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ABSTRACT

Sparsely activated Mixture-of-Experts (SMoE) has shown promise in scaling up
the learning capacity of neural networks. However, vanilla SMoEs have issues
such as expert redundancy and heavy memory requirements, making them ineffi-
cient and non-scalable, especially for resource-constrained scenarios. Expert-level
sparsification of SMoEs involves pruning the least important experts to address
these limitations. In this work, we aim to address three questions: 1 What is the
best recipe across multiple plausible recipes to identify the least knowledgeable
subset of experts that can be dropped to achieve a desired sparsity level? 2 How
should we perform expert dropping (one-shot or iterative), and what correction
measures can we undertake to minimize its drastic impact on SMoE subnetwork
capabilities? 3 What capabilities of full-SMoEs are severely impacted by the
removal of the least dominant experts, and how can we recover them? Firstly,
we propose MoE Experts Compression Suite (MC-Suite), which is a collection
of some previously explored and multiple novel recipes to provide a comprehen-
sive benchmark for estimating expert importance from diverse perspectives, as
well as unveil numerous valuable insights for SMoE experts. Secondly, unlike
prior works with a one-shot expert pruning approach, we explore the benefits of
iterative pruning with the re-estimation of the MC-Suite criterion. Moreover, we
introduce the benefits of task-agnostic fine-tuning as a correction mechanism dur-
ing iterative expert dropping, which we term MoE Lottery Subnetworks. Lastly,
we present an experimentally validated conjecture that, during expert dropping,
SMoEs’ instruction-following capabilities are predominantly hurt, which can be
restored to a robust level subject to external augmentation of instruction-following
capabilities using k-shot examples and supervised fine-tuning.

1 INTRODUCTION

Figure 1: Wikitext Perpelxity of Mix-
tral 8×7B pretrained checkpoint when
removing a single expert e from layer l.

Sparsely activated Mixture-of-Experts (SMoEs) are a
promising architecture design that facilitates an amalga-
mation of the collective intelligence of multiple experts
and are distinguished by their ability to dynamically allo-
cate computational resources based on the input. Mixture-
of-Experts, initially introduced in (Shazeer et al., 2017a),
has undergone extensive exploration and advancement,
and is now adopted in industry-scale LLMs (e.g., Mixtral-
8×7B, Grok-1, DBRX, etc.), achieving stellar perfor-
mance across various NLP and CV task leaderboards. De-
spite the sparse nature of MoEs promising enhanced ef-
ficiency and scalability, they have crucial limitations: 1
SMoEs trade space for FLOPs, which require high mem-
ory usage due to the duplication of the network layers into
multiple copies as experts; 2 SMoEs tend to have poor utilization of their capacity and existence
of redundancy (Mittal et al., 2022; Chen et al., 2023) due to representation collapse.
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[EWN] Expert Weight Norm

Inference Behavior Perspective

[EUF] Expert Usage Frequency

[ECP] Expert Collaborative Property

[EVTC] Expert Vocab Token Coverage

[ETS] Expert Input Token Similarity

Activation Perspective

[EAS] Expert Activation Similarity 

[EAE] Expert Activation Entropy 

[EAO] Expert Activation Outliers

[EAN] Expert Activation Norm
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[EGS] Expert Gradient Similarity 

[EGE] Expert Gradient Entropy

[EGO] Expert Gradient Outliers 

[EGN] Expert Gradient Norm

MoE Experts 
Compression Suite

(MC-Suite)

Figure 2: MoE Experts Compression Suite (MC-Suite): A comprehensive basket of criterions
(c) to investigate dominant experts across different SMoE blocks from weight, expert behavior,
intermediate activations, and gradient behavior perspective. Criterion with indicate it has been
previously explored either in exactly the same formulation or with slight variation. Based on the
score of a criterion (scoree

c) estimated within a MoE layer, an expert (e) is identified and removed.

In parallel to well-studied techniques that address memory and compute bottlenecks using weight
sparsity (Jaiswal et al., 2023c; Lee et al., 2019; Frankle & Carbin, 2019; Yin et al., 2023b; Liu et al.,
2023a) and quantization (Liu et al., 2023b; Kim et al., 2023; Dettmers et al., 2023; Frantar et al.,
2022; Lin et al., 2023), SMoEs architecture design facilitates a unique opportunity for expert-level
sparsification that aims to compact the SMoE model by retaining fewer but more knowledgeable
experts. For instance, Figure 1 illustrates that the existence of some experts is critically important
(dominant) and dropping them could lead to an abrupt performance drop, while some experts are
notably redundant with negligible impact when removed. Recently, a few works1 have proposed
expert importance estimation techniques such as token reconstruction loss (Lu et al., 2024) and
heavy-hitters counting (Muzio et al., 2024), illustrating the potential of expert dropping. However,
a comprehensive benchmarking of possible task-agnostic recipes to select the best recipe is still
missing. At this point, one key question arises: What is the best recipe to identify less knowledgeable
experts that can be dropped without sacrificing the vital knowledge and capabilities of the SMoE?

In this work, we present MoE Experts Compression Suite (MC-Suite), a comprehensive collec-
tion of potential recipes for expert importance estimation2 which studies “clues” from four broad
and diverse perspectives: a expert & router weight dynamics, b expert inference behavior dynam-
ics, c intermediate activation properties, and d expert gradient properties. In addition to expert
importance, MC-Suite unveils numerous valuable insights across experts: dominant experts tend
to have lower stable-rank (i.e., pretraining knowledge is well compressed (Jaiswal et al., 2024))
which is favorable for additional compression using low-rank factorization; intermediate activation
and gradients corresponding to dominant experts tend to have higher entropy indicating better infor-
mation quantity and conducive finetuning abilities for downstream adaptation (Zhang et al., 2024;
Zhao et al., 2024); among many others as outlined in Section 3. It is important to note that dropping
experts involves deleting its entry in the router gating function, which leaves the MoE subnetwork
in a sub-optimal state (i.e., increased skewness in load distribution across retained experts, abrupt
drop in performance with high dropping ratio). Most existing prior works (Lu et al., 2024; He et al.,
2024; Muzio et al., 2024) adopt one-shot criterion estimation for expert removal that alleviates the
impact incurred due to sparsification in the form of load imbalance and abrupt performance drop.

