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Abstract
Differentially private (DP) linear regression has received significant attention in the recent theoret-
ical literature, with several works aimed at obtaining improved error rates. A common approach
is to set the clipping constant much larger than the expected norm of the per-sample gradients.
While simplifying the analysis, this is however in sharp contrast with what empirical evidence
suggests to optimize performance. Our work bridges this gap between theory and practice: we pro-
vide sharper rates for DP stochastic gradient descent (DP-SGD) by crucially operating in a regime
where clipping happens frequently. Specifically, we consider the setting where the data is multi-
variate Gaussian, the number of training samples n is proportional to the input dimension d, and
the algorithm guarantees constant-order zero concentrated DP. Our method relies on establishing
a deterministic equivalent for the trajectory of DP-SGD in terms of a family of ordinary differen-
tial equations (ODEs). As a consequence, the risk of DP-SGD is bounded between two ODEs,
with upper and lower bounds matching for isotropic data. By studying these ODEs when n/d is
large enough, we demonstrate the optimality of aggressive clipping, and we uncover the benefits of
decaying learning rate and private noise scheduling.

1. Introduction
Differential privacy (DP) [22] has consolidated as the standard framework for privacy guarantees
and data protection in machine learning. This has motivated an extensive research effort in problems
spanning from fundamental questions in optimization [5, 6, 8, 13, 14] to deploying DP in large
scale deep learning architectures [19, 36, 42]. When there is no prior information on the Lipschitz
constant of the objective, training with DP differentiates from standard stochastic gradient descent
(SGD) methods due to additional algorithmic steps: clipping the per-sample gradients and adding
white noise to the parameters updates, depending on the desired privacy requirement and the number
of training iterations [1]. Carefully defining the hyperparameters of DP-SGD plays a crucial role
in the maximization of its performance, and a principled understanding of their impact in different
settings is fundamental to reduce costly grid searches and the related privacy leakage [49].

In particular, the problem of DP linear regression presents the challenge described above, in a
setting amenable to a precise theoretical analysis [12, 38, 46, 59]. Recent work providing efficient
algorithms to improve the theoretical guarantees on the test risk [9, 39, 57] has a common pattern:
the clipping constant Cclip is set to be sufficiently large so that, with high probability, gradient
clipping does not take place throughout the dynamics of the algorithm. This approach brings the
benefit of a simpler analysis, as the optimization becomes more easily comparable to a quadratic
problem with noisy gradient updates. However, the practical advantage of avoiding clipping remains
unclear: it is pointed out in [9] that the lowest error occurs under significant clipping, and this last
conclusion is in agreement with experimental evidence for DP-SGD in deep learning [19, 35, 36],
which supports setting Cclip sufficiently small, rescaling appropriately the learning rate.
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In this work, we show that, in DP linear regression, DP-SGD achieves better rates in the regime
where Cclip is of the same order of the typical per-sample gradients and, thus, clipping occurs fre-
quently. In particular, we focus on the setting where the number of training data n is assumed to
grow proportionally with the number of input dimensions d, with constant-order guarantees in terms
of zero concentrated DP (see Definition 1). Notably, in this regime, the upper bounds provided by
prior work on DP linear regression [9, 39, 57] diverge (see Appendix A for details), and a crucial
reason behind this is the extra logarithmic factors in Cclip, which in turn define a regime where clip-
ping does not happen with high probability. An exception to this is given by the recent work [23],
which provides constant-order test risk guarantees for the implicit solution of minimization prob-
lems with output and objective perturbation. However, the approach of [23] is restricted to isotropic
data covariance, it provides limited insight on DP-SGD (the results are in terms of dynamical mean-
field theory equations [26, 28], which are then hard to interpret), and it does not characterize how
hyper-parameters affect utility for a fixed privacy budget. Our contributions are summarized below.
1. We consider a one-pass DP-SGD algorithm (Algorithm 1) and provide privacy guarantees in

terms of zero concentrated DP (Proposition 2). Our argument is based on privacy amplification
by iteration [24, 25], and the privacy guarantees only regard the final output of the algorithm.

2. Following recent progress in high-dimensional optimization [17, 41, 51], we track the test risk of
DP-SGD via a stochastic differential equation (SDE), dubbed homogenized DP-SGD (Theorem
4). This is turn provides a deterministic equivalent for the DP-SGD trajectory in terms of a
family of ordinary differential equations (ODEs), and we exploit the equivalence by bounding
the test risk between two ODEs, with upper and lower bounds matching for isotropic data.

3. Finally, we give sharp bounds on the ODEs above for polynomially decaying learning rate sched-
ules, in the setting where d/n → γ is sufficiently small (Theorems 6 and 7). This allows us to (i)
demonstrate the optimality of aggressive clipping, i.e., when Cclip is set to be of the same size of
(or even much smaller than) the expected norm of the per-sample gradients, and to (ii) compare
the utility of different schedules, proving the benefits of fast-decaying learning rates.

Our analysis is fueled by a methodology that is both innovative compared to earlier work [9, 39, 57]
and rather general, thus laying foundations for the sharp characterization of high-dimensional DP
optimization, beyond linear regression. We discuss directions for future work in Appendix F.

2. Preliminaries
Notation. Given a vector v, we denote by ∥v∥2 its Euclidean norm. Given a matrix A, we denote
by tr(A) and ∥A∥op its trace and operator (spectral) norm. Given a symmetric matrix A, we denote
by λmin (A) (λmax (A)) its smallest (largest) eigenvalue. All complexity notations Ω(·), O(·), ω(·),
o(·) and Θ(·) are understood for large data size n and input dimension d. We indicate with C > 0 a
numerical constant independent of n and d, whose value may change from line to line, and we say
that an event holds with overwhelming probability if it holds with probability at least 1− e−ω(log d).

Linear regression. Let (X,Y ) be a labeled training dataset, with X = [x1, . . . , xn]
⊤ ∈ Rn×d

and Y = [y1, . . . , yn]
⊤ ∈ Rn s.t. input-label pairs are i.i.d. from a joint distribution PXY . We

consider a linear regression model: yi = x⊤i θ
∗ + zi, where θ∗ ∈ Rd, xi has mean-0 and co-

variance Σ, and zi is independent label noise with mean-0 and variance ζ2. The goal of DP lin-
ear regression is to find θp guaranteeing a required privacy budget and minimizing the test risk:
P(θp) = E(x,y)∼PXY

[
(
x⊤θp − y

)2
]/2 = ∥Σ1/2 (θp − θ∗) ∥22/2 + ζ2/2. We also use the notation

R(θp) = P(θp)− ζ2/2 to denote the noiseless test risk s.t. R(θ∗) = 0.
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Algorithm 1: DP-SGD
Input: Training data (X,Y ), learning rate schedule {ηk}nk=1, clipping constant Cclip, noise

multiplier schedule {σk}nk=1, initialization θ0 = 0.
for k ∈ {1, . . . , n} do

Compute the gradient gk = ∇θ

(
x⊤k θk−1 − yk

)2
/2 = xk

(
x⊤k θk−1 − yk

)
.

Clip the gradient ḡk = gkmin
(
1,

Cclip
∥gk∥2

)
.

Set the learning rate adaptively η̄k = min
(
ηk,

2
∥xk∥22

)
.

Sample independent Gaussian noise bk ∼ N (0, I).
Update the model parameters θk = θk−1 − η̄kḡk + 2Cclipσkbk.

Output: Model parameters θp = θn.

Differential privacy (DP). We recall that a dataset D′ is adjacent to a dataset D if they differ by
only one sample. In this work, we frame privacy in terms of zero-concentrated DP (zCDP).

Definition 1 (Zero concentrated DP [11]) Given α ∈ (1,+∞) and two random variables X and
X ′ with laws pX and pX′ , their α-Rényi Divergence [53] is defined as

Dα

(
X ∥X ′) = 1

α− 1
ln

∫ (
pX(θ)

pX′(θ)

)α
pX′(θ)dθ. (1)

Then, a randomized algorithm A satisfies ρ-zero concentrated DP (ρ-zCDP) if, for any pair of
adjacent datasets D,D′ and any α ∈ (1,+∞), we have Dα (A(D) ∥A(D′)) ≤ αρ.

Guarantees for zCDP can be translated to other formulations, such as (ε, δ)-DP, see Appendix B.

3. Homogenized DP-SGD and deterministic equivalent
We consider DP-SGD performing a single pass on the n training samples (Algorithm 1).

Proposition 2 Algorithm 1 satisfies (ρ2/2)-zCDP, where ρ = maxk∈[n] ηk/
√∑n

j=k σ
2
j .

Proposition 2 (whose proof is deferred to Appendix B) states that each sample xk is “protected”
by the overall noise introduced in the following updates

∑n
j=k σ

2
j . For an assigned privacy guaran-

tee, we can minimize the noise introduced by the algorithm
∑n

j=1 σ
2
j (and, therefore, optimize its

performance) via the schedule below:

ηk = ρ

√√√√ n∑
j=k

σ2
j , or, equivalently, ρ2σ2

k =

{
η2k − η2k+1, k ∈ {1, . . . , n− 1},
η2k, k = n.

(2)

Homogenized DP-SGD. Our analysis is based on tracking the risk R of Algorithm 1 via an SDE
in parameter space. This approach was developed in a series of works [17, 41, 50, 51] aimed at char-
acterizing high-dimensional optimization problems and the implicit bias of stochastic batching in
regression tasks. We now make two assumptions on data distribution and hyper-parameter scaling.

Assumption 1 (Data distribution) {xi}ni=1 are n i.i.d. samples from the multivariate, mean-0,
Gaussian distribution PX , with covariance Σ := E

[
xx⊤

]
∈ Rd×d. Furthermore, the noise zi is

mean-0, Gaussian, with variance ζ2 > 0, and ∥θ∗∥2 = Θ(1). We also assume that tr(Σ) = d and
κ = λmax (Σ) /λmin (Σ) = Θ(1), i.e., the data covariance is well-conditioned.
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Assumption 2 (Hyper-parameter scaling) Let the clipping constant in Algorithm 1 be Cclip =

c
√
d, where c is a constant independent of n and d. Furthermore, the learning rate schedule is

given by ηk =
η̃(k/n)
n , where η̃ : [0, 1] → R is a function such that both η̃2 (·) and the absolute value

of its first and second derivatives are uniformly bounded by a constant independent of n and d.

Definition 3 (Homogenized DP-SGD) For any t ∈ [0, 1), we define the homogenized DP-SGD
(H-DP-SGD) as the solution of the SDE

dΘt = −η̃(t)µc(Θt)∇P(Θt)dt+ η̃(t)

√
2νc(Θt)P(Θt)Σ

n
dBs

t + 2

√
d

n
cσ̃(t)dBp

t , (3)

where Θ0 = θ0 = 0, Bs
t and Bp

t are two independent standard Brownian motions in Rd, η̃(t)
is defined as in Assumption 2, σ̃(t) is such that ρ2σ̃2(t) = −dη̃2(t)/dt, and µc(θ), νc(θ) are the
descent and the variance reduction factor respectively, defined in (17) in Appendix C.

Theorem 4 Let Assumptions 1 and 2 hold. Let ρ = Θ(1), n, d → ∞ s.t. d/n → γ ∈ (0,∞),
and supt∈[0,1] η̃(t) < 2/γ. Denote by Θt and θk independent realizations of H-DP-SGD (as per
Definition 3) and Algorithm 1. Then, with overwhelming probability, we have

sup
t∈[0,1)

∣∣R(Θt)−R(θ⌊tn⌋)
∣∣ = O

(
log2 n√

n

)
. (4)

Theorem 4 formalizes the equivalence in terms of risk between Algorithm 1 and the H-DP-SGD
dynamics in (3), and its proof is deferred to Appendix D.1.

Deterministic equivalent. The SDE in (3) can be well approximated in terms of d coupled ODEs
(see Lemma 15 in Appendix D.1), and a similar approximation was pursued by earlier work on SGD
without private noise [17]. This system of ODEs then provides a deterministic equivalent for the
dynamics of DP-SGD, since it approximates sharply its risk without depending on the stochasticity
of the private noise and of the data. Given the difficulty of handling d coupled ODEs, for general
covariance we opt to give an upper and a lower bounds in terms of two decoupled ODEs, namely

dR(t) = −2λminη̃(t)µc(R)Rdt+ λmaxη̃
2(t)νc(R)(R+ ζ2/2)γdt+ 2c2σ̃2(t)γ2dt,

dR(t) = −2λmaxη̃(t)µc(R)Rdt+ η̃2(t)νc(R)(R+ ζ2/2)γdt+ 2c2σ̃2(t)γ2dt,
(5)

where, importantly, the upper bound R and the lower bound R match when the data is isotropic
(Σ = I). A formal statement is in Proposition 13 (deferred to Appendix D) and Figure 2 (also in
Appendix D) shows that the convergence is already evident at moderate values of n, d.

Noise in the last iteration. Theorem 4 holds for {θk}n−1
k=1 , as the supremum in (4) is taken on the

open interval t ∈ [0, 1). The last iterate θn = θp, which corresponds to t = 1 and gives the (private)
output of the algorithm, is treated separately via the result below.

Proposition 5 Let Assumptions 1 and 2 hold. Let ρ = Θ(1) and n, d → ∞ s.t. d/n → γ ∈ (0,∞).
Then, with overwhelming probability,

∣∣R(θp)−R(θn−1)− 2c2η̃2(1)γ2/ρ2
∣∣ = O (log n/

√
n).

Better rates in the proportional regime. Combining Theorem 4, Eq. (5), and Proposition 5
gives that, when d/n → γ with n, d → ∞, R(θp) is bounded between R(1) + 2c2η̃2(1)γ2/ρ2 and
R(1)+2c2η̃2(1)γ2/ρ2. This is a constant-order upper bound on the risk in the proportional regime,
which improves upon prior work on DP linear regression [9, 39, 57], due to the additional log terms
implicit in their notation Õ(·), as discussed in Appendix A.
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4. Polynomial schedules and the benefits of aggressive clipping
Our analysis not only provides better rates than earlier work, but it is also sharp enough to (i)
establish optimal hyper-parameter choices, and to (ii) compare different learning rate schedules. To
do so, we focus on the case γ = d/n → 0. This limit is taken after the limit d, n → ∞, which means
that d and n are incomparably larger than 1/γ. Thus, our bounds on R(θp) neglect the smaller terms
that vanish as d, n → ∞. We use the asymptotic notation Ωγ(·), Oγ(·),Θγ(·), ωγ(·), oγ(·) intended
for small enough γ, and the quantities ρ and α are allowed to depend on γ (but not on n, d). Below,
we provide informal statements where we assume λmax = Θγ(1) and λmin = Θγ(1). Formal
statements that also tracks the dependence on λmax, λmin, together with the corresponding proofs,
are given in Appendix E. We also assume ∥Σ1/2θ∗∥2 = Θγ(1), ζ2 = Θγ(1), i.e., the test risk of the
model at initialization and the label noise variance are fixed strictly positive constants.

