing example pairs 352

of masked Long Answers and their corresponding 353

synthetic versions. Through multiple strategies, 354

we were able to produce 7 distinct Synthetic Short 355

Answers for each instance. 356

3.1 Filter dataset 357

Figure 1: Illustration of negative sample filtering pro-
cess

One drawback of our automatic generation 358

method is that the generated content is uncontrol- 359

lable. Thus there is a strong possibility that at least 360

some of the generated Synthetic Short Answers still 361

answer the Questions correctly. As illustrated in 362

Figure 1, we employ a binary classification method 363

that classifies Synthetic Short Answers as positive 364

samples if they can correctly answer the Question, 365

and as negative samples otherwise. 366

We assume that only the Synthetic Short An- 367

swers that have the same semantic meaning as the 368

Original Short Answers can answer the Questions 369

correctly, and hence need to be re-labelled as pos- 370

itive samples. We acknowledge that it is possible 371
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Question Who played Mantis in Guardians of the Galaxy 2?
Long Answer Pom Klementieff (born 3 May 1986) is a French actress. She was trained at the

Cours Florent drama school and has appeared in several films including "Oldboy"
and "Guardians of the Galaxy Vol. 2".

Short Answer Pom Klementieff

Table 1: An Example Entry from the WikiQA Dataset

for some questions to have multiple different an-372

swers (with different meanings) but these are very373

rare in practice. Even in contrived examples, a374

fully correct answer would normally list all of the375

possible answers. In our initial evaluation of 300376

examples, we did not find any where an answer377

with sufficiently different meaning to the Original378

Short Answer was also correct.379

Consequently, here, we output the rep-380

resentations by sentence transformers381

(paraphrase-MiniLM-L6-v2)(Reimers and382

Gurevych, 2019) of Synthetic Short Answers and383

Original Short Answers and calculate the cosine384

similarity of the two representations. Synthetic385

Short Answers with cosine similarity above a386

threshold will be eliminated.387

A rational method is required to ascertain the388

threshold to filter the Synthetic Short Answers.389

This process can be defined as a binary classifi-390

cation task, where we set the threshold by max-391

imising the F1 score on a sample. We manually392

annotated 300 data instances, which consist of Syn-393

thetic Short Answers and their corresponding Orig-394

inal Short Answers to determine if they share the395

same semantic meaning. Instances with identi-396

cal meanings are categorized as positive samples,397

while those with different meanings are considered398

negative samples.399

To set the threshold we use the Elbow method:400

Given that the distribution of similarity ranges from401

0 to 1, we sequentially set the threshold from 0 to402

1, with increments of 0.01. For each threshold, we403

calculate the corresponding F1 score. Ultimately,404

the threshold that yields the highest F1 score is405

selected as the final threshold.406

4 Experimental Methodology407

The overall aim is to examine the extent to which408

LLMs can detect their own fabrications, as pro-409

vided in our dataset. As described in more detail in410

Sections 4.1 - 4.3, we present each sample indepen-411

dently to the LLM as a binary decision task where412

it must decide whether the statement is true or false.413

Furthermore, in Section 4.4, we introduce a method 414

based on sampling and aggregation to define the 415

confidence of LLMs in their output results. 416

4.1 Performance of LLMs on Hallucination 417

Detection Task 418

Here, we investigate the ability of currently main- 419

stream LLMs, GPT-3.5 and Gemini-2.0, to distin- 420

guish positive and negative samples in our dataset. 421

However, both Long Answers and Short Answers 422

are designed to be plausible answers to the Ques- 423

tions. Hence, our initial experiments concentrated 424

on which of these answers which was provided to 425

the LLM in the prompt in addition to the Question, 426

resulting in two settings: long answer and short 427

answer. 428

We note that in the short answer setting, the 429

length of the text is shorter and it contains only the 430

key information. This contrasts to the long answer 431

setting, where the Short Answer, containing the 432

key information, is surrounded by context. Since 433

the key information in the short setting is more 434

obvious, we hypothesised that performance of the 435

LLMs would be higher in this setting. 436

4.2 Analyzing the Role of Evidence Length 437

When LLMs fail to determine whether a instance 438

contains hallucinations, one potential reason is their 439

parametric inner knowledge lacks sufficient infor- 440

mation for making determination. This raises a 441

critical research question: If this missing informa- 442

tion is provided as external knowledge in the input, 443

do LLMs demonstrate sufficient reasoning capabil- 444

ities to evaluate the instance? 445

Therefore, we tested the impact of evidence of 446

different lengths on the final results. We used 447

the Original Long Answer from the dataset as 448

1-sentence evidence. We employed a sentence- 449

