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ABSTRACT

Directed acyclic graphs (DAGs) are crucial in hardware synthesis and compiler
optimization. Synthetic DAGs can be used for benchmarking computing systems
while preserving intellectual property. However, DAG generation is challenging
due to the inherent directional and logical dependencies. This paper introduces
LayerDAG, an autoregressive diffusion model. LayerDAG decouples the strong
dependencies into units that can be processed sequentially. By interpreting the
partial order of nodes as a sequence of bipartite graphs, LayerDAG leverages au-
toregressive generation to model directional dependencies and employs diffusion
models to capture logical dependencies within each bipartite graph. Experiments
demonstrate that LayerDAG outperforms existing DAG generative models, par-
ticularly for generating large-scale real-world DAGs with up to 400 nodes. Our
implementation is available at https://github.com/Graph-COM/LayerDAG.

1 INTRODUCTION

A Directed Acyclic Graph (DAG) represents the order of element sets (Bang-Jensen & Gutin, 2008).
Unlike sequences, DAGs incorporate branching and merging, allowing the modeling of complex
dependencies and hierarchies. This makes DAGs ideal for representing diverse problem domains
such as workload behavior during system execution (Sridharan et al., 2023), operator dependence
for program analysis (Phothilimthana et al., 2023; Luo et al., 2021; Cortez et al., 2017), dataflows in
circuits (Dong et al., 2023), and cause-effect relationships (Pearl, 1995; Tennant et al., 2020).

Despite the benefits, it is challenging to collect large-scale real-world DAG datasets. For example,
execution DAGs can help engineers gain valuable insights into the performance of candidate sys-
tems (Luo et al., 2021; Cortez et al., 2017) to optimize the infrastructure accordingly. However,
collecting a workload execution DAG (Sridharan et al., 2023) for even a single LLM training job,
potentially involving trillions of operations, is extremely prohibitive given the size of modern AI
platforms. Even if such a large workload execution DAG could be collected, practical constraints
such as the storage requirements of the DAGs and the potential to leak private information about the
AI model architecture or the training platform configuration further limit DAG sharing.

DAG generative models may address several challenges. First, a generated representative small
DAG can be much more efficient than a real DAG with repetitive patterns. Second, synthetic DAGs
enable data sharing without harming intellectual property (Gao et al., 2024; Lin et al., 2020), thereby
promoting infrastructure optimization among different parties (Sridharan et al., 2023). Third, a
conditional generative model can perform efficient optimization for circuit design (Takagi, 1999;
Dong et al., 2023) and compiler optimization (Aho et al., 2006; Phothilimthana et al., 2023).

1

https://github.com/Graph-COM/LayerDAG


Published at ICLR 2025 Workshop on Will Synthetic Data Finally Solve the Data Access Problem?

Logical Dependence – 
no three matrices connected 
to a “×”	operation 

Logical Dependence – 
dimension matching in 
matrix multiplications

Directional Dependence – 
first qk, then softmax(qk)v

edges in bipartite graph $(") 

edges in bipartite graph $($) 

edges in bipartite graph $(%) 

%($ $ |$("))

%($ % |$ &$ )

…

D
iffusion m

odel

(a) (b)

Generate for each $('(")
 
(1) the # of nodes;
(2) node attributes
(3) edges  

Figure 1: (a) The computation flow for a transformer layer (Vaswani et al., 2017) encompasses com-
plex logical and directional dependencies. Examples of logical dependencies include 1) dimension
matching in matrix multiplications and 2) exactly two matrices pointed to a × operation. One exam-
ple of directional dependencies here is SOFTMAX(QK)V being computed after QK. (b) Each DAG
has a unique layerwise partition, an ordered partition of nodes/edges into a sequence of bipartite
graphs. In LayerDAG, each bipartite graph G(l+1) is generated by a diffusion model conditioned on
G(≤l). LayerDAG generates in order the number of new nodes, their attributes, and the new edges.

DAGs pose significant challenges for developing generative models due to their intrinsic strong
directional and logical dependencies, such as control flows, logic gates, and dimension requirements
of matrix operations (as illustrated in Fig. 1 (a)). These complexities are further magnified in large-
scale DAGs, presenting a unique combination of challenges for both scale and logical rules.

This work proposes the use of autoregressive diffusion models to generate DAGs, aiming to decouple
the strong node dependencies in DAGs into manageable units and handle them sequentially. Our
model, named LayerDAG, is based on a novel perspective of DAGs: as illustrated in Fig. 1 (b),
the partial order of nodes dictated by the DAG structure can be decoupled as a sequence of tokens,
each corresponding to a bipartite graph. This perspective enables the natural modeling of directional
dependencies in DAGs through autoregression. We further embed diffusion models (Rombach et al.,
2022; Vignac et al., 2023) into each autoregressive step to address the logical dependencies.

