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Abstract—Determined blind source separation (BSS) formu-
lated in the time-frequency domain usually applies pre- and post-
processing called whitening and projection back. They convert
the BSS problem into an easier optimization problem, and
the existing methods have relied on them. However, these pre-
and post-processing steps modify the optimized signals, which
prevents us from directly modeling the source signals. In this
paper, to directly handle the signals in BSS, we define the
projection-back constraint set and derive the metric projection
and the proximity operator related to it. We also propose two
algorithms using the alternating direction method of multipliers
(ADMM) and experimentally confirm their correctness.

Index Terms—Audio source separation, time-frequency do-
main, demixing matrix estimation, affine constraint, alternating
direction method of multipliers (ADMM).

I. INTRODUCTION

Determined blind source separation (BSS) aims to recover
source signals from a multichannel mixture without informa-
tion about the mixing system. Many methods formulate it
as an estimation problem of demixing matrices in the time-
frequency domain and solve it based on some prior knowledge
of source signals, such as sparsity [1]–[7] and low-rankness of
amplitude spectrograms [8]–[10]. Some of the recent methods
use deep neural networks (DNNs) to learn source models from
training data [11]–[18]. Prior knowledge of the mixing and
demixing systems can also be utilized [19], [20].

Many BSS methods employ pre- and post-processing called
whitening and projection back (PB), respectively. Whitening
helps optimization algorithms, and PB resolves the scale
indeterminacy of the separated signals. However, whitening
and PB prevent us from directly modeling the output signals
of BSS methods. Namely, even if an optimization problem is
designed to induce some desirable properties of the demixing
system and/or the separated signals, there is no guarantee that
these properties are preserved by whitening and PB. This has
been noticed by some researchers, but the existing methods
used heuristics that only partially resolve this issue [10], [11].

In this paper, we propose a unified optimization framework
that integrates the pre- and post-processing stages into the
optimization problem so that the overall demixing system and
separated signals can be directly modeled. We define the set
of demixing matrices that satisfies the PB constraint [21] and
derive two optimization algorithms based on the alternating
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direction methods of multipliers (ADMM) [22]. The metric
projection and proximity operator related to the PB constraint
set are also derived for computation in the algorithms. Our
contributions are summarized as follows: (1) we proposed
a unified formulation for determined BSS, which integrates
the pre-processing (whitening) and the post-processing (PB)
into the optimization problem, allowing direct modeling of
the final output of BSS algorithms; (2) we derived analytical
formulas of the metric projection onto the PB constraint set
and the proximity operator of the log-det function under PB
constraint; and (3) we derived and evaluated ADMM-based
BSS algorithms incorporating the PB constraint.

II. PRELIMINARIES

A. Determined Blind Source Separation

When K source signals are mixed by an unknown mixing
system and observed by K microphones, source separation
can be formulated as an optimization problem of finding
K × K demixing matrices in the time-frequency domain.
Let the source signals at the (f, t)th bin be s[f, t] =
[s1[f, t], . . . , sK [f, t]]

T ∈ CK , and the observed signals be
x(obs)[f, t] = [x

(obs)
1 [f, t], . . . , x

(obs)
K [f, t]]T ∈ CK , where

1 ≤ t ≤ T and 1 ≤ f ≤ F are the time and frequency
indices, respectively, and (·)T denotes the transpose. A con-
volutive mixing system in the time domain is approximated
by the mixing matrix H[f ] ∈ CK×K at each frequency as
x(obs)[f, t] = H[f ] s[f, t]. Then, the separated signal ỹ[f, t] =[
ỹ1[f, t], . . . , ỹK [f, t]

]T ∈ CK is obtained by applying the
demixing matrix W̃[f ] ∈ CK×K for each frequency as [23]

ỹ[f, t] = W̃[f ]x(obs)[f, t] ≈ s[f, t]. (1)

B. Three-stage Procedure for Demixing Matrix Estimation

The three-stage procedure in Fig. 1 is commonly used for
stable estimation of demixing matrices [1]. Each stage can be
represented by the application of the K ×K matrices:

1) Whitening Q[f ] ∈ CK×K : pre-processing matrix for
assisting optimization algorithms.

