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Learning Helpful Inductive Biases from Self-Supervised Pretraining

Anonymous EMNLP submission

Abstract

Large pretrained language models demon-
strate strong, language-specific biases during
fine-tuning that allow them to solve language
tasks better than models without pretraining.
We aim to characterize these biases, and iden-
tify the amount of pretraining that is neces-
sary to acquire them. We introduce a new
English language diagnostic set called MSGS
(Mixed Signals Generalization Set) which con-
tains two types of data: mixed data in which
the labels are consistent with both a linguistic
classification (e.g., Is the main verb in the pro-
gressive form?) and a superficial surface one
(e.g., Does “the” precede “a”?); and unmixed
data in which the labels align only with the
linguistic feature. We fine-tune RoBERTa on
mixed data (with and without small amounts
of inoculating unmixed data) and test on un-
mixed data to see which feature it has bias
in favor of. We pretrain RoBERTa from
scratch on quantities of data ranging from 1M
to 1B words and compare their performance
on MSGS to the publicly available RoBERTa-
Base. We find steady growth in linguistic
bias with increased pretraining data. The mod-
els we test can usually represent the linguis-
tic features, but they only learn to prefer to
generalize based on these features with signifi-
cant pretraining. In the absence of inoculating
data, only RoBERTa-Base consistently demon-
strates a linguistic bias with any regularity.

1 Introduction

How does self-supervised pretraining on large
datasets shape the inductive biases of models like
BERT and RoBERTa? There is significant evidence
that these models can learn to implicitly encode lin-
guistic features like syntactic dependencies and
part-of-speech from self-supervised tasks like lan-
guage modeling (Tenney et al., 2019; Hewitt and
Manning, 2019). But the very same models are sus-
ceptible to making incorrect generalizations based

Testing on Unmixed Data

Test behavior: Grammatical bias observed Test behavior: Surface bias observed

A rumor that the CEO lost is spreading.

The rumor that a CEO is losing spread.

A rumor that the CEO lost is spreading.

The rumor that a CEO is losing spread.

Linguistic Generalization: 
Is the main verb in the “-ing” form?

The boy who hugged a cat is sneezing.

Training on Mixed Data
A boy who is hugging the cat sneezes.

Surface Generalization: 
Does the word “the” precede “a”?

Hypothesis Space ?

The boy who hugged a cat is sneezing.
1   2   3   4      5 6   7  8

1 < 5

The guest is saying that a boat sinks. A guest said that the boat is sinking. 

A boy who hugged the cat is sneezing.
1 2   3   4     5   6   7  8

5 > 1

Figure 1: Example of our experimental design without
inoculating data. A model is shown mixed data consis-
tent with two independent generalizations during train-
ing, and tested on data that disambiguate between the
two generalizations. Green and red shading represents
data or features associated with the positive and nega-
tive classes in a binary classification task, respectively.
Yellow shading represents properties of the input that
the model must identify in order to extract these predic-
tive features.

on surface features in the data (McCoy et al., 2019).
In this paper, we investigate how different amounts
of pretraining data help RoBERTa make more ro-
bust generalizations by altering its inductive biases,
making it more likely to arrive at generalizations on
target tasks based on helpful linguistic features, and
less likely to rely on misleading surface features.

We define surface features as shallow features,
such as the length of a sequence or the linear posi-
tion of a token, that can be extracted without any
understanding of linguistic structure or meaning
and linguistic features as features, such as the syn-
tactic category of a phrase, that must be defined in
terms of abstract grammatical structures. Real nat-
ural language understanding tasks generally cannot
be solved using surface features alone, and a model
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that preferentially generalizes using surface fea-
tures over linguistic features is bound to fail. Cur-
rently, the best examples of models with a known
bias towards grammatically informed generaliza-
tions use tree structured architectures or pre-parsed
inputs (Dyer et al., 2016; Wilcox et al., 2019; Mc-
Coy et al., 2020). However, such models are more
computationally expensive and have not proven to
give significant advantages on downstream tasks.