Our model advances existing models in multiple aspects (Zhang et al., 2019; Li et al., 2023a; An
et al., 2023). Although autoregressive models have been adopted by D-VAE (Zhang et al., 2019)
and GraphPNAS (Li et al., 2023a) for DAG, they treat either a single node or a node set of constant
size as a token. This imposes an order between nodes that should be incomparable, violating the
inductive bias of DAGs. Diffusion models have been used to generate undirected graphs (Niu et al.,
2020; Jo et al., 2022; Vignac et al., 2023), but they ignore the directional information, while our
work demonstrates the necessity of the autoregressive component in modeling DAG directional
dependencies. Furthermore, existing works (Zhang et al., 2019; Li et al., 2023a; An et al., 2023)
focus on small DAGs (with #nodes ≤ 24) for NAS, while our model can generate much larger
graphs (up to ∼ 400 nodes) for system/hardware benchmarking. Overall, our work is the first to use
autoregressive diffusion models for DAG generation, taking the advantages of both autoregressive
models and diffusion models to model the strong dependencies commonly in the DAG data.

To assess the model’s ability to learn strong directional and logical rules, we construct a challeng-
ing synthetic dataset. Additionally, we employ three real-world datasets— computational graphs
on Tensor Processing Units (TPU), flow graphs on Field Programmable Gate Arrays (FPGA), and
neural architectures deployed on edge device. Each dataset contains thousands of DAGs, and a DAG
comprises up to hundreds of nodes. We compare the validity and statistical properties of the syn-
thetic DAGs generated by our model with baselines. To measure benchmarking performance, we
use the synthetic labeled DAGs to train surrogate machine learning models to predict TPU runtime,
FPGA resource usage, and the inference latency of neural architectures for the three application
scenarios. These trained surrogate models are then applied to the real-world DAGs for testing. We
compare the predictions given by the surrogate models with the ground-truth behavior of the DAGs
on the corresponding systems. Results show that the surrogate models trained on our generated
synthetic DAGs consistently outperform the ones derived with baseline generative models.
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2 PRELIMINARIES AND BACKGROUND

DAG generation A DAG is a directed graph without cycles G = (V, E ,X), where V = {1, · · · , N}
is the node set, E = {· · · , (u, v), · · · } is the set of directed edges, X is the node attribute matrix.
The edge list E can also be equivalently represented as the adjacency matrix A. From a collection
of DAGs {Gi}i ∼ PG , we aim to learn PG with a generative model Pθ

G , where θ denotes model
parameters. Additionally, many real-world applications like system benchmarking involve labeled
DAGs {(Gi, yi)}i. DAG generation conditioning on these labels is also of interest.

3 METHODOLOGY

In this section, we present the LayerDAG framework. We first describe our novel view of DAGs,
which uniquely transforms a DAG into a sequence of bipartite graphs. This naturally leads to a
layerwise tokenization for autoregressive generation, which tackles the directional dependencies in
DAGs. In each autoregressive step, we introduce a layerwise diffusion model that is capable of
modeling the dependencies between nodes that are incomparable (no by-default order). We also
discuss why our way of DAG decomposition is crucial for model generalization.

3.1 A UNIQUE SEQUENTIAL VIEW OF DAGS

A DAG establishes a partial order among its nodes based on reachability through directed paths. A
partially ordered set can be transformed into an ordered sequence while satisfying the partial order,
known as a linear extension or a topological ordering in the context of DAGs (Kahn, 1962; Tarjan,
1972). Previous competitive autoregressive models of DAGs utilize this sequential nature to generate
nodes one at a time following a topological ordering (Zhang et al., 2019). However, topological
orderings are not unique. This may compromise the model’s effectiveness and efficiency. We leave
a dedicated discussion about the issue to Section 3.3. On the other hand, non-autoregressive models
like diffusion models may be sub-optimal for not explicitly modeling the sequential nature of DAGs.

We map a DAG into a unique sequence by extending topological orderings from a sequence of sin-
gleton subsets to general subsets. A DAG is guaranteed to have source nodes, i.e., the nodes are not
destinations of any edges, and we denote them by V(1). Iteratively, we take V(l+1) ⊂ V \ V(≤l)

to be the set of nodes whose predecessors are in V(≤l), where V(≤l) =
⋃l

i=1 V(i). It follows that
(V(1),V(2), · · · ,V(L)) forms an ordered partition of V the moment V(L+1) = ∅ (Fig. 1 (b)). We refer
to V(1),V(2), · · · ,V(L) as layers and L as the number of layers. For each layer depth 1 ≤ l ≤ L−1,
we also take E(l+1) = {(u, v) ∈ E|u ∈ V(≤l), v ∈ V(l+1)}, and (E(2), E(3), · · · , E(L)) forms an or-
dered partition of E . This layerwise partition naturally extends to arbitrary node and edge attributes.
Furthermore, this construction is unique and allows reconstructing the original DAG from the se-
quence