In this work, we systematically illustrate that extending one-shot pruning to iterative pruning with
re-estimation of importance criterion in k-rounds3, leads to identifying a better subset of experts
for dropping. Moreover, motivated by lottery ticket hypothesis (Frankle & Carbin, 2018), we pro-

1Performance comparison of best recipe from MC-Suite w.r.t. SoTA MoE expert pruning techniques (Lu
et al., 2024; Muzio et al., 2024) is present in Appendix A.5 for MMLU task.

2MC-Suite is composed of multiple novel proposed criterions (e.g., entropy-based, norm-based) as well as
prior explored criterions (e.g., expert usage, expert weight similarity).

3Our ablation in Appendix A.3 illustrate that subnetworks idetified from one-shot vs. iterative pruning
are significantly different. We conclude that iterative pruning helps in improving subnetwork quality while
additional finetuning helps in retaining the capabilities of subnetwork to avoid abrupt performance degradation.
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pose MoE Lottery Subnetwork which involves task-agnostic budget finetuning4 using next-token
prediction objective to address the intermediate sub-optimal state induced due to expert-level spar-
sification. More specifically, the MoE lottery subnetwork is derived using an iterative estimation-
prune-finetune procedure, and our experiments illustrate that the task-agnostic finetune submodule
can help in load distribution across remaining experts along with improving the performance.

To unveil the true merits of expert-level sparsification, in this work we ask an interesting question:
Given the existence of redundancy across experts, during expert-level sparsification, what capabil-
ities of full-MoE are severely impacted? We hypothesize that during expert-level sparsification of
well-trained MoEs, instruction following capabilities are notably hurt while the derived MoE sub-
network still retains the pretraining knowledge and reasoning abilities to a great extent. Our work
design controlled experiments from zero-shot setting to k-shot setting and supervised finetuning
(SFT) using instruction-tuning dataset, to augment instruction following capabilities into derived
MoE subnetwork. Our experimental results indicate that external instruction-following support can
impressively minimize the performance drop due to expert-level sparsification on complex reasoning
downstream tasks. Our key contributions can be briefly summarized as:

• We present MoE Experts Compression Suite (MC-Suite), to re-look the expert importance
estimation and facilitate a comprehensive benchmark from a multi-dimensional perspec-
tive. Our extensive experiments show that activation & gradient-guided importance esti-
mation criterions that take into account both input tokens and weight parameters, identifies
a superior subset of least dominant experts which can be dropped with minimal impact.

• We explore the potential of iterative estimate-prune-finetune procedure in context of
expert-level sparsification. Our experiments illustrate that a fairly limited amount of task-
agnostic finetuning facilitate not only improved performance of resultant subnetwork but
overcome the skewness in load distribution incurred due expert dropping.

• Our extensive experiments across multiple downstream dataset (e.g., MMLU, ARC-c,
ARC-e, HellaSwag, and WinoGrande) surprisingly found that MoE subnetworks, even at
non-trivial sparsity ratios (e.g., ≥50% with ≥1.27× speedup and ≤0.55× memory usage)
can achieve robust performance subjected to external augmentation of instruction follow-
ing capabilities using k-shot examples or supervised finetuning.

2 MOE EXPERTS COMPRESSION SUITE (MC-SUITE): AN EXHAUSTIVE
BASKET OF STRATEGIES TO FIND FANTASTIC EXPERTS

Mixture-of-Experts (MoE) architecture has been recently gaining enormous attention for the scaling
up of LLMs while maintaining roughly constant FLOPs. By incorporating multiple expert networks
and employing a sparse gating mechanism, MoE achieves efficient computation, enabling the de-
velopment of larger models within the constraints of limited computational resources (Fedus et al.,
2022; Jiang et al., 2024). Despite its advantages, MoE suffers from extensive memory costs, which
hinder its practical deployment and widespread adoption. For example, the Mixtral-8×7B MoE
model takes around 180GB memory while only 28GB parameters are activated for each input to-
ken5. In parallel to conventional model compression techniques like weight sparsity, quantization,
and distillation; the architecture design of MoEs facilitates a unique opportunity for expert-level
sparsification which involves identifying and removing the least important experts or connections.

Figure 1 presents the wikitext perplexity of Mixtral-8×7B by dropping a single expert e from layer
l. It can be clearly noted that some experts tend to have an abrupt impact on the performance of the
pre-trained checkpoint compared to others6. Therefore, it is critically important to carefully identify
the subset of least important experts, which are pruned to match the desired sparsity level with
minimal impact on performance. In this section, we present MoE Experts Compression Suite (MC-
Suite), a first comprehensive benchmark to investigate expert importance using a wide spectrum of
novel and previously explored (e.g., expert usage frequency) criterions broadly categorized in four

4Our experiments in Appendix A.2 confirms that a limited number of training iterations are sufficient to
address the sub-optimal state of MoE subnetwork produced after expert-level sparsification.

5The estimates are calculated using full precision (float32).
6Some Experts are Special: Across our experiments, we found that dropping of special experts lead to

abrupt performance drop and this behaviour is consistent for different tasks and datasets.
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groups: weight-guided expert importance, inference behavior based importance, activation-guided
importance, and gradient-guided importance.

2.1 PRELIMINARIES AND NOTATIONS

Consider an MoE-based transformer model ML with L MoE layers for processing a set of in-
put tokens X = {x1, x2, ..., xt}. A standard MoE layer (M l) is composed of a set of n experts
E = {E1,E2, ...,En} with corresponding weights {W 1,W 2, ...,W n} and a gating function G

with weight matrix W d×n
G . The gating function is responsible for selecting which experts will

be activated for a given input token xi by estimating selection score G(xi) ∈n with respect to all
experts in E . The input token xi is processed by top-k experts with scaled highest score, and the
expert’s outputs (intermediate activations) A = {a1, a2, ..., ak} are combined into a weighted sum
based on affinity score provided by the gating function. It can be summarized as follows:

Ki = top-k(softmax(G(xi)), k) (1)

yi =
∑

m∈Ki

Gm(xi) ·EWm
m (xi) (2)

where Ki indicated the top-k indices of the selected experts for token xi, Gm(xi) and EWm
m repre-

sents the affinity score and output for m-th expert for token xi.

