
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ARTIFICIAL HIPPOCAMPUS NETWORKS FOR EFFI-
CIENT LONG-CONTEXT MODELING

Anonymous authors
Paper under double-blind review

Lossless
Memory

Compressed
Memory

Artificial
Hippocampus

NetworksInput Output

e.g.,RNN's hidden state;
compressed and fixed-size.

e.g., Attention's KV cache;
lossless but growing in size.

+

(a)

74.0%

Qwen2.5
3B

+
AHN

3.09 3.10

Qwen2.5
3B

1.95

+
AHN

Qwen2.5
3B

9.44

Params (B) ↓ TFLOPs ↓

+
AHN

Memory Cache (GB) ↓

40.5%
3.29

Qwen2.5
3B

4.41

+
AHN

5.88

LV-Eval ↑

2.45

(b)

Figure 1: (a) Artificial Hippocampus Networks (AHNs) transform lossless memory into fixed-size
compressed representations for efficient long-context modeling. Lossless memory (e.g., attention’s
KV cache) stores exact input information but grows with sequence length, leading to high cost for
long sequences. In contrast, compressed memory (e.g., RNNs’ hidden state) maintains a constant
cache size and computational cost per input token, but inevitably loses details. In our framework, a
sliding window attention maintains exact recent context as lossless short-term memory, while AHN
recurrently compresses out-of-window information into a fixed-size state as compressed long-term
memory. This allows the model to process long sequences efficiently, retaining both precise short-
term information and a compact summary of history. See Figure 2 for more details. (b) On the
long-context benchmark LV-Eval (128k sequence length), augmenting Qwen2.5-3B-Instruct with
AHNs (+0.4% parameters) reduces FLOPs by 40.5% and memory cache by 74.0%, while improving
average score from 4.41 to 5.88.

ABSTRACT

Long-sequence modeling faces a fundamental trade-off between the efficiency of
compressive fixed-size memory in RNN-like models and the fidelity of lossless
growing memory in attention-based Transformers. Inspired by the Multi-Store
Model in cognitive science, we introduce a memory framework of artificial neu-
ral networks. Our method maintains a sliding window of the Transformer’s KV
cache as lossless short-term memory, while a learnable module termed Artificial
Hippocampus Network (AHN) recurrently compresses out-of-window informa-
tion into a fixed-size compact long-term memory. To validate this framework,
we instantiate AHNs using modern RNN-like architectures, including Mamba2,
DeltaNet, and GatedDeltaNet to augment open-weight base LLMs. We also pro-
pose an efficient self-distillation method where the base model’s all parameters
are frozen and only the parameters from AHNs are optimized. For inference,
our method sets a default large sliding window size of 32k for attention, and
AHNs activate only when the sequence length exceeds the 32k window, address-
ing the quadratic-complexity issue of attention that emerges at that scale. Exten-
sive experiments on long-context benchmarks LV-Eval and InfiniteBench demon-
strate that AHN-augmented models consistently outperform sliding window base-
lines and achieve performance comparable or even superior to full-attention mod-
els, while substantially reducing computational and memory requirements. For
instance, augmenting the Qwen2.5-3B-Instruct with AHNs reduces inference
FLOPs by 40.5% and memory cache by 74.0%, while improving its average score
on LV-Eval (128k sequence length) from 4.41 to 5.88. Code and models will be
released to facilitate future research.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INSTRUCTION

“Memory is the treasury and guardian of all things” (Cicero, 55 BCE). Inspired by the fundamental
role of memory in intelligence, researchers have long sought to model this cognitive function in
artificial systems. Early efforts centered on Recurrent Neural Networks (RNNs) (Werbos, 1988; Jor-
dan, 1986; Elman, 1990; Hochreiter & Schmidhuber, 1997; Cho et al., 2014; Hopfield, 1982; 1984),
where sequential information is encoded by continuously updated hidden states. Over time, diverse
paradigms for memory representation emerged, including key-value (KV) caches in attention mech-
anisms (Vaswani et al., 2017), external memory modules in Neural Turing Machines and Memory
Networks (Graves et al., 2014; Weston et al., 2015), and external databases for retrieval-augmented
models (Lewis et al., 2020). Among these, RNN-like and attention-based models have become the
most widely used, each offering distinct advantages and limitations (Yu & Wang, 2025; Lieber et al.,
2024).

RNN-like models compress all historical information into a fixed-size hidden state, which can be
treated as memory. At each step, they update the memory using the current input and the previous
memory. This design ensures constant memory and computation per step, making them efficient for
long sequences. However, compressing all information into a fixed-size memory inevitably leads to
information loss, especially in tasks that require precise long-range information recall (Wen et al.,
2025).

To address the limitations of RNNs, attention mechanisms and the Transformer architecture are
introduced (Bahdanau et al., 2015; Luong et al., 2015; Vaswani et al., 2017). In causal attention, the
key-value cache functions as memory: for each input token, a new key and value are generated and
appended to the cache. Unlike RNNs, this memory is essentially lossless, as it retains all token-level
information, thereby providing much higher memory capacity. The introduction of the Transformer
quickly revolutionized sequence modeling, giving rise to a series of powerful models (Radford et al.,
2018; 2019; Devlin et al., 2019; Brown et al., 2020; OpenAI, 2023). Yet, the lossless nature of
KV cache is a double-edged sword: while it enables powerful memory retention, the memory size
grows linearly with sequence length, and the total computational cost of attention updates scales
quadratically. This becomes a significant challenge when processing extremely long sequences.

When Transformers with growing lossless memory struggle for very long sequences, it is natural
to revisit the RNNs’ fixed-size compressed memory, which offers constant per-token update cost
regardless of context length (Katharopoulos et al., 2020; Gu & Dao, 2024; Yang et al., 2024c). This
contrast highlights a fundamental trade-off between the efficiency of compressive memory and the
fidelity of lossless memory. To address this problem, it is instructive to consider how the human
brain maintains nearly constant volume through early and middle adulthood (Dekaban & Sadowsky,
1978; Courchesne et al., 2000; Fotenos et al., 2005) while still supporting efficient processing of
information across the human lifespan. The theory of Multi-Store Model of memory (MSM) in
Cognitive Science and Neuroscience (Atkinson & Shiffrin, 1968) suggests that although lossless
short-term memory (or called working memory (Baddeley & Hitch, 1974)) has limited capacity and
duration (Miller, 1956; Atkinson & Shiffrin, 1968; Peterson, 1959), the hippocampus continually
consolidates them into long-term cortical representations (Scoville & Milner, 1957; Squire & Zola-
Morgan, 1991; Alvarez & Squire, 1994; McClelland et al., 1995; Eichenbaum, 2000; Takashima
et al., 2009).

Inspired by MSM (Atkinson & Shiffrin, 1968), we propose an artificial neural memory framework
that converts lossless short-term memory into compressed long-term memory. Our method main-
tains a sliding window of the Transformer’s KV cache as lossless short-term memory. Information
that moves beyond this window is processed by a learnable compression module we term the Artifi-
cial Hippocampus Network (AHN). This network recurrently compresses the out-of-window context
into a fixed-size state as the long-term compressed memory. AHNs can be instantiated with RNN-
like architectures, and the overall framework is illustrated in Figure 1a.

To evaluate the effectiveness of AHNs, we instantiate them using Mamba2 (Dao & Gu, 2024),
DeltaNet (DN) (Schlag et al., 2021; Yang et al., 2024d) and GatedDeltaNet (GDN) (Yang et al.,
2025), resulting in the AHN-Mamba2, AHN-DN and AHN-GDN. We introduce an efficient self-
distillation training scheme in which the teacher model is an open-weight attention-based model
(e.g., Qwen), and the student model shares the teacher’s parameters but with token mixer of window
attention and AHN. We employ a KL divergence loss, optimizing only the AHN parameters while

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

freezing all remaining parameters, as shown in Figure 2b. The models on trained on ChatQA 2
(Xu et al., 2025) with 1B tokens, sample sequence length up to 24k, and random sliding window
size up to 8k, which only cost ∼ 10 hours on 32 A100 GPUs to train AHNs to augment 7B model.
Notably, for inference, we set a default sliding-window attention size of 32k, which is substantially
larger than those used in prior attention–RNN hybrid methods (e.g., 64 in (Zhang et al., 2025; Irie
et al., 2025)) AHNs activate only when the sequence length exceeds the 32k window, addressing the
quadratic-complexity issue of attention that emerges at that scale.

Experimental results on long-context benchmarks LV-Eval (Yuan et al., 2024) and InfiniteBench
(Zhang et al., 2024a) show that AHN-augmented models consistently outperform their sliding win-
dow counterparts, and match or even surpass full attention models while significantly reducing com-
putational and memory cache costs. For instance, as shown in Figure 1b, augmenting Qwen2.5-3B-
Instruct (Yang et al., 2024a) with AHNs (+0.4% parameters) reduces FLOPs by 40.5% and memory
cache by 74.0%, while improving average score from 4.41 to 5.88 on LV-Eval (128k sequence
length) (Yuan et al., 2024).

The contributions of this paper are twofold. First, we introduce the concept of Artificial Hippocam-
pus Networks (AHNs), which continually transform lossless memory outside the sliding window
into a compressed memory representation, enabling the model to leverage both memories for effi-
cient long-context modeling. Second, to empirically validate the effectiveness of AHNs, we instan-
tiate the concept into AHN-Mamba2, AHN-DN, and AHN-GDN, and train these instances using an
efficient self-distillation scheme. Experimental results demonstrate that these instances substantially
enhance model efficiency on long-sequence benchmarks, while achieving competitive performance
compared to the full attention model.