(
V(1), (V(≤1) ∪ V(2), E(2)), · · · , (V(≤L−1) ∪ V(L), E(L))

)
, where (V(≤l) ∪ V(l+1), E(l+1))

is a bipartite graph whose edges point from one part to another part. Such an invertible process of
converting a raw data sample into a sequence is known as tokenization, with notable examples being
subwords for language models (Sennrich et al., 2016) and patches for image generation (Peebles &
Xie, 2023). Essentially, layerwise partition leads to a layerwise tokenization for DAGs.

3.2 LAYERDAG

Autoregressive generation The layerwise tokenization motivates the following factorization for a
probability distribution P (G) of DAGs. Let G = (V,X,A) be a DAG. In analogy to V(l) and
V(≤l), we define X(l), X(≤l), A(l), and A(≤l). In addition, we define G(l) =

(
V(l),X(l),A(l)

)
and G(≤l) =

(
V(≤l),X(≤l),A(≤l)

)
. Then, we have P (G) =

∏L−1
l=0 P

(
G(l+1)

∣∣∣ G(≤l)
)

=∏L−1
l=0 P

(
|V(l+1)|

∣∣∣ G(≤l)
)
P
(
X(l+1)

∣∣∣ G(≤l), |V(l+1)|
)
P
(
A(l+1)

∣∣∣ G(≤l),X(l+1)
)

. This factor-
ization naturally leads to a layerwise autoregressive generation framework. Iteratively, to generate
the (l + 1)th layer, it first predicts the number of new nodes with pθ

(
|V(l+1)| | G(≤l)

)
. Then it

generates the node attributes with pθ
(
X(l+1) | G(≤l), |V(l+1)|

)
. Finally, it generates the edges with

pθ
(
A(l+1) | G(≤l),X(l+1)

)
. The generation process terminates when |V(l+1)| = 0.
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Layerwise diffusion-based generation To preserve the uniqueness of the layerwise tokenization,
we need to generate the set of node attributes and edges in the bipartite graph G(l+1) as a whole
by modeling pθ

(
X(l+1) | G(≤l), |V(l+1)|

)
and pθ

(
A(l+1) | G(≤l),X(l+1)

)
as set-level generations.

This requires capturing complex dependencies between the nodes attributes and edges in the sets,
which is crucial for the applications like system and circuit design, where strict logical rules are
prevalent, and rule violations can accumulate and propagate over layers of generation. To tackle
this issue, we adopt diffusion models for multiple rounds of set refinement in the generation of
G(l+1). We employ two separate diffusion processes for node attribute X(l+1) generation and struc-
ture A(l+1) generation. For simplicity, we focus on categorical node attributes in this work, which
find abundant real-world applications like operator types in computational graphs, and thus adopt
D3PM (Austin et al., 2021). For more details on layerwise diffusion, see Appendix A.

Implementation For different l’s, all modules pθ
(
|V(l+1)| | G(≤l)

)
, pθ

(
X(l+1) | G(≤l), |V(l+1)|

)
,

and pθ
(
A(l+1) | G(≤l),X(l+1)

)
share the same parameter θ, which involves a DAG encoder. We use

a bidirectional message passing neural network (BiMPNN) (Wen et al., 2020). A single BiMPNN
layer updates node representations with message passing over both the directed edges and their re-
versed counterparts: σ

(
AHWforward +A⊤HWreverse +HWself

)
, where σ is a non-linear layer, H

is the node representation matrix, and W’s are learnable weight matrices. Both layer size generation
pθ

(
|V(l+1)| | G(≤l)

)
and node attribute generation pθ

(
X(l+1) | G(≤l), |V(l+1)|

)
involve computing

graph representations with a set pooling operator over the updated node representations. Let X(l+1,t)

be the node attributes sampled for the (l + 1)th layer at the step t in the reverse node attribute dif-
fusion process. After encoding (G(≤l), t) into a context vector h(≤l)

t , the denoising network ϕθX

augments the representations of X(l+1,t) by h
(≤l)
t and then applies a transformer without positional

encodings (Vaswani et al., 2017) over them for predicting the set of X(l+1). Similarly, the denoising
network ϕθA for edge diffusion augments (G(≤l), t) by (X(l+1),A(l+1,t)) for computing the node
representations of V(≤l+1). To predict the probability of edge (u, v) for u ∈ V(≤l) and v ∈ V(l+1),
it concatenates and transforms the representations of node u, node v, and t with an MLP.