2.2 WEIGHT-GUIDED EXPERT IMPORTANCE

1 Expert Weight Similarity Criterion (EWS): In this criterion, we flatten the weights of all
experts of layer l of M and calculate pairwise cosine similarity across them. Depending on the min
or max argument, we select expert Ep which have min or max cosine similarity with E − {Ep}.

cosn×n = pairwise-cosine∀(p,q)∈E×E(flatten(WEp
))

drop-index = min/max∀p∈E
{
sum(cos[p,:])− cos[p,p]

} (3)

2 Router Weight Norm Criterion (RWN): Given a token, the router gating function is responsible
for selecting top-k experts from n available experts using its weight matrix W d×n

G . RWN aims to
understand the role of the gating weights corresponding to Ep in WG to estimate its importance.

drop-index = min/max
{

norml2(W
d×n
G , dim=1)

}
(4)

3 Expert Weight Stable Rank Criterion (WSR): Stable rank of an expert weight matrix (WEp
) is

defined as
∑r

i=1 σ2
i (WEp )

σ2
1(WEp )

, where σi refers to the i-th sorted singular value of WEp
. Recently, stable-

rank has been studied in the context of LLM layer importance, generalizability, and downstream
adaption ability (Sanyal et al., 2020; Jaiswal et al., 2024; Zhang et al., 2024) and we aim to extend
it for estimation of expert importance.

drop-index = min/max
{
stable-rank∀p∈E(WEp

)
}

(5)

4 Expert Weight Norm Criterion (EWN): In this criterion, we calculate the l2-norm of weights
of all experts of layer l of model M . Depending on the min or max argument, we select expert Ep

that has min or max weight norm for dropping.

drop-index = min/max
{

norml2(WEp
)
}

(6)

2.3 INFERENCE-GUIDED EXPERT IMPORTANCE

1 Expert Usage Frequency Criterion (EUF): In this criterion, we define expert usage with a
calibration dataset (e.g., C4 validation for MC-Suite). Expert usage is estimated by the ratio of
tokens that activate Ep with a fixed calibration set. Note that we experimentally found that expert
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usage frequency is not strongly tied to the choice of calibration dataset. Given X as calibration set
with t-tokens and Ki be the top-k experts for token i, we select expert Ep as:

drop-index = min/max∀p∈E
{ ∑
xi∈X

1[Ki ∩ {Ep}] ̸= Ø
}

(7)

2 Expert-Expert Collaboration Criterion (ECC): Expert-Expert collaboration count is as de-
fined as the number of times two experts Ep and Eq are selected to process a token xi. Let X as
calibration set with t-tokens and Ki be the top-k experts for token i, we define:

collaboration-matrixn×n
(Ep,Eq)∈(E×E) =

∑
xi∈X

1[Ki ∩ {Ep, Eq} == {Ep, Eq}] (8)

Given the collaboration matrix, we select the expert pair (Ep,Eq) wrt. the min or max argument
and drop-index is identified as the expert that tends to have lower usage frequency.

3 Expert Vocabulary Coverage Criterion (EVTC): Expert vocabulary coverage is defined as
the fraction of unique tokens from the model vocabulary, which is processed by a given expert Ep.
Consider V be the model vocabulary and Xp are the tokens from calibration set X which are routed
to expert Ep by gating function, we select Ep as:

drop-index = min/max∀p∈E
{
unique(Xp)/|V|

}
(9)

4 Expert Input Token Similarity (ETS): In this criterion, we aim to estimate the input token-level
similarity across experts. More specifically, with Xp as the tokens routed to expert Ep, we generate:

token-similarity-matrixn×n
(Ep,Eq)∈(E×E) = count(Xp ∩ Xq) (10)

Given the token similarity matrix, we select the expert pair (Ep,Eq) wrt. the min or max argument
and drop-index is identified as the expert that tends to have lower usage frequency.

2.4 ACTIVATION-GUIDED EXPERT IMPORTANCE

1 Expert Activation Similarity Criterion (EAS): Given the calibration set of tokens X , we accu-
mulate the activation of tokens routed to experts (AEp

) using forward hooks. We first generate the
activation similarity matrix across each expert pair depending on min or max argument, we select
expert Ep which have min or max activation similarity with E − {Ep}.

activation-similarityn×n
(Ep,Eq)

=
1

|AEp
| × |AEq

|
∑

(am,an)∈(AEp×AEq )

cosine(am, an)

drop-index = min/max∀p∈E
{
sum(activation-similarity[p,:])− activation-similarity[p,p]

} (11)

2 Expert Activation Entropy Criterion (EAE): Entropy is the measurement of information quan-
tity and we extended (Lin et al., 2024) entropy quantification strategy for convolution feature maps
to expert activation. More specifically, in MC-Suite, the entropy of an expert activation (AEp

) is
proportional to the summation of the logarithm of the standard deviation of each hidden dimension:

H(AEp
) ∝

∑
j

log[σ(Aj
Ep

)] (12)

where, σ(Aj
Ep

) calculate the standard deviation of jth hidden dimension of the activation and sum
it to obtain activation entropy and select expert Ep which have min or max activation entropy.

3 Expert Activation Distribution Outliers (EAO): In this criterion, we estimate outliers in the
normally distributed activation of experts. More specifically, given AEp

as the activations of expert
Ep, we estimate mean (µAEp

) and standard deviation (σAEp
) across the hidden dimension and

count outliers outside the interval µAEp
± c × σAEp

with value of c = 3. Next, drop index can be
given as:

drop-index = min/max∀p∈E
{∑

(AEp < µAEp
−3.0×σAEp

)+
∑

(AEp > µAEp
+3.0×σAEp

)
}

(13)
4 Expert Activation Norm (EAN): In this criterion, we calculate the l2-norm across the hidden

dimension for the accumulated activation (AEp
) of expert Ep. Overall activation norm of Ep is

estimated as the sum of l2-norm over all hidden dimensions and the drop-index is given as:
drop-index = min/max∀p∈E

{
sum(norml2(AEp , dim=0))

}
(14)
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(a) One-shot Pruning (b) Iterative Pruning (c) MoE Lottery Pruning

Figure 3: Overview of Different Expert Pruning Strategies: Given a target expert sparsity of
S%, (a) One-shot pruning: removes S% of experts from each layer L from MoE based on one-
time estimation of criterion c; (b) Iterative pruning: removes S/k% of experts before re-estimation
of criterion c for k-rounds; (a) MoE Lottery pruning: removes S/k% of experts followed by task-
agnostic budget finetuning using calibration data before re-estimation of criterion c for k-rounds.