We explore the extent to which inductive biases,
rather than being built into the architecture of a
model, can be acquired by a general purpose sen-
tence processing model like BERT or RoBERTa
through pretraining. To test the extent to which
this occurs, we conduct a battery of experiments in-
spired by the poverty of the stimulus experimental
design (Wilson, 2006) to probe the models’ induc-
tive biases, as illustrated in Figure 1. First, we
fine-tune a pretrained model using mixed data, in
which the label of an input sentence is consistent
with both a linguistic feature and a surface feature
in the sentence. We then test the classifier with
unmixed data, in which the label of a sentence is
correlated with the linguistic feature and perfectly
anti-correlated with the surface feature. This exper-
imental design allows us to observe which feature
(if either) the classifier bases its generalization on,
and therefore what biases the model learns from
pretraining. We select five surface features and pit
each one against four linguistic features, giving a
total of 20 binary classification tasks, for which we
automatically generate data.

We call the resulting dataset MSGS (Mixed Sig-
nals Generalization Set), pronounced “messages”.
In addition, we repeat these experiments with small
amounts of unmixed inoculating data introduced
into the mixed training data, meant to sway the
model toward the linguistic generalization (follow-
ing Liu et al., 2019a).

To track the evolution of inductive biases as pre-
training data increases, we pretrain RoBERTa from
scratch on datasets ranging from 1M to 1B words
and evaluate these models alongside RoBERTa-
Base. We find a clear relationship between the
amount of pretraining data and the model’s ten-
dency to adopt a linguistic generalization in the
face of mixed signals: Models with more pretrain-
ing data can generally be induced to adopt lin-
guistic generalizations with less inoculating data.
RoBERTa-Base has the strongest linguistic bias,
and requires little to no inoculating data to reli-

ably make the linguistic generalization. For models
with less pretraining data, we continue to observe
the surface generalization even in the presence of
unmixed data that contradicts it. Control experi-
ments on only unmixed data reveal that these mod-
els are fully able to acquire the linguistic general-
ization, but nonetheless show a strong inductive
bias against it. Thus, we observe a long gap in
the amount of pretraining between that causes a
model learns the features it would need to use to
generalize out-of-domain, and when it learns that
it should prefer those features when generalizing.

We plan to release all our data, pretrained mod-
els, and code upon acceptance.

2 Methods

Learning Inductive Bias Any finite set of train-
ing examples shown to a learning algorithm like
a neural network is in principle consistent with
infinitely many generalizable decision functions.
Inductive biases are a model’s preferences among
these functions. An inductive bias can eliminate
certain possible functions altogether, or result in a
preference for some over others (Haussler, 1988).
An RNN classifier, for instance, is capable of rep-
resenting any function, but prefers functions that
focus mostly on local relationships within the in-
put sequence (Dhingra et al., 2018; Ravfogel et al.,
2019).

Crucially, inductive biases need not be im-
mutable properties of learning algorithm or model
architecture. In the language model fine-tuning
paradigm proposed by Howard and Ruder (2018)
and popularized by models such as BERT (Devlin
et al., 2019), a pretrained neural network plays the
role of the learner. When such a model is fine-
tuned on a downstream task, a pretrained model
undoubtedly navigates the hypothesis differently
than a model with a similar architecture without
pretraining. In this sense a model like BERT learns
inductive biases through pretraining.

There is a difference between learning to extract
a linguistic feature and acquiring a bias towards us-
ing it when generalizing. There is ample evidence
that BERT encodes features such as syntactic cate-
gory and constituency (Tenney et al., 2019; Clark
et al., 2019; Hewitt and Manning, 2019). The ac-
quisition of linguistic features is a prerequisite for
a linguistic bias. However, these findings do not
tell us if the model will make use of these features
to form generalizations during target task training,
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Feature type Feature description Positive example Negative example
Su

rf
ac

e
Absolute position Is the first token of S “the”? The cat chased a mouse. A cat chased a mouse.
Length Is S longer than n (e.g., 3) words? The cat chased a mouse. The cat meowed.
Lexical content Does S contain “the”? That cat chased the mouse. That cat chased a mouse.
Relative position Does “the” precede “a”? The cat chased a mouse. A cat chased the mouse.
Orthography Does S appear in title case? The Cat Chased a Mouse. The cat chased a mouse.

L
in

gu
is

tic Morphology Does S have an irregular past verb? The cats slept. The cats meow.
Syn. category Does S have an adjective? Lincoln was tall. Lincoln was president.
Syn. construction Is S the control construction? Sue is eager to sleep. Sue is likely to sleep.
Syn. position Is the main verb in “ing” form? Cats who eat mice are purring. Cats who are eating mice purr.