Training aims to maximize the log-likelihood of observed graphs. We decompose this objective
to train the three modules independently. To account for the autoregressive nature, we train all
modules with teacher forcing. In each training iteration, we randomly sample a real partial DAG up
to l layers and train the model to predict the l + 1-th layer. For a given partial DAG, the training
of pθ

(
|V(l+1)| | G(≤l)

)
is analogous to the standard supervised training of a graph classification

model. The training of pθ
(
X(l+1) | G(≤l), |V(l+1)|

)
and pθ

(
A(l+1) | G(≤l),X(l+1)

)
follows the

established practices for discrete diffusion models.

Sampling The sampling process follows an autoregressive approach. Starting with an empty
graph G(≤0), we iteratively sample the number of nodes |V(l+1)| for each subsequent layer us-
ing pθ

(
|V(l+1)| | G(≤l)

)
. If |V(l+1)| is non-zero, we sequentially generate node attributes X(l+1)

and edges A(l+1) using their respective reverse diffusion processes. We then update G(≤l+1) with
the new nodes, attributes, and edges. This process continues until we predict |V (l+1)| = 0.

Conditional generation Given a labeled DAG (G, y), we train LayerDAG to learn the conditional
distribution P(G|Y ) by integrating the sinusoidal embeddings of y into the representations of X(≤l)

for any l. Once trained, the model can generate DAGs conditioned on specified target properties.

3.3 PERMUTATION INVARIANCE AND MODEL GENERALIZATION

A critical issue of probabilistic graph generative models is permutation invariance, whether the prob-
ability for a model to generate a graph is invariant to the particular node ordering. Non-permutation
invariant models, such as autoregressive models that generate one node at a time, require data aug-
mentations with random node orderings during training (You et al., 2018; Li et al., 2018). To suffi-
ciently train the model, one has to enumerate a large number of orderings, which could be exponen-
tial in N . LayerDAG is permutation invariant with the aforementioned implementation, potentially
holding a good generalization capability with limited computational resources for training.
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Proposition 3.1 (permutation invariance of LayerDAG) For any depth l, pθ
(
|V(l+1)| | G(≤l)

)
,

pθ
(
X(l+1) | G(≤l), |V(l+1)|

)
, and pθ

(
A(l+1) | G(≤l),X(l+1)

)
are permutation invariant. Hence,

LayerDAG is permutation invariant.

MPNNs are permutation equivariant, and pooling operators are permutation invariant. It follows
that for any permutation Π, we have P

(
Π(l+1)(G(l+1)) | Π(≤l)(G(≤l))

)
= P

(
G(l+1) | G(≤l)

)
,

where Π(l+1) corresponds to V(l+1) and Π(≤l) corresponds to V(≤l). Finally, P (G) =∏L−1
l=0 P

(
G(l+1) | G(≤l)

)
is permutation invariant.

4 EXPERIMENTS

The end applications of DAG generative models pose multifaceted requirements that motivate our
empirical studies. Q1) Real-world DAGs encompass complex logical and directional dependencies,
where violations can directly invalidate generated samples. How effectively can LayerDAG capture
these dependencies by learning from valid DAGs? Q2) Beyond validity, the application of synthetic
data for system and hardware benchmarking necessitates the preservation of correlations between
DAGs and system metrics such as throughput, latency, and memory footprint. How effectively can
LayerDAG perform DAG generation conditioning on these metrics to meet these requirements?

Baselines We consider three non-diffusion autoregressive baselines – GraphRNN, D-VAE, and
GraphPNAS. GraphRNN originally tackles undirected graph structure generation (You et al., 2018),
and we adopt an extension of it for attributed DAG generation Zhang et al. (2019). D-VAE is a vari-
ational auto-encoder and employs a nodewise autoregressive decoder. Both GraphRNN and D-VAE
employ topological orderings and one-hot encoding of node IDs (Zhang et al., 2019). GraphPNAS
sequentially generates incident edges for a node set of constant size, using a mixture of Bernoulli dis-
tributions to model intra-set dependencies. To compare the capability of LayerDAG in set generation
against GraphPNAS, we further adapt GraphPNAS by using mixtures of multinoulli distributions for
generating a set of node attributes and setting the node set size to be the averaged layer size. For
pure diffusion baselines, we implement OneShotDAG, a non-autoregressive variant of LayerDAG.
For ablation study of multiple rounds of refinement, we report results with a single denoising step,
denoted by LayerDAG (T = 1). For details of model extensions, see Appendix B.