We study the ODEs in (42) for a family of polynomially decaying learning rate schedules:
η̃(t) = η̃(0)(1− t)α, (6)

for α = 0, α = 1/2, and α ≥ 1. The case α = 0 corresponds to output perturbation: the learning
rate is fixed, and the private noise is added only at the end of the algorithm, as (2) implies σk = 0
for k ∈ {1, . . . , n− 1} and σn = η1/ρ. The case α = 1/2 corresponds to a linearly decaying η̃2(t),
which in turn gives a constant level of noise σk = η1/(

√
nρ) in the iterations of DP-SGD.

Theorem 6 (Informal) Let θp0 and θp1/2 be the solutions obtained with Algorithm 1 with η̃(t) given
by (6) for α = 0 and α = 1/2 respectively, in the setting γ = oγ(1). Pick c = Oγ(1), η̃(0)c =
C ln(1/γ), η̃(0) ≤ 2/γ, for a large enough constant C which does not depend on γ, ρ,Σ. Then,
under some technical assumptions, we have that, with overwhelming probability,

R(θp0) = Oγ

(
γ ln(1/γ) +

γ2 ln2(1/γ)

ρ2

)
, R(θp1/2) = Oγ

(
γ ln2/3(1/γ) +

γ2 ln4/3(1/γ)

ρ2

)
.

Furthermore, for any c and η̃(0) s.t. η̃(0) < 2/γ, a matching lower bound holds (up to a universal
multiplicative constant).

The result has two remarkable consequences: (i) the proposed hyper-parameters are optimal (assum-
ing η̃(0) < 2/γ), and (ii) DP-SGD outperforms output perturbation. In Appendix E, we comment on
the hyper-parameters and support our conclusions via the simulations of Figure 3. Our analysis also
shows the benefits of aggressive clipping: the lower bound can be increased by a factor max

(
1, c2

)
,

which demonstrates the sub-optimality of c = ωγ(1) (corresponding to infrequent clipping), see the
end of Appendix E.3 for details.

Finally, as α = 1/2 improves over α = 0, we reduce the noise at the end of training and pick
σ̃2(t) proportional to 2α(1− t)2α−1 for α ≥ 1, corresponding to a decay at least linear.

Theorem 7 (informal) Let θpα be the solution obtained with Algorithm 1, with η̃(t) given by (6)
for α ≥ 1, in the setting γ = oγ(1). Pick c = Oγ(1), η̃(0)c = Cα ln(1/γ), η̃(0) ≤ 2/γ, for a large
enough constant C which does not depend on γ, ρ,Σ, α. Then, under some technical assumptions,
we have that, with overwhelming probability,

R(θpα) = Oγ

(
αγ ln

1
1+α (1/γ) +

α2γ2 ln
2

1+α (1/γ)

ρ2

)
.

Thus, for small γ, it is convenient to increase α and decay the noise faster during training, up to
a level α = Θγ(ln ln(1/γ)), which gives a bound of order γ ln ln(1/γ) + γ2(ln ln(1/γ))2/ρ2.
Different learning rate schedules are also compared numerically in Figure 4 in Appendix E.
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Appendix A. Related work

DP optimization. Since its introduction in [22], DP has provided the golden standard in the field
of private data analysis, and different methods have been proposed with the purpose of learning
with DP, such as objective and output perturbation [13, 14, 34] or different variants of DP-SGD
[1, 5, 54]. In the last decade, a popular line of work has theoretically investigated private learning in
various settings, such as Lipschitz and bounded optimization [5, 6, 34] or generalized linear models
with Lipschitz loss [32, 55]. In DP linear regression, the objective is non-Lipschitz and, hence, the
straightforward adaptation of previous results fails to provide tight guarantees, with improvements
being achieved via alternative approaches. Specifically, assumptions on the covariates are used
in [59]. These hypotheses are lifted in [46], at the expense of requiring n = Ω̃(d3/2) samples,
where the ∼ hides logarithmic terms and the privacy budget is assumed of constant order. DP-
SGD with adaptive clipping is shown to achieve a sample complexity of n = Ω̃(d) in [57]. This
is “nearly optimal”, in the sense that it matches, up for logarithmic factors, the min-max lower
bound in [12]. Similar nearly optimal rates were previously obtained by [38] (however with a
computationally inefficient method), and more recently by [39] and [9]. Notably, in the proportional
regime n = Θ(d), if the privacy budget is of constant order (ε/

√
ln(1/δ) = Θ(1) in [39, 57], or

ρ = Θ(1) in [9]), then prior bounds on the test risk diverge logarithmically either in n [57] or in
the failure probability [9, 39]1. This barrier has been recently broken by [23], with the limitations
mentioned in Section 1.

Gradient clipping. In the context of private optimization with a non-Lipschitz loss, the role of
clipping and the magnitude of the corresponding clipping constant Cclip has attracted attention due
to its nuanced implications: while a small Cclip significantly affects the gradients, larger values force
the addition of more private noise, suggesting that the choice of Cclip induces a bias-variance trade-
off [2, 3, 9, 18, 43]. Prior work has argued that the bias induced by small clipping constants can
prevent convergence [2, 15, 55], which motivates an adaptive selection of Cclip based on (private)
statistics of the magnitude of the gradients [1, 3, 27, 52]. Recent experimental studies have given
evidence that the best performance is achieved with a sufficiently small Cclip [19, 35, 36], but it has
also been shown that overly-aggressive clipping can be damaging in the context of model calibration
[9, 10]. Theoretical insights on the benefits of small clipping constants have been provided in
[15, 18], with [15] proving optimization guarantees when the gradients distribution is sufficiently
symmetric and [18] considering the setting where the Lipschitz constant of the loss is sample-
dependent. Recent work on DP linear regression [9, 39, 57] shares the common feature of setting
the (possibly adaptive) Cclip a poly-logarithmic factor larger than the expected norm of the per-
sample gradient. This ensures that, with high probability, at most a few gradients are clipped during
training, and we note that these logarithmic factors are strongly tied to the consequent logarithmic
divergence of the test risk guarantees discussed in the previous paragraph. Finally, the recent work
[41] provides a precise analysis of a version of clipped-SGD, although it does not focus on privacy.

Learning in high dimensions. The statistical setting where the input dimension (or model size)
d scales with the number of training samples n gained popularity due to its power in explaining
many empirical phenomena occurring in practice [4, 7, 30]. In this direction, a line of work has
characterized the interplay between over-parameterization and generalization for linear models [16,
29], logistic models [20, 48] and random features [31, 44, 45]. Random features have also been

1. More precisely, in [39] the number of samples would not be sufficient to achieve Eq. (4) with high probability.
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considered recently to explain the benefits of scale in private optimization [8]. Another line of
work has analyzed the behavior of one-pass SGD algorithms in terms of high-dimensional SDEs
[17, 41, 50, 51]. By passing from the SDE to a family of ODEs, this strategy gives a deterministic
equivalent for the gradient dynamics, which in turn leads to remarkable insights on optimization
stability and the role of stochastic batching.

Appendix B. Proofs on differential privacy

The notion of zCDP can be converted in (ε, δ)-DP, which in turn is defined below.

Definition 8 ((ε, δ)-DP [22]) A randomized algorithm A satisfies (ε, δ)-differential privacy if for
any pair of adjacent datasets D,D′, and for any subset of the parameters space S ⊆ Rd, we have

P (A(D) ∈ S) ≤ eεP
(
A(D′) ∈ S

)
+ δ. (7)

For completeness, we also provide the following definition.

Definition 9 (Rényi DP [47]) Given α ∈ (1,+∞) and ε ≥ 0, an algorithm A satisfies (α, ε)
Rényi DP if for any pair of adjacent datasets D,D′ we have Dα (A(D) ∥A(D′)) ≤ ε, where
Dα (A(D) ∥A(D′)) is the Rényi Divergence [53] between the probability distributions induced by
the randomness of A, i.e.,

Dα

(
A(D) ∥A(D′)

)
=

1

α− 1
ln

∫ (
pA(D)(θ)

pA(D′)(θ)

)α
pA(D′)(θ)dθ. (8)

Note that Definitions 1 and 9 imply that an algorithm is ρ-zCDP if, for any α > 1, it is also (α, ρα)
Rényi DP. The following proposition allows to translate Rényi DP and zCDP to (ε, δ)-DP.

Proposition 10 (Proposition 1.3 in [11]) If A satisfies ρ2/2-zCDP, it also satisfies
(
ρ2/2 + ρ

√
2 ln(1/δ), δ

)
-

DP, for any δ ∈ (0, 1).

Then, if we consider δ such that ρ ≤
√

ln(1/δ), we achieve (ε, δ)-DP if we have

ρ2/2 + ρ
√
2 ln(1/δ) ≤ 2ρ

√
ln(1/δ) ≤ ε, (9)

which means that for algorithms respecting ρ2/2-zCDP, we can replace 2ρ by ε/
√
ln(1/δ) in the

error bounds to evaluate the cost of privacy in terms of (ε, δ)-DP.

B.1. Proof of Proposition 2

Let us define the family of functions ℓk,Cclip(·) : R → R, for all k ∈ [n], such that ℓk,Cclip(0) = 0,
and

ℓ′k,Cclip
(z) = zmin

(
1,

Cclip

|z| ∥xk∥2

)
. (10)
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In words, ℓk,Cclip(z) is a quadratic function, but linearized for sufficiently large values of |z|, such
that it is Cclip/ ∥xk∥2-Lipschitz. Then, we have

ḡk = gkmin

(
1,

Cclip

∥gk∥2

)
= xk

(
x⊤k θk−1 − yk

)
min

(
1,

Cclip

∥xk∥2
∣∣x⊤k θk−1 − yk

∣∣
)

= xkℓ
′
k,Cclip

(
x⊤k θk−1 − yk

)
= ∇θℓk,Cclip

(
x⊤k θk−1 − yk

)
,

(11)

where the first step follows from the definition of ḡk in Algorithm 1. Furthermore, we have∥∥∥∇θℓk,Cclip(x
⊤
k θ − yk)−∇θℓk,Cclip(x

⊤
k θ

′ − yk)
∥∥∥
2

= ∥xk∥2
∣∣∣ℓ′k,Cclip

(x⊤k θ − yk)− ℓ′k,Cclip
(x⊤k θ

′ − yk)
∣∣∣

≤ ∥xk∥2
∣∣∣x⊤k (θ − θ′

)∣∣∣
≤ ∥xk∥22

∥∥θ − θ′
∥∥
2
,

(12)

where the second step follows from the fact that ℓ′k,Cclip
(z) is a 1-Lipschitz function. Let us now

define

ℓ̄k,Cclip(z) = min

(
1,

2

∥xk∥22 ηk

)
ℓk,Cclip(z). (13)

Then, we have that every iteration of Algorithm 1 takes the form

θk = θk−1 − ηk∇θ ℓ̄k,Cclip(x
⊤
k θk−1 − yk) + 2Cclipσkbk, (14)

where ℓ̄k,Cclip(x
⊤
k θ − yk) is Cclip-Lipschitz with respect to θ, and it is 2/ηk-smooth, i.e.,∥∥∥∇θ ℓ̄k,Cclip(x

⊤
k θ − yk)−∇θ ℓ̄k,Cclip(x

⊤
k θ

′ − yk)
∥∥∥
2
≤ 2

ηk

∥∥θ − θ′
∥∥
2
, (15)

due to (12) and (13). Thus, the desired result follows from Theorem 3.1 in [25], after setting their
batch sizes {Bk} identically equal to 1, and their projection set K equal to all Rd. ■

Appendix C. The auxiliary functions µc(θ) and νc(θ)

Let us introduce

r(θ, x, y) = x⊤θ − y, rc(θ, x, y) = r(θ, x, y)min

(
1,

c

|r(θ, x, y)|

)
, (16)

where r(θ, x, y) represents the residual in θ, and rc(θ, x, y) is a clipped version of it. Then, as done
in [41], we define the descent reduction factor and the variance reduction factor

µc(θ) =

∥∥E(x,y)∼PXY
[rc(θ, x, y)x]

∥∥
2∥∥E(x,y)∼PXY

[r(θ, x, y)x]
∥∥
2

, νc(θ) =
E(x,y)∼PXY

[
rc(θ, x, y)

2
]

E(x,y)∼PXY
[r(θ, x, y)2]

. (17)
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Lemma 11 below provides a closed-form expression for µc(θ) and νc(θ) in terms of P(θ) and c,
and the subsequent Lemma 12 gives bounds that will be useful in the rest of the analysis.

Lemma 11 Let Assumption 1 hold, and let µc(θ) and νc(θ) be defined according to (17). Then, we
have

µc(θ) = erf

(
c

2
√
P(θ)

)
, (18)

νc(θ) =
c2

2P(θ)

(
1− erf

(
c

2
√
P(θ)

))
+ F

(
c√

2P(θ)

)
, (19)

where

erf(z) =
2√
π

∫ z

0
e−t

2
dt, F (z) =

1√
2π

∫ z

−z
t2e−t

2/2dt = erf

(
z√
2

)
−
√

2

π
ze−z

2/2. (20)

In particular, µc(θ) and νc(θ) depend only on c and the test risk P(θ) via the ratio c/
√
2P(θ).