Table 1: Schematic examples of the linguistic and surface features in our experiments.

or if it will fall back on a combination of surface
features that account for most of the data.

Measuring Inductive Bias To probe these bi-
ases in RoBERTa, we adopt the poverty of the stim-
ulus design introduced by Wilson (2006), which we
modify slightly with a data inoculation condition.
Figure 1 gives an overview of the design:

First, we fine-tune the model on mixed data that
is compatible with two reasonable but very differ-
ent generalizations. For example, in the training
data in Figure 1, every sentence in the positive class
has two unique properties distinguishing it from
the negative class sentences: the main verb appears
in the progressive form (our linguistic feature), and
the word “the” precedes the word “a” (our surface
feature). The model’s inductive biases determine
which of these features it recognizes and general-
izes based on.

After training, we use unmixed test data to ob-
serve which generalization the model converges
on. In the unmixed data, the two features are per-
fectly anti-correlated, and the two hypotheses lead
to opposite predictions. In the test data in Figure
1, it is never the case that “the” precedes “a” in a
sentence with a main verb in the progressive form.
If the model makes a linguistic generalization, its
predictions will depend only on the form of the
main verb and not on the relative position of “the”
and “a”, and vice-versa if it makes the surface gen-
eralization.

We also experiment with introducing small
amounts of inoculating data. For each experiment,
we introduce different amounts of unmixed data to
the mixed training data, and rerun all the experi-
ments. The sizes of inoculating unmixed data are
1%, 3%, and 10% of the size of the mixed data.
These experiments are meant to test a model’s sen-
sitivity to weak signals in favor of linguistic gener-
alizations.

3 Evaluation Data

We introduce MSGS (Mixed Signals Generaliza-
tion Set), pronounced “messages”, a dataset we
design to be used in poverty of the stimulus and
inoculation experiments. With the goal of contrast-
ing inductive biases that are helpful and harmful
in most NLP applications, the tasks in MSGS all
mix signals from a linguistic feature and a surface
feature.

Features under Study Table 1 illustrates the 4
linguistic features and 5 surface features we con-
sider.1 Each feature is meant to be representative
of a broad category of features (e.g. morpholog-
ical features), though the precise implementation
of each feature is necessarily much narrower (e.g.
Does the sentence have an irregular past verb?).
Forming generalizations based on surface features
entails knowledge of the identity of certain words
(in our case, only “the” and “a”), the positional
indices of words in the string, the total number of
words in a string, or whether certain characters are
lowercase or uppercase.2 Forming generalizations
based on linguistic features requires more abstract
knowledge of tense and inflectional morphemes,
parts of speech, the control construction,3 and hi-
erarchical syntactic structures, none of which are
encoded in the surface string.

1In developing MSGS we explored a slightly larger set of
linguistic features. We excluded several based on initial exper-
iments showing our models did not robustly encode them.

2Although these are all surface properties of the original
string, they are not all trivial for RoBERTa due to its use
of subword tokenization. For instance, the case of individ-
ual characters and the presence of word boundaries must be
inferred for individual token types.

3The control construction is a syntactic construction in
which a semantic argument of a predicate fills or controls an
argument slot of an embedded verb. For instance, in Sue is
eager to sleep, the NP Sue is the subject of eager, but Sue is
also understood as the subject of sleep. This contrasts with
the raising construction in Sue is likely to sleep, where Sue is
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Dom. Split LL LS Sentence

In
Train (Mixed)

1 1 These men weren’t hating that this person who sang tunes destroyed the vase.
0 0 These men hated that this person who sang tunes was destroying some vase.

Inoc. (Unmixed)
1 0 These men weren’t hating that this person who sang tunes destroyed some vase.
0 1 These men hated that this person who sang tunes was destroying the vase.

Out
Test (Unmixed)

1 0 These reports that all students built that school were impressing some children.
0 1 These reports that all students were building the school had impressed some children.

Aux. (Mixed)
1 1 These reports that all students built the school were impressing some children.
0 0 These reports that all students were building that school had impressed some children.

Table 2: A full paradigm from the SYNTACTIC POSITION × LEXICAL CONTENT task. LL and LS mark the
presence of the linguistic feature (Is the main verb in the “ing” form? and surface feature (Does S contain “the”?),
respectively. Dom. is short for domain.