2.5 GRADIENT-GUIDED EXPERT IMPORTANCE

1 Expert Gradient Similarity Criterion (EAS): Given the calibration set of tokens X , we first
pass it through the model in batches and accumulate the gradient for all the expert’s weight matrices.
Consider W g

Ep
be the gradient corresponding to the weight matrix of expert Ep. We flatten the

gradient matrix for all experts of layer l and calculate the pairwise cosine similarity across them.

cosn×n = pairwise-cosine∀(p,q)∈E×E(flatten(W
g
Ep

))

drop-index = min/max∀p∈E
{
sum(cos[p,:])− cos[p,p]

} (15)

2 Expert Gradient Entropy Criterion (EAE): Gradient entropy is a measurement of information
encoded (Guan et al., 2019) within them, and it can be a well-suited indicator for judging the expert
importance with the privilege of finetuning. Similar to activation entropy, we estimate gradient
entropy by calculating the standard deviation across the hidden dimension of accumulated gradients
as:

H(W g
Ep

) ∝
∑
j

log[σ(W gj

Ep
)] (16)

3 Expert Gradient Outliers Criterion (EAO): In this criterion, we estimate the number of outliers
in the accumulated gradients of experts. Given W g

Ep
corresponding to weight of expert Ep, we

count number of outliers outside interval µW g
Ep

± c× σW g
Ep

with value of c = 3.

drop-index = min/max∀p∈E
{∑

(W g
Ep

< µW g
Ep

−3×σW g
Ep

)+
∑

(W g
Ep

> µW g
Ep

+3×σW g
Ep

)
}

(17)
4 Expert Gradient Norm Criterion(EAN): In this criterion, we calculate the l2-norm of gradients

of weights for all experts of layer l of model M . Depending on the min or max argument, we select
expert Ep that has min or max gradient norm for dropping.

drop-index = min/max
{

norml2(W
g
Ep

)
}

(18)

3 MOE LOTTERY SUBNETWORKS: BLESSING FROM TASK-AGNOSTIC
BUDGET FINTETUNING

Expert-level sparsification of SMoEs involves identifying r experts with the least importance using
criterions outlined in Section 2 and discarding them to reduce exorbitant memory requirements
of loading n experts. Dropping experts require explicit handling of the routing gate function by
removing the entry corresponding to dropped experts. In our work, we found that gating function
is highly sensitive to any modification and an ad-hoc deletion of r entries from the router matrix
(i.e., W d×n → W d×n−r) not only lead to significant performance degradation but also induces
heavier load on few among remaining n − r experts. Prior works have limited exploration of one-
shot removal of r experts to achieve a sparsity ratio of s% and overlooked attention at finetuning to
address the sub-optimal state of SMoE subnetwork after sparsification.

In this work we adopt motivation from the success of lottery ticket hypothesis (Frankle & Carbin,
2018; 2019) and explore: 1 iterative pruning of experts in k-rounds to attain sparsity ratio of

6
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Figure 4: Performance comparison (perplexity on C4) of Mixtral-8×7B Base Lottery Subnet-
works identified by dropping experts iteratively using various criterions from MC-Suite. Original
Mixtral-8×7B Base checkpoint achieves 7.44 perplexity on C4 validation set. Min & Max rep-
resents an expert (e) with minimum/maximum score of a criterion (c) in a MoE layer l is dropped.

Criterion (c) 12.5% 25.0% 37.5% 50.0% 62.5% 75.0%

Random Dropping (One-shot) 9.01 11.02 11.95 15.21 21.10 34.47
Random Dropping (Iterative) 9.78 11.12 13.06 15.46 22.76 38.94

Random Dropping (w. MoE Lottery) 9.66 10.54 11.83 13.71 18.23 33.05

Max-Router Weight Norm (RWN) 8.47 9.00 9.87 10.70 13.50 17.26
Max-Expert Token Similarity (ETS) 8.28 8.82 9.50 10.43 12.48 16.03
Min-Expert Gradient Entropy (EGE) 8.17 8.84 9.54 10.45 11.88 15.08
Min-Expert Activation Norm (EAN) 8.18 8.63 9.21 9.99 11.43 14.02

Table 1: Performance comparison (perplexity on C4) of Mixtral-8×7B Instruct Lot-
tery Subnetworks identified by various top-performing criterions from MC-Suite. Original
Mixtral-8×7B Instruct checkpoint achieves 7.82 perplexity on C4 validation set.

s%; 2 incorporation of task-agnostic finetuning on next token prediction task to stabilize the sub-
optimal state of SMoE subnetworks. Moreover, an iterative pruning strategy with re-estimation of
importance criterion enables taking into account the impact of thee removal of the first round of
experts on deciding the importance of remaining experts. We propose MoE Lottery Subnetwork,
which relies on iterative estimate-prune-finetune procedure as shown in Figure 3. Note that we
choose to state budget finetuning because we found that one doesn’t require extensive finetuning
iterations but a marginal amount is sufficient to obtain desirable performance gains (Appendix A.2).

Our experimental results in this section have two-folds. Firstly, we perform a comprehensive evalu-
ation of the criterions of MC-Suite (Section 2) using MoE lottery subnetworks with varying sparsity
ratios of s ∈ {12.5%, ..., 75.0%}. Secondly, we aim to understand the merits of iterative pruning
and task-agnostic budget finetuning by selecting top-performing MC-Suite criterions.