Proof Recall that

r(θ, x, y) = x⊤θ − y, rc(θ, x, y) = r(θ, x, y)min

(
1,

c

|r(θ, x, y)|

)
, (21)

µc(θ) =
∥Ex,y [rc(θ, x, y)x]∥2
∥Ex,y [r(θ, x, y)x]∥2

, νc(θ) =
Ex,y

[
rc(θ, x, y)

2
]

Ex,y [r(θ, x, y)2]
. (22)

Until the end of the proof, we will use the notation clipc(·) : R → R to denote the function such
that

clipc(a) = amin

(
1,

c

|a|

)
. (23)

In particular, rc(θ, x, y) = clipc (r(θ, x, y)).
Let us look at the first entry of the vector Ex,y [rc(θ, x, y)x],

Ex,y
[
rc(θ, x, y)x

⊤e1
]
= Eρ1,ρ2 [clipc(ρ1)ρ2] , (24)

where the second step introduced ρ1 and ρ2, defined as two mean-0 Gaussian random variables,
such that

Var(ρ1) =
∥∥∥Σ1/2(θ − θ∗)

∥∥∥2
2
+ ζ2, Var(ρ2) = Σ11, Cov(ρ1, ρ2) = e⊤1 Σ(θ − θ∗). (25)

Then, we have

Eρ1,ρ2 [clipc(ρ1)ρ2] =
Cov(ρ1, ρ2)

Var(ρ1)
Eρ1 [clipc(ρ1)ρ1]

=
Cov(ρ1, ρ2)√

Var(ρ1)
Eρ̂
[
clipc(

√
Var(ρ1)ρ̂)ρ̂

]
=

e⊤1 Σ(θ − θ∗)√
2P(θ)

Eρ̂
[
clipc(

√
2P(θ)ρ̂)ρ̂

]
,

(26)
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where we used P(θ) = R(θ)+ζ2/2 = Var(ρ1)/2 and we introduced the standard Gaussian random
variable ρ̂. As this argument holds for any component of the vector Ex,y [rc(θ, x, y)x], plugging the
equation above in (24) gives

∥Ex,y [rc(θ, x, y)x]∥2 =
∥Σ(θ − θ∗)∥2√

2P(θ)
Eρ̂
[
clipc(

√
2P(θ)ρ̂)ρ̂

]
=

∥Ex,y [r(θ, x, y)x]∥2√
2P(θ)

Eρ̂
[
clipc(

√
2P(θ)ρ̂)ρ̂

]
,

(27)

where in the second step we used that Ex,y [r(θ, x, y)x] = Σ(θ − θ∗). Then, we also have

µc(θ) =
Eρ̂
[
clipc(

√
2P(θ)ρ̂)ρ̂

]
√
2P(θ)

. (28)

Defining the shorthand c′(θ) = c/
√
2P(θ), the numerator of the expression above yields

Eρ̂
[
clipc(

√
2P(θ)ρ̂)ρ̂

]
=

√
2P(θ)√
2π

∫ c′(θ)

−c′(θ)
ρ̂2e−ρ̂

2/2dρ̂+
2c√
2π

∫ +∞

c′(θ)
ρ̂e−ρ̂

2/2dρ̂

=

√
2P(θ)√
2π

(
−ρ̂e−ρ̂

2/2
∣∣∣c′(θ)
−c′(θ)

+

∫ c′(θ)

−c′(θ)
e−ρ̂

2/2dρ̂

)
− 2c√

2π
e−ρ̂

2/2
∣∣∣+∞

c′(θ)

=

√
2P(θ)√
2π

(
−2c′(θ)e−c

′(θ)2/2 +

∫ c′(θ)

−c′(θ)
e−ρ̂

2/2dρ̂

)
+

2c√
2π

e−c
′(θ)2/2

=

√
P(θ)√
π

∫ c′(θ)

−c′(θ)
e−ρ̂

2/2dρ̂

=
2
√
2
√
P(θ)√
π

∫ c′(θ)/
√
2

0
e−ρ̂

2
dρ̂

=
√

2P(θ) erf

(
c√

4P(θ)

)
,

(29)
which, plugged in (28), gives the first part of the thesis.

For the second part of the thesis, following the same argument we used to write (28), we have

νc(θ) =
Eρ̂
[
clipc(

√
2P(θ)ρ̂)2

]
2P(θ)

, (30)

where, as before, ρ̂ denotes a standard Gaussian random variable. Then, we have

νc(θ) =
1√
2π

∫ c′(θ)

−c′(θ)
ρ̂2e−ρ̂

2/2dρ̂+
2c′(θ)2√

2π

∫ +∞

c′(θ)
e−ρ̂

2/2dρ̂

=
1√
2π

∫ c′(θ)

−c′(θ)
ρ̂2e−ρ̂

2/2dρ̂+ c′(θ)2
(
1− 2√

2π

∫ c′(θ)

0
e−ρ̂

2/2dρ̂

)

=
c2

2P(θ)

(
1− erf

(
c

2
√

P(θ)

))
+ F (c′(θ)),

(31)
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Figure 1: The functions µc(R), µc(R)/c′, νc(R), νc(R)/c′, plotted as a function of c′ =
c/
√

2R+ ζ2.

which concludes the proof.

Lemma 12 Let Assumption 1 hold, and let µc(R) and νc(R) be defined according to (17), where
R denotes a generic value of the test risk, since µc(θ) and νc(θ) depend only on c and the test risk
P(θ) due to Lemma 11. Then, for any c > 0, we have that

cµ(c, ζ) <
µc(R)

√
2R+ ζ2

c
<

√
2

π
, cν(c, ζ) <

νc(R)(2R+ ζ2)

c2
< 1, (32)

where cµ(c, ζ) and cν(c, ζ) denote two positive constants which depend on the values of c and ζ and
are monotonously decreasing in c.

We also have that, as c/ζ → 0,∣∣∣∣∣µc(R)
√

2R+ ζ2

c
−
√

2

π

∣∣∣∣∣ = o (1) ,

∣∣∣∣∣νc(R)
(
2R+ ζ2

)
c2

− 1

∣∣∣∣∣ = o (1) . (33)

Furthermore, we have

νc(R)(2R+ ζ2)

c2
>

1

2
, if

c√
2R+ ζ2

≤ 1,

νc(R) >
1

2
, if

c√
2R+ ζ2

> 1.

(34)

Proof Note that, introducing the notation

c′ =
c√

2R+ ζ2
≤ c

ζ
, (35)

we have that
µc(R) = erf

(
c′/

√
2
)
< 1, (36)

and
νc(R) = (c′)2

(
1− erf

(
c′/

√
2
))

+ F (c′) < 1, (37)

where the last inequalities can be verified directly via the definitions in (17). Furthermore, we have
that both µc(R) and νc(R) are increasing functions of c′, equal to 0 when c′ = 0. This follows from
the definition for µc(R), and can be promptly verified for νc(R) via derivation.
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We further have that, for c′ > 0,

µc(R)
√
2R+ ζ2

c
=

1

c′
erf
(
c′/

√
2
)
<

√
2

π
, (38)

and
νc(R)

(
2R+ ζ2

)
c2

=
(
1− erf

(
c′/

√
2
))

+
F (c′)
(c′)2

< 1, (39)

where both the LHSs are decreasing functions of c′, going to 0 for c′ → +∞ (this can be seen via
explicit derivation with respect to c′, and via the identity 0 ≥

∫ z
0 −2t2e−t

2
dt = ze−z

2 −
∫ z
0 e−t

2
dt),

and where the last inequalities can be verified computing the limit for c′ → 0+ via l’Hôpital rule,
which gives

lim
c′→0+

µc(R)
√
2R+ ζ2

c
=

√
2

π
, lim

c′→0+

νc(R)
(
2R+ ζ2

)
c2

= 1. (40)

Note that, as R ≥ 0, the above limit is achieved when c/ζ → 0. Then, due to the inequality in (35),
the first and second part of the thesis follow.

Note that, for c′ = 1, we have

νc(R) = 1−
√

2

πe
≈ 0.516. (41)

Thus, the third and fourth part of the thesis follow from the monotonicity of νc(R)/c′ and νc(R).

Appendix D. Deterministic equivalent

As µc(θ) and νc(θ) depend only on c and the test risk P(θ) via the ratio c/
√
2P(θ) (see Lemma

11 and Figure 1 in Appendix C), we use the notation µc(R) and νc(R), where R is the noiseless
test risk. We also use the shorthand λmax (λmin) to denote the largest (smallest) eigenvalue of the
covariance matrix Σ.

Proposition 13 Let Assumptions 1 and 2 hold. Let ρ = Θ(1) and n, d → ∞ s.t. d/n → γ ∈
(0,∞). Define R(t), R(t) : [0, 1] → R as the unique solutions of the following ODEs

dR(t) = −2λminη̃(t)µc(R)Rdt+ λmaxη̃
2(t)νc(R)(R+ ζ2/2)γdt+ 2c2σ̃2(t)γ2dt,

dR(t) = −2λmaxη̃(t)µc(R)Rdt+ η̃2(t)νc(R)(R+ ζ2/2)γdt+ 2c2σ̃2(t)γ2dt,
(42)

where R(0) = R(0) = ∥Σ1/2θ∗∥22/2. Then, with overwhelming probability, we have

sup
t∈[0,1)

(
R(θ⌊tn⌋)−R(t)

)
= O

(
log2 n√

n

)
, sup

t∈[0,1)

(
R(t)−R(θ⌊tn⌋)

)
= O

(
log2 n√

n

)
. (43)

Proposition 13 gives that R(t) and R(t) are asymptotically an upper bound and a lower bound for
the test risk R(θ⌊tn⌋). In the isotropic case Σ = I , the upper and lower bounds coincide, i.e.,
R(t) = R(t) for all t ∈ [0, 1]. Intuitively, compared to the isotropic case, the upper bound R(t)
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Figure 2: Numerical simulations for Algorithm 1 (d = 10, 100, 1000) and the ODEs in (42). We
consider two schedules of the form in (6): output perturbation (α = 0, first and second panel) and
DP-SGD with constant noise (α = 1/2, third and fourth panel). We fix γ = 0.1, ρ = 1, ζ = 0.3,
η̃(0) = 3, c = 1, and consider both isotropic data (κ = 1, first and third panel) and data covariance
with condition number k = 2 (second and fourth panel). For α = 0, we also report for t ≥ 1 the risk
R(θp), and the values of R(1) + 2c2η̃2(1)γ2/ρ2 and R(1) + 2c2η̃2(1)γ2/ρ2 with a red continuous
and dashed line respectively. θ∗ is sampled uniformly on the unit sphere and the spectrum of Σ
follows a power law with appropriate exponent to achieve the specified value of κ. For each value
of d, we report bands corresponding to 1 standard deviation around the mean over 10 independent
trials of Algorithm 1. In the first and third panel, we have R(t) = R(t) as the ODEs in (42) match.

reduces the descent term by a factor λmin ≤ 1 and increases the SGD noise diffusion term by a factor
λmax ≥ 1. Instead, the lower bound R(t) just increases the descent term by a factor λmax ≥ 1.
Tighter bounds are possible by making additional assumptions on the covariance spectrum, e.g., a
power-law decay (as considered in the theoretical literature [33, 37, 40] also in the context of DP
algorithms [21]). The proof of Proposition 13 is tied to the one of Theorem 4, and it relies on the fact
that the predictable part from the Doob’s decomposition of DP-SGD can be expressed via a family
of coupled ODEs. To give the bounds in (42), we decouple this system relying on ODE comparison
arguments. The complete proof is in the later Appendix D.1.

The convergence of Proposition 13 is already evident at moderate values of n, d, as showcased
by Figure 2 for different schedules (η̃(t) = 1 and η̃(t) =

√
1− t) and different data covariances

(having condition numbers κ = 1, 2): the upper and lower bounds on R(θ⌊tn⌋) coming from the
ODEs in (42) become more accurate as d, n increase and, for isotropic data, they match.

Both Theorem 4 and Proposition 13 require that supt∈[0,1] η̃(t) < 2/γ, which guarantees, due to
Lemma 16, that the adaptive learning rate step does not take place with overwhelming probability,
i.e. η̄k = ηk for every k ∈ [n]. Notice that this corresponds to the stability conditions for SGD from
[17], with the difference in scaling motivated by tr(Σ) = d and Assumption 2.

D.1. Proof of Theorem 4 and Propositions 13 and 5

We will use the notation ∥Z∥ψp = inf{t > 0 : E exp(|Z|p/tp) ≤ 2} to denote the Orlicz norm of
a random variable Z for any p ≥ 1. We denote the inner product between two vectors a and b as
⟨a, b⟩ = a⊤b. Given two real valued quantities a, b, we denote by a ∧ b = min(a, b). Furthermore,
we will denote with γn the ratio d/n for a fixed value of n.

It is useful to provide a statement of Theorem 4 for a more general class of functions other than
R. As in [41], we will work with a set of quadratic functions of the form

Q := {v 7→ v⊤R(z; Σ)v,∀z ∈ Ω}, (44)

18
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where Ω :=
{
w ∈ C : |w| = max(1, 2∥Σ∥op)

}
and R(z; Σ) = (Σ − zI)−1 is the resolvent matrix

of Σ. We further introduce a norm ∥ · ∥C2 on quadratic functions q : Rd → C such that

∥q∥C2 := ∥∇2q∥op + ∥∇q(0)∥2 + |q(0)|. (45)

The proof relies on few separate technical lemmas, whose statements and proofs are deferred to the
later Appendix D.2.

Theorem 14 Let Assumptions 1 and 2 hold. Let ρ = Θ(1), n, d → ∞ s.t. d/n → γ ∈ (0,∞), and
supt∈[0,1] η̃(t) < 2/γ. Denote by Θt and θk independent realizations of H-DP-SGD (as per Defini-
tion 3) and Algorithm 1. Let D0 = ∥θ0 − θ∗∥2. Then there exists a constant C = C(c, γ, ρ,D0, ζ)
such that, for any function q ∈ Q

sup
t∈[0,1)

∣∣q(Θt)− q(θ⌊tn⌋)
∣∣ = O

(E log2 n√
n

)
, (46)

with overwhelming probability, where E = exp

(
C
∫ 1
0

1√
R(Θs)+R(θ⌊sn⌋)

ds

)
.