2 METHOD

2.1 PRELIMINARY

Most modern autoregressive large language models are built on Transformer architecture (Vaswani
et al., 2017), which employs self-attention as the core mechanism for token mixing. Given an
input sequence of L tokens X = (x1, x2, ..., xL) ∈ RL×D (D is the hidden dimension), self-
attention first projects the tokens into query (Q), key (K), and value (V) matrices via learned linear
transformations:

Q = XWQ, K = XWK , V = XWV (1)

where WQ, WK , and WV are trainable weight matrices. The attention output is then computed as a
weighted sum of the value vectors:

Attention(Q,K, V) = softmax

(
QKT

√
din

⊙M
)
V (2)

where M ∈ RL×L is the causal mask, defined by Mij = 1 if j ≤ i, and Mij = 0 otherwise.

2.2 ARTIFICIAL HIPPOCAMPUS NETWORKS

Definition. Inspired by MSM (Atkinson & Shiffrin, 1968) and the hippocampus (Scoville & Mil-
ner, 1957) that consolidates lossless short-term memory into compact and long-term representations,
we introduce Artificial Hippocampus Networks (AHNs) to emulate this biological function by com-
pressing historical information into a fixed-size recurrent state. An AHN operates alongside a sliding
attention window of size W . For the token at step t > W , the AHN updates the compressive mem-
ory by processing the key-value (KV) pair (kt−W , vt−W) that just exited the sliding window. This
recurrent memory update is defined as:

ht−W = AHN((kt−W , vt−W), ht−W−1) (3)

where ht−W is the updated compressed memory summarizing context up to and including position
t − W . ht−W can be a vector or matrix. Due to the recurrent formulation of Equation 3, AHNs
can be implemented with RNN-like architectures, enabling the learnable and efficient compression
of long context history.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6

AHN
7

1 2 3 4 5

AHN
6

1 2 3 4

AHN
5

1 2 3

AHN

4

Inactive

Window
token

Token to be
compressed

Evicted
token

Generated
token

Compressed
memory

(a)

Full Attention

MLP

QKV Linear

 AHN

Output Linear

+

+

Window
Attention

MLP

QKV Linear

Output Linear

+

+N x N x

Softmax Softmax

Input sequence

+

(b)
Figure 2: (a) Illustration of the model augmented with Artificial Hippocampus Networks (AHNs).
In this illustrative example, we set the sliding window length to 3 for clarity. For model inference
in our experiments, the default window length is 32k. When the input sequence length is less than
or equal to the window length, the model operates identically to a standard Transformer. For longer
sequences, AHNs continually compress the token outside the window into a compact memory repre-
sentation. The model then utilizes both the lossless information within window, and the compressed
memory to generate the next token. (b) Self-distillation training framework of AHNs based on an
open-weight LLM. During training, the base LLM’s weights are frozen, and only the AHNs’ param-
eters are trained.

Integration with lossless memory. Within the predefined sliding window, standard causal attention
is applied to preserve lossless memory of recent tokens. Once the input sequence length exceeds the
window size, AHNs are activated to compress the KV pair outside the window, i.e., (kt−W , vt−W),
into a fixed-size compressed memory ht−W . After this compression, the original KV pair beyond the
window can be safely discarded, retaining only the KV cache within the window {(ki, vi)}ti=t−W+1.
Finally, the current query qt accesses information from both compressed and lossless memories to
produce the output:

yt = f(ht−W , {(ki, vi)}ti=t−W+1, qt) (4)

An illustration of the overall model mechanism with AHNs is provided in Figure 2a. Besides, the
illustration of AHNs with attention sinks (Xiao et al., 2024c) is shown in Figure 6 in the appendix.

2.3 INSTANTIATION

As discussed above, AHNs can be instantiated using RNN-like architectures. In our experiments,
we focus on modern linear recurrent models for their efficient parallel training. Specifically, we uti-
lize three architectures including Mamba2 (Dao & Gu, 2024), DeltaNet (DN) (Schlag et al., 2021;
Yang et al., 2024d), and its enhanced version, GatedDeltaNet (GDN) (Yang et al., 2024c), to in-
stantiate AHNs into AHN-Mamba2, AHN-DN and AHN-GDN, respectively. Below, we present the
implementation of AHN-GDN for each head as a representative example, and the other two AHN
instances are described in Appendix A.1. Specifically, AHN-GDN updates memory via the gated
delta rule (Schlag et al., 2021; Yang et al., 2024d;c):

ht−W = AHN-GDN((kt−W , vt−W), ht−W−1, xt−W)

= α(xt−W)(I− β(xt−W)kTt−W kt−W)ht−W−1 + β(xt−W)kTt−W vt−W

(5)

where learnable parameters for per head are Wα ∈ RD×1 in α(·) and Wβ ∈ RD×1 in β(·). Unlike
GatedDeltaNet (Yang et al., 2025), which compresses all past tokens, AHN-GDN only compresses
tokens outside the sliding window. For each position t, the query qt derived from xt is used to
access the compressed memory ht−W . Note that AHNs do not introduce separate QKV projection
layers. Instead, they directly transform the lossless memory (i.e., the KV cache) from attention into a
fixed-size compact memory. The compressed memory ht−W is further modulated by a gate function
γ(xt) and then is transformed by a linear projection to generate output:

yAHN,t = γ(xt)qtht−WWo (6)

Different from GatedDeltaNet (Yang et al., 2025), the output of γ(xt) = xtWγ is a scalar for each
head with learnable parameter Wγ ∈ RD×1, and the output linear is grouped by heads (Krizhevsky

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Complexity of causal attention with and without AHN-GDN. Here, L: input sequence
length; D: hidden dimension; Nq/Nkv: number of query/key-value heads; H: head dimension;
W : sliding window size. AHNs are activated only when L > W . FLOPs account for matrix
multiplication only; softmax, normalization, and matrix element summation are omitted. Items
shown in gray can be further omitted compared to the other terms.

Token mixer Causal attention (Full) Causal attention (Window) + AHN-GDN

Parameters 2DH(Nq + Nkv) 2DH(Nq + Nkv) + 3DNq + H2Nq

Memory cache 2LHNkv ∼ O(L) 2WHNkv + H2Nq ∼ O(W)

FLOPs 4LDH(Nq + Nkv) + 2HNqL
2 ∼ O(L2)

4LDH(Nq + Nkv) + 2HNqW
2
+ 2(L − W)×

(2WHNq + H
2
Nq + 3DNq + H

2
Nq) ∼ O(WL)

et al., 2012; Jiang et al., 2020) with learnable weight Wo ∈ RH×H (H denotes head dimension).
Finally, we simply sum the outputs from AHN and the attention mechanism:

yt = yAHN,t + Attention({(ki, vi)}ti=t−W+1, qt) (7)

Complexity analysis. Table 1 summarizes the computational and memory complexities of the atten-
tion token mixer with and without AHN-GDN, and Figure 3 compares the complexities of Qwen2.5-
3B with and without AHN-GDN. As shown, integrating AHNs significantly improves efficiency
over standard full attention in both memory usage and FLOPs. In particular, AHN-GDN reduces the
computational complexity of attention to linear in sequence length while keeping the memory cache
size constant. By contrast, vanilla full attention incurs quadratic computational cost and memory
usage that grows linearly with sequence length.

2.4 TRAINING FRAMEWORK

While an AHN-augmented model can be trained from scratch, we adopt a more computationally
efficient approach using self-distillation (Hinton et al., 2015; Zhang et al., 2018; 2019). This allows
us to leverage powerful pre-trained models. Our training framework uses an open-weight LLM
(e.g., Qwen (Yang et al., 2024a)) as the teacher model, with its output probability denoted as p′.
The student model is the same LLM, but we modify its attention mechanism to operate over a
limited receptive field of a sliding window at every layer. These window attention layers are then
augmented with AHNs. The student’s output probability is denoted as p. We train the student to
mimic the teacher’s output distribution by minimizing the Kullback-Leibler (KL) divergence: l =
KL(p′||p). To maximize efficiency, the base model’s weights are frozen during training, and only
the AHN parameters are optimized. Taking AHN-GDN as an example, only the parameters involved
in Equations 5 and 6 are learnable. For each attention head, these trainable parameters consist of the
gating weights Wα ∈ RD×1 in α(·), Wβ ∈ RD×1 in β(·), Wγ ∈ RD×1 in γ(·) as well as the output
projection Wo ∈ RH×H . Here, D and H denote the hidden dimension and the head dimension,
respectively. With Nq attention heads, the model contains Nq such sets of parameters, amounting to
only ∼ 0.4% relative to the frozen base model’s parameters. The framework is illustrated in Figure
2b.