3.1 MC-SUITE AND MOE LOTTERY SUBNETWORKS

MC-Suite consists of a series of criterions from four diverse perspectives that provide “clues” for
identifying experts that contribute least to the original SMoE model and thus can be discarded.
Given a criterion c from MC-Suite, we study both maximizing and minimizing c while generating
the MoE lottery subnetworks to understand the characteristics of retained experts and its impact on
the final performance. Figure 4 presents the C4 validation perplexity of MoE lottery subnetworks of
Mixtral-8×7B Base model where an expert e from a MoE layer l is dropped subjected to maximum
or minimum value of c across other fellow experts in l. Table 1 presents the comparison of best-
performing criterions from four different perspectives of MC-Suite along with randomly selected
expert dropping baseline. It can be clearly observed that the usage of criterions from MC-Suite
significantly helps in improving the performance of MoE lottery subnetworks. In our experimental
setting, we choose to drop 32 experts (i.e., 12.5% sparsity) in every round of iterative pruning with
one expert per layer. Our experiments found that a non-uniform dropping of experts per layer by
estimating c globally creates bottleneck layers, with some layers having significantly high sparsity
while some remain unpruned, leading to diminished finetuning benefits and sharding simplicity.
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% Experts Dropped Random Dropping Min-Activation Norm (Min-EAN) Min-Gradient Entropy (Min-EGE)

One-shot Iterative MoE Lottery One-shot Iterative MoE Lottery One-shot Iterative MoE Lottery

0% 7.44

12.5% 11.25 7.94 7.89 7.95 7.90 7.89 7.89 7.89 7.88
25.0% 12.74 10.98 11.01 8.56 8.53 8.38 8.47 8.41 8.26
37.5% 13.89 13.19 12.22 12.87 9.35 9.00 13.33 9.48 9.09
50.0% 17.08 15.85 14.13 14.74 10.44 9.76 15.37 10.72 9.88
62.5% 30.41 18.79 20.60 21.36 12.55 11.00 22.21 12.81 11.00
75.0% 36.92 32.73 27.33 30.59 17.39 13.05 35.83 17.70 13.09

Table 2: Improved Language Modelling Abilities: Performance comparison of MoE Lottery Sub-
networks identified using criterion (c) with respect to Iterative and One-shot pruning. MoE Lottery
Subnetworks, which are supplemented with task-agnostic finetuning, are able to restore a better op-
timal state impacted by ad-hoc derivation from their dense counterpart.

Criterion (c)= Min-Activation Norm 0% 12.5% 25% 37.5% 50% 62.5% 75%

MMLU One-shot Pruning
60.01

52.97 43.97 13.55 18.91 12.63 5.82
Iterative Pruning 48.51 47.81 45.63 35..74 29.71 23.88

MoE Lottery Networks 49.54 49.65 47.13 40.79 37.24 28.12

WinoGrande One-shot Pruning
56.59

55.13 50.09 37.45 36.91 20.44 24.63
Iterative Pruning 55.90 52.17 49.96 48.53 47.11 50.35

MoE Lottery Networks 55.92 52.98 50.96 49.56 49.30 50.74

Table 3: Improved Zero-shot Downstream Performance: Downstream task performance compar-
ison of MoE Lottery Subnetworks identified using criterion (c) with respect to Iterative and One-shot
pruning in zero-shot setting (no in-context examples). MoE Lottery networks tend to have superior
abilities to follow instructions required to complete the downstream tasks.

The benefits of MC-Suite are not limited to exploration of the best recipe to identify least important
experts for dropping, but extends in deriving many valuable hidden insights of important experts.
We comprehend few interesting findings as: 1 activation and gradient-guided criterions (minimum
activation norm and gradient entropy) that take into account both input tokens and model parameters
achieves the superior performance over conventional criterions such as expert usage, expert weight
similarity, etc.; 2 surprisingly, l2-norm of router weight matrix turn out to be the best performing
candidate in comparison to other expert weight based criterions; 3 dropping experts with higher
vocabulary coverage lead to a significant drop in performance which indicate efforts to improve
specialization across experts in MoEs can be non-conducive for expert-level sparsification; 4 dom-
inant experts tends to have lower stable-rank, which aligns with recent findings of (Jaiswal et al.,
2024; Zhang et al., 2024) that LLMs weight matrices which are critical and well-trained also have
comparatively lower stable-rank with further compression potential with orthogonal techniques like
low-rank factorization; 5 our novel criterion of entropy quantification of activation and gradient
aiming to measures information encoded within them, turns out to best performing recipes for esti-
mating expert importance and also favourable for downstream task finetuning. Interestingly, while
comparing the impact of expert-level sparsification for Mixtral-8×7B Base and Instruct check-
points, we found that task-agnostic finetuning has comparatively lower benefits for Instruct in
comparison to Base model suggesting to perform expert dropping before instruction tuning.

3.2 UNDERSTANDING THE MERITS OF TASK-AGNOSTIC BUDGET FINETUNING

In this section, we attempt to unveil the true merits of the iterative estimate-prune-finetune procedure
of MoE lottery subnetworks. To investigate the benefits contributed by iterative pruning and task-
agnostic finetuning, we present performance comparison for one-shot, iterative pruning, and MoE
lottery subnetworks. Firstly, Table 2 illustrate the improved language modelling abilities measured
using validation perplexity of C4 dataset where MoE lottery networks (with Min-EAN and Min-
EGE criterion) can achieve ∼ 3× better performance compared to one-shot pruning, while iterative
pruning without any finetuning can still achieve ∼ 2× superior performance. It is also interesting to
note that even the random expert selection baseline significantly benefits from iterative pruning and
finetuning with ∼ 9.5 points better perplexity than one-shot pruning. Secondly, Table 3 presents the
improved zero-shot downstream performance (no in-context examples) of MoE lottery subnetworks
over one-shot and iterative pruning at varying sparsity levels on MMLU and WinoGrande. Clearly, it
can be observed that while one-shot pruning starts performing worse than random guess with merely
a 25% sparsity ratio; MoE lottery networks performance doesn’t drop below random guess even at
non-trivial sparsity ratio (62.5%-75.0%). Moreover, the the contribution of iterative estimate-prune-
finetune become more notable with increasing sparsity ratios.
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Figure 6: Downstream task performance of MoE Lottery Subnetworks at varying sparsity level
when augmented with external instruction following capabilities using k-shot examples (Row 2)
and supervised finetuning (Row 3) using instruction-tuning dataset.
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Figure 5: Improved load balancing across experts
(l = 6 & 30) for Mixtral-8×7B Base model before
and after task-agnostic finetuning with C4.