2) Demixing W[f ] ∈ CK×K : demixing matrix optimized
based on some prior knowledge of the source signals
and/or the demixing system.

3) Projection Back (PB) D[f ] ∈ CK×K : post-processing
matrix that adjusts the scale of the separated signals.
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Fig. 1. Comparison between the conventional three-stage source
separation (3-stage) and the proposed direct optimization of the
final output (Direct). In the three-stage procedure, the scale of the
separated signal ỹ is adjusted by projection back (PB). On the other
hand, in the direct approach proposed in this paper, the optimized
demixing matrix W̃ (which is the composition of the whitening
matrix Q and the demixing matrix W) is constrained to the set
WPB in Eq. (13). This ensures that the separated signal ỹ during the
optimization stage is the same as the final output after PB y(PB).

Then, the output signal of a BSS method y(PB)[f, t] ∈ CN is
obtained by the following application of the matrices:

y(PB)[f, t] = D[f ]︸︷︷︸
PB

W[f ]︸ ︷︷ ︸
Demixing

Q[f ]︸︷︷︸
Whitening︸ ︷︷ ︸

W̃ in Eq. (1)︸ ︷︷ ︸
W(PB) (Overall demixing matrix after PB)

x(obs)[f, t]. (2)

For brevity, we represent all the components altogether by
omitting the indices, e.g., x = (x[f, t])F,T

f=1,t=1 and W =

(W[f ])Ff=1, and shortly write the linear operations as y =

Wx = (W[f ]x[f, t])F,T
f=1,t=1.

The details of each stage are described below.
Stage-1) Whitening matrix Q: First, to convert the optimiza-
tion problem into an easier one, the whitening matrix Q is
applied to the observed mixture as follows:

x = Qx(obs), (3)

where Q is chosen so that the observed signals after whitening
x satisfy

∑T
t=1 x[f, t](x[f, t])

H = I, see [1].
Stage-2) Demixing matrix W : The next step is the opti-
mization of the demixing matrix W. It can be formulated as
the minimization problem as follows [23]:

min
(W,ỹ)

P(ỹ)−
F∑

f=1

log(|det(W[f ])|) s.t. ỹ = Wx. (4)

The objective function consists of the log-det function that
ensures the invertibility of the demixing matrix and a penalty
function P : CK×T×F → R that corresponds to the prior
knowledge of the source signals. When using the local Gaus-
sian model (LGM) [24], [25] as the source prior, the penalty
function is reduced to the weighted quadratic function:

PLGM(y) =

K∑
k=1

T∑
t=1

F∑
f=1

|yk[f, t]|2

σ2
k[f, t]

, (5)

where σ2
k[f, t] ≥ 0 is the variance parameter for each (f, t)th

bin. The variance parameter σ2
k[f, t] is often modeled using

nonnegative matrix factorization (NMF) [8]–[10] or estimated
using DNNs trained by source signals [11]–[16]. Composition
with the whitening matrix Q gives the demixing matrix W̃
and separated signal ỹ obtained after the optimization stage:

W̃ = WQ, ỹ = Wx ( = W̃x(obs)). (6)

Stage-3) PB Matrix D: Finally, to address the scale ambiguity
of the separated signal, PB is applied as post-processing [1].
PB adjusts the scale of the separated signals by referring to the
signal observed at the k(ref)th microphone (1 ≤ k(ref) ≤ K).
In this paper, we set k(ref) = 1 without loss of generality.
Then the PB matrix D[f ] is a diagonal matrix given by

D[f ] = diag(h̃1,1[f ], . . . , h̃1,K [f ]), (7)

where diag(·) contracts a diagonal matrix from the input, and
the elements (h̃1,k[f ])

K
k=1 are the first row of the estimated

mixing matrix H̃[f ], which is calculated as

H̃[f ] = (W̃[f ])−1. (8)

The final output, i.e., the overall demixing matrix W(PB) (that
is applied to the observed mixture x(obs)) and the separated
signal y(PB), is given by

W(PB) = DW̃, y(PB) = Dỹ ( = W(PB)x(obs)). (9)

This three-stage procedure helps optimization by converting
the problem into an easier one. However, the demixing matrix
W and the separated signal ỹ in the optimization problem
in Eq. (4) is different from the final output of BSS methods
(i.e., the overall demixing matrix, W(PB) = DWQ, and the
separated signals after PB, y(PB) = W(PB)x(obs)). Therefore,
the source model for the optimization problem in Eq. (4)
cannot directly handle the separated signal in the final output.

