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Figure 1: We generate diverse whole-body humanoid motions from free-form language descriptions and exe-
cute these motions on the real humanoid robot.

Abstract: Humanoid robots, with their human-like embodiment, have the poten-
tial to integrate seamlessly into human environments. Critical to their coexistence
and cooperation with humans is the ability to understand natural language com-
munications and exhibit human-like behaviors. This work focuses on generating
diverse whole-body motions for humanoid robots from language descriptions. We
leverage human motion priors from extensive human motion datasets to initialize
humanoid motions and employ the commonsense reasoning capabilities of Vi-
sion Language Models (VLMs) to edit and refine these motions. Our approach
demonstrates the capability to produce natural, expressive, and text-aligned hu-
manoid motions, validated through both simulated and real-world experiments.
More videos can be found on our website https://ut-austin-rpl.github.

io/Harmon/.
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1 Introduction
Humanoid robots have great potential for seamlessly integrating into the human world due to their
human-like physique. We envision these robots operating in human-centered environments and
coexisting with people in shared physical spaces. To deploy humanoid robots to work and live with
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us, the robots should possess the capability to understand natural language instructions akin to our
everyday conversations. Furthermore, the ability to exhibit human-like behaviors will render these
robots more social and predictable, thus enhancing effective and safe collaborations between humans
and robots. To this end, this work focuses on developing a method for generating diverse behaviors
of humanoid robots from text descriptions. Our approach takes a natural language description of the
desired motions as input and produces corresponding whole-body motions.

Training a model to generate natural humanoid motions from language descriptions is challenging
due to the lack of large-scale datasets of language-motion pairs. Fortunately, the narrow embodiment
gaps between humans and humanoid robots unlock vast amounts of human-centered data sources for
model training. Particularly, there is an abundance of large-scale human motion data [1–5]. These
data, paired with language descriptions, capture a wide range of human motions. These human mo-
tions can be mapped to humanoid robots as informed priors for motion generation. Nonetheless,
discrepancies between the human model and the humanoid hinder the effectiveness of direct mo-
tion retargeting. First, head and finger motions are typically absent from the human motion dataset,
which consequently cannot produce humanoid motions for these body parts. Yet, these motions
are critical for the expressiveness of the robot’s whole-body motion. Further, retargeting cannot pre-
cisely replicate human motion on humanoids due to their kinematic constraints, potentially changing
the semantic meaning and legibility of the motion.

In this work, we introduce HARMON (Humanoid Robot Motion Generation), which generates
whole-body humanoid motions from free-form language descriptions by incorporating human mo-
tion priors. We employ PhysDiff [6], a diffusion-based generative model trained on large-scale
human motion datasets to generate human motions from language descriptions. PhysDiff incor-
porates physics constraints during the diffusion process and generates physically plausible human
motions. It generates human motion as a sequence of SMPL [7] parameters. We then retarget the
human motion to a simulated humanoid robot using inverse kinematics. As mentioned earlier, the
generated motion from PhysDiff does not involve hand and finger motions, and retargeting errors
can lead to the misalignment between the motion and the language description. To address these
issues, we leverage the commonsense reasoning capability of Vision Language Models (VLMs) to
edit the humanoid motion. Given a rendering of the humanoid motion and its language description,
the VLM generates head and finger motions and refines the arm motion. To realize the whole-body
motion on the real robot, we separate the upper- and lower-body motions and control locomotion
and upper-body motion independently. Benefiting from the human motion prior and VLM-based
motion editing, we can generate natural humanoid motions that align with the language description
and execute the motions on simulated and real humanoid robots.

We use a Fourier GR1 humanoid robot for the simulation and real-world experiments. We curate
a test set with texts from the HumanML3D test set and LLM-generated motion descriptions and
conduct a human study to evaluate the quality of the generated motion. HARMON demonstrates
natural and text-aligned humanoid motions and is favored by human evaluators on 86.7% of test
cases. Furthermore, we execute the generated motions on the physical robot and illustrate diverse
and expressive humanoid motions in the real world.