4.1 GENERATING SYNTHETIC DAGS WITH STRONG LOGICAL RULES (Q1)

To evaluate the model’s capability in capturing logical rules, we propose a synthetic dataset of
latent preferential DAGs (LP). LP adheres to various hard constraints, including a constraint on the
balanced level of binary node attributes among the node’s predecessors. Specifically, we enforce
that ⌊|n(0)

v −n(1)
v |/2⌋

(n
(0)
v +n

(1)
v )/2

≤ ρ for any node v, where ⌊·⌋ is the floor function, and n
(i)
v is the number of

node v’s predecessors with attribute i for i ∈ {0, 1}. The parameter ρ ∈ {0, 0.5, 1} helps assess how
model performance varies under different degrees of constraint, where a lower value imposes stricter
constraints (ρ = 0 indicating |n(0)

v − n
(1)
v | ≤ 1). See Appendix C for a full dataset description.

We use LP with different ρ’s to generate the datasets Dρ and train different generative models based
on Dρ. After training, we use each model to generate DAGs of the same number as that in Dρ.
To evaluate the hard logical constraints, we assess the validity of generated DAGs by measuring
the proportion of generated DAGs that satisfy the imposed hard constraints. To evaluate the soft
constraints, we compare the distributions of graph statistics between generated DAGs and an equal
number of real DAGs. We measure the 1-Wasserstein distance (W1) between the distributions of
layer numbers (L) for the two graph sets. Additionally, we measure Maximum Mean Discrepancy
(MMD) You et al. (2018) between two sets of graph statistic distributions corresponding to the graph
sets. Specifically, we report MMD for the distributions of layer size (|V(l)|).
Table 1 presents the evaluation. LayerDAG consistently outperforms all the other models in terms of
validity, with substantial margins observed under stricter logical rules (lower ρ values), about 20% in
absolute value. Nodewise autoregressive models (GraphRNN and D-VAE) that directly encode node
IDs struggle to learn strict logical rules. Meanwhile, a mixture of Bernoulli/multinoulli distribution
is also not expressive enough, resulting in GraphPNAS achieving low validity scores. The ablation
studies against the non-autoregressive variant (OneShotDAG) and the single-denoising-step variant
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Table 1: Evaluation results on LP. Best results are in bold.

ρ = 0 ρ = 0.5 ρ = 1

Model Validity ↑ W1 / MMD ↓ Validity ↑ W1 / MMD ↓ Validity ↑ W1 / MMD ↓
L(×10−1) |V(l)|(×10−1) L |V(l)| L |V(l)|

D-VAE 0.27± 0.03 8.7± 1.0 1.9± 0.3 0.37± 0.04 9.8± 1.6 1.9± 0.6 0.89± 0.01 8.8± 0.9 1.9± 0.5
GraphRNN 0.25± 0.02 9.8± 0.2 1.2± 0.2 0.34± 0.07 12.0± 0.0 1.8± 0.2 0.59± 0.02 14.0± 1.0 2.1± 0.1
GraphPNAS 0.23± 0.04 17.0± 4.0 2.2± 0.7 0.24± 0.03 20.0± 3.0 3.2± 1.3 0.67± 0.04 10.0± 3.0 0.8± 0.6
OneShotDAG 0.37± 0.02 6.4± 0.9 1.5± 0.1 0.31± 0.07 3.9± 0.7 1.3± 0.0 0.50± 0.08 4.1± 2.4 1.1± 0.4
LayerDAG (T = 1) 0.26± 0.06 1.6± 0.8 0.14± 0.0 0.36± 0.02 1.3± 0.3 0.12± 0.1 0.95± 0.01 2.0± 0.1 0.08± 0.0
LayerDAG 0.56± 0.02 1.6± 1.0 0.10± 0.0 0.63± 0.00 1.8± 1.1 0.06± 0.0 0.96± 0.02 1.9± 0.6 0.10± 0.3

Table 2: Evaluation results for conditional generation. Best results are in bold.
TPU Tile HLS NA-Edge

Model ML W1 / MMD ↓ ML W1 / MMD ↓ ML W1 / MMD ↓
Pearson MAE L |V(l)|(×10−1) Pearson MAE L |V(l)|(×10−1) Pearson MAE L(×10) |V(l)|(×10−1)