transformer to embed every sentence in the doc- 450

ument and calculated the semantic similarity be- 451

tween the 1-sentence evidence and all other sen- 452

tences using cosine-similarity. We selected the 453

sentences with the highest similarity and, accord- 454

5



ing to their order of appearance in the document,455

reassembled them to form 5-sentence.456

Since the subject of our statement is the Long457

Answer or Short Answer, which is almost identical458

to the 1-sentence evidence, theoretically, the diffi-459

culty of 1-sentence evidence is the lowest, and the460

difficulty increases progressively with the length of461

the evidence.462

4.3 Impact of Generated Positive Samples463

In our dataset, the positive samples consist of two464

categories: original positive samples and generated465

positive samples. In these experiments, we evaluate466

LLM performance on both types of positive sam-467

ples to demonstrate that generated positive samples468

can serve as an effective augmented data.469

4.4 Consistency augmentation470

Since large language models (LLMs) underper-471

formed on our dataset, we employed a sampling472

and aggregation approach to enhance their perfor-473

mance. We conducted two sets of experiments474

with different sampling strategies. First, we em-475

ployed Multi-Prompt Sampling, where, for each476

input instance, we generated 9 responses using 8477

semantically similar prompts alongside the original478

prompt. These variant prompts were produced by a479

generative model and verified by human reviewers480

to ensure semantic consistency. Second, we em-481

ployed Same-Prompt Sampling, where we ran the482

same prompt 9 times for each input. Due to the483

randomness in the LLM’s generation process, the484

model produced different outputs each time despite485

receiving identical inputs(Wiher et al., 2022).486

After completing the sampling process, we ob-487

tained 9 outputs for each data point in both exper-488

imental groups. We first performed aggregation489

using a voting-based approach. Due to the inher-490

ent randomness in the generative model’s decoding491

process, the voting method integrates all 9 outputs,492

providing a more robust result compared to using a493

single output. This helps mitigate occasional errors494

that may occur in individual LLM outputs. We495

used the voting results as the baseline for this set496

of experiments.497

While the voting method aggregates all 9 outputs,498

it fails to capture the model’s uncertainty when the499

results are closely split (e.g., 5 True and 4 False).500

To address this, we introduced a consistency-based501

threshold to refine the voting outcome.502

Specifically, we added an "unknown" label to the503

voting scheme. For a label to be accepted, it must504

win the majority among the 9 outputs, and meet or 505

exceed a predefined threshold. For instance, if the 506

outputs contain 5 True and 4 False with a thresh- 507

old of 6, the final label becomes "unknown", even 508

though True outnumbers False, it lacks sufficient 509

consistency. This threshold quantifies the degree 510

of agreement required for the LLM’s output to be 511

deemed confident. 512

5 Experimental Results 513

5.1 Performance of LLMs on Hallucination 514

Detection Task 515

As shown in Table 2, all four experimental groups 516

exhibit high recall but low precision on positive 517

samples, indicating that the LLMs consistently clas- 518

sify many of the data as non-hallucinated (positive) 519

samples. There are much more negative samples 520

than positive samples in our dataset, leading to 521

many negative samples being misclassified as pos- 522

itive. This suggests a systematic bias in LLMs 523

toward predicting samples as positive in our task. 524

For negative samples, all groups show high pre- 525

cision but low recall, implying that while LLMs are 526

highly conservative in labeling hallucinated con- 527

tent, their predictions for hallucinations are highly 528

reliable when made. 529

The overall accuracy and F1-scores remain low 530

across all experiments. Even the best-performing 531

setting (GPT+short) achieves only 0.608 accuracy. 532

LLMs struggle with our dataset demonstrating the 533

difficulty of our proposed benchmark. 534

Compared to GPT, Gemini demonstrates more 535

balanced predictions on the long setting dataset. 536

While GPT aggressively classifies most data as 537

positive samples, Gemini shows improved perfor- 538

mance with higher accuracy and F1-scores for both 539

positive and negative samples. However, Gemini 540

still exhibits a tendency to over-predict samples as 541

non-hallucinated (positive. 542

When comparing LLMs’ performance on the 543

long and short settings, we observe distinct pat- 544

terns. For GPT models, recall for positive samples 545

decreased to 0.602 while recall for negative sam- 546

ples increased to 0.610, achieving balanced per- 547

formance, which indicates GPT now handles both 548

sample types more equitably, significantly miti- 549

gating its previous tendency to over-predict pos- 550

itive samples. Consequently, both accuracy and 551

F1-score for negative samples improved, making 552

this the best-performing setting among the four 553

experiments. 554
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Setting Acc Prec Rec F1 NegPrec NegRec NegF1