2 Related Work

Humanoid Motion Control. Humanoid motion control has been widely studied in the computer
graphics community, where human avatars are simulated to demonstrate diverse and physically
realistic behaviors [8–24]. These methods can demonstrate physically realistic motions on the
humanoid avatar by imitating human motions with reinforcement learning. However, deploying
them on the real robot is difficult since they use an unrealistic humanoid model (SMPL robot with
23 ball joints and no torque limit). Recent studies [25–27] have explored the imitation of human
motions on real and simulated humanoid robots. These approaches involve retargeting human
motion to humanoid robots and using reinforcement learning (RL) to train the robots in simulation.
Some of these studies [26, 27] have successfully deployed the trained policies to real-world robots.
Our work focuses on text-conditional humanoid motion generation. Yoshida et al. [28] also address
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this problem by directly generating humanoid motion using a Large Language Model. However,
their generated motions often appear unnatural and rigid. In comparison, we incorporate human
motion priors to produce more natural humanoid motions.

Human Motion Generation. Recently, significant developments have occurred in human mo-
tion generation. Early studies [29–36] generated human motion deterministically. Subsequently,
stochastic generative models were applied to human motion generation, employing GANs [37] or
VAEs [38–41] to create human motions from various conditions, such as action labels and texts.
More recently, diffusion models [42, 6, 43] have also been utilized for human motion generation.
These models can accept various conditions such as text or keyframes and produce diverse and nat-
ural human motions. Additionally, some recent works [44, 45] tokenize human motions and use
transformer-based autoregressive models to generate human motion through next-token prediction.

In our work, we use human motion generated from text as an initialization for humanoid motion.
While these text-conditioned human motion generation models provide a good prior for humanoid
motion, the structural differences between the human models in these frameworks and the real hu-
manoid necessitate further refinement of the humanoid motion.

Foundation Models for Robot Control. Foundation models, such as Large Language Models
(LLMs) and Vision-Language Models (VLMs), have shown exceptional performance as high-level
semantic planners for tasks involving embodied agents and robotics [46–55]. Recent studies [56–
58] have started to explore their potential for learning low-level robot behaviors. For example, L2R
[58] uses few-shot examples to prompt LLMs to generate reward functions for robot training, while
Eureka [56] eliminates the need for few-shot examples by employing an evolutionary search system
to iteratively propose improved reward functions. RL-VLM-F [59] generates reward functions for
agents to learn new tasks with feedback from VLMs. We leverage the zero-shot commonsense
reasoning capabilities of VLMs to evaluate and edit humanoid motions, improving the alignment
between humanoid motions and corresponding language descriptions.

3 Method
We study the problem of generating humanoid motions from language descriptions. From a text
description X , we aim to generate a sequence of robot joint configurations Q = {q1, · · ·qT },qi ∈
Rc. Here, T is the sequence length, and c is the number of joints of the humanoid robot.

Fig. 2 depicts our proposed method, HARMON. Firstly, we generate human motion based on the
language description and retarget this human motion to create the initial humanoid motion (Sec. 3.1).
To improve the alignment between the humanoid motion and the language description, we employ a
VLM to generate finger and head motions and iteratively adjust the body motion (Sec. 3.2). Finally,
we execute the generated motions on the real humanoid robot (Sec. 3.3).

3.1 Retargeting Text-Conditioned Human Motion
Training a model to generate humanoid motions from language descriptions directly is challenging
due to the absence of a paired dataset. We utilize a human motion generation model to generate
human motions from language descriptions, which we then retarget to the humanoid robot.

Given the text description X , we use PhysDiff [6], a physics-guided motion diffusion model, to
generate the corresponding human motion. The output is a sequence of SMPL [7] parameters P =
{(θ1, t1), · · · , (θT , tT )}, where θi is the joint rotations and ti is the root translation at time step i.
The SMPL model also includes a body shape parameter β ∈ R10, encoding attributes such as height
and size. Given θi, ti, β, the positions of each human joint Ji = S(θi, ti, β) are computed using the
SMPL model S. Each Ji ∈ R24×3 contains the positions of 24 human joints at time step i.

Before retargeting human motion to humanoids, we first minimize the disparity between human
body shape and humanoids to ensure the robots can reach human joint positions. Inspired by He et al.
[27], we set the SMPL model and humanoid model to the same T pose, select 17 corresponding joint
pairs on both models, and minimize the joint position differences. We employ the Adam optimizer
[60] to minimize the joint position difference by optimizing β. The optimized β∗ is subsequently
used to compute joint positions from the SMPL parameters.
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Figure 2: Overview of HARMON. Given the language description of a motion, we first generate corresponding
human motion and retarget it to the humanoid using inverse kinematics. Next, we utilize a VLM to refine
the humanoid motion. This process involves extracting finger and head motion descriptions from the initial
language description and generating the corresponding motions using the VLM. Given the rendered humanoid
motion, the VLM iteratively evaluates and adjusts the motion to ensure alignment with the language description.
Finally, HARMON generates whole-body humanoid motion that accurately aligns with the language description.