Real graphs 0.75± 0.01 0.9± 0.0 0.98± 0.00 0.3± 0.0 0.996± 0.000 0.3± 0.0

D-VAE 0.50± 0.01 1.4± 0.0 2.6± 0.1 1.3± 0.4 0.82± 0.04 1.2± 0.1 3.2± 1.7 1.5± 0.2 0.877± 0.026 2.3± 0.8 3.6± 0.7 7.3± 1.3
GraphRNN 0.62± 0.02 1.3± 0.0 1.9± 0.2 0.4± 0.1 0.79± 0.03 1.1± 0.1 11± 1.0 2.4± 0.3 0.980± 0.010 1.0± 0.1 13± 2.0 14± 4.0
GraphPNAS 0.24± 0.10 2.1± 0.6 6.2± 0.5 1.0± 0.3 0.66± 0.05 2.5± 0.6 26± 0.0 6.8± 0.1 0.619± 0.118 7.7± 2.6 15± 0.0 14± 0.0
OneShotDAG 0.56± 0.02 1.4± 0.1 6.9± 0.2 3.5± 0.1 0.73± 0.03 1.4± 0.1 21± 0.0 4.4± 0.1 0.887± 0.038 3.4± 1.0 14± 0.0 9.2± 0.0
LayerDAG (T = 1) 0.37± 0.11 2.0± 0.4 2.0± 0.4 2.1± 0.2 0.27± 0.26 2.1± 0.2 7.9± 2.2 5.2± 0.2 0.956± 0.011 3.1± 2.0 6.1± 1.6 4.7± 4.5
LayerDAG 0.65± 0.01 1.2± 0.1 1.3± 0.4 0.1± 0.0 0.85± 0.02 1.1± 0.2 11± 3.0 1.4± 0.0 0.990± 0.005 0.9± 0.3 1.3± 0.2 0.4± 0.1

(T = 1) underscore the importance of combining autoregressive layerwise generation and diffusion
in modeling strong directional and logical rules for DAG generation. In terms of graph statistics, the
layerwise autoregressive models, LayerDAG (T = 1) and LayerDAG, yield a better performance in
capturing layerwise patterns (L and |V(l)|), demonstrating the benefit of layerwise generation.

4.2 CONDITIONAL GENERATION FOR REAL-WORLD COMPUTATION GRAPH DATASETS (Q2)

Datasets. We repurpose three real-world DAG property prediction datasets. The datasets are associ-
ated with computation workloads executed on diverse hardware platforms, and they well fit the end
scenario of synthetic data sharing for system/hardware benchmarking. Originally released as part of
the TpuGraphs dataset, TPU Tile is a collection of kernel graphs for machine learning workload on
Tensor Processing Units (TPUs), with graph labels y indicating the runtime averaged over a set of
compilation configurations (Phothilimthana et al., 2023). High-level synthesis (HLS) is a collection
of data flow intermediate representation graphs for compiled C programs, with each DAG labeled
according to the resource usage of look up table measured on Field Programmable Gate Arrays (FP-
GAs) (Wu et al., 2022). NA-Edge is a collection of DAGs representing neural architectures, with
labels indicating their inference latency on mobile CPU (Dong & Yang, 2020; Zhang et al., 2021).
We perform a random train/val/test split for all datasets. For more details, see Appendix E.

Evaluation. Performing ground truth evaluations for conditional generation of DAGs in system and
hardware design requires direct measurements on specific computational platforms. For example,
the HLS dataset requires program implementation and measurement on FPGAs (Wu et al., 2022).
Such evaluations are computationally costly or infeasible due to limited access. Additionally, they
demand specialized domain knowledge that often exceeds the expertise of general machine learn-
ing practitioners. Recently, employing ML-based surrogate cost models has emerged as a popular
and effective alternative to direct measurement in various system and hardware optimizations (Chen
et al., 2018; Jia et al., 2020; Phothilimthana et al., 2023). In light of these achievements, we pro-
pose to evaluate the quality of generated DAGs with ML-based surrogate models. Specifically, we
partition the real labeled DAG datasets into training/validation/test subsets. Then, we use the real
training and validation labels as conditions for DAG generation. The generated labeled DAGs es-
sentially form synthetic training and validation subsets. Inspired by previous practices (Yoon et al.,
2023; Li et al., 2023b), we train two ML models with BiMPNN using the same automated pipeline
respectively on the real and synthetic training/validation subsets. We then compare the performance
of the two models on the real test set. A generative model is considered better if its corresponding
model achieves a performance closer to that of the model trained on the real subsets.

Table 2 presents the evaluations. We report two metrics for ML-based evaluation – Pearson corre-
lation coefficient that compares the relative label differences of DAGs in the test set based on the
predicted and ground-truth labels, and mean absolute error (MAE) that compares the absolute differ-
ence between the predicted and ground-truth labels. LayerDAG consistently achieves the best per-
formance in ML-based evaluation. Furthermore, we assess discrepancies in graph statistics between
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the real validation subset and a synthetic validation subset via the same metrics used in Sec.4.1,
where LayerDAG also achieves the best performance in general. Overall, these evaluation results
are aligned with previous observations made for the LP dataset.