0k 50k 100k 150k 200k 250k
Sequence Length

0.0

1.0

2.0

3.0

4.0

FL
OP

s (
1e

16
)

FLOPs vs Seq. Len.
Qwen2.5-3B
+ AHN

(a)

0k 50k 100k 150k 200k 250k
Sequence Length

0.0

0.5

1.0

1.5

By
te

s (
1e

10
)

Memory Cache vs Seq. Len.
Qwen2.5-3B
+ AHN

(b)

0k 10k 20k 30k 40k 50k 60k
Token Index

2.0

2.2

2.4

2.6

Lo
g

Pe
rp

le
xi

ty

Pr
e-

tra
in

ed
co

nt
ex

t l
en

gt
h

Log Perplexity on PG19
Qwen-2.5-3B
+ AHN

(c)

0k 10k 20k 30k 40k 50k 60k
Token Index

6.0

6.5

7.0

7.5

M
em

or
y

Al
lo

ca
te

d
(G

B)

Pr
e-

tra
in

ed
co

nt
ex

t l
en

gt
h

CUDA Memory on PG19
Qwen2.5-3B
+ AHN

(d)
Figure 3: Complexity analysis of the Qwen2.5-3B-Instruct and model perplexity, with and without
AHNs. AHNs are only activated when the sequence length exceeds the window size (32k in this ex-
ample). (a) The model with AHN enjoys linear computational complexity with respect to sequence
length. (b) The model with AHN maintains a consistent memory cache size. (c) Perplexity results
on the first book of the PG19 test set (57K tokens). While Qwen-3B-Instruct degrades beyond its
pre-trained context length, AHN-augmented models maintain consistently low perplexity. (d) Peak
GPU memory under the same example.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3 EXPERIMENTS

3.1 SETUPS

Models and datasets. We build our AHNs on top of open-weight Qwen2.5-Instruct series (3B,
7B, 14B) (Yang et al., 2024a). To demonstrate architectural flexibility, we implement the AHN
module using three modern recurrent models: Mamba2 (Dao & Gu, 2024), DeltaNet (Schlag et al.,
2021; Yang et al., 2024d), and GatedDeltaNet (Yang et al., 2024c). The training data is ChatQA2
dataset (Xu et al., 2025), an open-source collection of diverse long-context tasks. We evaluate our
methods across a comprehensive suite of long-context benchmarks, including LongBench (Bai et al.,
2024a), InfiniteBench (Zhang et al., 2024a), and LV-Eval (Yuan et al., 2024), with an additional
illustrative example drawn from PG19 (Rae et al., 2020).

Baselines. We evaluate AHN-augmented models against two primary baselines: sliding window at-
tention (SWA) with attention sinks (Xiao et al., 2024c) and the Compressive Transformers (CT) (Rae
et al., 2020). We implement the Compressive Transformer using max and average pooling to com-
press tokens outside the sliding window at a 4× compression rate. To ensure a fair comparison,
all methods are allocated the same lossless memory budget, and the memory size of compressed
tokens for CT is set to equal the memory size of the hidden state of AHNs. The performance of full
attention is also reported as a reference.

Implementation details. We implement all AHN instances in PyTorch (Paszke et al., 2019), build-
ing on LLaMA-Factory (Zheng et al., 2024) and Flash Linear Attention (Yang & Zhang, 2024).
During training, we freeze the entire base LLM and only train the newly added AHN module (only
∼ 0.4% parameters relative to base LLM) using self-distillation, as illustrated in Figure 2b. To
ensure the AHN module learns a generalizable compression strategy, we randomize the starting
position (the number of attention sinks) of the AHN modules and also the sliding window size.
Specifically, we use a maximum sequence length of 24k tokens during training. For each example,
the attention-sink size is uniformly sampled from [0, 32, 64, 128, 512, 2048, 4096] after removing
any candidates larger than half of the sequence length. The total token number of lossless memory
(attention sinks + sliding window) is uniformly sampled from [32, 64, 128, 256, 512, 1024, 2048,
4096, 8192] after filtering out values smaller than one-eighth of the sequence length. For optimiza-
tion, we use the AdamW (Loshchilov & Hutter, 2019) optimizer with a learning rate of 1e-4, which
is warmed up linearly over the first 10% of steps and then cosine decayed. All models are trained for
one epoch on the ChatQA2 dataset, consisting of 1B tokens, using a global batch size of 128 for a
total of 740 update steps. Training AHNs for a 7B base model requires only ∼10 hours on 32 A100
GPUs.

3.2 AN ILLUSTRATIVE EXAMPLE

By compressing historical information beyond the sliding window into a fixed-size memory, AHN-
augmented models significantly reduce both computational complexity and memory footprint, as
shown in Figure 3a and 3b. We demonstrate this advantage with a real example on a 57K token
passage from the PG19, a benchmark of long-form books designed to test extended context under-
standing. We compare the base 3B-Instruct models against their AHN-GDN counterparts. As shown
in Figure 3c, the perplexity of standard Qwen models rises sharply once the 32k token context win-
dow is exceeded. In contrast, the AHN-GDN augmented model maintains consistently low perplex-
ity. Furthermore, Figure 3d illustrates that while the base models’ memory usage grows linearly
under FlashAttention, AHN-GDN keeps the CUDA memory usage nearly constant, highlighting its
effectiveness for processing long-context sequences.

3.3 LONG-CONTEXT BENCHMARKS

We now systematically evaluate AHN-augmented models on long-context benchmarks to assess
their effectiveness and efficiency. Our evaluation is structured across two settings: First, we conduct
ultra-long-context evaluation on InfiniteBench (Zhang et al., 2024a) and LV-Eval (Yuan et al., 2024)
(both use 128k-length subset), comparing AHN-augmented models with full attention, sliding win-
dow attention (SWA) with attention sinks, and Compressive Transformer (CT) using average and
max pooling as the compression functions. Besides, we evaluate six tasks with average sequence
lengths exceeding 8k on LongBench (Bai et al., 2024b).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance and efficiency analysis on the 128k length subset of LV-Eval and In-
finiteBench. The mixing/model FLOP ratio measures the relative computational cost of the token
mixer or the entire model compared with the full attention baseline. For all methods except full
attention, the lossless memory of attention sinks (Xiao et al., 2024c) and sliding window attention
(SWA) is 32k tokens. Compressive Transformers (CT) (Rae et al., 2020) are implemented with
attention sinks (Xiao et al., 2024c) and a compression function of max or average pooling.

Base
model Token mixer

Extra
param
ratio

Mixing
FLOP
ratio

Model
FLOP
ratio

Memory
cache
ratio

LV-Eval InfiniteBench

cmrc
-mixup

loogle-SD
-mixup

dureader
-mixup Avg.∗ En. QA Zh. QA Avg.

Q
w

en
2.

5-
3B

-
In

st
ru

ct

Full Attn 0% 100% 100% 100% 7.28 0.89 13.22 4.41 7.28 11.75 9.52
Sinks + SWA 0% 46.6% 59.3% 25.6% 7.48 4.59 11.49 4.59 8.63 12.31 10.47
CT-Max 0% 47.1% 59.7% 26.0% 6.10 3.88 11.37 4.12 7.40 12.59 10.00
CT-Average 0% 47.1% 59.7% 26.0% 6.95 4.70 11.40 4.47 8.30 13.32 10.81

AHN-Mamba2 0.4% 46.7% 59.4% 26.0% 7.84 5.20 12.35 5.13 9.29 15.58 12.44
AHN-DN 0.4% 46.7% 59.4% 26.0% 9.41 5.99 11.49 5.68 10.61 16.41 13.51
AHN-GDN 0.4% 46.7% 59.4% 26.0% 7.96 7.21 12.52 5.88 10.61 15.87 13.24

Q
w

en
2.

5-
7B

-
In

st
ru

ct

Full Attn 0% 100% 100% 100% 4.30 0.17 12.8 3.62 11.23 15.76 13.50
Sinks + SWA 0% 48.0% 65.5% 25.6% 9.52 4.76 14.09 5.34 10.66 15.66 13.16
CT-Max 0% 48.5% 65.8% 26.0% 8.35 4.02 12.34 4.82 10.56 15.45 13.00
CT-Average 0% 48.5% 65.8% 26.0% 9.48 4.86 13.78 5.28 10.63 15.99 13.31

AHN-Mamba2 0.2% 48.2% 65.6% 26.0% 12.57 5.54 14.13 6.21 11.36 17.06 14.21
AHN-DN 0.2% 48.2% 65.6% 26.0% 11.97 5.67 16.52 6.82 12.86 20.10 16.48
AHN-GDN 0.3% 48.2% 65.6% 26.0% 12.69 4.71 15.30 6.54 13.37 20.48 16.93

Q
w

en
2.

5-
14

B
-

In
st

ru
ct

Full Attn 0% 100% 100% 100% 8.79 1.45 13.84 4.99 11.23 13.19 12.21
Sinks + SWA 0% 49.5% 62.3% 25.6% 11.96 7.59 12.23 5.69 11.62 13.45 12.54
CT-Max 0% 49.8% 62.6% 25.9% 10.55 7.53 12.08 5.28 10.58 12.73 11.66
CT-Average 0% 49.8% 62.6% 25.9% 11.89 7.41 12.46 5.64 10.61 13.28 11.95

AHN-Mamba2 0.3% 49.7% 62.4% 25.9% 14.03 7.20 15.39 6.43 14.21 16.20 15.21
AHN-DN 0.3% 49.7% 62.4% 25.9% 13.13 9.14 14.46 6.50 16.54 18.42 17.48
AHN-GDN 0.4% 49.7% 62.5% 25.9% 14.16 8.54 13.94 6.51 14.48 18.55 16.52

Ultra-long-context. LV-Eval is a challenging long-context benchmark, covering both single-hop
QA and multi-hop QA. It introduces several design challenges, including confusing facts inser-
tion, keyword and phrase replacement, and a keyword-recall-based metric. We evaluate all methods
on the 128k-context subsets across all 11 datasets. For sliding window-based methods (SWA and
AHN), we use a 32768-token lossless memory, consisting of 128-token attention sinks and a 32640-
token sliding window during inference. To further validate this setting, we also test on InfiniteBench,
a benchmark tailored to evaluate language models’ ability to process, understand, and reason over
super-long contexts. As shown in Table 2, AHN-augmented models consistently outperform SWA
with attention sinks baseline across nearly all tasks. Remarkably, they also surpass the performance
of full attention, demonstrating the effectiveness of the compressed memory mechanism while of-
fering substantial computational and memory savings. We include full results in the appendix.