Dataset Structure and Evaluation MSGS con-
tains 20 mixed binary classification tasks where
the signal from each of the 4 linguistic features
has been mixed with the signal from each of the 5
surface features. MSGS includes an additional 9
unmixed control tasks—one for each feature. For
mixed tasks, data is generated in paradigms of 8
sentences following a 2× 2× 2 design, as shown
in Table 2. In addition to a binary linguistic fea-
ture and a binary surface feature, we also vary the
domain from which the sentence is sampled (see
§3). In some tasks, this means the in-domain and
out-of-domain sentences in a given paradigm bear
little resemblance, as in Table 2. The mixed in-
domain sentences where both labels are the same
fall into the training set, while the unmixed in-
domain sentences with non-matching labels are
reserved for the inoculation experiments. The un-
mixed out-of-domain test data is used to evaluate
model bias in our main results, and mixed out-of-
domain auxiliary data is used to measure how well
the model adapts to the out-of-domain data, regard-
less of which generalization it makes. We write
FEAT1× FEAT2 to denote a task that mixes features
FEAT1 and FEAT2. The unmixed control data is
generated in paradigms of 4 sentences following
a 2× 2 design by varying the feature and domain.
The training and test sets both consist of examples
from 5k paradigms, giving 10k training and test
examples for each task.

To evaluate how a model generalizes, we look at
its outputs on the unmixed test examples. We define
the linguistic bias score (LBS) as the Matthews
correlation coefficient between the outputs and the
linguistic labels on a test set (Matthews, 1975). If
LBS is 1, the learner shows a systematic linguistic

the subject of sleep, but is not a semantic argument of likely.

bias. If LBS is -1, the learner shows a systematic
surface bias. If LBS is 0, the learner fails to arrive
at either generalization, and therefore shows no
bias of either kind.

Data Generation The data is generated from
templates using a generation toolkit from Warstadt
et al. (2019). This toolkit includes a vocabulary
of over 3000 items labeled with grammatical fea-
tures that allow for lexical variation in the data
while maintaining grammatical well-formedness.
Despite this, generated sentences often describe un-
likely or implausible scenarios (e.g., Every lawyer
was sinking a canoe). However, semantic plausibil-
ity is independent of all the features we examine,
so this should not affect a model that genuinely en-
codes these features. To prevent out-of-vocabulary
tokens affecting our results, we ensure that every
word stem in the vocabulary appears in the pretrain-
ing datasets for our RoBERTa models (see §4.1).

We want to be confident that systematic general-
ization on one of these datasets requires knowledge
of the actual feature. The experimental logic would
fail if, for example, a model could achieve a linguis-
tic bias score of 1 on the SYNTACTIC POSITION

dataset by making use of some surface heuristic.
We take two precautions to guard against this:

First, we generate training data and test data for
each dataset from separate in-domain and out-of-
domain templates, so that a model cannot succeed
at test time simply by recognizing a template or a
key part of a template. For example, in the SYNTAC-
TIC POSITION × LEXICAL CONTENT paradigm
shown in Table 2, the in-domain data contrasts
the main verb with a verb within a relative clause
within a complement clause of a verb; while the
out-of-domain data contrasts the main verb with a
verb in a complement clause of a noun. In most
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tasks, each domain itself is generated from mul-
tiple templates as well to widen the domain and
encourage better generalization during training.

Second, on tasks that test lexical knowledge (for
instance, the knowledge that slept is an irregular
past verb and meow is not), we divide the crucial
lexical items into in-domain and out-of-domain
sets. Thus, a model cannot succeed by memorizing
the keywords associated with each class. See the
Appendix for a more detailed description of the
implementation details for each feature.

4 Models, Pretraining, & Fine-Tuning

We test 13 RoBERTa models in our main exper-
iments in total, 12 of which we pretrain from
scratch. The remaining one is the RoBERTa-Base
pretrained by Liu et al. (2019b).

4.1 Pretraining
Pretraining Data We pretrain RoBERTa using
scaled-down recreations of the dataset used by
Devlin et al. (2019) to train BERT, i.e English
Wikipedia (2.5 billion tokens) and BookCorpus
(800 million tokens). Both are included in the
RoBERTa pretraining data.4 We download the lat-
est Wikipedia dump as of Feb 1 2020. Since Book-
Corpus (Zhu et al., 2015) is no longer available, we
collect similar data from Smashwords, the original
source of BookCorpus.5

We pretrain RoBERTa on four training sets con-
taining different numbers of tokens: 1M, 10M,
100M, and 1B.6 To make these four datasets, we
sample entire Wikipedia articles and Smashwords
books independently, keeping the proportions of
Wikipedia and Smashwords text approximately
constant.