5 CONCLUSION

We propose LayerDAG, a layerwise autoregressive diffusion model for DAGs. Extensive experi-
ments on synthetic and real-world datasets demonstrate a superior capability of LayerDAG in mod-
eling the strong dependencies common in DAG data.
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A DETAILS ON LAYERWISE DIFFUSION

Discrete denoising diffusion We adopt D3PM (Austin et al., 2021) for generative diffusion of dis-
crete data. D3PM has two phases, a forward and a reverse process. Let each entry of Z(0) ∈
{0, 1}M×C be a one-hot encoding of a categorical attribute with C possible values. The forward
process uses T consecutive steps to progressively corrupt Z(0) → Z(1) → · · · into purely random
variables Z(T ), where Z(T ) can be drawn from a prior categorical distribution. To corrupt Z(t) into
Z(t+1), it computes and samples from a conditional distribution q(Z(t+1)|Z(t), t) = Z(t)Q(t+1),
where Q(t+1) ∈ RC×C is a pre-determined transition matrix. Composing the transition matrices
across multiple time steps yields the closed-form expression q(Z(t+1)|Z(0), t) = Z(0)Q

(t+1)
, where

Q
(t+1)

= Q(1)Q(2) · · ·Q(t+1), which allows parallel training across samples and time steps. An
instantiation of {Q(t)}t is valid as long as limt→T Q

(t)
is a known prior distribution.

A denoising network ϕθ is trained to predict the uncorrupted data Z(0) from (Z(t), t). During the
reverse generation process, the trained denoising network is used to convert Z(T ) drawn from the
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Figure 2: Layer size distribution in the real-world datasets.

prior distribution into realistic data. Iteratively, we compute and sample from pθ(Z
(t−1)|Z(t), t) ∝

Z(t)(Q(t))⊤ ⊙ Ẑ(0)Q
(t−1)

, where ⊤ denotes transpose, and ⊙ denotes element-wise product.

Following the practice of DiGress, we use the empirical marginal distribution of a categorical at-
tribute m ∈ RC as its corresponding prior distribution, which was observed to yield more efficient
generation compared with a uniform prior in practice. The composed transition matrix is chosen
to be Q

(t)
= α(t)I +

(
1− α(t)

)
1m⊤, where α(t) = cos2

(
π
2
t/T+s
1+s

)
is the cosine noise sched-

ule (Nichol & Dhariwal, 2021), I ∈ RC×C is the identity matrix, and 1 ∈ RC is the one-valued
vector. As t → T , the probability for real categorical attributes to be corrupted into random samples
from the prior distribution approaches 1.

In addition, we propose two modifications to the diffusion process that better preserve the layerwise
patterns of DAGs. To handle the potential uneven graph sparsity with respect to layer depth l, we
set the prior probability of a directed edge (u, v) for u ∈ V(≤l) and v ∈ V(l+1) to be min(|V(≤l)|,din)

|V(≤l)| ,

where din is the average node in-degree of the training data. As all nodes in V \V(1) have at least one
predecessor, we enforce this property in the sampling for graph structure corruption and generation.

To generate X(l+1), the node attribute prediction module first samples X(l+1,TX) ∈ R|V(l+1)|×C

from its prior distribution, where TX is the maximum number of denoising steps. Then it-
eratively, it samples X(l+1,t) with a denoising network ϕθX

(
G(≤l),X(l+1,t+1), t+ 1

)
for t =

TX − 1, TX − 2, · · · , 0. Similarly, the edge prediction module iteratively samples A(l+1,t) with
a denoising network ϕθE

(
G(≤l),X(l+1),A(l+1,t+1), t+ 1

)
.

B BASELINE EXTENSIONS

General extension for DAG generation. To extend generative models of undirected graphs for
DAG generation, we constrain the structure generation to the lower-triangular part of adjacency
matrices with a topological ordering.

GraphRNN. GraphRNN originally employs rows of an adjacency matrix for both the encoder input
and decoder output. Following the practice of (Zhang et al., 2019), we augment them with one-hot
encodings of categorical attributes for encoding and predicting the node attributes.

GraphPNAS. We use two separate encoders for node attribute prediction and structure prediction
as in LayerDAG. Repeatedly, the model first predicts the categorical attributes of a new set of nodes
given the partially generated DAG, and then it predicts the incident edges of the new nodes given
the partial DAG and the new node attributes. We model the termination of DAG generation as an
extra node attribute, which enables the model to generate DAGs with an arbitrary number of nodes
different from multiples of the pre-specified size.

We extend the official implementation for D-VAE and GRAN, both use MIT license.
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Figure 3: Scatter plot of the sorted labels. The label distributions in the real-world datasets are long-
tailed.

C A SYNTHETIC DATASET OF LATENT PREFERENTIAL DAGS (LP)

A latent preferential DAG is constructed as follows.

1. Randomly sample the number of layers L ∼ U {2, 5}.

2. Create the first layer of |V(1)| ∼ U {1, 5} nodes. Each node is associated with a random
binary attribute 0 or 1.

3. For l = 2, · · · , L:
(a) Create a new layer of |V(l)| ∼ U {1, 5} nodes. Each node is associated with a random

binary attribute 0 or 1.
(b) For each new node v:

i. An edge (u, v) is created with a probability ∝ 1
dv−du

, where dv = l is the depth
of node v and dv > du.

ii. Let n(i)
v be the number of predecessors of node v with attribute i for i ∈ {0, 1}.