GPT+long 0.432 0.294 0.932 0.448 0.923 0.269 0.416
Gemini-2.0+long 0.530 0.326 0.851 0.472 0.897 0.425 0.577
GPT+short 0.608 0.335 0.602 0.431 0.824 0.610 0.701
Gemini-2.0+short 0.536 0.310 0.719 0.433 0.838 0.476 0.607

Table 2: Evaluating LLMs on hallucination detection. Average results from Repeated Experiments(3 Runs). “+short”
indicates using dataset contains short answers. NegPrec, NegRec and NegF1 represent the precision, recall, and
F1-score for the negative class. Standard errors of Acc, F1 and NegF1 all within (0.001 - 0.005)

In contrast, Gemini showed no significant perfor-555

mance differences between dataset settings. This556

suggests GPT is more sensitive to text length varia-557

tions, while Gemini maintains stronger inherent ro-558

bustness in predictions. Although Gemini showed559

slight improvements in the short setting, the differ-560

ences were not significant.561

5.2 Analyzing the Role of Evidence Length562

Setting Evd Length Acc F1 NegF1

long 1 0.475 0.454 0.495
5 0.470 0.453 0.487
all 0.470 0.449 0.490

short 1 0.543 0.457 0.605
5 0.550 0.461 0.614
all 0.544 0.453 0.609

Table 3: Performance of Gemini-2.0 on evidence-
based hallucination detection with varying evidence
lengths (Evd Length = number of sentences in evi-
dence).

Table 3 reveals that in both the long and short563

settings, the metrics remain stable regardless of564

variations in evidence length. The best perform-565

ing configuration in our experiments was the 5-566

sentence evidence setting within the short group,567

but its performance advantage over other settings568

in the same group was marginal (all metric dif-569

ferences < 0.03). In particular, even the theoreti-570

cally simplest 1-sentence evidence configuration571

did not show significant performance differences572

compared to other settings.573

This indicates that the model simply lacks the574

ability to solve the problem we proposed, regard-575

less of the length of the evidence. Moreover, this576

also shows that the model can maintain consistent577

results with short texts even under long-text condi-578

tions, demonstrating the model’s effectiveness in579

processing long texts.580

Setting Orig Pos Acc Gen Pos Acc

GPT+long 0.863 0.680
Gemini-2.0+long 0.466 0.330
GPT+short 0.967 0.947
Gemini-2.0+short 0.523 0.464

Table 4: Comparative Performance on Original and
Generative Positive Samples.

5.3 Comparison between Original and 581

Generative Positive Sample 582

The experimental results in Table 4 demonstrate 583

that the performance of LLMs on original positive 584

samples consistently surpasses that on generated 585

positive samples across all experimental settings. 586

We note that our dataset may not be entirely 587

clean. Although we filtered the data by comput- 588

ing semantic similarity between Original Short An- 589

swers and Synthetic Short Answers, a subset of 590

Synthetic Short Answers classified as positive sam- 591

ples may exhibit high semantic similarity to Orig- 592

inal Short Answers without conveying the same 593

meaning. For instance, in date-related short an- 594

swers (e.g.,“March 30th” and “January 1st”), the 595

semantic similarity score might be high despite 596

referring to distinct dates. 597

However, the performance gap remains marginal. 598

Particularly in the GPT+short experimental group, 599

the accuracy difference is merely 0.02, indicating 600

generated positive samples exhibit high similarity 601

to original positive samples and serve as effective 602

augmented data. 603

5.4 Consistency augmentation 604

We first compared the voting results (Table 5) with 605

the single-run performance of Gemini-2.0 (Table 2). 606

The results show that voting, whether using multi- 607

prompt or same-prompt sampling, consistently out- 608

performed single-run outputs, which demonstrates 609

that the voting approach can enhance result robust- 610

ness by reducing the impact of occasional errors 611

in LLM generations. However, the overall per- 612
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Setting Threshold Acc Prec Rec F1 U+ Rate NegPrec NegRec NegF1 U- Rate

multi prompt+voting – 0.647 0.392 0.782 0.522 – 0.894 0.602 0.720 –
same prompt+voting – 0.526 0.326 0.866 0.474 – 0.904 0.415 0.569 –

multi prompt+unknown 6 0.599 0.413 0.754 0.534 0.046 0.894 0.549 0.680 0.101
7 0.549 0.431 0.708 0.536 0.117 0.897 0.497 0.640 0.196
8 0.493 0.468 0.668 0.550 0.189 0.903 0.436 0.588 0.316
9 0.416 0.540 0.611 0.573 0.291 0.916 0.352 0.508 0.478

same prompt+unknown 6 0.506 0.337 0.855 0.483 0.022 0.906 0.392 0.547 0.057
7 0.483 0.345 0.839 0.489 0.051 0.911 0.367 0.523 0.112
8 0.453 0.356 0.815 0.495 0.091 0.916 0.335 0.491 0.181
9 0.408 0.382 0.787 0.514 0.130 0.912 0.284 0.433 0.298