Long-context. To evaluate our models on a broader range of practical scenarios, we use Long-
Bench, which features diverse tasks across multiple domains and languages, designed to rigorously
test long-context understanding in more realistic scenarios. While many tasks on LongBench have
relatively short inputs, we focus on six tasks with an average length exceeding 8192 tokens to cre-
ate a challenging evaluation. In this setup, we constrain all methods to a fixed 8192-token lossless
memory budget (128 attention sinks and an 8064-token sliding window). As reported in Table 3,
AHN-augmented models again achieve consistently superior accuracy compared to both baselines.
These results strongly suggest that the recurrent hidden states effectively capture and utilize histori-
cal information, leading to improved performance across diverse scenarios.

3.4 ABLATION STUDY

Having demonstrated the effectiveness of AHN-augmented models, we now conduct an ablation
study to analyze the impact of our three design choices: the training objective, randomization of
training window size, and the inference window size. For these experiments, we use AHN-GDN
(Qwen2.5-7B-Instruct) as the starting point.

Training objectives: self-distillation vs. next-token prediction. We train AHNs using self-
distillation, minimizing the KL divergence between the AHN-augmented logits and the full attention
outputs. As a comparison, we also apply standard next-token prediction with cross-entropy (CE)
loss, which encourages AHNs to “learn to compress” directly from data distribution. As shown in
Table 4, this replacement results in a marked performance drop on LongBench. We hypothesize

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Qwen2.5-based model performance on six LongBench tasks (average sequence length >
8k). For all methods, the lossless memory of attention sinks (Xiao et al., 2024c) and sliding window
attention (SWA) is 8192 tokens. Compressive Transformers (CT) (Rae et al., 2020) are implemented
with attention sinks (Xiao et al., 2024c) and a compression function of max or average pooling.

Base model Token mixer DuReader HotpotQA MuSiQue NarrativeQA QMSum TriviaQA Avg.

Qwen2.5-3B-
Instruct

Sinks + SWA 23.28 43.70 16.55 15.35 21.54 85.44 34.31
CT-Max 22.81 40.92 17.22 16.58 21.07 85.55 34.03
CT-Average 23.28 44.65 16.32 16.36 21.18 85.29 34.51

AHN-Mamba2 24.38 42.95 18.31 16.70 21.89 85.18 34.90
AHN-DN 25.12 42.83 19.78 19.11 22.35 86.17 35.89
AHN-GDN 25.47 42.76 19.31 18.95 21.85 84.93 35.55

Qwen2.5-7B-
Instruct

Sinks + SWA 24.93 51.57 22.34 22.29 21.49 88.48 38.52
CT-Max 25.08 50.61 20.65 23.17 21.34 88.89 38.29
CT-Average 24.81 51.85 21.65 22.66 21.54 88.48 38.50

AHN-Mamba2 26.10 53.24 27.93 24.86 21.97 89.24 40.56
AHN-DN 26.42 54.24 29.30 25.08 21.69 89.49 41.04
AHN-GDN 26.97 54.17 26.83 24.00 21.80 89.75 40.59

Qwen2.5-14B-
Instruct

Sinks + SWA 25.46 55.68 29.01 23.21 21.45 89.06 40.65
CT-Max 24.63 54.45 27.78 22.16 21.16 88.16 39.72
CT-Average 25.48 56.08 29.15 23.26 21.40 89.53 40.82

AHN-Mamba2 26.34 56.52 30.32 24.01 22.19 88.63 41.34
AHN-DN 26.80 58.71 32.92 22.95 22.08 87.50 41.83
AHN-GDN 26.51 58.09 31.40 24.71 22.35 88.35 41.90

Figure 4: The AHN-augmented model consistently outper-
forms the sliding-window attention (SWA) baseline across
all window sizes on both LV-Eval and InfiniteBench (128k
sequence length).

1K 2K 4K 8K 16K 32K 64K 96K 128K
Sliding Window Size

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Sc
or

e

Full Attn

LVEval (128K)
AHN
SWA

1K 2K 4K 8K 16K 32K 64K 96K 128K
Sliding Window Size

8.0

10.0

12.0

14.0

16.0

18.0

Full Attn

InfiniteBench (128K)
AHN
SWA

Table 4: Ablation of AHN training de-
sign choices based on Qwen2.5-7B-
Instruct: (1) the training objective (2)
randomized vs. fixed window.

Training target Training
window size

LongBench
(Average of

6 tasks)

Self-distill (KL loss) 1024 (fixed) 38.53
Next-token pred. (CE loss) Random size 39.59
Self-distil. (KL loss) Random size 40.59

this is because CE provides sparse learning signals, and pushes the small AHN modules towards
shortcuts in the training data. In contrast, self-distillation offers denser guidance over the teacher’s
entire output distribution, compelling AHNs to learn more generalizable context representations.

Training window size: randomized vs. fixed. We train AHNs using randomized sliding-window
sizes to encourage a more general and robust compressive module that can adapt to varying context
lengths. In contrast, models trained with a fixed window often overfit to that specific configuration
and fail to generalize to unseen context lengths, leading to noticeable performance degradation, as
shown in Table 4.

Inference window size. To further evaluate context length generalization, we fix the attention
sinks to 128 tokens and test AHN-augmented models with sliding window sizes ranging from 1k
to 96k on the 128k-context subsets of both LV-Eval and InfiniteBench. As shown in Figure 4, the
AHN-augmented model maintains competitive performance across all window configurations, and
consistently outperforms sliding window attention (SWA). Notably, as the inference window size
increases from 1k to 16k, the performance improves steadily, highlighting the importance of a large
attention window for extra-long context tasks. Beyond this range, however, we observe a notice-
able performance drop, after 64k on LV-Eval and 96k on InfiniteBench, which may be attributed to
the attention-dilution effect, where the the attention distribution becomes overly diffuse when the
number of keys grows very large, weakening the model’s ability to focus on relevant information.
Balancing performance and computational cost, we therefore adopt a 32k sliding window as the
default configuration for inference. Additional LongBench results are provided in the appendix.

3.5 PROBING AHN WITH GRADIENTS VISUALIZATION

Beyond benchmark performance, we seek to understand how effectively AHNs compress and ex-
ploit out-of-window information. We probe the backward dynamics of AHN-augmented models by

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

visualizing gradients of the self-distillation loss, which is formally defined by:
∂

∂xout
KL(f ′(xwin, xout) ∥ f(xwin, hAHN)) (8)

<|im_start|>system You are a h
elpful assistant.<|im_end|>

<|im_start|>user Given the acu
te angles \(\) \(B \) such \
(\ (A + B) 2 \tan A \), what
is the maximum value of \(\ta
n B \)?<|im_end|>

<|im_start|>assistant Given th
e equation \(\tan (A + B) 2 \t
an A), we start by using the t
angent addition formula: \[\t
an (A + B) \frac{\tan A + \tan
 B}{ \tan A \tan B} \] Substit
uting the given equation we ge
t: \[\frac{\tan A + \tan B}{1
 - \tan \ B} = 2 \tan A \]

Figure 5: Green regions mark tokens
with low L2 gradient magnitudes, in-
dicating they are preferentially selected
by AHN to store in the compressed
memory; red denotes the opposite.

where f ′(·) and f(·) denote the teacher and student for-
ward models, hAHN represents the compressed memory
of AHN, xwin are in-window token embeddings, and xout
are out-of-window embeddings. Out-of-window tokens
with small gradient magnitudes indicate that their infor-
mation has already been well captured in AHN’s com-
pressed memory.

Figure 5 shows an example from AceMath-Instruct-
Training-Data (Liu et al., 2025). The full sequence has
811 tokens, and we evaluate the AHN-augmented model
using a 512-token sliding window (AHN activates once
the context surpasses 512 tokens). The snippet shows the
gradients for the first 139 tokens. As illustrated in Fig-
ure 5, AHN tends to preserve the information of mathe-
matical symbols and numbers while neglecting less crit-
ical ones such as pronouns and special tokens, demon-
strating its AHNs can learn to prioritize more informative
tokens for storage.

4 RELATED WORK

4.1 MEMORY IN NEURAL NETWORKS

Memory mechanisms play a crucial role in enabling neural networks to process and retain infor-
mation over time, which is essential for tasks that require understanding of temporal dependencies,
sequential data, or context preservation. Traditional feedforward neural networks lack the capability
to maintain information across time steps, which limits their effectiveness in tasks such as language
modeling, sequence prediction, and reasoning. To address this limitation, Recurrent Neural Net-
works (RNNs) are introduced (Werbos, 1988; Jordan, 1986; Elman, 1990; Hopfield, 1982; 1984).
RNNs maintain a hidden state that is updated at each time step, allowing information to persist
across sequences. However, vanilla RNNs suffer from issues such as vanishing and exploding gra-
dients, making it difficult to capture long-term dependencies (Bengio et al., 1994). To mitigate these
problems, more advanced architectures like Long Short-Term Memory (LSTM) networks (Hochre-
iter & Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014) are proposed. These
models incorporate gating mechanisms that regulate the flow of information, enabling them to learn
longer-term dependencies more effectively. Because these RNN-like models maintain a fixed-size
memory and a consistent memory update cost for each input token, they are highly efficient for pro-
cessing long sequences. Therefore, our AHNs are designed within the RNN paradigm to inherit this
advantageous property.