Next, we ask an interesting question: How
does task-agnostic finetuning, which aims
to re-adjust the router weight, influence the
load distribution across experts? To this
end, Figure 5 illustrates the expert load dis-
tribution7 of remaining experts of a MoE
layer from Mixtral-8×7B Basemodel with
50% expert sparsity ratio before (dashed
red line) and after (solid green line) task-
agnostic finetuning using C4 dataset. It can be clearly observed that our proposed finetuning sub-
routine can significantly help in induced skewness in load distribution across experts due to expert
droping and removal of its entry from the router gating function. Note that a well-balanced load
distribution across experts is encouraged to facilitate better GPU memory utilization and speedup.

4 WHAT IS LOST V/S WHAT PREVAILS? AN IN-DEPTH INVESTIGATION OF
EXPERT DROPPING AND LOST CAPABILITIES

SMoE models require enormous memory to host experts during inference while being known to have
poor utilization of its capacity. In recent times, multiple LLM compression techniques (e.g., weight
sparsity, quantization, low-rank factorization, etc.) are being developed to address the memory
and computational bottleneck. Some works (Jaiswal et al., 2023a; Hong et al., 2024; Yin et al.,
2023a) attempt to understand the impact of compression on pretrained checkpoints while handling
knowledge-intensive tasks, trust, and safety. Motivated by their findings, we aim to understand
the impact of dropping least important and redundant experts during expert-level sparsification of
SMoEs. Given that SMoEs are trained using a Top-k routing policy, each token is processed by k
experts, promoting redundancy and less sensitivity to expert dropping by design choice. We ask:
What capabilities of full-SMoEs are severely impacted by the removal of least dominant experts?

At first, a narrow view of the zero-shot downstream evaluation of SMoE subnetworks with expert-
level sparsification indicates a sharp performance drop compared to the full-SMoEs. Figure 6 (row
1) illustrates the zero-shot performance of MoE lottery subnetworks identified with four criterions
from MC-Suite on 5 popular reasoning and knowledge-intensive tasks. It can be clearly observed
that the expert-dropping tends to have an acute impact on the downstream tasks but we pause and
ask: Is this abrupt performance degradation incurring due to loss of pretraining knowledge and
reasoning abilities or instruction-following abilities? We conjecture that when we drop the least

7Expert (e) Load: Given a fixed number of input tokens, # tokens processed by the expert e.
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dominant experts, SMoEs instruction following capabilities are predominantly hurt, and it can be
restored to a notable extent with external support.

To experimentally validate our conjecture, we design the controlled experiments in three folds: 1
zero-shot setting which directly evaluate pruned SMoE performance on downstream tasks without
any in-context example; 2 k-shot setting which provide k in-context examples as external assistance
for compressed LLMs to follow downstream instructions; 3 supervised finetuning (SFT) that aim
to explicitly embed external instruction following support in compressed SMoE checkpoint by fin-
tuning using instruction following dataset. Figure 6 (row 2 & 3) illustrates that external instruction-
following support can impressively minimize the performance gap due to expert-level sparsification
on complex reasoning downstream tasks. Note that for fair comparsion, our full-SMoE baselines
represented as straight lines are also provided exactly similar external instruction-following support.
Interestingly, we can observe that SFT, even with the zero-shot setting, can enable robust perfor-
mance of compressed SMoE models at non-trivial sparsity ratios (≥ 50%). Moreover, for some
comparatively easier tasks (e.g., BoolQ, ARC-easy), it facilitates pruned SMoEs to outperform the
full-SMoE baseline.

5 EXPERT DROPPING V/S LLM WEIGHT PRUNING TECHNIQUES

LLM weight pruning algorithm (Yin et al., 2023b; Jaiswal et al., 2023b; Sun et al., 2023; Frantar
& Alistarh, 2023) involves removing non-significant weights parameters by setting them to zero.
Recent hardware advancements have enabled practical speedup for structural N:M sparsity patterns
(Nvidia, 2020; Zhou et al., 2021). In this section, we investigate the downstream task performance
of the expert-level sparsification method with the representative weight pruning baselines (random,
magnitude, and wanda). For expert-level sparsification, we present MoE lottery networks with ran-
dom and minimum activation norm criterions to identify dominant experts. Provided the hardware
supported 2 : 4 weight sparsity patterns, we choose expert drop ratio (r = 4) per layer to achieve
50% sparsification for both categories for fair comparison.

Model Method Sparsity Arc-c ARC-e HellaSwag MMLU WinoGrande Average

Mixtral 8×7B

None r = 8 78.18 91.94 64.88 60.01 56.59 70.32
Random Pruning 2 : 4 19.47 48.90 28.90 17.05 22.07 27.27

Magnitude Pruning 2 : 4 31.07 69.76 43.23 42.77 38.56 45.07
Wanda Pruning 2 : 4 43.82 70.16 53.16 50.21 48.96 52.91

Min-EAN Expert Pruning r = 4 60.02 71.41 50.78 51.33 49.56 56.62

Mixtral 8×7B

None r = 8 81.86 93.21 78.06 64.67 63.77 76.31
Random Pruning 2 : 4 23.68 56.42 37.01 22.15 29.07 31.94

Magnitude Pruning 2 : 4 54.96 69.44 57.18 29.08 40.79 50.29
Instruct Wanda Pruning 2 : 4 61.92 80.23 62.90 51.05 55.30 62.28

Min-EAN Expert Pruning r = 4 68.50 83.59 64.46 48.56 54.65 63.95

Table 4: Expert-level Sparsification V/s LLM Weight Pruning: Downstream task performance
comparison in zero-shot setting (no in-context example) of Mixtral 8×7B base and Instruct
when compressed using expert-level sparsification techniques v/s SoTA LLM pruning methods.

Table 4 summarizes the performance comparison in zero-shot setting for all baselines and MoE
Lottery subnetwork for Mixtral-8×7B Base and Instruct checkpoints. It can be observed that
expert-level sparsification can achieve ∼ 3.6% average performance gain over the Wanda pruning
while a notable ∼ 16.2% imporvement on ARC-c downstream task. In addition, we also find that
the performance benefits for Base model is comparatively superior than Instruct suggesting it
is favourable to perform expert-level sparsification on the Base model before instruction tuning.