We enforce that ⌊|n(0)
v −n(1)

v |/2⌋
(n

(0)
v +n

(1)
v )/2

≤ ρ, where ⌊·⌋ is the floor function.

iii. nv = n
(0)
v + n

(1)
v ∼ U {1, 4}.

The logical rules for predecessors get increasingly relaxed as ρ goes from 0 to 1.

D VARIANT OF THE LP DATASET FOR ASSESSING THE VALIDITY OF
GENERATED NODE ATTRIBUTES

We extend the original synthetic dataset with ρ = 0 (full balance requirement). Specifically,

• Each node now has three binary attributes (previously one).
• For nodes in the first layer, all three binary attributes are randomly sampled from prior

Bernoulli distributions.
• The first attribute is still used for determining edge connections based on balance.
• The second and third attributes of an intermediary node are assigned the most and least

common corresponding attribute values among its predecessors, respectively. This design
is inspired by real-world scenarios, such as tensor dimension matching in computational
graphs. In cases of ties, attribute values are assigned randomly.

In addition to the previously adopted metrics, we also report balance-only validity and feature-only
validity as key components of the full validity metric, as well as MMD for feature distributions.
Table 3 compares LayerDAG with the two most competitive baselines concluded from the other
experiments, with results averaged over three random seeds. Overall, LayerDAG achieves the best
performance across all metrics. This demonstrates LayerDAG’s superior capability in generating
valid attributes and learning the attribute distribution.
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Table 3: Evaluation results on the extended synthetic dataset for ρ = 0 (full balance requirement).
Best results are in bold.

Model Validity ↑ W1 / MMD ↓
balance attribute full L |V(l)| attribute

D-VAE 0.536 0.057 0.039 5.1e−1 1.6e−1 2.5e−3

GraphRNN 0.547 0.172 0.094 5.8e−1 1.2e−1 8.5e−4

LayerDAG 0.578 0.274 0.195 1.8e−1 2.5e−3 7.8e−4

Table 4: Dataset statistics. |V|, |E|, and L are averaged over graphs. |V(l)| is averaged over layers.

Dataset # graphs |V| max |V| |E| max |E| L maxL |V(l)| max |V(l)| # attributes label info
TPU Tile 6, 301 40.8 394 42.9 711 11.2 72 3.6 21 1 TPU runtime
HLS 2, 062 88.6 356 110.7 477 27.75 78 3.2 28 7 FPGA resource usage
NA-Edge 2, 000 231.1 339 265.8 385 149.1 185 1.5 4 14 mobile CPU inference latency

E DETAILS ON REAL-WORLD DATASETS AND ADAPTATION OF THEM

Table 4 presents the dataset statistics.

TPU Tile. In the original dataset, each data sample includes a computational graph, a compilation
configuration, and the execution time of the graph on TPU when compiled with that configuration.
A single graph may appear in multiple data samples and have multiple associated compilation con-
figurations. We simplify the dataset by averaging the runtime across all compilation configurations
for each graph. As the labels of the test set were not released, we re-perform a split of the labeled
samples.

HLS. We randomly choose 20% of the original graphs.

For all three real-world datasets, we perform a 80/10/10 random split of the dataset. All three
datasets exhibit long-tailed layer size distributions (Fig. 2) and label distributions (Fig. 3).

TPU Tile was originally part of the TpuGraphs dataset, which uses Apache-2.0 license. The HLS
dataset is not released with a license. NA-Edge is released with an MIT license as part of the nn-
Meter project.

F EXPERIMENT DETAILS

F.1 MODEL DEVELOPMENT

For the synthetic LP dataset, we tune the hyperparameters based on validity. For conditional gener-
ation, we tune the hyperparameters based on Pearson correlation coefficient. For each experiment,
an early stop is performed based on validation accuracies (for layer size prediction) or negative log
likelihoods (for diffusion).

F.2 ML-BASED EVALUATION

We perform ML-based evaluation by implementing a standardized AutoML pipeline. Based on
empirical studies, the best BiMPNN model is selected based on validation Pearson correlation coef-
ficient, and the best Kaggle model is selected based on validation mean absolute error.

F.3 EXPERIMENTS COMPUTE RESOURCES

We have access to an Azure virtual machine equipped with 2 NVIDIA A100 PCIe GPUs, each
with 80 GB of memory, 48 non-multithreaded AMD EPYC Milan processor cores, and 440 GiB of
system memory.
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F.4 IMPLEMENTATION

Our implementation is based on PyTorch 1.12.0 (Paszke et al., 2019) and DGL 1.1.0 (Wang et al.,
2019).
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