Beyond RNN-based architectures, memory-augmented neural networks have been developed to fur-
ther enhance the memory capacity of neural models. For example, the Neural Turing Machine
(NTM) (Graves et al., 2014) and the Differentiable Neural Computer (DNC) (Graves et al., 2016)
introduce external memory modules that the network can read from and write to, allowing for more
complex reasoning and algorithmic tasks. Over the past decade, attention mechanisms (Bahdanau
et al., 2015) have revolutionized the way neural networks handle memory. The Transformer archi-
tecture (Vaswani et al., 2017), which relies entirely on self-attention mechanisms, enables direct
access to all previous states in a sequence, providing a form of memory that is both lossless and
scalable. This has led to significant improvements in various domains (Radford et al., 2018; 2019;
Devlin et al., 2019; Dosovitskiy et al., 2021), and has spurred the emergence of new technological
paradigms and innovations (OpenAI, 2023; 2024a;b; Guo et al., 2025), such as In-Context Learning
(Brown et al., 2020) and Chain-of-Thought (CoT) reasoning (Wei et al., 2022). However, modeling
long sequences exacerbates the quadratic computational complexity cost of attention mechanisms
(Child et al., 2019). Our proposed AHNs address this challenge by employing an RNN-like network
to compress the historical KV cache.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4.2 MEMORY MANAGEMENT

RNN-like models (Elman, 1990; Hochreiter & Schmidhuber, 1997; Cho et al., 2014; Katharopou-
los et al., 2020; Peng et al., 2023; Sun et al., 2023; Gu & Dao, 2024; Yang et al., 2024c; Zhang
et al., 2024b; Yang et al., 2024d; Dao & Gu, 2024; Beck et al., 2024; Yang et al., 2025) maintain
memory through a fixed-size hidden state, regardless of input sequence length. Therefore, memory
caching is not a major concern for these architectures. In contrast, Transformers store key-value
(KV) pairs for every token in the input sequence, resulting in linear growth of the KV cache with
sequence length. This results in significant memory consumption and presents a major challenge
for processing long sequences. To mitigate this issue, various approaches have been proposed (Li
et al., 2024a), including KV cache selection (Ge et al., 2024; Li et al., 2024b; Xiao et al., 2024c; Han
et al., 2024; Zhang et al., 2023; Liu et al., 2023; Adnan et al., 2024; Xiao et al., 2024a; Tang et al.,
2024), budget allocation (Cai et al., 2024; Yang et al., 2024b; Feng et al., 2024; Xiao et al., 2024b),
merging (Nawrot et al., 2024; Wan et al., 2024; Wang et al., 2024b; Liu et al., 2024b), quantization
(Yao et al., 2022; Sheng et al., 2023; Hooper et al., 2024; Xiao et al., 2023; Lin et al., 2024; Shao
et al., 2024), low-rank decomposition (Yu et al., 2024; Dong et al., 2024), external memory (Packer
et al., 2023; Wang et al., 2025), and neural architecture design (Shazeer, 2019; Ainslie et al., 2023;
Liu et al., 2024a; Hua et al., 2022; Sun et al., 2024; Yen, 2024; Wu et al., 2022; Munkhdalai et al.,
2024). Among them, a straightforward strategy is to use a sliding window for attention (Vaswani
et al., 2017), but this method discards KV pairs outside the window, thereby losing long-range con-
text. Sparse Transformers (Child et al., 2019) address this by retaining KV pairs at specific pattern
positions to capture long-range dependencies, but still drop portions of the KV cache, potentially
missing important information. Transformer-XL (Dai et al., 2019) introduces a segment-level re-
currence mechanism by caching the last segment of hidden states as a First-In, First-Out (FIFO)
memory. Compressive Transformer (Rae et al., 2020) extends this by compressing older memories
into a secondary FIFO memory, but it still discards memory once the slots are full. In contrast, AHNs
adopt an RNN-like paradigm that continually compresses KV pairs outside the sliding window into a
lifelong compressed memory, rather than discarding them outright (Lieber et al., 2024; Munkhdalai
et al., 2024; Ren et al., 2025). AHNs (like AHN-GDN (Yang et al., 2025)) can also dynamically
control memory decay (Dao & Gu, 2024; Schlag et al., 2021; Yang et al., 2024d; 2025). Recent stud-
ies integrate RNNs and attention either in interleaved layers (Lieber et al., 2024; Ren et al., 2025;
Dao & Gu, 2024; Yang et al., 2025; Li et al., 2025a) or within a single layer (Munkhdalai et al.,
2024; Behrouz et al., 2024; Li et al., 2025b). By contrast, we abstract the compression module as an
AHN concept, yielding a more general memory framework. We employ a sliding-window attention
mechanism, activating AHNs whenever a token leaves the window. Additionally, we introduce a
simple self-distillation scheme that trains AHNs efficiently.

Compared with recent attention-RNN-Hybrid works (Munkhdalai et al., 2024; Wang et al., 2024a;
Zhang et al., 2025) and concurrent work (Irie et al., 2025), the goal of the AHN memory framework
is to leverage the efficiency of RNNs specifically to address the computational bottleneck of attention
on extra-long sequences. The distinct insight introduced by AHNs is to employ a large sliding-
window size (e.g., 32k) for attention, such that the RNN-like AHN modules only activate when the
sequence length exceeds this window. This design provides two major advantages: 1) It highlights
the efficiency benefits of RNNs on extra-long context tasks (e.g., 128k), achieving substantial FLOP
and memory-cache savings. In contrast, for short-context tasks where attention is already efficient,
introducing RNNs provides no efficiency gain. 2) It requires no additional effort to preserve attention
performance on short-context tasks, because AHNs remain inactive in these regimes, and the model
behaves exactly as a pure attention-based Transformer.

5 CONCLUSION

We introduce Artificial Hippocampus Networks (AHNs), a novel class of lightweight architectural
components that enhance Transformer models for efficient long-sequence processing. AHNs address
the efficiency limitation of standard transformers by maintaining a sliding window of KV cache as
lossless memory while transforming out-of-window information into a fixed-size compressed mem-
ory. This approach enables AHN-augmented models to achieve constant memory and computational
complexity per token over long sequences. Experiments demonstrate that AHNs can significantly
reduce both memory cache size and computation while maintaining competitive performance on
long-context benchmarks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant J Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114–127, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 4895–4901, 2023.

Pablo Alvarez and Larry R Squire. Memory consolidation and the medial temporal lobe: a simple
network model. Proceedings of the national academy of sciences, 91(15):7041–7045, 1994.

Richard C Atkinson and Richard M Shiffrin. Human memory: A proposed system and its control
processes. In Psychology of learning and motivation, volume 2, pp. 89–195. Elsevier, 1968.

Alan D. Baddeley and Graham Hitch. Working memory. volume 8 of Psychology of
Learning and Motivation, pp. 47–89. Academic Press, 1974. doi: https://doi.org/10.
1016/S0079-7421(08)60452-1. URL https://www.sciencedirect.com/science/
article/pii/S0079742108604521.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In 3rd International Conference on Learning Representations,
ICLR 2015, 2015.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3119–3137, 2024a.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
Lei Hou, Yuxiao Dong, et al. Longbench v2: Towards deeper understanding and reasoning on
realistic long-context multitasks. arXiv preprint arXiv:2412.15204, 2024b.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael K Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM: Ex-
tended long short-term memory. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=ARAxPPIAhq.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663, 2024.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Kyunghyun Cho, B van Merrienboer, Caglar Gulcehre, F Bougares, H Schwenk, and Yoshua Ben-
gio. Learning phrase representations using rnn encoder-decoder for statistical machine translation.
In Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), 2014.

Marcus Tullius Cicero. De Oratore. 55 BCE.

11

https://www.sciencedirect.com/science/article/pii/S0079742108604521
https://www.sciencedirect.com/science/article/pii/S0079742108604521
https://openreview.net/forum?id=ARAxPPIAhq

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Eric Courchesne, Heather J Chisum, Jeanne Townsend, Angilene Cowles, James Covington, Brian
Egaas, Mark Harwood, Stuart Hinds, and Gary A Press. Normal brain development and aging:
quantitative analysis at in vivo mr imaging in healthy volunteers. Radiology, 216(3):672–682,
2000.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988, 2019.

Tri Dao and Albert Gu. Transformers are ssms: generalized models and efficient algorithms through
structured state space duality. In Proceedings of the 41st International Conference on Machine
Learning, pp. 10041–10071, 2024.

Anatole S Dekaban and Doris Sadowsky. Changes in brain weights during the span of human life:
relation of brain weights to body heights and body weights. Annals of Neurology: Official Journal
of the American Neurological Association and the Child Neurology Society, 4(4):345–356, 1978.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get more
with less: Synthesizing recurrence with kv cache compression for efficient llm inference. In
International Conference on Machine Learning, pp. 11437–11452. PMLR, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Howard Eichenbaum. A cortical–hippocampal system for declarative memory. Nature reviews
neuroscience, 1(1):41–50, 2000.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache evic-
tion by adaptive budget allocation for efficient llm inference. arXiv preprint arXiv:2407.11550,
2024.