Table 5: Gemini-2.0 Performance on Hallucination Detection: 9-Run Voting Results. Shows performance across
different thresholds in unknown experiments. U+ Rate, U- Rate represent the ratio of sample predicted as unknown
in all positive samples and negative samples.

formance of voting remained unsatisfactory. This613

indicates that while voting improves reliability, it614

does not fundamentally address the core challenge615

of hallucination detection in LLMs.616

As the threshold increases, more instances are617

predicted as "unknown", with both U+ Rate and618

U- Rate showing an upward trend. Notably, across619

all experimental groups, U- Rate consistently re-620

mains higher than U+ Rate, typically by a factor621

of approximately two. This finding demonstrates622

that LLMs exhibit significantly greater uncertainty623

when judging negative samples compared to posi-624

tive ones.625

The introduction of the “unknown” label leads626

to decreases in accuracy, recall, and negative recall.627

This occurs because some instances that should628

have been correctly classified are instead cate-629

gorized as “unknown”, resulting in uncontrolled630

degradation of these metrics. Meanwhile, precision631

improves with increasing thresholds. This indicates632

that under the influence of the “unknown” mecha-633

nism, LLMs become more conservative in predict-634

ing True labels: some instances that would have635

been classified as True but with low confidence are636

now assigned to the unknown category.637

From the perspective of F1-score, the F1 on pos-638

itive samples increases, while the F1 on negative639

samples decreases. Since the U- Rate is signifi-640

cantly higher than the U+ Rate, the introduction641

of the “unknown” class enable negative samples642

more likely to be classified as “unknown” leading643

to a marked drop in recall for negative samples. Al-644

though the precision for negative samples improves,645

the F1-score (which tends to be closer to the lower646

value between precision and recall) decreases due647

to the sharp decline in recall. In contrast, the re-648

call for positive samples remains relatively stable, 649

while their precision increases, resulting in an over- 650

all improvement in F1 for positive samples. 651

Overall, even though part of metrics improved 652

after adding the “unknown” label, LLMs still strug- 653

gle to reliably complete this task. However, the 654

sampling and aggregation method helps LLMs pro- 655

vide answers more cautiously. For example, during 656

sampling, LLMs generate answers multiple times 657

and use voting to avoid rare errors. In aggregation, 658

when uncertain, LLMs output “unknown” instead 659

of randomly choosing “True” or “False”. However, 660

a significant portion of the data contains halluci- 661

nations that LLMs lack sufficient information to 662

detect. Even though sampling and aggregation im- 663

proves reasoning performance, LLMs still find it 664

hard to judge these cases correctly. 665

6 Conclusion 666

In this work, we explore the capabilities of LLMs 667

in performing fact checking tasks on synthetic data. 668

A dataset has been constructed from synthetic data, 669

along with a pipeline for building the dataset, which 670

can easily facilitate the large-scale creation of fact- 671

checking datasets. In our experiments, we verify 672

the limitations of LLMs in this task, thereby high- 673

lighting the uniqueness and necessity of the dataset 674

we have proposed. To address the shortcomings of 675

LLMs, we introduce a method that leverages consis- 676

tency to enhance the precision of LLMs’ predictive 677

outcomes, essentially gauging the confidence of 678

LLMs in their results through the consistency of 679

their multiple output iterations. In terms of results, 680

this approach has effectively improved the accuracy 681

of LLMs in identifying false facts. 682

8



7 Limitations683

In this study, we exclusively focused on evaluating684

the hallucination detection capabilities of LLMs on685

English text, without considering their performance686

in other languages. Regarding the selection of687

LLMs for experimentation, due to the rapid devel-688

opment of LLMs, several popular LLMs were not689

included in our experiments. Additionally, in the690

automated dataset generation process, we did not691

fully incorporate all existing generation method-692

ologies. This partial selection approach may result693

in insufficient diversity within the automatically694

generated dataset, potentially impacting the gener-695

alizability of our experimental findings.696
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