Next, we utilize the inverse kinematics (IK) solver from pink [61] to align the key joints of the hu-
manoid with those of the human model by optimizing the humanoid’s joint configuration q. The key
joints include the wrists, elbows, shoulders, knees, and ankles. Given the current joint configuration
of the humanoid and the target positions of the key joints, the solver calculates the joint velocities to
drive the key joints to their target positions. We sequentially set the target as the spatial position of
the SMPL model and update the joint configuration with the results from the IK solver at each time
step. After iterating through the SMPL parameters for each time step, we obtain a sequence of robot
joint configurations, Qr, from the retargeting process. Controlling the robot to follow this sequence
results in humanoid motion that closely mimics the generated human motion.

3.2 VLM-Based Humanoid Motion Editing

The retargeting process initializes humanoid motion based on the generated human motion. How-
ever, due to the differences in the kinematic structures between the SMPL human model and the hu-
manoid, the retargeted motion might not fully align with the intended language description. Specifi-
cally, the humanoid can actuate the neck and dexterous hands, whereas the generated human motion
lacks head and finger movements. Consequently, the retargeted motion does not fully exploit the
humanoid’s potential for expressive motion. Additionally, the retargeting process cannot precisely
replicate human motion on the humanoid, potentially resulting in a humanoid motion with a dif-
ferent semantic meaning from the original human motion. These factors can cause a misalignment
between the humanoid motion and the language description. To address this issue, we render the
retargeted motion into videos and utilize GPT-4 to edit the humanoid motion for better alignment.
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Figure 3: VLM-based motion editing. Top left: GPT-4 generates finger motions at keyframes based on the
rendered humanoid motions and the finger motion description. Top right: GPT-4 identifies keyframes and
generates head motions from the head motion description. Bottom: GPT-4 iteratively adjusts arm motion by
evaluating and refining the rendered humanoid frames based on the motion description.

Finger and Head Motion Generation. To maximize the expressiveness of the humanoid motion, it
is essential to generate finger and head movements and integrate them with the whole-body motion
from the retargeting process. As illustrated in Fig. 3, the finger and head motions are generated
separately, each with its own motion description. We employ GPT-4 to extract these specific de-
scriptions from the original motion description. This approach allows the VLM/LLM to concentrate
on generating precise finger and head movements while avoiding unnecessary motion generation
when these parts are not involved.

The finger motion needs to be coordinated with the arm motion. To achieve this, we use GPT-4
to observe the rendered video of the retargeted whole-body motion and generate the corresponding
finger movements. Since GPT-4 only accepts images as input, we sample four frames at equal inter-
vals from the video. Although more frames might capture additional details, we found empirically
that the existing VLMs exhibit reduced reasoning ability when input sequences are too long. For
our task, four frames are sufficient for the VLM to generate the finger motion accurately. We in-
put these four frames along with the finger motion description into GPT-4, prompting it to generate
hand joint configurations qf

i ∈ Rnf for each interval, where nf = 12 represents the total number of
finger joints. The results for different intervals are then concatenated into a sequence of finger joint
configurations, Qf .

The head motion is more independent and has lower dimensionality than the finger motion. There-
fore, we use an LLM, specifically GPT-4, to directly generate head movements from the head motion
description. We provide GPT-4 with the head motion description, the total number of frames, and
the frames per second (FPS) as input. GPT-4 then determines the joint configurations qh

i ∈ R3 for
the three neck joints at keyframes. By interpolating between these keyframes, we obtain smooth
head movements, represented by the sequence of joint configurations Qh. The key frame indices are
determined autonomously by GPT-4, allowing for the generation of high-frequency head motions.

Iterative Motion Adjustment. The retargeted motion may not align with the language description
for two primary reasons: 1) the generated human motion may not accurately reflect the language
description, and 2) the retargeting process may alter the human motion, resulting in humanoid mo-
tion with a different semantic meaning. To address these discrepancies, we implement an iterative
motion adjustment schema to align the humanoid motion with the language description.