Proof Let us first focus on Algorithm 1 where no adaptive learning rate step is taken (this will
be shown to happen with overwhelming probability in (59)). Then, introducing the notation uk =
θk − θ∗, we have the following update rule

uk+1 = uk − ηkḡk + 2c
√
dσkbk+1, (47)

where we recall that

ḡk = gkmin

(
1,

c
√
d

∥gk∥2

)
, gk = ⟨xk+1, uk⟩xk+1. (48)

Let q : Rd → R be any quadratic function. Then, using a Taylor expansion, the update rule for
q(uk) reads

q(uk+1) = q(uk)−
η̃(k/n)

n
⟨ḡk,∇q(uk)⟩+ 2c

√
dσk⟨bk+1,∇q(uk)⟩ (49)

+
1

2
⟨(2c

√
dσkbk+1 −

1

n
η̃(k/n)ḡk)

⊗2,∇2q(uk)⟩.

Defining the σ-algebra Fk := σ({ui}ki=0) generated by the iterates of DP-SGD in (49), it then
follows via Doob’s decomposition that the above process can be decomposed into its predictable
martingales and errors parts (see also Eq. (49) in [41]):

q(uk+1)− q(uk) = − η̃(k/d)

n
µc(uk)⟨Σuk,∇q(uk)⟩ (50)

+
η̃2(k/n)

2n
νc(uk)P(uk)

1

n
tr(Σ∇2q(uk)) +

1

n
⟨2d
n2

c2σ̃(k/n)2Id,∇2q(uk)⟩

+∆MGrad
k (q) + ∆MHess

k (q) + E[∆EHess
k (q) | Fk]

+MNoise
k (q) + E[∆ENoise

k (q) | Fk],
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where we introduced the shorthands

∆MGrad
k (q) := − η̃(k/n)

n
⟨ḡk,∇q(uk)⟩+

η̃(k/d)

n
µc(uk)⟨Σuk,∇q(uk)⟩ (51)

∆MHess
k (q) :=

1

2n2
⟨(η̃(k/n)ḡk)⊗2,∇2q(uk)⟩ −

1

2n2
⟨E[(η̃(k/n)ḡk)⊗2 | Fk],∇2q(uk)⟩

E[∆EHess
k (q) | Fk] :=

1

2n2
⟨E[(η̃(k/n)ḡk)⊗2 | Fk],∇2q(uk)⟩

− η̃(k/n)2

2n
νc(uk)P(uk)

1

n
tr(Σ∇2q(uk))

∆MNoise
k (q) := 2c

√
dσk⟨bk+1,∇q(uk)⟩+

1

2
√
n
⟨2c
√

d

n
σkbk+1η̃(k/n)ḡ

⊤
k ,∇2q(uk)⟩

+
d

2
⟨(2cσkbk+1)

⊗2,∇2q(uk)⟩ − 2dc2⟨σ2
kId,∇2q(uk)⟩

E[∆ENoise
k (q) | Fk] := 2dc2⟨

(
σ2
k −

1

n3
σ̃(k/n)2

)
Id,∇2q(uk)⟩,

where the first three terms are in common with the analysis in [41], while the last two are the result
of the private noise in Algorithm 1.

In a similar way, we introduce the shorthand Vt = Θt − θ∗ such that V0 = u0. Using Itô’s
formula on (3), for any quadratic function q, we have that

dq(Vt) =− η̃(t)µc(Vt)⟨ΣVt,∇q(Vt)⟩dt+ η̃2(t)νc(Vt)P(Vt)
1

n
tr
(
Σ∇2q(Vt)

)
dt

+ 2
d

n2
c2σ̃2(t)tr

(
∇2q(Vt)

)
dt+ dMH-DP-SGD

t ,

(52)

where we introduced the shorthand

dMH-DP-SGD
t := ⟨∇q(Vt),

√
2η̃(t)2νc(Θt)P(Θt)Σ

n
+ 4

d

n2
c2σ̃(t)2Id,dBt⟩, (53)

with Bt being a d-dimensional standard Brownian motion.
Let M be a positive constant that will be fixed later. The dynamic is first controlled up to the

stopping time
τ := inf{k : ∥uk∥2 ≥ M ∪ ⌊tn⌋ : ∥Vt∥2 ≥ M}. (54)

Then, we will denote the stopped processes uτk = uk∧τ and V τ
t = Vt∧(τ/n), which will be the

objects we will compare in the following arguments. This stopping time is introduced for technical
reasons (see, e.g., (86)), and we will later show that τ ≥ n.

Denoting with η̄ = supt∈[0,1] η̃(t), taking the difference between (50) and (52), and follow-
ing the same argument in Lemma 1 in [41], we get that there are two absolute constants C1 =
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C1(∥Σ∥op, c, η̄), C2 = C2(ζ, c, η̄) > 0 such that, almost surely,

sup
0≤t<1

∣∣∣q(uτ⌊tn⌋)− q(V τ
t )
∣∣∣ ≤ ∫ 1

0
(C1 +

C2

ms
) sup
q∈Q

∣∣∣q(uτ⌊sn⌋)− q(V τ
s )
∣∣∣ ds

+ sup
0≤t<(1∧(τ/n))

(
|MGrad

⌊tn⌋(q)|+ |MHess
⌊tn⌋(q)|+ |MNoise

⌊tn⌋ (q)|+ |MH-DP-SGD
t (q)|

)
+ sup

0≤t<(1∧(τ/n))
|
⌊tn⌋∑
k=1

E[∆EHess
k (q) | Fk]|+ |

⌊tn⌋∑
k=1

E[∆ENoise
k (q) | Fk]|+O(d−1), (55)

where ms =
√

R(Θs) +R(θ⌊sn⌋). Here, we are also using the notation Mk(q) =
∑k

j=1∆Mj(q),

and MH-DP-SGD
t (q) =

∫ 1
0 dMH-DP-SGD

t (q). The last term follows from transitioning (50) to the
continuum limit, which involves an additional discretization error of O(d−1) (see also Section A.3
in [17] for more details).

Denoting with M the sum of the last two lines in (55), by Lemma 2 in [41] (for |MGrad
⌊tn⌋(q)|,

|MHess
⌊tn⌋(q)| and |∑⌊tn⌋

k=1 E[∆EHess
k (q) | Fk]|), Lemma 17 (for |MNoise

⌊tn⌋ (q)| and |∑⌊tn⌋
k=1 E[∆ENoise

k (q) |
Fk]|), and Lemma 18 (for |MH-DP-SGD

t (q)|), there are two constants C3(∥Σ∥op, η̄,M, c, γ), and
C4(∥Σ∥op, η̄,M, c) > 0 such that, for any u ≥ 1,

M ≤ C3n
−1/2(u+ C4), (56)

with probability at least 1− e−u.
Then, by Lemma 3 in [41] or Lemma 2.2 in [17], we can define a set Q̄ ⊆ Q with |Q̄| ≤

C(∥Σ∥op)d4, such that for all q ∈ Q, there exists a q̄ ∈ Q̄ that satisfies ∥q − q̄∥C2 ≤ d−2. Then,
taking the union bound over this set yields

sup
q∈Q

sup
0≤t<1

∣∣∣q(uτ⌊tn⌋)− q(V τ
t )
∣∣∣ ≤ ∫ 1

0
(C1 +

C2

ms
) sup
q∈Q

∣∣∣q(uτ⌊sn⌋)− q(V τ
s )
∣∣∣ds+M, (57)

with probability at least 1 − C(∥Σ∥op)d4e−u. Thus, with this same probability, the application of
Gronwall’s inequality gives

sup
q∈Q

sup
0≤t<1

∣∣∣q(uτ⌊tn⌋)− q(V τ
t )
∣∣∣ ≤ M exp

(
C1 + C2

∫ 1

0

1

ms
ds

)
. (58)

Then, we are left to show that τ ≥ n. This follows the same approach as in Lemma 4 in
[41], which is here formalized in Lemma 19. In particular, we show that there exists a constant
C(∥Σ∥op, c, v) > 0, such that for any r ≥ 0, with probability at least 1 − 2e−r

2/2, it holds that
supt∈[0,1] ∥Vt∥2 ≤ ∥V0∥2eCd−1/2r. Then, it can be shown that M (see (54)) can be chosen as a
constant independent from d and n, such that τ > n with overwhelming probability. This is shown
before on Vt (via Lemma 19), and later on u⌊tn⌋ via the argument in Eq. (81) in [41].

Lemma 16 guarantees that, if supt∈[0,1] η̃(t) < 2/γ, we have, for all k ∈ [n],

η̄k = ηk, (59)
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with overwhelming probability. Then, the event in (58) intersected with τ ≥ n, after setting u =
log2 n, holds with overwhelming probability also on the original algorithm, and the thesis readily
follows.

Lemma 15 Let Assumptions 1 and 2 hold. Let ρ = Θ(1) and n, d → ∞ s.t. d/n → γ ∈ (0,∞).
Define R(t), R(t) : [0, 1] → R as the unique solutions of the following ODEs

dR(t) = −2λminη̃(t)µc(R)Rdt+ λmaxη̃
2(t)νc(R)(R+ ζ2/2)γdt+ 2c2σ̃2(t)γ2dt,

dR(t) = −2λmaxη̃(t)µc(R)Rdt+ η̃2(t)νc(R)(R+ ζ2/2)γdt+ 2c2σ̃2(t)γ2dt,
(60)

where R(0) = R(0) = ∥Σ1/2θ∗∥22/2. Then denoting with Θt a realization of H-DP-SGD (as per
Definition 3), with overwhelming probability, we have

sup
t∈[0,1)

(
R(Θt)−R(t)

)
= O

(
log2 n√

n

)
, sup

t∈[0,1)
(R(t)−R(Θt)) = O

(
log2 n√

n

)
. (61)

Proof Let (λi, ωi) be the eigenvalues and eigenvectors of Σ, and consider the shorthand Di(t) :=
d⟨Vt, ωi⟩2/2. Set q(Vt) = 1

2d

∑d
i=1

1
λi−z ⟨Vt, ωi⟩

2, the argument used in the proof of Theorem 14
can be extended to the set of contours that enclose only the i-th eigenvalue. Then, integrating over
both sides of (52) via the Cauchy integral formula, we have that there exists a set of coupled ODEs

dDi = −2λiη̃(t)µc(R(t))Didt+ λiη̃
2(t)νc(R(t))(R(t) + ζ2/2)γdt+ 2c2σ̃2(t)γ2dt, (62)

with R(t) = 1
d

∑d
i=1 λiDi(t) and Di(0) = dλi⟨ωi, θ∗⟩2/2, such that

sup
t∈[0,1)

|R(Θt)−R(t))| = O

(E ′ log2 n√
n

)
, (63)

with overwhelming probability, where E ′ = exp

(
C
∫ 1
0

1√
R(Θs)+R(t)

ds

)
and C is a positive con-

stant (see pages 9-10 in [17] and Appendix G in [41] for details).
Until the end of the proof, we will define more auxiliary ODEs, such that the RHS is uni-

formly Lipschitz in the dependent variable at all times t ∈ [0, 1]. Then, by the extension of the
Picard–Lindelöf theorem (see Corollary 2.6 in [56]), we have that their solutions exist and are
unique, and therefore also have continuous derivatives. Then, defining

dDi = −2λminη̃(t)µc(R(t))Didt+ λiη̃
2(t)νc(R(t))(R(t) + ζ2/2)γdt+ 2c2σ̃2(t)γ2dt,

dDi = −2λmaxη̃(t)µc(R(t))Didt+ λiη̃
2(t)νc(R(t))(R(t) + ζ2/2)γdt+ 2c2σ̃2(t)γ2dt,

(64)

by standard ODE comparison arguments (see Theorem 1.3 in [56]) we have that Di(t) ≥ Di(t) ≥
Di(t) for all t ∈ [0, 1]. Then, averaging over i (weighting by λi) the equations in (64) and (62), and
defining R

′
(t) = 1

d

∑d
i=1 λiDi(t) and R′(t) = 1

d

∑d
i=1 λiDi(t), we get R′

(t) ≥ R(t) ≥ R′(t) for
all t ∈ [0, 1], with

dR
′
= −2λminη̃(t)µc(R(t))R

′
dt+

tr(Σ2)

d
η̃2(t)νc(R(t))(R(t) + ζ2/2)γdt+ 2c2σ̃2(t)γ2dt,

dR′ = −2λmaxη̃(t)µc(R(t))R′dt+
tr(Σ2)

d
η̃2(t)νc(R(t))(R(t) + ζ2/2)γdt+ 2c2σ̃2(t)γ2dt.

(65)
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Furthermore, for a fixed value of c, we have that the functions µc(R) and νc(R)(R + ζ2/2) are
respectively monotonically decreasing and increasing with respect to R (see Lemma 11). Then,
since by Jensen inequality we have that tr(Σ2) ≥ tr(Σ) = d (where the last step holds due to
Assumption 1), and since we also have tr(Σ2) ≥ λmaxtr(Σ) = λmaxd, by defining

dR = −2λminη̃(t)µc(R)Rdt+ λmaxη̃
2(t)νc(R)(R+ ζ2/2)γdt+ 2c2σ̃2(t)γ2dt,

dR = −2λmaxη̃(t)µc(R)Rdt+ η̃2(t)νc(R)(R+ ζ2/2)γdt+ 2c2σ̃2(t)γ2dt,
(66)

we get that R(t) ≥ R
′
(t) ≥ R(t) ≥ R′(t) ≥ R(t) for all t ∈ [0, 1]. Thus, to obtain the thesis, it is

sufficient to prove that the term E ′ in (63) is of constant order, which is in turn implied by showing
that R(t) = Ω(1) for all t ∈ [0, 1]. This is readily implied by the fact that

dRlow = −2λmaxη̄R
lowdt, (67)

dR
up

= λmaxη̄
2c2γdt+ 2c2σ̄2γ2dt, (68)

are respectively a lower and upper bound of R(t) and R(t), which have a closed form solution and
guarantee that R(t) ≥ C1 > 0 for every t ∈ [0, 1], giving the desired result.

Proof of Theorem 4. The result follows from Theorem 14, after setting q(θ−θ∗) =
∥∥Σ1/2(θ − θ∗)

∥∥2
2

and proving that E = O(1). This is due to Lemma 15, which guarantees a lower bound on R(Θt)
via R(t) and the latter is shown in the argument after (68) to be Ω(1) for all t ∈ [0, 1]. Note that the
upper bound in (68) and the following argument also guarantee R(Θt) = O(1), for all t ∈ [0, 1],
which then yields, with overwhelming probability,

R(θk) = Θ(1), (69)

for any iterate k ∈ [n− 1]. ■

Proof of Proposition 13. The result follows from Theorem 4 and Lemma 15, after an application
of the triangle inequality.