Model Sizes To prevent overfitting on small train-
ing sets, we include five model sizes in our search
space. The detailed configurations of the model
sizes are summarized in Table 3. We use RoBERTa-
Base from Liu et al. (2019b) as our largest model
size. Our other size configurations represent a scale
roughly based on settings used in Sanh et al. (2019),
Vaswani et al. (2017), Jiao et al. (2019), and Tsai
et al. (2019).

4RoBERTa uses English Wikipedia, BookCorpus, CC-
News, OpenWebText, and STORIES in pretraining.

5We collect our data using the Wikipedia XML
dump https://dumps.wikimedia.org/mirrors.html and data-
processing code https://github.com/attardi/wikiextractor; and
a Smashwords crawler https://github.com/soskek/bookcorpus.

6We count tokens as whitespace-separated strings.

Name L AH HS FFN P

Base 12 12 768 3072 125M
Med 6 12 768 3072 82M
Med-Small 6 8 512 2048 45M
Small 4 8 384 1200 26M
XSmall 3 4 256 1024 15M

Table 3: The model sizes we search over. AH = num-
ber of attention heads; HS = hidden size; FFN = feed-
forward network dimension; P = number of parameters.

Search Range For dropout, attention dropout,
learning rate decay, weight decay and the Adam
parameters, we adopt the same parameter values
used in Liu et al. (2019b). We fix warm up steps
to be 6% of max steps, peak learning rate to be
5e-4, early stopping patience to be 100M tokens,
and heuristically define the search range of model
size, max steps and batch size for each training set.

Search Results We randomly sample hyperpa-
rameters from the search range and train 25 models
for each of the 1M, 10M, 100M datasets. We train
only 10 models on the largest 1B dataset due to
resource limitations. For each training set size, we
choose three of the resulting models to evaluate in
our main experiments. In order to avoid confounds
caused by different model sizes, for each training
set we choose three models of the same size that
have the lowest perplexity. The hyperparameters
of the selected models are listed in the Appendix.

4.2 Fine-Tuning
We loosely follow the hyperparameter settings that
Liu et al. (2019b) used for fine-tuning on GLUE
tasks (Wang et al., 2018), and use the following
learning rates: {1E-5, 2E-5, 3E-5}. We depart
from Liu et al. in using a batch size of 16 and
limiting training epochs to 5 without early-stopping
for all experiments. These changes are based on
pilot experiments in which we found that larger
batch sizes were no more effective and that out-of-
domain generalization on our tasks was stable after
5 epochs.

For each pretrained model selected, we fine-tune
on every combination of learning rates and inoc-
ulation quantities, giving 12 runs per model per
task. We evaluate model performance using LBS
as described in §3.

5 Results & Discussion

Figure 2 plots the relationship between linguistic
bias score, pretraining data, and inoculation data.

https://dumps.wikimedia.org/mirrors.html
https://github.com/attardi/wikiextractor
https://github.com/soskek/bookcorpus
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1M 10M 100M 1B base

Inoculation rate: 0%

1M 10M 100M 1B base

Inoculation rate: 0.1%

1M 10M 100M 1B base

Inoculation rate: 0.3%

1M 10M 100M 1B base

Inoculation rate: 1.0%

-1.0

-0.5

0.0

0.5

1.0

Figure 2: Results measured in LBS for each pretraining and inoculation data amount, aggregated over the 20 tasks
in MSGS. Results for which the corresponding controls fail are excluded, as described in Section 5.

In this and subsequent plots, we filter out results
where the controls are not passed. Specifically, if
a particular combination of model checkpoint and
learning rate achieves a Matthews correlation of
less than 0.7 on the control task for feature F , we
eliminate all results with this combination for any
task involving F in Figure 2, or represent them as
gray points in Figure 3. Performance for the con-
trols is near ceiling for all features except syntactic
category and syntactic construction. This means
all the models are able to perfectly extract these
features in given texts. Results for the control tasks,
training-condition data, inoculation-condition data,
and auxiliary-condition data are given in the Ap-
pendix.