As shown in the bottom row of Fig. 3, we employ a judgment agent and an adjustment agent to
ensure alignment. Similar to the process for generating finger motion, we select four frames from the
generated motion video at equal intervals. These frames, along with the human motion description,
are provided to the judgment agent. GPT-4V first generates a caption describing the actions of the
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humanoid in the video. Then, it assesses whether the actions match the motion description and
provides suggestions for improvement. In the next step, the same four screenshots and the generated
suggestions are input into the adjustment agent. The adjustment agent then predicts the necessary
adjustments to align the motion with the provided suggestions.

The key to effective motion edits is providing an intuitive interface for the adjustment agent. Di-
rectly allowing the VLM to edit the joint configurations of retargeted motion Qr is challenging due
to the non-intuitive mapping between joint configurations and motion. Additionally, editing lower
body motion is not particularly meaningful for this project, as the lower body is controlled by a
separate controller in the real robot experiment. Therefore, our focus is on the upper body motion,
which demonstrates richer semantics and is easily controllable on the real robot. We design a set of
control primitives that move the left and right wrists in specific directions using inverse kinematics,
such as moving up/down or towards the head/chest. Details about these primitives are provided in
the appendix. The adjustment agent can combine these primitives to create motion adjustments. We
then apply these adjustments, render a new video, and return to the judgment agent to start a new
evaluation round. This process is repeated until the judgment agent confirms that the motion aligns
with the language description or the adjustment process exceeds two rounds. Since our control prim-
itives are limited to spatial wrist movements, we include an additional step in the judgment agent
to determine if the current motion can be improved by the editing process based on the language
description. If improvement is unlikely, the process is skipped.

If any adjustments are made, we use the body joint configuration sequence Qb resulting from the
final round of editing. If no edits are necessary, we directly use the retargeted motion Qr as the final
body joint configuration sequence Qb. Finally, we combine Qb, Qf , and Qh to form the complete
body joint configuration sequence Q∗.

3.3 Motion Execution on the Real Robot
Directly executing the whole body joint configuration sequence Q∗ on the real humanoid is infeasi-
ble because the kinematic motion does not account for the robot’s dynamics and balance. Therefore,
following Cheng et al. [26], we separate the lower- and upper-body motion in the real robot exper-
iment. We simplify the lower body motion into locomotion commands and utilize a Zero Moment
Point (ZMP)-based [62] controller for locomotion. These locomotion commands are extracted from
the trajectory of the humanoid robot’s pelvis projected onto the ground plane. Simultaneously, we
execute the upper-body motion from the generated joint configuration sequence Q∗ on the real robot
using joint position control. By separating locomotion and upper-body motion, we can successfully
execute our generated motion on the real robot.

4 Experiments
4.1 Evaluation Setup and Baselines

Evaluating whole-body humanoid motion generation is challenging due to the absence of datasets
containing paired language and humanoid motion data. We conduct a human study to assess our
generated motions. We curate a test set of approximately 50 language descriptions of motions.
The first part of this test set comprises texts randomly sampled from the HumanML3D [1] test set,
focusing primarily on body motions without involving head and finger movements. To evaluate
whole-body humanoid motions, we use GPT-4 to generate descriptions that include head and finger
motions, forming the second part of the test set.

We generate humanoid motions from these descriptions using HARMON and compare them against
three baselines:

VLM-based Motion Generation. Inspired by Yoshida et al. [28], this baseline generates humanoid
motions directly using a Large Language Model (LLM). In this approach, we exclude the human
motion prior from HARMON and initiate VLM-based motion editing from a static SMPL T-pose.
Since VLM-based editing only modifies upper-body joints, we incorporate the lower-body motion
from HARMON for a fair comparison. This allows us to evaluate the significance of the human
motion priors.
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Figure 4: Quantitative results of human study. A higher normalized score indicates a better alignment
between the humanoid motion and the language description.

Human Motion Retargeting. This baseline uses the retargeted human motion directly as the body
motion. To ensure a fair comparison with HARMON, we add the finger and head motions from HAR-
MON to create the complete whole-body motion. This comparison helps us assess the effectiveness
of the iterative motion adjustment.

HARMON w/o Head or Finger. This is an ablated version of HARMON where the head and finger
joints are defaulted to zero position rather than generated.