Proof of Proposition 5. Due to the update rule in Algorithm 1, we have

2R(θn) =
∥∥∥Σ1/2 (θn − θ∗)

∥∥∥2
2

=
∥∥∥Σ1/2

(
θn−1 − η̄nḡn + 2Cclipσnbn − θ∗

)∥∥∥2
2

=
∥∥∥Σ1/2

(
θn−1 − θ∗ + 2Cclipσnbn

)∥∥∥2
2
+
∥∥∥Σ1/2η̄nḡn

∥∥∥2
2

− 2η̄nḡ
⊤
nΣ (θn−1 − θ∗)− 4η̄nḡ

⊤
nΣCclipσnbn.

(70)

By Assumptions 1 and 2, and due to the definition of ḡn, we have

∥∥∥Σ1/2η̄nḡn

∥∥∥
2
≤ ∥Σ∥1/2op |η̄n| ∥ḡn∥2 = O

(√
d

n

)
= O

(
1√
d

)
. (71)
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Theorem 3.1.1 in [58] also guarantees that ∥bn∥2 = O(
√
d) with probability at least 1−2 exp (−c1d),

for some absolute constant c1 > 0. Thus,∣∣∣4η̄nḡ⊤nΣCclipσnbn

∣∣∣ = ∣∣∣∣4η̄nḡ⊤nΣCclip
ηn
ρ
bn

∣∣∣∣ = O

(
1

n

√
d
√
d
1

n

√
d

)
= O

(
1√
d

)
, (72)

which gives∣∣∣∣2R(θn)−
∥∥∥Σ1/2

(
θn−1 − θ∗ + 2CclipσnΣ

1/2bn

)∥∥∥2
2

∣∣∣∣ = O

(
1 +

√
R(θn−1)√
d

)
. (73)

Similarly, we have∥∥∥Σ1/2
(
θn−1 − θ∗ + 2Cclipσnbn

)∥∥∥2
2
=
∥∥∥Σ1/2 (θn−1 − θ∗)

∥∥∥2
2
+
∥∥∥2CclipσnΣ

1/2bn

∥∥∥2
2

+4Cclipσnb
⊤
nΣ (θn−1 − θ∗) .

(74)

However, since bn is a standard Gaussian vector, we have that, with probability at least 1−2 exp
(
−c2 log

2 d
)
,∣∣∣4Cclipσnb

⊤
nΣ (θn−1 − θ∗)

∣∣∣ ≤ 4Cclipσn

∥∥∥Σ1/2
∥∥∥

op

∥∥∥Σ1/2 (θn−1 − θ∗)
∥∥∥
2
log d

= 4c
√
d
η̃(1)

ρn

∥∥∥Σ1/2
∥∥∥

op

∥∥∥Σ1/2 (θn−1 − θ∗)
∥∥∥
2
log d

= O

(√
d log d

n

)∥∥∥Σ1/2 (θn−1 − θ∗)
∥∥∥
2

= O

(√
R(θn−1) log d√

d

)
.

(75)

Then, an application of the Hanson-Wright inequality (see Theorem 6.2.1 in [58]) yields∣∣∣∣∥∥∥2CclipσnΣ
1/2bn

∥∥∥2
2
− 4c2d

η̃2(1)

ρ2n2
tr(Σ)

∣∣∣∣ ≤ 4c2d
η̃2(1)

ρ2n2
∥Σ∥ log d = O

(
log d√

d

)
, (76)

with probability at least 1− 2 exp
(
−c3 log

2 d
)
. Putting everything together gives

∣∣R(θn)−R(θn−1)− 2c2η̃2(1)γ2/ρ2
∣∣ = O

(
log d√

d

)
, (77)

with overwhelming probability, where we used tr(Σ) = d and (69). ■

D.2. Technical lemmas

In this section we provide the statements and proofs for the technical lemmas used for the proof of
Theorem 4. The notation is defined accordingly, and Assumptions 1 and 2 will always be assumed
to hold. In this section, we will use the shorthand ∥ · ∥ to denote both the Euclidean norm of vectors
and Frobenius norm of matrices.
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Lemma 16 If supt∈[0,1] η̃(t) < 2/γn, we have that, for all k ∈ [n],

η̄k = ηk, (78)

with overwhelming probability.

Proof Since we have tr (Σ) = d and ∥Σ∥op = O(1) by Assumption 1, due to Theorem 6.3.2 in

[58], for every k ∈ [n], we have that
∥∥∥∥xk∥2 −√

d
∥∥∥
ψ2

= O(1). This implies

P
(
∥xk∥22 − d > t

)
≤ 2 exp (−c1t) , (79)

where c1 is an absolute constant. By hypothesis, there exists a positive constant c2 such that

ηk ≤
2

γnn(1 + c2)
=

2

d(1 + c2)
. (80)

Then, we have

P (η̄k ̸= ηk) = P
(
∥xk∥22 >

2

ηk

)
≤ P

(
∥xk∥22 > d(1 + c2)

)
≤ 2 exp (−c3d) , (81)

where the first step follows from the definition of η̄ in Algorithm 1, the second step follows from
(80), and last step follows from (79). Thus, the deisred result follows via a union bound over all
k ∈ [n], with probability at least 1− 2n exp (−c3d) ≥ 1− 2 exp (−c4d).

Lemma 17 We have that, for any quadratic q ∈ Q such that ∥q∥C2 ≤ 1,∣∣∣∣∣∣
⌊tn⌋∑
k=1

E[∆ENoise
k (q) | Fk]

∣∣∣∣∣∣ ≤ 2γn
ρ2n

Cη,2, a.s. (82)

where Cη,2 denotes the upper bound on the absolute value of the second derivative of η̃2(t). In
addition, there is a constant C = C(c, γn, ρ,M) > 0, such that, for any y ∈ [1, n],

sup
1≤k≤(n∧τ)

|MNoise
k (q)| ≤ Cn− 1

2 y, (83)

with probability at least 1− e−y.

Proof Recall the definition in (51)

∆MNoise
k (q) = 2c

√
dσk⟨bk+1,∇q(uk)⟩+

1

2
√
n
⟨2c
√

d

n
σkbk+1η̃(k/n)ḡ

⊤
k ,∇2q(uk)⟩

+ 2dc2σ2
k⟨(bk+1)

⊗2,∇2q(uk)⟩ − 2dc2σ2
k⟨Id,∇2q(uk)⟩.

Then, for any k ≤ τ, we rewrite the martingale as a combination of the following three terms

∆MNoise
k (q) =

1

n3/2
⟨bk+1, Ak,1 +Ak,2⟩+

1

n2
⟨b⊗2
k+1 − Id, Ck⟩, (84)
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where we introduced the shorthands

Ak,1 := 2cn3/2
√
dσk∇q(uk), Ak,2 := cn

√
d

n
σkη̃(k/n)∇2q(uk)ḡk, Ck := 2dn2c2σ2

k∇2q(uk).

(85)
We will separately bound the contribution of each term in terms of its Orlicz norm. Let us

start with the second term, and consider q ∈ Q. This is a quadratic function of the iterates; its
Hessian, therefore, does not depend on the iterates and explicitly on k. In addition we have that
supz∈Ω ∥R(z; Σ)∥op ≤ 2. Since bk+1 ∼ N (0, Id) and independent, using the Hanson-Wright in-
equality (Theorem 6.2.1 in [58]) we have that, for some c > 0 and K = maxi∈[d] ∥bk+1,i∥ψ2 ,

P
(

1

n2
⟨b⊗2
k+1 − Id, Ck⟩ ≥ t

)
≤ 2 exp

(
−cmin

(
t2n4

K4∥Ck∥2
,

tn2

K2∥Ck∥op

))
≤ 2 exp

(
−c′min

(
t2n4

d
, tn2

))
.

To justify the last passage, note that, by the structure of the noise,

σ2
k ≤

1

ρ2n2
|η̃(k/n)2 − η̃((k + 1)/n)2| ≤ 2

ρ2n3
max

x∈[ k
n
, k+1

n
]

∣∣∣∣ ddxη̃2(x)
∣∣∣∣ ≤ 4

ρ2n3γn
Cη,1,

as
∣∣ d
dx η̃

2(x)
∣∣ ≤ Cη,1 for some Cη,1 due to Assumption 2. Using the above bound, we obtain that

∥Ck∥op ≤ 2dn2c2σ2
k∥q∥C2 ≤ 8c2/ρ2Cη,1, and similarly ∥Ck∥ ≤ 8

√
dc2/ρ2Cη,1. We, therefore,

have that ∥ 1
n2 ⟨b⊗2

k+1 − Id, Ck⟩∥ψ1 ≤ Cn−1, for some constant C(ρ, c, Cη,1) > 0.
For the first term, by Eq. (89) in [41], the norm of q is bounded for the stopped process uτk as

follows,

∥∇q(u)∥ ≤ ∥∇2q∥op∥u∥+ ∥∇q(0)∥ ≤ ∥q∥C2(1 + ∥u∥) ≤ C(1 +M). (86)

Hence, we have that ∥Ak,1∥ ≤ 2n3/2c
√
nσkC(1 + M) ≤ 4

√
dc
√

Cη,1/γnC(1 + M)/ρ, which
implies that ∥∥∥∥ 1

n3/2
⟨bk+1, Ak,1⟩

∥∥∥∥
ψ2

≤ C

n
, (87)

with C = C(M,ρ, γn, Cη,1, c) > 0. Using a similar analysis as in Eq. (92-99) in [41], we have∣∣∣∣ 1

n3/2
⟨bk+1, Ak,2⟩

∣∣∣∣ ≤ 1

n3/2
cn

√
γnσkη̃(k/n)|⟨bk+1,∇2q(uk)gk⟩1∥gk∥2≤c√d| (88)

+
1

n3/2
cn

√
γnσkη̃(k/n)c

√
d|⟨bk+1,∇2q(uk)

gk
∥gk∥2

⟩1∥gk∥2>c√d|

≤ 4c
√

Cη,1

γnnρ
|⟨bk+1,∇2q(uk)gk⟩|+

4c
√
Cη,1

γnnρ
|⟨bk+1,∇2q(uk)gk⟩|

≤ 8c
√
Cη,1

γnnρ
|⟨bk+1,∇2q(uk)xk+1⟩(⟨xk+1, uk⟩+ zk+1)|.

Due to (86) and Assumptions 1 and 2 we have ∥⟨bk+1,∇2q(uk)xk+1⟩∥ψ1 ≤ C∥bk+1∥ψ2∥xk+1∥ψ2 ≤
C for some C > 0 that depends on the ∥Σ∥op. Finally, we note that ∥⟨xk+1, uk⟩∥ψ2 ≤ C(1 +M),
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and ∥zk∥ψ2 ≤ Cζ for any k ≤ τ. Combining the above, we obtain that there is a constant
C = C(c, Cη,1, ρ, γn,M, ζ) > 0 such that

ϕk,1 := inf{t > 0 : E[exp(|∆MNoise
k (q)|/t) | Fk−1] ≤ 2} ≤ Cn−1. (89)

We then apply Lemma 5 in [41] for some absolute constants C > 0 for all t > 0:

P

(
sup

1≤k≤n∧τ
|MNoise

k (q)− EMNoise
0 (q)| ≥ t

)
≤ 2 exp

(
−min{ t

Cmaxk∈[n] ϕk,1
,

t2

C
∑n

i=1 ϕ
2
i,1

}
)

(90)

≤ 2 exp
(
−Cnmin{t, t2}

)
.

As we assume that n is proportional to d and noting that EMNoise
0 (q) = 0 by our construction, we

then have that, for any y ∈ [1, n],

sup
1≤k≤(n∧τ)

|MNoise
k (q)| ≤ Cn− 1

2 y, (91)

with probability at least 1− e−y for any y ∈ [1, n].
Next, we bound the error due to the discretization:∣∣∣∣∣∣

⌊tn⌋∑
k=1

E[∆ENoise
k (q) | Fk]

∣∣∣∣∣∣ ≤ 2dc2
⌊tn⌋∑
k=1

∣∣∣∣σ2
k −

1

n3
σ̃(k/n)2

∣∣∣∣ · ∣∣tr(∇2q(uk))
∣∣

≤ 2d2

n2ρ2
c2

⌊tn⌋∑
k=1

∣∣∣∣η̃(k/n)2 − η̃((k + 1)/n)2 − 1

n
σ̃(k/n)2

∣∣∣∣
≤ 2γn

ρ2n2

⌊tn⌋∑
k=1

max
x∈( k

n
, k+1

n
)

∣∣∣∣ d2dx2
η̃(x)2

∣∣∣∣ ,
where we use the definition of the noise function as the derivative of the learning rate σ̃(x)2 =

− d
dx η̃

2(x) at any point x ∈ [0, 1). Then, as | d2

dx2
η̃2(x)| ≤ Cη,2 for some constant Cη,2, the desired

result follows.

Lemma 18 Denote by MH-DP-SGD,τ
t the H-DP-SGD martingale in which the stopping time is im-

posed. There is a constant C = C(c, Cη,1, γn, ∥Σ∥op,M) > 0, such that for any quadratic q ∈ Q
with ∥q∥C2 ≤ 1, and for any y ∈ [1, n], we have

sup
0≤t<1

|MH-DP-SGD,τ
t (q)| ≤ Cn− 1

2 y, (92)

with probability at least 1− e−y.

Proof To bound the martingale error from H-DP-SGD under some general statistic q ∈ Q, differ-
ently from the argument to obtain Eq. (72) in Lemma 2 in [41], we need to control the additional
term due to the additive noise in Algorithm 1.
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Using Itô’s formula for any quadratic function q:

dq(Θt) =− η̃(t)µc(Θt)∇P(Θt)
⊤∇q(Θ(t))dt+ η̃2(t)νc(Θt)P(Θt)

1

n
tr
(
Σ∇2q

)
dt

+ 2
d

n2
c2σ̃2(t)tr

(
∇2q

)
dt+ dMH-DP-SGD

t ,

dMH-DP-SGD
t := ⟨∇q(Vt),

√
2η̃(t)2νc(Θt)P(Θt)Σ

n
+ 4

d

n2
c2σ̃(t)2Id dBt⟩,

(93)

with Bt being a standard d dimensional Brownian motion. The quadratic variation of the martingale
is then bounded a.s.