Anthony F Fotenos, AZ Snyder, LE Girton, JC Morris, and RL Buckner. Normative estimates of
cross-sectional and longitudinal brain volume decline in aging and ad. Neurology, 64(6):1032–
1039, 2005.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=uNrFpDPMyo.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471–476, 2016.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
tEYskw1VY2.

12

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite:
Zero-shot extreme length generalization for large language models. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 3991–4008, 2024.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Sophia Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270–1303, 2024.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

John J Hopfield. Neurons with graded response have collective computational properties like those
of two-state neurons. Proceedings of the national academy of sciences, 81(10):3088–3092, 1984.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. RULER: What’s the real context size of your long-context language models? In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?
id=kIoBbc76Sy.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In Inter-
national conference on machine learning, pp. 9099–9117. PMLR, 2022.

Kazuki Irie, Morris Yau, and Samuel J Gershman. Blending complementary memory systems in
hybrid quadratic-linear transformers. arXiv preprint arXiv:2506.00744, 2025.

Zi-Hang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, and Shuicheng Yan. Con-
vbert: Improving bert with span-based dynamic convolution. Advances in Neural Information
Processing Systems, 33:12837–12848, 2020.

Michael I Jordan. Attractor dynamics and parallelism in a connectionist sequential machine. In
Proceedings of the Annual Meeting of the Cognitive Science Society, volume 8, 1986.

Gregory Kamradt. Needle in a haystack - pressure testing llms, 2023. URL https://github.
com/gkamradt/LLMTest_NeedleInAHaystack.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao
Guo, Da Chen, Dong Li, et al. Minimax-01: Scaling foundation models with lightning attention.
arXiv preprint arXiv:2501.08313, 2025a.

Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei
Dong, Qing Li, and Lei Chen. A survey on large language model acceleration based on kv cache
management. arXiv preprint arXiv:2412.19442, 2024a.

13

https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yixing Li, Ruobing Xie, Zhen Yang, Xingwu Sun, Shuaipeng Li, Weidong Han, Zhanhui Kang,
Yu Cheng, Chengzhong Xu, Di Wang, et al. Transmamba: Flexibly switching between trans-
former and mamba. arXiv preprint arXiv:2503.24067, 2025b.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947–22970, 2024b.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
mamba language model. arXiv preprint arXiv:2403.19887, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Reza Haffari, and Bohan Zhuang. Minicache: Kv cache
compression in depth dimension for large language models. Advances in Neural Information
Processing Systems, 37:139997–140031, 2024b.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36:52342–52364, 2023.

Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Acemath: Advancing
frontier math reasoning with post-training and reward modeling. In Findings of the Association
for Computational Linguistics: ACL 2025, pp. 3993–4015, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pp. 1412–1421, 2015.

James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological review, 102(3):419, 1995.

George A Miller. The magical number seven, plus or minus two: Some limits on our capacity for
processing information. Psychological review, 63(2):81, 1956.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention. arXiv preprint arXiv:2404.07143, 101, 2024.

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dynamic
memory compression: retrofitting llms for accelerated inference. In Proceedings of the 41st
International Conference on Machine Learning, pp. 37396–37412, 2024.

OpenAI. Gpt-4 technical report. https://arxiv.org/abs/2303.08774, 2023.

OpenAI. Gpt-4o system card. arXiv preprint arXiv:2410.21276, 2024a.

OpenAI. Openai o1 system card. arXiv preprint arXiv:2412.16720, 2024b.

Charles Packer, Vivian Fang, Shishir G Patil, Kevin Lin, Sarah Wooders, and Joseph E Gonzalez.
Memgpt: Towards llms as operating systems. 2023.

14

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2303.08774

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Lloyd R Peterson. Short-term retention of individual items. J Exp Psychol, 58:31–35, 1959.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018. URL https://cdn.openai.com/
research-covers/language-unsupervised/language_understanding_
paper.pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe Hillier, and Timothy P. Lilli-
crap. Compressive transformers for long-range sequence modelling. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
SylKikSYDH.

Liliang Ren, Yang Liu, Yadong Lu, yelong shen, Chen Liang, and Weizhu Chen. Samba: Simple
hybrid state space models for efficient unlimited context language modeling. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=bIlnpVM4bc.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International conference on machine learning, pp. 9355–9366. PMLR, 2021.

William Beecher Scoville and Brenda Milner. Loss of recent memory after bilateral hippocampal
lesions. Journal of neurology, neurosurgery, and psychiatry, 20(1):11, 1957.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. In ICLR, 2024.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Larry R Squire and Stuart Zola-Morgan. The medial temporal lobe memory system. Science, 253
(5026):1380–1386, 1991.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
Advances in Neural Information Processing Systems, 37:7339–7361, 2024.

Atsuko Takashima, Ingrid LC Nieuwenhuis, Ole Jensen, Lucia M Talamini, Mark Rijpkema, and
Guillén Fernández. Shift from hippocampal to neocortical centered retrieval network with con-
solidation. Journal of Neuroscience, 29(32):10087–10093, 2009.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. In International Conference on
Machine Learning, pp. 47901–47911. PMLR, 2024.

15

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=bIlnpVM4bc
https://openreview.net/forum?id=bIlnpVM4bc

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Zhongwei Wan, Ziang Wu, Che Liu, Jinfa Huang, Zhihong Zhu, Peng Jin, Longyue Wang, and
Li Yuan. Look-m: Look-once optimization in kv cache for efficient multimodal long-context
inference. In Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 4065–
4078, 2024.

Junxiong Wang, Daniele Paliotta, Avner May, Alexander Rush, and Tri Dao. The mamba in the
llama: Distilling and accelerating hybrid models. Advances in Neural Information Processing
Systems, 37:62432–62457, 2024a.

Yu Wang, Dmitry Krotov, Yuanzhe Hu, Yifan Gao, Wangchunshu Zhou, Julian McAuley, Dan
Gutfreund, Rogerio Feris, and Zexue He. M+: Extending memoryLLM with scalable long-
term memory. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=OcqbkROe8J.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adap-
tive kv cache merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. RNNs are not transformers (yet): The key bottleneck
on in-context retrieval. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=h3wbI8Uk1Z.

Paul J Werbos. Generalization of backpropagation with application to a recurrent gas market model.
Neural networks, 1(4):339–356, 1988.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In International Conference
on Learning Representations (ICLR), 2015. URL https://arxiv.org/abs/1410.3916.

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing
transformers. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=TrjbxzRcnf-.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, and Maosong Sun. InfLLM: Training-free long-context extrapolation for LLMs with an effi-
cient context memory. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024a. URL https://openreview.net/forum?id=bTHFrqhASY.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming
heads. arXiv preprint arXiv:2410.10819, 2024b.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024c. URL https://openreview.net/forum?id=NG7sS51zVF.

Peng Xu, Wei Ping, Xianchao Wu, Chejian Xu, Zihan Liu, Mohammad Shoeybi, and Bryan Catan-
zaro. ChatQA 2: Bridging the gap to proprietary LLMs in long context and RAG capabil-
ities. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=cPD2hU35x3.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

16

https://openreview.net/forum?id=OcqbkROe8J
https://openreview.net/forum?id=h3wbI8Uk1Z
https://arxiv.org/abs/1410.3916
https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=bTHFrqhASY
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=cPD2hU35x3

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm inference. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 3258–3270, 2024b.

Songlin Yang and Yu Zhang. Fla: A triton-based library for hardware-efficient implementations
of linear attention mechanism, January 2024. URL https://github.com/fla-org/
flash-linear-attention.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In International Conference on Machine Learning,
pp. 56501–56523. PMLR, 2024c.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
ers with the delta rule over sequence length. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024d. URL https://openreview.net/forum?id=
y8Rm4VNRPH.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=r8H7xhYPwz.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

Howard Yen. Long-context language modeling with parallel context encoding. Master’s thesis,
Princeton University, 2024.

Hao Yu, Zelan Yang, Shen Li, Yong Li, and Jianxin Wu. Effectively compress kv heads for llm.
arXiv preprint arXiv:2406.07056, 2024.

Weihao Yu and Xinchao Wang. Mambaout: Do we really need mamba for vision? In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2025.

Tao Yuan, Xuefei Ning, Dong Zhou, Zhijie Yang, Shiyao Li, Minghui Zhuang, Zheyue Tan, Zhuyu
Yao, Dahua Lin, Boxun Li, et al. Lv-eval: A balanced long-context benchmark with 5 length
levels up to 256k. arXiv preprint arXiv:2402.05136, 2024.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your
own teacher: Improve the performance of convolutional neural networks via self distillation. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 3713–3722, 2019.

Michael Zhang, Simran Arora, Rahul Chalamala, Benjamin Frederick Spector, Alan Wu, Krithik
Ramesh, Aaryan Singhal, and Christopher Re. LoLCATs: On low-rank linearizing of large lan-
guage models. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=8VtGeyJyx9.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al. ınftybench: Extending long context evaluation
beyond 100k tokens. In ACL (1), 2024a.

Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4320–4328,
2018.