6 CONCLUSION

In this paper, we provide a detailed investigation of multiple expert importance estimation tech-
niques (MC-Suite) to identify the best recipe for selecting the least knowledgeable experts that can
be dropped without sacrificing the vital knowledge and capabilities of the SMoE. We propose to
adopt a iterative pruning strategy with task-agnostic finetuning as a correction measure to minimize
the drastic impact on SMoE capabilities. We present and experimentally validate an interesting con-
jecture that during expert dropping, SMoE instruction following capabilities are predominantly hurt,
and SMoE performance can be notably recovered with a few-shot demonstration or supervised fine-
tuning. In our future work, we plan to investigate and disentangle the instruction-following abilities
and pretraining knowledge across the parameters of SMoE experts.
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A APPENDIX

A.1 RELATED WORK

SMoE and Its Superiority. It is widely acknowledged that scaling model size benefits per-
formance by enhancing learning capacity and generalization ability (Brown et al., 2020; Ka-
plan et al., 2020). To achieve more efficient model scaling, Sparsely activated Mixture-of-
Experts (SMoE) (Shazeer et al., 2017b; Zoph et al., 2022; Du et al., 2022) has emerged as a
widely adopted approach, enabling the training of larger models with negligible additional com-
putational overhead (Jiang et al., 2024; Dai et al., 2024; DeepSeek-AI et al., 2024). Given the
predominance of Transformer architectures in NLP, numerous research efforts have focused on in-
corporating MoE layers within the feed-forward neural networks of these models. In pursuit of
enhanced SMoE models, various iterations of the standard MoE architecture have been proposed.
For example, DeepSeek-MoE (Dai et al., 2024; DeepSeek-AI et al., 2024) utilizes a large number
of finely segmented experts, designating a subset as shared experts to capture common knowledge.
More recently, Mixtral (Jiang et al., 2024) has demonstrated that SMoE can achieve performance
comparable to full-parameter LLMs while utilizing significantly fewer active parameters.

Compression for LLMs and SMoEs. LLMs have demonstrated remarkable success. However,
their substantial memory and computational requirements pose deployment challenges. Numerous
model compression techniques have been proposed to address this issue. Algorithmically, these
methods can be classified into three main categories: 1 Quantization, which converts float32
weights or activations to lower-bit representations(Lin et al., 2023; Frantar et al., 2022; Jaiswal et al.,
2022; Xiao et al., 2024); 2 Pruning, which eliminates less critical components, such as weights,
neurons, or layers (LeCun et al., 1989; Han et al., 2016; Sun et al., 2023); 3 Knowledge distillation,
which transfers knowledge from a larger model to a smaller one (Gou et al., 2021; Li et al., 2024b;
Rajbhandari et al., 2022). In this study, we concentrate on model pruning for compression, which
is generally divided into structured and unstructured approaches. Structured pruning methods (Liu
et al., 2017; Molchanov et al., 2019; Shen et al., 2022; Fang et al., 2023) eliminate entire struc-
tured components of a network, facilitating straightforward GPU acceleration. Existing techniques
primarily rely on weight or activation statistics of neurons (Dubey et al., 2018; Molchanov et al.,
2017). Unstructured methods (Han et al., 2015; Paul et al., 2022; Hoang et al., 2023) operate at
the individual weight level, preserving performance at higher sparsity levels but typically requiring
additional effort to enable GPU speedups (Mishra et al., 2021).

SMoE architectures enable the scaling of LLMs but necessitate substantial memory to host experts
while exhibiting expert redundancy. To address these challenges, numerous studies have also fo-
cused on developing SMoE-model-specific compression techniques. Initial approaches (Chen et al.,
2022; Kim et al., 2021; Koishekenov et al., 2023; Sarkar et al., 2024) propose expert pruning based
on utilization metrics; however, these methods often resulted in diminished performance. Subse-
quent research (Rajbhandari et al., 2022; Fedus et al., 2022; Artetxe et al., 2022) explores the cre-
ation of smaller models, either dense or SMoE-based, with reduced layer counts through knowledge
distillation (KD). While effective, this approach demands significant computational resources and
fails to address the inherent redundancy among experts. More recently, MC-SMoE (Li et al., 2024b)
dynamically merges experts during inference time, though it is limited to specific tasks. Besides
pruning-based methods, there are also a few works that specifically study quantization in SMoE
models Li et al. (2024a).

A.2 TRAINING DURATION AND MOE LOTTERY NETWORKS

MoE lottery subnetworks rely on estimate-prune-finetune procedure to mitigate the abrupt impact of
expert dropping of the resultant subnetwork. More specifically, finetuning routine using pre-training
objectives helps in balancing expert load distribution and performance improvement. One natural
question that arises is: Given the enormous computational cost of finetuning SMoEs, how much
finetuning will be sufficient to achieve a reasonable performance gain facilitated by it?

Table 5 presents the performance (perplexity) of Mixtral-7×8B Base and Instructmodel check-
points when 6 out of 8 experts are dropped from every layer using the Minimum Expert Activation
Norm (Min-EAN) criterion. Each column in Table 5 indicates the total number of training tokens
used during the finetuning subroutine of the MoE Lottery Subnetwork. It can be clearly observed

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Training Tokens → 0.25M 0.51M 1.13M 2.27M
Mixtral 8×7B 13.55 13.51 13.05 13.01

Mixtral 8×7B Instruct 14.82 14.19 14.02 14.08

Table 5: Performance comparison (perplexity) wrt. total training tokens used in task-agnostic fine-
tuning of Mistral checkpoints with 75% expert dropping.

that the benefits of task-agnostic finetuning saturates after a certain amount of training tokens. More
specifically, we found that ∼1 million training tokens are sufficient to address the abrupt impact
created by expert dropping and any additional finetuning brings marginal or no gain in performance.