⟨M(q)⟩t ≤
Ct

n
+

d

n2
(4c2η̄2∥Σ∥op(1 +M)2),

for some constant C = C(∥Σ∥op,M,Cη,1, c, γn) > 0, where we used Assumption 2 which gives
|σ̃(t)| = | ddt η̃2(t)| ≤ Cη,1. The claim is then proved by an application of Gaussian concentration
inequalities as in Section B.6 in [41].

Lemma 19 There exists a constant C(∥Σ∥op, c, v) > 0 such that for any r ≥ 0 with probability at
least 1− 2e−r

2/2 it holds that supt∈[0,1] ∥Vt∥2 ≤ ∥V0∥2eCd−1/2r.

Proof The proof follows a path similar to the one of Lemma 4 in [41]. In particular, consider the
function φ(Vt) = log(1 + ∥Vt∥2). Then, by application of Itô’s Lemma to (3),

dφ(Θt) =− η̃(t)
µc(Θt)

1 + ∥Vt∥2
∇P(Θt)

⊤Vtdt

+ 2η̃2(t)
νc(Θt)P(Θt)

(1 + ∥Vt∥2)2
1

n
tr
(
Σ(Id(1 + ∥Vt∥2)− Vt ⊗ Vt)

)
dt

+ 2
d

n
c2σ̃2(t)

1

(1 + ∥Vt∥2)2
dt+ dMt(φ)

(94)

with

dMt(φ) =
1

(1 + ∥Vt∥2)
⟨Vt,

√
2η̃(t)2νc(Θt)P(Θt)Σ

n
+ 4

d

n2
c2σ̃(t)2Id dBt⟩.

The drift terms and the quadratic variation terms can be bounded by some C(c, ∥Σ∥op, ζ, γn). The
quadratic variation of the martingale term is bounded ⟨M⟩t ≤ Ct

n . We then have by Gaussian
concentration inequality,

P
(

sup
0≤t≤1

φ(Vt) ≥ C(1 + r/
√
n)

)
≤ e−r

2/2, (95)

which proves the claim.
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Figure 3: Numerical simulations for R(θp) obtained via Algorithm 1 for d = 1000 and κ = 1,
as a function of c and η̃(0). We consider the schedules in (6) corresponding to output perturbation
(α = 0, first and second panel) and DP-SGD with constant noise (α = 1/2, third and fourth panel),
with fixed ρ = 1 and ζ = 0.3. We set γ = 0.1 in the first and third panel, and γ = 0.01 in the second
and fourth panel. The values of R(θp) are capped at 1, and θ∗ is chosen such that R(θ0) = 0.5. We
indicate with red dashed lines the curves c = 1, η̃(0) = 2/γ, and cη̃(0) = ln(1/γ), and we display
the average over 10 independent trials.

Appendix E. Formal statements and proofs for Section 4

E.1. Formal statements

Theorem 20 Let Assumptions 1 and 2 hold. Let θp0 and θp1/2 be the solutions obtained with Algo-
rithm 1 with η̃(t) given by (6) for α = 0 and α = 1/2, respectively. Consider the setting

γ =
d

n
= oγ(1),

ln2(1/γ)γ

λ2
min

(
λmax +

γ

ρ2

)
= oγ(1), (96)

and pick
c = Oγ(1), η̃(0)c =

C ln(1/γ)

λmin
, η̃(0) ≤ 2

γ
, (97)

for a large enough constant C which does not depend on γ, ρ,Σ. Then, we have that, with over-
whelming probability,

R(θp0) = Oγ

(
λmax

λ2
min

γ ln(1/γ) +
1

λ2
min

γ2 ln2(1/γ)

ρ2

)
,

R(θp1/2) = Oγ

(
λmax

λ2
min

γ ln2/3(1/γ) +
1

λ2
min

γ2 ln4/3(1/γ)

ρ2

)
.

(98)

Furthermore, assume that ρ = Ωγ(γ
1−h) for some h > 0. Then, for any choice of the hyper-

parameters c and η̃(0) s.t. η̃(0) < 2/γ, we have that

R(θp0) = Ωγ

(
1

λ2
max

γ ln(1/γ) +
1

λ2
max

γ2 ln2(1/γ)

ρ2

)
,

R(θp1/2) = Ωγ

(
1

λ2
max

γ ln2/3(1/γ) +
1

λ2
max

γ2 ln4/3(1/γ)

ρ2

)
.

(99)
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Theorem 20 (proved later in this appendix) gives upper and lower bounds for output perturba-
tion (α = 0) and DP-SGD with constant noise (α = 1/2). Our analysis requires that neither the
condition number κ nor the inverse of the privacy parameter 1/ρ are too large with respect to 1/γ
(see the second condition in (96)), and the condition ρ = Ωγ(γ

1−h) needed for the lower bound in
(99) is qualitatively similar. We highlight that for both values of α, if λmax, λmin = Θγ(1), then
upper and lower bounds match. This has two remarkable consequences: (i) the hyper-parameters
in (97) are optimal in terms of rate (assuming η̃(0) < 2/γ), and (ii) DP-SGD outperforms output
perturbation.

We now comment on the optimal hyper-parameter choice in (97). First, the condition η̃(0) ≤
2/γ implies that ηk = η̄k for all k ∈ [n] (see Lemma 16), i.e., the adaptive step on the learning rate
in Algorithm 1 never happens. If that was not the case, the gradient update would be proportional
to η̄k < ηk, while the private noise σk still depends on ηk via (2). This suggests the sub-optimality
of having η̄k < ηk and of the regime η̃(0) > 2/γ. Second, the choice η̃(0)c = C ln(1/γ) provides
the optimal trade-off between two competing objectives: on the one hand, η̃(t)c controls the size
of the first term of the ODEs in (42) (for c = Oγ(1) and bounded values of R, Lemma 12 gives
that µc(R)/c is lower bounded by a constant), which in turn determines the speed of convergence
towards 0 of the risk; on the other hand, a large product η̃(t)c increases at least one of the last
two terms of the ODEs, which have the opposite effect of increasing the risk. We remark that
this scaling agrees with the empirical practice of using a small clipping constant, with a learning
rate renormalized by its value [19, 42]. Third, the choice c = Oγ(1) is motivated by the fact that
increasing c beyond this point does not further increase µc(R) < 1, which drives the risk to 0.
However, larger values of c increase the private noise in DP-SGD, and hence the last term in the
RHSs of (42), which increases the risk. Formally, it can be shown that, if ρ/c = Ωγ(γ

1−h) for
some h > 0, then the lower bounds in (99) increase by a factor max

(
1, c2

)
, thus demonstrating the

sub-optimality of the choice c = ωγ(1).
These conclusions are supported by Figure 3: performance deteriorates if either c exceeds 1,

(upper part of the heatmaps) or η̃(0) exceeds 2/γ (right part of the heatmaps); the lowest values of
the risk are roughly parallel to the line cη̃(0) = ln(1/γ). Combining the upper bound on η̃(0) with
this last condition gives the lower bound c = Ω(γ ln(1/γ)). This still allows for a wide range of
aggressive clipping regimes s.t. c = oγ(1). We also remark that the lower bound on the optimal c
comes from considering one-pass DP-SGD, and it may not hold in other settings (e.g., full batch
DP-GD [9]).

Theorem 21 Let Assumptions 1 and 2 hold, and let θpα be the solution obtained with Algorithm 1,
with η̃(t) given by (6) for α ≥ 1. Consider the setting

γ =
d

n
= oγ(1),

ln2(1/γ)γ

λ2
min

(
λmaxα+

γ

ρ2

)
= oγ(1), (100)

and pick
c = Oγ(1), η̃(0)c =

Cα ln(1/γ)

λmin
, η̃(0) ≤ 2

γ
, (101)

for a large enough constant C which does not depend on γ, ρ,Σ, α. Then, we have that, with
overwhelming probability,

R(θpα) = Oγ

(
λmax

λ2
min

αγ ln
1

1+α (1/γ) +
1

λ2
min

α2γ2 ln
2

1+α (1/γ)

ρ2

)
. (102)
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Figure 4: Numerical simulations for R(θpα)
obtained via Algorithm 1 for d = 1000, κ = 1
and ρ = 1, as a function of n. We consider the
schedules in (6) for α ∈ {0, 0.5, 1, 2}, we op-
timize w.r.t. c and η̃(0), and we report the av-
erage over 10 independent trials, as well as the
confidence interval corresponding to 1 stan-
dard deviation.

An immediate consequence of Theorem 21
(proved later in this section) is that, by taking
α = ln ln(1/γ), in the setting where λmax, λmin =
Θγ(1), we have

R(θp)=Oγ

(
γ(ln ln(1/γ))+

γ2

ρ2
(ln ln(1/γ))2

)
.

(103)
Thus, for small γ, it is convenient to increase

α and decay the noise faster during training, up to
a level α = Θγ(ln ln(1/γ)). Values of α larger
than that may then deteriorate performance. Fig-
ure 4 investigates the phenomenon by comparing
different schedules after the hyper-parameters η̃(0)
and c have been optimized numerically. The left
panel shows that, while all schedules rapidly give
better results as n increases, larger values of α are

optimal only for large enough n. This effect is clearly shown in the right panel, which reports the
same results normalized by the loss of output perturbation (α = 0). Hence, if n is sufficiently
small compared to d, output perturbation can in fact be better than DP-SGD, in agreement with an
observation made in [23] regarding the comparison between output and objective perturbation.

E.2. An auxiliary bound

Lemma 22 Let β < 1 and Eβ(x) : R+ → R+ be the exponential integral function defined as

Eβ(x) :=

∫ +∞

1

e−xt

tβ
dt. (104)

Then, we have that
lim
x→0+

x1−βEβ(x) = Γ(1− β), (105)

where Γ(·) denotes the Euler Gamma function

Γ(s) :=

∫ ∞

0
e−tts−1 dt. (106)

Furthermore, we have that, for all x ≥ 0,

Eβ(x) ≤ Γ(1− β)x−1+β. (107)

Finally, if either β ≥ 0 or x ≥ −2β, we also have that

Eβ(x) ≤
2e−x

x
. (108)
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Proof The change of variable u = xt in the definition of Eβ(x) yields

Eβ(x) = xβ−1

∫ +∞

x

e−u

uβ
du

= xβ−1

(∫ +∞

0
e−uu−β du−

∫ x

0
e−uu−β du

)
= xβ−1

(
Γ(1− β)−

∫ x

0
e−uu−β du

)
.

(109)

Then, (105) and (107) readily follow from the fact that the last term in the equation above is bounded
by

0 ≤
∫ x

0
e−uu−β du ≤

∫ x

0
u−β du =

x1−β

1− β
. (110)

For the upper bound, denoting with

Γ(s, x) :=

∫ ∞

x
e−tts−1 dt (111)

the upper incomplete Euler gamma function, (109) allows us to write

Eβ(x) =
1

x1−β
Γ(1− β, x). (112)

Via an integration by parts, we have

Γ(1− β, x) =

∫ ∞

x
e−tt−β dt = e−xx−β − β

∫ ∞

x
e−tt−β−1 dt. (113)

If β ≥ 0, we have Γ(1 − β, x) ≤ e−xx−β , which together with (112) gives (108). If β < 0, the
second term in the equation above is positive, and since t ≥ x, it can be upper bounded as

−β

∫ ∞

x
e−tt−β−1 dt ≤ −β

x

∫ ∞

x
e−tt−β dt = −β

x
Γ(1− β, x), (114)

which, if plugged in (113), for x ≥ −2β gives

Γ(1− β, x) ≤ e−xx−β

1 + β/x
≤ 2e−xx−β, (115)

and the thesis again follows from (112).

E.3. Proof of Theorem 20

All the ODEs defined in this (and the following) section will be such that their RHS is uniformly
Lipschitz in the dependent variable at all times t ∈ [0, 1], which in turn guarantees they have a
unique solution. Furthermore, the RHSs will also be uniformly Lipschitz with respect to the variable
t due to Assumption 2. Thus, if R(0) = R′(0), and

dR = f(t, R), dR′ = f ′(t, R′), (116)
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with
f ′(t, R′(t)) ≥ f(t, R′(t)), (117)

for all t ∈ [0, 1], we have that

R′(t) ≥ R(t) for all t ∈ [0, 1]. (118)

The same statement holds also for the opposite inequality, and will be used extensively to bound the
solutions of R(t) for different schedules. This is a direct application of Theorem 1.3 in [56]

To ease the presentation, we introduce the notation v = η̃(0). We will provide the proof sepa-
rately for α = 0 and α = 1/2, and the proof for α ≥ 1 in the next section. We will also denote the
test risk at initialization R(0) =

∥∥Σ1/2θ∗
∥∥2
2
/2, and all asymptotic notations will be with respect to

the limit γ → 0.

α = 0: output perturbation. Recall that in the setting α = 0, we have

dR(t) = −2λminvc
µc(R)

c
Rdt+ λmax(vc)

2 νc(R)(R+ ζ2/2)

c2
γdt

dR(t) = −2λmaxvc
µc(R)

c
Rdt+ (vc)2

νc(R)(R+ ζ2/2)

c2
γdt

(119)

Importantly, recall that the risk R(θp) in this setting is not well approximated by R(1), due to
Proposition 5.