Pretraining strengthens linguistic bias Our
main finding is that more pretraining data leads
to a stronger linguistic bias. In Figure 2 we con-
sistently observe, for each pretraining quantity a
phase transition where the linguistic generalization
begins to overtake the surface generalization upon
exposure to a certain amount of inoculating data.
For example, the 1B model goes through this phase
transition between 0.1% and 0.3% inoculating data.
The 100M and 10M models go through this transi-
tion between 0.3% and 1% inoculating data. As is
shown in the figure, the phase transition happens
earlier for models with more pretraining, indicating
they have a stronger linguistic bias. We notice dis-
tinctive behavior for the models at the extreme ends
of pretraining data quantity: (1) The 1M model
never completes the transition, suggesting that min-
imal linguistic bias can be acquired 1M words or
fewer (2) RoBERTa-Base appears to already be in
the middle of this transition with 0% inoculating
data, suggesting that even more pretraining data
would produce a model with a consistent linguistic
bias.

These findings are echoed in individual task re-

sults in Figure 37. In each plot, points with the
same color (i.e. same amount of inoculating data)
generally increase with pretraining size, suggesting
that more pretraining data leads to a stronger lin-
guistic bias. Notably, on tasks involving a linguistic
feature mixed with LEXICAL CONTENT, RoBERTa-
Base usually favors generalizations based on lin-
guistic features without any inoculating data, which
no other pretrained model does. We find this re-
sult quite striking: Even if the labels are perfectly
correlated with the presence of the word “the”,
RoBERTa-Base overlooks that fact in favor of a
deeper generalization based on an abstract feature
like the inflectional form of a verb in a particular
syntactic position. Furthermore, this preference
is clearly acquired through additional pretraining.
The results for MORPHOLOGY × ORTHOGRAPHY

is a typical illustration of the differences between
models. The 1M model never adopts the linguistic
generalization based on the morphological feature,
though it eventually rejects a generalization based
on orthography with 1.0% inoculating data. The
100M and 1B models make robust linguistic gen-
eralizations only with 1.0% inoculating data. In
contrast, RoBERTa-Base requires only 0.1% inocu-
lating data (i.e. 10 out of 10k examples) to form a
strong linguistic generalization.

Surface Biases of RoBERTa Our results also
suggest some specific conclusions about which
kinds of surface features RoBERTa does and does
not bias. Specifically, as shown in the second col-
umn of figure 3, most of our models filtered by
the control tasks form generalizations based on the
linguistic features rather than the feature LENGTH

with no inoculating data needed, suggesting a weak
bias towards this feature. Similarly, the models
show a relatively stronger bias towards ORTHOG-

7A black-and-white version of figure 3 can be found in the
Appendix.
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Figure 3: Results of the mixed binary classification tasks measured in LBS for every linguistic-surface feature pair.
Each plot in the matrix shows the results on the unmixed test items after training a mixed task. All experiments
on the same row investigate the same linguistic feature; all experiments on the same column investigate the same
surface feature. Each data point represents one run. The x-axis of the point is the pretraining size of the model,
and the y-axis is its LBS. Gray points show runs where the corresponding controls did not pass.

RAPHY. This contrasts with features involving lex-
ical content and word order, which appear to be
relatively salient to our models.8

The success of pretrained models Our find-
ings provide a new angle from which to view
the widespread success of pretrained models like
RoBERTa. Pretraining helps these models learn
how to adapt to new target tasks by teaching them
what kinds of features are central to language, and
what kinds are not. Even though most models
passed the controls, and therefore reliably represent
both types of features, those with less pretraining
nevertheless seem to prefer the surface features.
In this way, language modeling pretraining can
be seen as a kind of metalearning. The fact that
RoBERTa-Base generally shows a linguistic bias
aligns with its near-state-of-the-art performance on

8MSGS does not come close to representing the full range
of possible relevant lexical or syntactic features, preventing us
from making strong conclusions about which specific linguis-
tic features RoBERTa has biases in favor of.

most language understanding tasks (Wang et al.,
2018). The failure of the 1M model on the con-
trols suggests that it has not learned sufficient basic
linguistic features to be able to detect the correct
generalization. This suggests a crucial data thresh-
old below which language model pretraining is
unlikely to be significantly helpful for most appli-
cations, and may explain the many-year gap be-
tween the development of neural LMs and the first
major applications of LM pretraining: The early
LMs must have been too small or too slow to cross
that threshold, yielding consistently poor results.