A.3 UNDERSTANDING EXPERT DROPPING PATTERN ACROSS ONE-SHOT, ITERATIVE & MOE
LOTTERY PRUNING
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Figure 7: Dropped Experts Distribution with 50% Sparsity: (a) Difference of experts identified to
be dropped with one-shot pruning in comparison with moe-lottery pruning, (b) Difference of experts
identified to be dropped with iterative pruning in comparison with moe-lottery pruning. Light Bisque
color corresponding to an expert (eiL) indicates agreement across both pruning techniques to drop
eiL, Dark pink indicates disagreement to drop, while Black indicates agreement to retain eiL.

In this section, we study the divergence of the selection of experts for pruning of one-shot and
iterative pruning w.r.t. MoE lottery pruning. The primary aim of this study is to highlight the benefits
of iterative pruning with re-estimation of expert importance criterions. It can be clearly observed
from Figure 7(a) that there exists a significantly high disagreement (dark pink) between one-shot
and iterative pruning while selecting least dominant experts leading to completely different resultant
subnetworks. The substandard performance of the one-shot method indicates that the identified
subnetwork is not of high quality in comparison to iterative pruning. On the other hand, Figure
7(b) illustrates a notable high agreement across experts, which undergoes dropping to achieve a
sparsity ratio of 50%. This leads to an interesting conclusion that task-agnostic finetuning does not
significantly alter the expert selection choice selection but instead helps in addressing the impact
incurred due to sparsification in the form of load imbalance and abrupt performance drop.

A.4 ADDITIONAL EXPERIMENTAL SETUP

Hyperparameter CommonsenseQA WinoGrande MMLU ARC-Easy BoolQ

Train Samples (avg. words) 9741(28.00) 63238 (39.96) 1531 (84.97) 2247 (48.16) 9427 (14.81)
Test Samples (avg. words) 1221(27.75) 1267(40.20) 14042 (84.28) 2372 (48.42) 3270 (14.70)

Batch Size 8 8 4 8 8
Max length 512 512 512 512 512

Training Steps 2500 2500 1000 1500 2500
Learning Rate 0.0001 0.0001 0.0001 0.0001 0.0001

Table 6: Hyperparamters settings for zero-shot downstream finetuning of Mistral-8×7B models.

Our experiments are conducted on Mixtral MoE Base and Instruct downloaded from Hug-
gingFace. For activation and gradient criterions, we propose to use a task-agnostic calibration C4
validation set of 256 samples with max seq len of 2048. As suggested in Table 5, the benefits of
task-agnostic finetuning saturates with no significant benefits of prolonged finetuning, we propose
a progressive scheduler for number of training tokens required for k rounds of MoE lottery prun-
ing to miminize compute requirements. More specifically, we double the amount of tokens every
round starting from 0.2M tokens for first round. We used adamw with a cosine learning scheduler
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with maximum learning rate of 1e − 6. With the availability of 8×A100, we use a batch size of 8
and every round we reset the optimizer. Additional details for our downstream finetuning tasks are
provided in Table 6 and we followed the exactly same settings for all compression level.

A.5 PERFORMANCE COMPARISON WITH SOTA MOE EXPERT PRUNING METHODS

Method Total Expert Sparsity(↑) Accuracy Drop from Dense (↓) Memory Usage(↓) Speedup(↑)

Dense 0 0 ×1 ×1

Random 50% 20.46 ×0.55 ×1.27
Lu et al. (2024) 50% 14.38 ×0.55 ×1.27

Muzio et al. (2024) 50% 13.78 ×0.55 ×1.27
Ours 50% 13.05 ×0.55 ×1.27

Table 7: Comparison with baseline approaches. MC-Suite Criterion (Min-EAN) achieves the mini-
mal accuracy drop from the dense baseline at all expert sparsity levels. For Muzio et al. (2024) we
use the numbers reported in the paper due to unavailability of code to reproduce.

A.6 MOE EXPERTS AND MC-SUITE CRITERIONS
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Figure 8: Experts Vocabulary Coverage Criterion (EVC): Illustration of experts vocabulary cov-
erage corresponding to different MoE layers from Mixtral-8×7B Base model. Experts with mini-
mum vocabulary coverage are better candidates for dropping.
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Figure 9: Experts-Usage Frequency (EUF): Expert usage frequency indicate how frequently an
expert e is activated and above heatmap indicate experts from different MoE layers from Mixtral-
8×7B Base model. Interestingly, it can be observed that there multiple experts with significantly
low expert usage making them good candidate for expert dropping.
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Figure 10: Experts-Expert Collaboration (ECC): Snapshot of Expert-Expert Collaboration esti-
mated using C4 dataset for Mixtral-8×7B Base model. Least dominant expert are identified as
expert which have highest collaboration with rest of other experts within corresponding layer.
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Figure 11: Expert Input Token Similarity (ETS): Snapshot of Expert-Expert Input token similarity
estimated using C4 dataset for Mixtral-8×7B Base model. Higher level of input token similarity
indicate existence of redundancy and can be used as a signal to identify least dominant expert.
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Figure 12: Experts Activation Similarity (EAS): Snapshot of Expert-Expert Activation similarity
estimated using C4 dataset for Mixtral-8×7B Base model. Least dominant expert are identified as
expert which have highest similarity with rest of other experts within corresponding layer.
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Figure 13: Experts Activation Entropy (EAE): Heatmap corresponding to activation entropy es-
timated for different experts using C4 dataset for Mixtral-8×7B Base model. Interesting, we find
that activation entropy gradually increases as we move from intial layers to terminal MoE layers.
Experts with minimal activation entropy within a MoE layer are better candidates for dropping.
Note that even in some initial layers, it can be observed that some experts carry notable entropy and
dropping them lead to significant performance degradation.
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Figure 14: Experts Gradient Entropy (EGE): Illustration of the gradient entropy estimated using
C4 dataset for Mixtral-8×7B Base model. We found a strong positive co-relation between the ex-
perts with high activation entropy and gradient entropy. Similar to activation entropy, we found two
experts in Layer 1 and 2 of the checkpoint having significantly high gradient rntropy and dropping
them lead to abrupt performance drop.
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Figure 15: Experts Weight Similarity (EWS): Heatmap illustrating the weigh similairty acorss 8
experts corresponding to 32 MoE layers of Mixtral-8×7B Base model. Expert with highest weight
similarity across remaining 7 experts becomes the better candidate for expert dropping.
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