Theorem 23 Let Assumptions 1 and 2 hold, and let θp be the solution obtained with Algorithm 1,
with the schedule defined in (6) for α = 0, in the setting γ = d/n → 0. Furthermore, assume

λmax

λ2
min

ln(1/γ)γ = o(1). (120)

Then, by setting

c = O(1), vc =
C ln(1/γ)

λmin
, v ≤ 2/γ, (121)

for a large enough constant C which does not depend on γ, ρ,Σ, we have that, with overwhelming
probability,

R(θp) = O

(
λmaxγ ln(1/γ)

λ2
min

+
γ2 ln2(1/γ)

ρ2λ2
min

)
. (122)

Furthermore, suppose there exists h > 0 such that ρ = Ω
(
γ1−h

)
. Then, for any choice of the

hyper-parameters c and v such that v ≤ 2/γ, we have that

R(θp) = Ω

(
γ ln(1/γ)

λ2
max

+
γ2 ln2(1/γ)

ρ2λ2
max

)
. (123)

Proof Let us introduce the shorthands

f(t, R) = −2λminvc
µc(R)

c
Rdt+ λmax(vc)

2 νc(R)(R+ ζ2/2)

c2
γdt,

f(t, R) = −2λmaxvc
µc(R)

c
Rdt+ η̃2(t)(vc)2

νc(R)(R+ ζ2/2)

c2
γdt,

(124)
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corresponding to the RHSs of the ODEs of interest. Then, consider the auxiliary ODEs

dR
′
= −aR

′
dt+ bdt =: f

′
(t, R

′
)dt, dR′ = −aR′dt+ bdt =: f ′(t, R′)dt, a, b, a, b > 0,

(125)
with initial conditions R′

(0) = R(0) = R(0) = R(0) = R′(0).
Notice that R′

(t) admits the closed form solution

R
′
(t) =

(
R(0)− b/a

)
e−at + b/a. (126)

Similarly, we have that
R′(t) = (R(0)− b/a) e−at + b/a. (127)

Since c = O(1), by Lemma 12, we have that

cµ(c, ζ)√
2R+ ζ2

<
µc(R)

c
<

1√
π (R+ ζ2/2)

, cν(c, ζ) <
2νc(R)

(
R+ ζ2/2

)
c2

< 1. (128)

Then, let us set

a = 2λminvc
cµ(c, ζ)√

R(0) + 1 + ζ2
, b = λmax

v2c2γ

2
, a = 2vc

λmax√
πζ2/2

, b =
v2c2γcν(c, ζ)

2
.

(129)
As cv = C ln(1/γ)/λmin, the choice in (129) ensures that b/a ≤ 1 and b/a ≤ 1 as long as
λmax/λ

2
min ln(1/γ)γ = o(1), which in turn guarantees that

R
′
(t) ∈ [0, R(0) + 1], R′(t) ∈ [0, R(0) + 1]. (130)

Thus, (129) guarantees

f(t, R
′
(t)) < f

′
(t, R

′
(t)), f(t, R′(t)) > f ′(t, R′(t)), for all t ∈ [0, 1]. (131)

Thus, by (118), we have

R′(t) < R(t), R
′
(t) > R(t) for all t ∈ (0, 1]. (132)

In particular, plugging vc = C ln(1/γ)/λmin and (129) in (126), we have that

R(1) < R
′
(1) < e−a +

b

a
= O

(
λmax

λ2
min

ln(1/γ)γ

)
, (133)

as long as C is chosen to be large enough. Then, the upper bounds follows from Proposition 13 and
Proposition 5, as the risk at the last iterate roughly increases by 2c2v2γ2/ρ2 = O(γ2 ln2(1/γ)/(ρ2λ2

min)).
For the lower bound, let us first suppose c ≤ 1, which implies that (128) holds. Pick a, b as in

(129).
First, let us consider the case a ≤ 1. We have that (132) gives

R(1) > R′(1) = R(0)e−a +
b

a
− b

a
e−a > R(0)e−a ≥ R(0)/e = Ω(1). (134)
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In the case a > 1, (132) gives

R(1) > R′(1) = R(0)e−a+
b

a
− b

a
e−a > R(0)e−a+

b

a
(1−e−1) = R(0)

(
e−vcλmaxa +

vcbγ

λmaxa

)
,

(135)
where a, b are positive constants which do not depend on γ, v, c and the spectrum of Σ. Then, let us
consider the following quantity

R := R(0)

(
e−vcλmaxa +

vcbγ

λmaxa

)
+ 2v2c2

γ2

ρ2
. (136)

We have that

argmin
vc

e−vcλmaxa +
vcbγ

λmaxa
=

1

λmaxa
ln

(
(λmaxa)

2

bγ

)
, (137)

which implies

R > R(0)

(
e−vcλmaxa +

vcbγ

λmaxa

)
= Ω

(
γ ln(1/γ)

λ2
max

)
. (138)

Note that, assuming ρ = Ω(γ1−h), we have

min
vc≥ ln(ρ2/γ2)

2aλmax

e−vcλmaxa + v2c2
γ2

ρ2
≥ min

vc≥ ln(ρ2/γ2)
2aλmax

v2c2
γ2

ρ2
= Ω

(
γ2 ln2 (1/γ)

ρ2λ2
max

)
,

min
0≤vc≤ ln(ρ2/γ2)

2aλmax

e−vcλmaxa + v2c2
γ2

ρ2
≥ γ

ρ
= Ω

(
γ2 ln2 (1/γ)

ρ2

)
= Ω

(
γ2 ln2 (1/γ)

ρ2λ2
max

)
.

(139)

Then, merging (136), (138) and (139) yields

R = Ω

(
γ ln(1/γ)

λ2
max

+
γ2 ln2 (1/γ)

ρ2λ2
max

)
. (140)

The result in (135) together with Proposition 13 and Proposition 5 implies that, with overwhelming
probability,

R(θp) = Ω

(
γ ln(1/γ)

λ2
max

+
γ2 ln2 (1/γ)

ρ2λ2
max

)
. (141)

It remains to prove the lower bound for c > 1. From (18), one readily has that 0 < µc(R) < 1.
Note that

νc(R)(R+ ζ2/2) ≥ max

(
νc(R)(R+ ζ2/2)

c2
, νc(R)ζ2/2

)
, (142)

which combined with (34) gives that νc(R)(R+ ζ2/2) > b1, for a positive constant b1 independent
of γ, v, c and the spectrum of Σ. Furthermore, (32) implies that νc(R)(R + ζ2/2) < c2/2. Thus,
the solution of R is lower bounded by that of the ODE below:

dR′′ = −2λmaxvR
′′dt+ v2b1γdt, (143)

with initial condition R′′(0) = R(0). Thus, following the same steps we used to achieve (140), it
can be shown that, as c ≥ 1, we have, with overwhelming probability,

R(θp) = Ω

(
γ ln(1/γ)

λ2
max

+
γ2 ln2 (1/γ)

ρ2λ2
max

)
, (144)
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which gives the desired result.

DP-SGD with constant noise. In the setting α = 1/2, (6) gives

dR(t) = −2λminvc
√
1− t

µc(R)

c
Rdt+ λmax(vc)

2(1− t)
νc(R)(R+ ζ2/2)

c2
γdt+ 2(vc)2

γ2

ρ2
dt,

dR(t) = −2λmaxvc
√
1− t

µc(R)

c
Rdt+ (vc)2(1− t)

νc(R)(R+ ζ2/2)

c2
γdt+ 2(vc)2

γ2

ρ2
dt.

(145)
Importantly, recall that the risk R(θp) in this setting is well approximated by R(1), due to Proposi-
tion 5, since η̃(1) = 0.

Theorem 24 Let Assumptions 1 and 2 hold, and let θp be the solution obtained with Algorithm 1,
with the schedule defined in (6) for α = 1/2, in the setting γ = d/n → 0. Furthermore, assume

ln2(1/γ)γ

λ2
min

(
λmax +

γ

ρ2

)
= o(1). (146)

Then, by setting

c = O(1), vc =
C ln(1/γ)

λmin
, v ≤ 2/γ, (147)

for a large enough constant C which does not depend on γ, ρ,Σ, we have that, with overwhelming
probability,

R(θp) = O

(
λmaxγ ln

2/3(1/γ)

λ2
min

+
γ2 ln4/3(1/γ)

ρ2λ2
min

)
. (148)

Furthermore, suppose there exists h > 0 such that ρ = Ω
(
γ1−h

)
. Then, for any choice of the

hyper-parameters c and v such that v ≤ 2/γ, we have that

R(θp) = Ω

(
γ ln2/3(1/γ)

λ2
max

+
γ2 ln4/3(1/γ)

ρ2λ2
max

)
. (149)

Proof
As before, let us introduce the shorthands

f(t, R) = −2λminvc
√
1− t

µc(R)

c
R+ λmax(vc)

2(1− t)
νc(R)(R+ ζ2/2)

c2
γ + 2(vc)2

γ2

ρ2
,

f(t, R) = −2λmaxvc
√
1− t

µc(R)

c
R+ (vc)2(1− t)

νc(R)(R+ ζ2/2)

c2
γ + 2(vc)2

γ2

ρ2
.

(150)
Then, consider the auxiliary ODEs

dR
′
= −a

√
1− tR

′
dt+ b1(1− t)dt+ b2dt =: f

′
(t, R)dt, a, b1, b2 > 0,

dR′ = −a
√
1− tR′dt+ b1(1− t)dt+ b2dt =: f ′(t, R)dt, a, b1, b2 > 0,

(151)
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with initial conditions R
′
(0) = R(0) = R(0) = R(0) = R′(0), which admit the closed-form

solutions

R
′
(t) =

R(0)

3
e−2a(1−(1−t)3/2)/3

(
3+

− 2

R(0)
b1e

2a/3

(
E−1/3

(
2a

3

)
− (1− t)2E−1/3

(
2a(1− t)3/2

3

))

− 2

R(0)
b2e

2a/3

(
E1/3

(
2a

3

)
− (1− t)E1/3

(
2a(1− t)3/2

3

)))
,

(152)

R′(t) =
R(0)

3
e−2a(1−(1−t)3/2)/3

(
3+

− 2

R(0)
b1e

2a/3

(
E−1/3

(
2a

3

)
− (1− t)2E−1/3

(
2a(1− t)3/2

3

))

− 2

R(0)
b2e

2a/3

(
E1/3

(
2a

3

)
− (1− t)E1/3

(
2a(1− t)3/2

3

)))
,

(153)

expressed in terms of the exponential integral functions E−1/3(·), E1/3(·) defined in (104).
Note that, for t ∈ [0, 1], R′

(t) ≥ 0. In fact, if this is not the case, by continuity of R′, there exists
an interval (t∗, t∗ + δ) ⊆ [0, 1] s.t. R′

(t∗) = 0 and R
′
(t) < 0 for all t ∈ (t∗, t∗ + δ). However, if

R
′
(t∗) = 0, then the derivative of R′ evaluated at t∗ is ≥ b2 > 0 by (151), which is a contradiction.

A similar argument gives that, for t ∈ [0, 1], R′(t) ≥ 0.
Next, we upper bound R

′
(t) as

R
′
(t) ≤ R(0) +

2

3
b1e

2a(1−t)3/2/3(1− t)2E−1/3

(
2a(1− t)3/2

3

)

+
2

3
b2e

2a(1−t)3/2/3(1− t)E1/3

(
2a(1− t)3/2

3

)
.

(154)

If 2a(1− t)3/2/3 ≥ 2/3, an application of (108) gives that

e2a(1−t)
3/2/3(1− t)2E−1/3

(
2a(1− t)3/2

3

)
≤ 3

a

√
1− t ≤ 3

a
,

e2a(1−t)
3/2/3(1− t)E1/3

(
2a(1− t)3/2

3

)
≤ 3

a
(1− t)−1/2 ≤ 3

a2/3
.

(155)

Instead, if 2a(1− t)3/2/3 < 2/3, by using (107) we have

e2a(1−t)
3/2/3(1− t)2E−1/3

(
2a(1− t)3/2

3

)
≤ e2/3Γ

(
4

3

)(
2a

3

)−4/3

,

e2a(1−t)
3/2/3(1− t)E1/3

(
2a(1− t)3/2

3

)
≤ e2/3Γ

(
2

3

)(
2a

3

)−2/3

.

(156)
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Thus, the following upper bound holds for t ∈ [0, 1]:

R
′
(t) ≤ R(0) +

2b1
a

+
2b2

a2/3
+ e2/3

(
2

3

)−1/3

Γ

(
4

3

)
b1

a4/3
+ e2/3

(
2

3

)1/3

Γ

(
2

3

)
b2

a2/3
. (157)

Following the same passages, we have that, for t ∈ [0, 1],

R′(t) ≤ R(0) +
2b1
a

+
2b2
a2/3

+ e2/3
(
2

3

)−1/3

Γ

(
4

3

)
b1
a4/3

+ e2/3
(
2

3

)1/3

Γ

(
2

3

)
b2
a2/3

. (158)

Let us now pick

a = 2vcλmin

cµ(c, ζ)√
R(0) + 1 + ζ2/2

, b1 = λmax
v2c2γ

2
, b2 = 4v2c2

γ2

ρ2
,

a = 2vcλmax
1√

πζ2/2
, b1 =

v2c2γcν(c, ζ)

2
, b2 = v2c2

γ2

ρ2
.

(159)

Since c = O(1), by Lemma 12, we have that (128) holds. As cv = C ln(1/γ)/λmin, the choice in
(159) ensures that 0 ≤ R′(t) ≤ R

′
(t) ≤ 1 +R(0) for t ∈ [0, 1], as long as we have b1 + b2 = o(1),

which holds due to (146).
Thus, (159) guarantees

f(t, R
′
(t)) < f

′
(t, R

′
(t)), f(t, R′(t)) > f ′(t, R′(t)), for all t ∈ [0, 1]. (160)

Note that f(t, R) and f(t, R) are continuous in both variables in the intervals t ∈ [0, 1] and R ∈
[0, 1]. Furthermore, they are also Lipschitz in R in these same intervals. Thus, (118) gives

R′(t) < R(t), R(t) < R
′
(t), for all t ∈ (0, 1]. (161)

To prove the upper bound, due to Propositions 13 and 5, it suffices to give an upper bound on
R

′
(1). To this aim, note that Lemma 22 yields

lim
x→0

x2E−1/3

(
2ax3/2

3

)
=

(
3

2

)4/3

Γ

(
4

3

)
a−4/3,

lim
x→0

xE1/3

(
2ax3/2

3

)
=

(
3

2

)2/3

Γ

(
2

3

)
a−2/3,

(162)

where Γ(·) denotes the Euler Gamma function (defined in (106)). Thus,

R
′
(1) =

R(0)

3
e−2a/3

(
3− 2

R(0)
b1e

2a/3

(
E−1/3

(
2a

3

)
−
(
3

2

)4/3

Γ

(
4

3

)
a−4/3

)

− 2

R(0)
b2e

2a/3

(
E1/3

(
2a

3

)
−
(
3

2

)2/3

Γ

(
2

3

)
a−2/3

))

≤ R(0)e−2a/3 +

(
3

2

)1/3

Γ

(
4

3

)
b1a

−4/3 +

(
3

2

)−1/3

Γ

(
2

3

)
b2a

−2/3,

(163)
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where in the last line we have used the non-negativity of the exponential integral functions. For C
sufficiently large, due to (159), the first term in the RHS is o(γ) (recall that vc = C ln(1/γ)/λmin).
The other two terms are O(λmaxγ ln

2/3(1/γ)/λ2
min) and O(γ2 ln4/3(1/γ)/(ρ2λ2

min) respectively.
Note that R(1) < R

′
(1) and η̃(1) = 0. Thus, the desired result follows from Propositions 13 and 5.