6 Related work

There is increasing interest in studying the induc-
tive biases of neural networks. Much of this work
has grown out of numerous findings that these mod-
els often fail to generalize in ways that task design-
ers intend. For example, McCoy et al. (2019) find
that supervised training on large crowdsourced tex-
tual entailment datasets like MultiNLI (Williams
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et al., 2018) leads models like BERT to adopt some
surface generalizations. As in our experiments,
the models are given mixed signals by MultiNLI,
though it is unintentional in this case: certain sur-
face features such as lexical overlap are often cor-
related with the entailment label. Given a choice
between a semantic generalization that accounts for
the data generally, and shallow heuristics that work
in subset of cases, the models opt for the latter.

Other work has used the poverty of stimulus
design to study inductive biases associated with
particular neural architectures during syntactic gen-
eralization. Ravfogel et al. (2019) train RNNs on a
morphological prediction task using artificial lan-
guages derived from naturally occurring English
text, finding that RNNs show a recency bias in
acquiring agreement rules. McCoy et al. (2018,
2020) train a seq2seq models on generated data
ambiguous between a surface and a structural gen-
eralization to learn the subject-auxiliary inversion
rule in English question formation. They find that,
while tree structured models show a structural bias,
sequence models do not.

Inductive biases can also be studied in a more ab-
stract way. Using zero-shot learning in an artificial
language, Lake and Baroni (2018) show that RNNs
lack a bias towards ascribing a stable, composi-
tional semantic content to new symbols. Gandhi
and Lake (2019) and Gulordava et al. (2020) ex-
plore conditions under which neural networks do
and do not exhibit a bias towards ascribing mutu-
ally exclusive semantic content to new symbols.

The concept of data augmentation using inoc-
ulating data has been explored previously as a
way to change how models generalize. McCoy
et al. (2019) and Min et al. (2020) show that small
amounts of inoculating data during training on tex-
tual entailment help BERT overlook certain surface
generalizations. Jha et al. (2020) study inocula-
tion using a constructed language of numerical se-
quences. Like us, they generate mixed datasets
including a shallow feature and a deep feature,
though all their features including deep ones re-
semble our surface features. They find several dif-
ferences between introducing inoculating data in
favor of the deep generalization and data against
the shallow generalization.

Finally, there have been prior related attempts
to explore how increased self-supervised train-
ing data impacts linguistic generalizations in self-
supervised models. Warstadt et al. (2019) and Hu

et al. (2020) use an acceptability judgment task on
minimal pairs (or sets) of sentences to evaluate lan-
guage models trained on quantities of data ranging
from <1M words to nearly 100M words. While
Warstadt et al. (2019) find that increasing pretrain-
ing data in this range leads to steady increases in
knowledge of acceptability (and by extension of
linguistic features), Hu et al. (2020) find little to
no effect. While our findings seem to align more
closely with Warstadt et al.’s, a more comprehen-
sive study of this learning curve would be valuable.

7 Future Work & Conclusion

Our experiments illuminate the relationship be-
tween pretraining data and an inductive bias to-
wards linguistic generalization. Our results indi-
cate that, although some abstract linguistic features
are learnable from relatively small amounts of pre-
training data, models require significant pretraining
after discovering these features to develop a bias
towards using them preferentially when generaliz-
ing. This gives some insight into why extensive
pretraining helps general purpose neural networks
adapt to downstream tasks with relative ease.

We also introduce MSGS, a new diagnostic
dataset for probing the inductive biases of learn-
ing algorithms using the poverty of the stimulus
design and inoculation. Another contribution is the
set of 12 RoBERTa models we pretrain on smaller
data quantities. These models could prove to be a
helpful resource for future studies looking to study
learning curves of various kinds with respect to the
quantity of pretraining data.

Finally, while our results naturally lead to the
conclusion that we should continue to pursue mod-
els with ever more pretraining, such as GPT-3
(Brown et al., 2020), we do not wish to suggest
that this will be the only or best way to build mod-
els with stronger inductive biases. Future work
might use MSGS as a diagnostic tool to measure
how effectively new model architectures and self-
supervised pretraining tasks can equip neural net-
works with better inductive biases.
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