Yu Zhang, Songlin Yang, Rui-Jie Zhu, Yue Zhang, Leyang Cui, Yiqiao Wang, Bolun Wang, Freda
Shi, Bailin Wang, Wei Bi, et al. Gated slot attention for efficient linear-time sequence modeling.
Advances in Neural Information Processing Systems, 37:116870–116898, 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

17

https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://openreview.net/forum?id=y8Rm4VNRPH
https://openreview.net/forum?id=y8Rm4VNRPH
https://openreview.net/forum?id=r8H7xhYPwz
https://openreview.net/forum?id=8VtGeyJyx9

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

18

http://arxiv.org/abs/2403.13372

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 AHN INSTANTIATION

This section describes how to instantiate AHNs with Mamba2 (Dao & Gu, 2024) and DateNet (DN)
(Schlag et al., 2021; Yang et al., 2024d). For the AHN-Mamba2 instance, the compressed memory
update rule is

ht−W = AHN-Mamba2((kt−W , vt−W), ht−W−1, xt−W)

= exp(−∆(xt−W)A)ht−W−1 +∆(xt−W−1)k
T
t−W vt−W

(9)

As for AHN-DN, the update rule can be expressed as

ht−W = AHN-DN((kt−W , vt−W), ht−W−1, xt)

(I− β(xt−W)kTt−W kt−W)ht−W−1 + β(xt−W)kTt−W vt−W

(10)

The output rule of AHN-Mamba2 and AHN-DN are the same as AHN-GDN, as shown in Equation
6.

We also provide an illustration of AHN-augmented networks with attention sinks (Xiao et al.,
2024c), as shown in Figure 6.

1 2 3 4 5 6 7 8

AHN
9

1 2 3 4 5 6 7

AHN
8

1 2 3 4 5 6

AHN
7

1 2 3 4 5

AHN

6

Inactive

Sink
token

Sliding
window token

Token to be
compressed

Evicted
token

Generated
token

Compressed
memory

Figure 6: Illustration of the model augmented with Artificial Hippocampus Networks (AHNs). In
this example, the number of attention sinks is 2, and the sliding window length is 3. When the input
sequence length is less than or equal to the sum of attention sinks and the window length, the model
operates identically to a standard Transformer. For longer sequences, AHNs continually compress
the token outside the window into a compact memory representation. The model then utilizes the
lossless information within the attention sinks and the sliding window, as well as the compressed
memory to generate the next token.

A.2 ADDITIONAL BENCHMARK RESULTS

This section further examines the effectiveness of AHNs in long-context scenarios, presenting addi-
tional benchmark results, while also acknowledging their inherent limitations on exact-recall tasks
due to the lossy nature of compressed memory.

LV-Eval (Yuan et al., 2024). We present complete results on all 11 LV-Eval tasks under the 128k
context setting. All models are configured with 32768 tokens of lossless memory, including 128-
token attention sinks and a 32640-token sliding window.

RULER (Hsieh et al., 2024) is a comprehensive benchmark that extends the standard needle-in-a-
haystack (NIAH) (Kamradt, 2023) paradigm by introducing increased task difficulty and additional
categories. We evaluate an AHN-augmented model (AHN-GDN) on all NIAH tasks within the
RULER-128k subset, using Qwen2.5-7B-Instruct as the base model. For a fair comparison, both
AHN-GDN and sliding window attention with attention sinks are configured with 128 attention

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

sinks and a 32640-token sliding window. As shown in Table 5, AHN-GDN performs on par with
sliding window attention but markedly worse than full attention on exact-recall tasks. This reflects
the inherent trade-off of lossy compression: while AHN-augmented models enable efficient long-
context reasoning, they inevitably struggle on tasks that require exact-recall from the compressed
memory. This limitation suggests opportunities for future research, such as memory management
that preserves critical information in lossless memory while leveraging compression for efficiency.

Table 5: Performance on advanced needle-in-a-haystack (NIAH) tasks performance from RULER-
128k. Both sliding window approaches use 128 attention sinks with a 32640 sliding window.

Method single 1 single 2 single 3 multikey 1 multikey 2 multikey 3 multivalue multiquery

Full Attn 98.60 97.20 98.40 89.20 23.60 23.20 55.40 85.45
Sinks + SWA 26.80 25.40 28.00 27.80 10.60 9.00 22.95 24.00
AHN-GDN 26.80 25.20 28.20 27.40 11.40 8.60 23.45 23.35

Table 6: Complete results on all 21 tasks in the 128k subset of LV-Eval. All sliding window-based
methods use a lossless memory of 32768 tokens, consisting of 128 attention sinks and a 32640-token
sliding window.

Model Dataset Full Attn Sinks + SWA CT-Max CT-Average AHN-Mamba2 AHN-DN AHN-GDN

Q
w

en
2.

5-
3B

-
In

st
ru

ct

Average 4.41 4.59 4.12 4.47 5.13 5.68 5.88
cmrc mixup 7.28 7.48 6.10 6.95 7.84 9.41 7.96
dureader mixup 13.22 11.49 11.37 11.4 12.35 11.71 12.52
factrecall en 6.88 3.34 3.86 3.59 5.58 9.22 12.51
factrecall zh 2.80 1.28 1.37 1.18 1.57 4.19 1.79
hotpotwikiqa mixup 0.09 0.30 0.08 0.48 1.11 0.06 0.65
lic mixup 7.68 6.86 6.39 6.49 8.13 7.78 7.38
loogle CR mixup 0.06 2.24 1.61 2.28 1.55 1.65 1.96
loogle MIR mixup 0.00 0.64 0.47 0.58 1.39 1.14 1.06
loogle SD mixup 0.89 4.59 3.88 4.70 5.20 5.99 7.21
multifieldqa en mixup 0.00 0.33 0.43 0.08 0.00 0.00 0.19
multifieldqa zh mixup 9.59 11.91 9.74 11.41 11.72 11.31 11.42

Q
w

en
2.

5-
7B

-
In

st
ru

ct

Average 3.62 5.34 4.82 5.28 6.21 6.83 6.54

cmrc mixup 4.30 9.52 8.35 9.48 12.57 11.97 12.69
dureader mixup 12.80 14.09 12.34 13.78 14.13 16.52 15.30
factrecall en 5.33 4.65 4.67 4.65 5.84 5.74 5.14
factrecall zh 0.80 1.29 1.11 1.35 1.43 2.05 1.68
hotpotwikiqa mixup 0.24 0.69 0.48 0.82 0.16 0.99 0.76
lic mixup 3.40 10.19 8.49 10.07 9.27 8.73 10.63
loogle CR mixup 0.57 0.50 0.81 0.47 2.26 2.59 1.58
loogle MIR mixup 0.00 0.71 1.08 0.92 0.91 3.08 2.70
loogle SD mixup 0.17 4.76 4.02 4.86 5.54 5.67 4.71
multifieldqa en mixup 0.00 0.47 0.71 0.45 0.00 0.28 0.06
multifieldqa zh mixup 12.24 11.90 10.93 11.27 16.18 17.49 16.74

Q
w

en
2.

5-
14

B
-

In
st

ru
ct

Average 4.99 5.69 5.28 5.64 6.43 6.50 6.51
cmrc mixup 8.79 11.96 10.55 11.89 14.03 13.13 14.16
dureader mixup 13.84 12.23 12.08 12.46 15.39 14.46 13.94
factrecall en 4.31 0.45 0.77 0.45 1.19 0.30 0.15
factrecall zh 0.22 0.07 0.13 0.00 0.15 0.00 0.00
hotpotwikiqa mixup 0.00 0.64 0.53 0.64 0.33 0.67 0.49
lic mixup 11.96 10.18 9.52 10.19 11.57 12.17 11.13
loogle CR mixup 0.3 3.64 2.74 3.57 3.60 2.34 3.64
loogle MIR mixup 0.94 1.56 1.38 1.36 1.65 1.19 0.65
loogle SD mixup 1.45 7.59 7.53 7.41 7.20 9.14 8.54
multifieldqa en mixup 0.00 0.41 0.39 0.06 0.60 1.08 0.94
multifieldqa zh mixup 13.10 13.82 12.50 14.05 14.97 17.06 17.94

A.3 ADDITIONAL SLIDING WINDOW SIZE GENERALIZATION ON LONGBENCH

The sequence lengths of LongBench tasks are substantially shorter than those in LV-Eval and In-
finiteBench. We therefore select six relatively long tasks from LongBench, whose average se-
quence lengths range from 8k to 18k. To evaluate the context-length generalization ability of AHN-
augmented models on these tasks, we fix the attention-sink size to 128 tokens and vary the sliding-
window size from 896 to 8064. We compare AHN-augmented models against both Sliding Window

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 7: AHN modules demonstrate strong context generalization capacity on LongBench.

1024 2048 4096 8192
22.5

25.0

27.5
dureader

1024 2048 4096 8192

40.0

50.0

hotpotqa

1024 2048 4096 8192
10.0

20.0

musique

1024 2048 4096 8192

15.0

20.0

25.0
narrativeqa

1024 2048 4096 8192
Lossless Memory Size

17.5

20.0

22.5
qmsum

1024 2048 4096 8192
80.0

90.0

triviaqa

Qw
en

2.
5-

7B
-In

st
ru

ct

Sinks + SWA CT-Average AHN-GDN

Table 7: One-step training FLOPs (1017) under the setting of AdamW optimizer, next-token pre-
diction, full-parameter tuning, batch size 128, sequence length 24k, and sliding-window size 8k.

Model 3B 7B 14B

Full attention 0.6348 1.1519 2.5396
Attention Sinks + SWA 0.5405 1.0334 2.2252

AHN-GDN 0.5422 1.0359 2.2319

Attention (SWA) and Compressive Transformers using average pooling (CT-Average). As shown in
Figure 7, AHN-augmented models consistently outperform these baselines across different inference
window sizes.