To prove the lower bound, due to Propositions 13 and 5, it suffices to show that the inequality in
the thesis holds for R(1). Let us first suppose c ≤ 1, which implies that (128) holds. Pick a, b1, b2
as in (159), and consider the ODE R′(t) defined in (151) with the initial condition R′(0) = R(0),
which is a lower bound on R(t) due to (161), i.e.,

R(1) > R′(1) =
R(0)

3
e−2a/3

(
3− 2

R(0)
b1e

2a/3

(
E−1/3

(
2a

3

)
−
(
3

2

)4/3

Γ

(
4

3

)
a−4/3

)

− 2

R(0)
b2e

2a/3

(
E1/3

(
2a

3

)
−
(
3

2

)2/3

Γ

(
2

3

)
a−2/3

))
.

(164)

We consider two additional cases depending on the value of a. If a ≥ 2, then (108) gives that

E−1/3

(
2a

3

)
≤ 2e−2a/3

2a
3

, E1/3

(
2a

3

)
≤ 2e−2a/3

2a
3

, (165)

which implies that

R(1) ≥ R(0)e−2a/3 +

(
3

2

)1/3

Γ

(
4

3

)
b1a

−4/3 − 2e−2a/3b1a
−1

+

(
3

2

)−1/3

Γ

(
2

3

)
b2a

−2/3 − 2e−2a/3b2a
−1.

(166)

Note that(
3

2

)1/3

Γ

(
4

3

)
b1a

−4/3 − 2e−2a/3b1a
−1 ≥ b1a

−4/3 − 2e−2a/3b1a
−1 ≥ 1

3
b1a

−4/3,(
3

2

)−1/3

Γ

(
2

3

)
b2a

−2/3 − 2e−2a/3b2a
−1 ≥ b2a

−2/3 − 2e−2a/3b2a
−1 ≥ 1

3
b2a

−2/3,

(167)

where the inequalities on the right hold for a ≥ 2. Thus,

R(1) ≥
(
R(0)

2
e−avcλmax +

b1
3
λ−4/3
max a−4/3(vc)2/3γ

)
+

(
R(0)

2
e−avcλmax +

b2
3
λ−2/3
max a−2/3(vc)4/3

γ2

ρ2

)
,

(168)

where a, b1, b2 are positive constants which do not depend on γ, v, c, ρ or the spectrum of Σ.
Denoting with a′ = aλmax, τ = vc, we have that for a fixed β ∈ {2/3, 4/3}, and for any

δ = o(1),

min
τ≥0

e−τa
′
+

τ2−βδ
(a′)β

= Ω

(
δ ln2−β(1/δ)

(a′)2

)
, (169)
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which follows from the following calculations:

min
τ≥ln(1/δ)/(2a′)

e−τa
′
+

τ2−βδ
(a′)β

≥ min
τ≥ln(1/δ)/(2a′)

τ2−βδ
(a′)β

= Ω

(
δ ln2−β(1/δ)

(a′)2

)
,

min
0≤τ≤ln(1/δ)/(2a′)

e−τa
′
+

τ2−βδ
(a′)β

≥ δ1/2 = Ω(δ ln2−β(1/δ)) = Ω

(
δ ln2−β(1/δ)

(a′)2

)
.

(170)

Then, since ρ = Ω(γ1−h), we can set δ = γ and δ = γ2/ρ2 to obtain

R(1) = Ω

(
γ ln2/3(1/γ)

λ2
max

+
γ2 ln4/3(ρ2/γ2)

ρ2λ2
max

)
, (171)

which implies the desired result (due to Propositions 13 and 5).
If a ≤ 2, then (107) gives that

E−1/3

(
2a

3

)
≤ Γ

(
4

3

)(
2a

3

)−4/3

, E1/3

(
2a

3

)
≤ Γ

(
2

3

)(
2a

3

)−2/3

, (172)

which implies that

R(1) ≥ R(0)e−2a/3 = Ω(1), (173)

thus again proving the desired claim (due to Propositions 13 and 5).
Finally, for c > 1, due to the same argument used to show (142), the solution of the original

ODE is lower bounded by that of the ODE below:

dR′′ = −2λmaxv
√
1− tR′′dt+ v2b1γ(1− t)dt+ 2v2c2

γ2

ρ2
dt, (174)

with initial condition R′′(0) = R(0), where b1 is a positive constant independent of γ, v, c, ρ and
the spectrum of Σ. Thus, following the same steps above with a = 2vλmax, b1 = v2b1γ, b2 =
2v2c2γ2/ρ2, one readily shows that

R′′(1) = Ω

(
γ ln2/3(1/γ)

λ2
max

+
γ2 ln4/3 (1/γ)

ρ2λ2
max

)
, (175)

concluding the proof (due to Propositions 13 and 5).

Proof of Theorem 20. The result is a consequence of Theorems 23 and 24. ■

Sub-optimality of c = ωγ(1). Note that, if c > 1, the ODE in (143) maps to the one in (127),
with a, b defined as in (129) (except for absolute constants), with vc 7→ v. This mapping also holds
when defining (136), via ρ 7→ ρ/c. Then, if we consider the further condition ρ/c = Ω(γ1−h), for
some h > 0, the lower bound in Theorem 20 becomes

R(θp0) = Ω

(
γ ln(1/γ)

λ2
max

+
max(1, c2)γ2 ln2 (1/γ)

ρ2λ2
max

)
. (176)

The same argument holds also for the ODE in (174), providing analogous expression for R(θp1/2).
This quantifies the negative effects of using a large clipping constant c = ωγ(1).
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E.4. Proof of Theorem 21

Let R(t) be defined as in (42), with the learning rate schedule in (6) for a generic α ≥ 1. Then, we
have

dR = −2vcλmin (1− t)α
µc(R)

c
Rdt+ (vc)2λmax (1− t)2α

νc(R)(R+ ζ2/2)

c2
γdt

+ 4(vc)2α (1− t)2α−1 γ
2

ρ2
dt.

(177)

The argument is similar to the one used to obtain Theorem 20, so we only highlight differences.
Using (118), we have that R(t) is strictly bounded by the auxiliary ODEs

dR
′
= −a(1− t)αR

′
dt+ b1(1− t)2αdt+ b2(1− t)2α−1dt =: f

′
(t, R

′
)dt, a, b1, b2 > 0,

dR′ = −a(1− t)αR′dt+ b1(1− t)2αdt+ b2(1− t)2α−1dt =: f ′(t, R′)dt, a, b1, b2 > 0,

(178)

with initial conditions R′
(0) = R(0) = R(0).

To establish a closed form solution for the ODEs in (178), we start by analyzing the ODE

dR̃ = −a(1− t)αR̃dt+ b1(1− t)2αdt, (179)

with initial condition R̃(0) = R(0), which admits the closed form solution

R̃(t) =
R(0)

(1 + α)
e−

a(1−(1−t)1+α)
1+α

(
1 + α− b1

R(0)
e

a
1+αE−1+ 1

1+α

(
a

1 + α

)
+

b1
R(0)

e
a

1+α (1− t)1+2αE−1+ 1
1+α

(
a(1− t)1+α

1 + α

))
.

(180)

Let
w(t) = R

′
(t)− R̃(t), (181)

and note that
dw

dt
=

dR
′

dt
− dR̃

dt

= −a(1− t)αR+ a(1− t)αR̃+ b2(1− t)2α−1

= −a(1− t)αw + b2(1− t)2α−1.

(182)

Thus, by using the initial condition w(0) = R
′
(0)− R̃(0) = 0, we have

w(t) =
b2

1 + α
e

a(1−t)1+α

1+α

(
(1− t)2αE 1−α

1+α

(
a(1− t)1+α

1 + α

)
− E 1−α

1+α

(
a

1 + α

))
, (183)

which implies that

R
′
(t) =

R(0)

(1 + α)
e−

a(1−(1−t)1+α)
1+α

(
1 + α− b1

R(0)
e

a
1+αE−1+ 1

1+α

(
a

1 + α

)
+

b1
R(0)

e
a

1+α (1− t)1+2αE−1+ 1
1+α

(
a(1− t)1+α

1 + α

)
+

b2
R(0)

e
a

1+α

(
(1− t)2αE 1−α

1+α

(
a(1− t)1+α

1 + α

)
− E 1−α

1+α

(
a

1 + α

)))
.

(184)
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Similarly, we have that

R′(t) =
1

(1 + α)
e−

a(1−(1−t)1+α)
1+α

(
R(0)(1 + α)− b1e

a
1+αE−1+ 1

1+α

(
a

1 + α

)
+ b1e

a
1+α (1− t)1+2αE−1+ 1

1+α

(
a(1− t)1+α

1 + α

)
+b2e

a
1+α

(
(1− t)2αE 1−α

1+α

(
a(1− t)1+α

1 + α

)
− E 1−α

1+α

(
a

1 + α

)))
.

(185)

For t ∈ [0, 1], R(t), R(t) ≥ 0. Furthermore, the following upper bounds hold for t ∈ [0, 1]:

R
′
(t) ≤ R(0) +

2b1
a

+
b2
α

+ b1

(
1

1 + α

)−1+ 1
1+α

Γ

(
2− 1

1 + α

)
a−2+ 1

1+α

+ b2Γ

(
2α

1 + α

)
(1 + α)

α−1
1+α a−

2α
1+α .

(186)

Let us take

a = C1vcλmin, b1 = C2γv
2c2λmax, b2 = C3v

2c2
γ2

ρ2
α, (187)

with C1, C2, C3 constants independent from γ, ρ, α, v, c or the spectrum of Σ. Then, we have that
R

′
(t) ≤ 1 +R(0) for t ∈ [0, 1], as a = Ω(ln(1/γ)) and

ln2(1/γ)γ

λ2
min

(
λmaxα+

γ

ρ2

)
= o(1). (188)

As a result, we can apply the argument in (118) to obtain that

R(1) ≤ R
′
(1) = R̃(1) + w(1). (189)

Note that Lemma 22 yields

lim
x→0

x1+2αE−1+ 1
1+α

(
ax1+α

1 + α

)
=

(
1

1 + α

)−2+ 1
1+α

Γ

(
2− 1

1 + α

)
a−2+ 1

1+α . (190)

Thus,

R̃(1) =
1

(1 + α)
e−

a
1+α

(
R(0)(1 + α)− b1e

a
1+αE−1+ 1

1+α

(
a

1 + α

)
+ b1e

a
1+α

(
1

1 + α

)−2+ 1
1+α

Γ

(
2− 1

1 + α

)
a−2+ 1

1+α

)
≤ R(0)e−

a
1+α +

(
1

1 + α

)−1+ 1
1+α

Γ

(
2− 1

1 + α

)
b1a

−2+ 1
1+α

≤ R(0)e−
a

1+α + (1 + α)b1a
−2+ 1

1+α ,

(191)
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where in the second line we have used the non-negativity of the exponential integral function and in
the third line we have used that Γ

(
2− 1

1+α

)
≤ Γ(2) = 1 for all α ≥ 1. Next, we bound w(1) as

w(1) =
b2

1 + α

(
Γ

(
2α

1 + α

)
(1 + α)

2α
1+αa−

2α
1+α − E 1−α

1+α

(
a

1 + α

))
≤ b2

1 + α
Γ

(
2α

1 + α

)
(1 + α)

2α
1+αa−

2α
1+α

≤ (1 + α)b2a
− 2α

1+α ,

(192)

where in the last line we have used that Γ
(

2α
1+α

)
≤ 1 for α ≥ 1. By combining (189), (191) and

(192), we conclude that

R(1) ≤ R(0)e−
a

1+α + (1 + α)1/3b1a
− 2α+1

1+α + (1 + α)b2a
− 2α

1+α

= O

(
λmaxαγ ln

1
1+α (1/γ)

λ2
min

+
α2γ2 ln

2
1+α (1/γ)

ρ2λ2
min

)
,

(193)

which gives the desired result, after applying Propositions 13 and 5, since η̃(1) = 0. ■

Proof of (103). By taking α = ln ln(1/γ), we have

αγ ln
1

1+α (1/γ) +
α2γ2 ln

2
1+α (1/γ)

ρ2

= γ ln ln(1/γ)e
ln ln(1/γ)

1+ln ln(1/γ) +
γ2

ρ2
(ln ln(1/γ))2e

2 ln ln(1/γ)
1+ln ln(1/γ)

≤ γ(ln ln(1/γ))e+
γ2

ρ2
(ln ln(1/γ))2e2.

(194)

Thus, in the setting where λmax, λmin = Θγ(1), this choice (together with Propositions 13 and 5)
yields

R(θp) = O

(
γ(ln ln(1/γ)) +

γ2

ρ2
(ln ln(1/γ))2

)
. (195)

Appendix F. Future work

Our work opens the door to a number of interesting future directions. The first consists in a tighter
characterization of the test risk with respect to the condition number κ = λmax/λmin of the data
covariance. This is done e.g. in [39, 57] which are however unable to handle the proportional regime
considered in our work. The second direction regards the study of the optimal scheduling of learning
rate and private noise beyond the regime γ = d/n → 0. In fact, Figure 4 suggests that different
values of γ lead to different optimal schedules. Finally, homogenized DP-SGD has the potential
to offer a powerful tool to study differentially private optimization beyond linear regression. A
concrete setting for future work is provided e.g. by logistic regression, where the SGD dynamics (in
the absence of clipping and private noise) has been considered in [17].
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