By comparing HARMON with these baselines, we aim to evaluate the importance of human motion
priors, iterative motion adjustment, and the head and finger motion generation.

The resulting humanoid motion from HARMON and the baseline models are rendered into simulation
videos and shown to participants in a human study. For each video, participants evaluateevaluate
whether the humanoid’s movements align with the text, focusing on three specific aspects: 1) finger
and head movements, 2) arm movements, and 3) overall body coordination. The movement of these
body parts reflects the expressiveness, accuracy, and naturalness of the generated motion. In total,
we collect assessments for 1728 results from different methods provided by 12 participants.

4.2 Evaluation of Humanoid Motion Generation

We first evaluate the overall alignment between the generated humanoid motion and the correspond-
ing language description for each method. Each aspect (finger and head movements, arm move-
ments, and overall body coordination) is scored by participants, contributing one point if marked as
correct. We aggregate the scores across all aspects, results, and participants to obtain a total score
for each method. The total scores are then divided by the maximum possible score to calculate the
normalized scores. The overall normalized scores are displayed on the left part of Fig. 4. HARMON
achieves a high normalized score of 81.2%, significantly outperforming the baselines. The VLM-
based motion generation baseline receives the lowest normalized score, underscoring the importance
of incorporating human motion priors in humanoid motion generation.

We conduct a more detailed analysis of the text-motion alignment of different body parts for each
method. We compute the scores for each body part separately and visualize the results on the right
part of Fig. 4. The VLM-based motion generation baseline consistently scores the lowest across
almost all body parts. This result highlights the difficulty for VLM in generating accurate motions
directly from language descriptions without a reasonable initialization from human motion priors,
especially for complex motions. The human motion retargeting baseline shows a lower normalized
score for arm motions, demonstrating that the VLM-based iterative motion adjustment improves
alignment between arm motions and the language description. The baseline without finger or head
motions naturally scores lower in these aspects. However, the normalized score is non-zero because
some test motion descriptions do not involve finger motions.

Additionally, we visualized some of HARMON’s results in Fig. 5. The retargeted human motion pro-
vides a solid initialization for humanoid motion, especially for high-frequency actions like clapping
(first row). These visualizations also highlight various instances where the retargeted human motion
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Generated Human Motion Retargeted Humanoid Motion Refined Humanoid Motion

Text: “Clap the hands above the head.”

Text: “Raise the right hand with a thumb-up in front of the chest and nods the head.”

Text: “Tilt the head to the right and scratches the head.”

Text: “Point diagonally upwards to the left with index finger and places the left hand on chest.”

Figure 5: Qualitative results of HARMON. We highlight the generated head and finger motions with red
circles and the motion adjustment with red arrows.

misaligns with the language description and how VLM-based motion editing corrects these issues.
For example, in the second row, VLM-generated finger and head motions significantly enhance the
expressiveness of the humanoid motion. In the third row, the retargeting error causes the humanoid
motion to deviate from the original human motion, but the iterative motion adjustment successfully
realigns it with the text description. Additionally, there are cases where the generated human motion
itself did not align well with the language description, as seen in the fourth row. Here, iterative
motion editing also improved the alignment, demonstrating its effectiveness in refining the motion
to match the language description better.

4.3 Real-Robot Deployment

When executing the generated motions on the real robot, we decouple locomotion from upper-body
movements to maintain the robot’s balance while demonstrating the generated motions. We tested
both standing motions and motions requiring locomotion on real GR1 humanoids. We illustrate
some example results in Fig. 1. Videos showcasing the real robot executing the generated motions
are on the project website.

5 Conclusion
This work addresses the problem of generating humanoid motion from free-form language descrip-
tions. We introduce HARMON, which utilizes human motion priors and the commonsense reasoning
capabilities of VLMs for humanoid motion generation. Our results demonstrate that HARMON can
produce natural, expressive, and text-aligned humanoid motions, which are executable on real hu-
manoid robots. Our iterative motion adjustment process relies on a fixed set of intuitive control
primitives. These primitives struggle when the generated human motion significantly deviates from
the language description, especially for high-frequency motions. A potential future direction is to
enable the VLM to generate its free-form control primitives. In this work, we separate lower- and
upper-body control for the real robot. As a result, some generated motions may cause the robot to
lose balance or collide with itself. We aim to incorporate RL-based whole-body control for more
robust execution on the real robot in future work.
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