A.4 DETAILED EFFICIENCY NUMBERS

Due to the space limit, we only show the relative ratio of FLOPs and memory cache in Table 2. The
detailed numbers are shown in the Table 9.

For trianing, our method uses a self-distillation training strategy in which only the AHN parameters
are optimized, while all parameters of the base LLM remain frozen. When training on the ChatQA
2 dataset (Xu et al., 2025) with 1B tokens, it takes only 10 hours on 32 A100 GPUs to train AHNs
for the Qwen2.5-7B model. Although the maximum training sequence length is 24k, the resulting
model generalizes to much longer sequences (e.g., 128k) during inference. Importantly, our method
does not require re-training the base LLM. To compare the training efficiency of sliding-window
attention, AHN-augmented models, and full attention, we calculate their training FLOPs under a
unified setting: AdamW optimizer, next-token prediction, full-model training, batch size 128, 24k
sequence length, and 8k sliding window size. The FLOPs per training step are summarized in Table
7.

A.5 PURE RNN BASELINE

The goal with AHNs is not to replace attention with RNNs, but to leverage the efficiency of RNNs
to address the quadratic-complexity bottleneck of attention on extra-long sequences. The AHN
framework fundamentally relies on a large sliding-window attention (SWA) to preserve the strengths
of attention on short and medium sequences. Removing SWA and using only RNNs would break the
design principle of our memory framework and result in a model that cannot function as intended.
We conduct an ablation experiment by removing SWA entirely and keeping only the AHN (RNN)
module, and the results are shown in 8. These results confirm that pure RNNs alone are insufficient
in our memory framework for long-context tasks.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: Module ablation for the AHN memory framework on Qwen2.5-7B (AHN-GDN variant).

Module LV-Eval Avg InfiniteBench Avg

Sinks + SWA 5.34 13.16
Pure RNN 0.04 1.19
AHN framework (Sinks + SWA + RNN) 6.54 16.93

Table 9: Inference efficiency numbers for 128k sequence length. The mixing/model FLOP ratio
measures the relative computational cost of the token mixer or the entire model compared with the
full attention baseline. For all methods except full attention, the lossless memory of attention sinks
(Xiao et al., 2024c) and sliding window attention (SWA) is 32k tokens. Compressive Transformers
(CT) (Rae et al., 2020) are implemented with attention sinks (Xiao et al., 2024c) and a compression
function of max or average pooling.

Base
model Token mixer

Extra
param
(M)

Extra
param
ratio

Mixing
FLOPs
(1015)

Mixing
FLOP
ratio

Model
FLOPs
(1015)

Model
FLOP
ratio

Memory
cache
(GB)

Memory
cache
ratio

Q
w

en
2.

5-
3B

-
In

st
ru

ct

Full Attn 0 0% 2.50 100% 3.29 100% 9.44 100%
Sinks + SWA 0 0% 1.17 46.6% 1.95 59.3% 2.42 25.6%
CT-Max 0 0% 1.18 47.1% 1.96 59.7% 2.45 26.0%
CT-Average 0 0% 1.18 47.1% 1.96 59.7% 2.45 26.0%

AHN-Mamba2 11.9 0.4% 1.17 46.7% 1.95 59.4% 2.45 26.0%
AHN-DN 11.8 0.4% 1.17 46.7% 1.95 59.4% 2.45 26.0%
AHN-GDN 13.0 0.4% 1.17 46.7% 1.95 59.4% 2.45 26.0%

Q
w

en
2.

5-
7B

-
In

st
ru

ct

Full Attn 0 0% 3.23 100% 4.87 100% 14.7 100%
Sinks + SWA 0 0% 1.55 48.0% 3.19 65.5% 3.76 25.6%
CT-Max 0 0% 1.57 48.5% 3.20 65.8% 3.81 26.0%
CT-Average 0 0% 1.57 48.5% 3.20 65.8% 3.81 26.0%

AHN-Mamba2 18.6 0.2% 1.56 48.2% 3.19 65.6% 3.81 26.0%
AHN-DN 18.5 0.2% 1.56 48.2% 3.19 65.6% 3.81 26.0%
AHN-GDN 21.3 0.3% 1.56 48.2% 3.19 65.6% 3.81 26.0%

Q
w

en
2.

5-
14

B
-

In
st

ru
ct

Full Attn 0 0% 8.83 100% 11.83 100% 50.33 100%
Sinks + SWA 0 0% 4.37 49.5% 7.38 62.3% 12.88 25.6%
CT-Max 0 0% 4.40 49.8% 7.41 62.6% 13.01 25.9%
CT-Average 0 0% 4.40 49.8% 7.41 62.6% 13.01 25.9%

AHN-Mamba2 51.4 0.3% 4.38 49.7% 7.39 62.4% 13.01 25.9%
AHN-DN 51.1 0.3% 4.38 49.7% 7.39 62.4% 13.01 25.9%
AHN-GDN 61.0 0.4% 4.38 49.7% 7.39 62.5% 13.01 25.9%

A.6 COMPARISON TO RECENT AND CONCURRENT ATTENTION-RNN-HYBRID WORKS

Besides the discussions in Section 4, here are the detailed differences between AHNs and recent
attention-RNN-hybrid works, Infini-attention (Munkhdalai et al., 2024), MiL (The Mamba in the
Llama) (Wang et al., 2024a), LoLCATs (Zhang et al., 2025) and concurrent work HQLT (Irie et al.,
2025):

Model architecture. Infinite-attention (Munkhdalai et al., 2024) performs chunk-wise attention and
updates its recurrent memory in a chunk-wise way. In contrast, AHN is built on a standard decoder-
only autoregressive Transformer and updates its compressed memory in a token-wise manner. This
token-wise design allows AHN to be integrated seamlessly into existing popular base models, and it
enables flexible configuration of the sliding-window size for attention according to available hard-
ware memory. Different from MiL (Wang et al., 2024a), which distills all attention layers into a
linear RNN, AHN only activates when the sequence length exceeds a large sliding window. Differ-
ent from the small attention window of 64 used in LoLCATs (Zhang et al., 2025) and HQLT (Irie
et al., 2025), and 2048 used in Infini-attention (Munkhdalai et al., 2024), AHN adopts a much larger
32k sliding-window size during inference. Since quadratic attention remains efficient for short and
medium sequences, the quadratic-complexity bottleneck only appears when sequences become extra
long. This motivates us to set a substantially larger attention window so that AHNs activate only
when the sequence length exceeds this window and attention begins to encounter efficiency issues.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Target tasks and evaluation setting. MiL (Wang et al., 2024a), LoLCATs Zhang et al. (2025), and
HQLT (Irie et al., 2025) evaluate models mainly on short-context tasks (e.g., ARC and HellaSwag
with sequence length < 128), where linear RNNs cannot demonstrate efficiency advantages. Besides
lacking efficiency gains, these methods must also make additional efforts to match the performance
of attention on these short-context tasks. In contrast, AHN targets extra-long-context tasks (e.g.,
LV-Eval and InfiniteBench with 128k sequence length). AHN does not activate when the sequence
length is shorter than the 32k window size, so the model operates exactly as a standard Transformer.
In other words, the performance of our method on short-context tasks is identical to full attention,
and no extra effort is required to match attention’s performance. For extra-long-context tasks such
as LV-Eval and InfiniteBench, AHN not only achieves performance comparable to full attention, but
also significantly reduces FLOPs and memory cache.

Training method. Infini-attention (Munkhdalai et al., 2024) does not disclose its overall training
cost; it only reports training for 30K steps with a batch size of 64 before fine-tuning on the passkey
retrieval task. MiL (Wang et al., 2024a) needs to train the whole token mixer parameters with
20B tokens, and HQLT (Irie et al., 2025) trains the entire model from scratch with 15B tokens. In
contrast, we freeze the base model’s all parameters and only train the newly added AHN parameters
(about 0.4% of the base model) using only 1B tokens, with only 740 update steps with batch size
of 128. Compared to LoLCATs (Zhang et al., 2025), which trains models through multiple stages
of Attention Transfer and Low-rank Linearizing, AHN uses a simple one-stage self-distillation
process.

A.7 LIMITATIONS AND FUTURE WORKS

While AHNs strike an effective balance between computational efficiency and memory fidelity,
their fixed-size compressed memory inevitably entails some information loss and may impair per-
formance on tasks that require exact recall, as detailed in the appendix. Furthermore, since our study
adopts a parameter-efficient self-distillation setup, performance remains capped by the underlying
base models’ capacity. Future work may explore stronger recall mechanisms and full-parameter
training to further unlock the potential of AHNs. For application scenarios, the AHN framework
opens up opportunities in long-context domains with sparse information or constrained resources,
such as lifelong learning, streaming video processing, and deployment on edge devices.

23

	Instruction
	Method
	Preliminary
	Artificial Hippocampus Networks
	Instantiation
	Training framework

	Experiments
	Setups
	An illustrative example
	Long-context benchmarks
	Ablation study
	Probing AHN with gradients visualization

	Related work
	Memory in neural networks
	Memory management

	Conclusion
	Appendix
	AHN instantiation
	Additional benchmark results
	Additional sliding window size generalization on LongBench
	Detailed efficiency numbers
	Pure RNN baseline
	Comparison to recent and concurrent attention-RNN-hybrid works
	Limitations and future works