III. PROPOSED METHOD

To directly handle the final output of BSS methods, we
propose a unified formulation that imposes PB as a constraint
during optimization of the demixing matrix (Fig. 1, Direct).
The PB constraint ensures that the signals separated by an
algorithm are the same as those after PB. Here, we first
formulate the BSS problem under the PB constraint and then
derive two ADMM algorithms, along with the metric projec-
tion and the proximity operator necessary for implementing
the algorithms.

A. Determined BSS Problem Under PB Constraint

When a demixing matrix W̃[f ] ∈ CK×K in Eq. (2) is
invertible and satisfies the following condition [21],

K∑
k=1

w̃kj [f ] = δij =

{
1 (j = 1),

0 (j ̸= 1),
(10)



then the demixing matrix W̃ is the same as that after PB1:

W(PB)[f ] = W̃[f ], (11)

where δij is Kronecker’s delta. Therefore, the separated signal
after PB, y(PB), can be directly optimized by introducing the
PB constraint on W̃ ( = WQ) into the problem in Eq. (4) as

min
(W,y(PB))

P(y(PB))−
F∑

f=1

log(|det(W[f ])|)

s.t. y(PB) = WQx(obs), WQ ∈ W(K)
PB ,

(12)

where we define PB constraint set W(K)
PB as the set of K×K

matrices satisfying condition Eq. (10), i.e.,

W(K)
PB =

{
W ∈ CK×K×F

∣∣∣∣∣
K∑

k=1

wkj [f ] = δ1j ,
∀(f, j)

}
. (13)

B. Metric Projection to PB Constraint Set WPB

To handle the PB constraint in Eq. (12) within a proximal
splitting algorithm [27], we introduce metric PB, defined as
the metric projection operator onto the PB constraint set:

projW(K)
PB

(W̃) = arg min
W∈W(K)

PB

∥W − W̃∥2Fro. (14)

where ∥ ·∥Fro denotes the Frobenius norm, and the indices [f ]
are omitted hereafter for brevity. This projection can be easily
computed as follows.

Proposition 1. The metric projection onto the PB constraint
set W(K)

PB is given as follows:(
projW(K)

PB

(W̃)
)
ij
= w̃ij +

1

K

(
δ1j −

K∑
k=1

w̃kj

)
. (15)

Proof. The left-hand side in Eq. (10) is the linear operation,
and the right-hand side is a constant vector. Therefore, the PB
constraint set W(K)

PB in Eq. (13) is an affine set. The metric
projection onto an affine set can be found in, e.g., [27].

Note that, since W(K)
PB is a convex set, the metric PB in Eq.

(15) is non-expansive (i.e., 1-Lipschitz). This is distinct from
the conventional PB in Eqs. (7)–(9) that is not non-expansive
due to the matrix inversion. Indeed, as will be shown in the
experimental section, heuristic application of the conventional
PB causes instability of the algorithms.

1Here, the derivation of the condition Eq. (10) is shortly explained. Let
D[f ] be the PB matrix corresponding to a demixing matrix W̃[f ]. Assuming
that W(PB)[f ] = W̃[f ] in the left part of Eq. (9), Eq. (7) becomes D[f ] =
diag(h̃1,1[f ], . . . , h̃1,K [f ]) = I. Combining this with Eq. (8), we obtain

W̃−1[f ] = H̃[f ] =

1 · · · 1
∗ · · · ∗...

. . .
...

∗ · · · ∗

 ,

where ∗ can be any scalar. Since eT1W̃
−1[f ] = 1T, the above equation

can be reduced to 1TW̃[f ] = eT1 that is equivalent to Eq. (10), where
1 = [1, . . . , 1]T ∈ {1}K , and e1 = [1, 0, . . . , 0]T ∈ {0, 1}K . A
similar discussion can be found in the literature [21], where we independently
obtained the same condition at the same time [26].

Algorithm 1 ADMM-BSS using metric PB in Eq. (15)

Input: x, Q, (y(PB),W(PB),W̌), (u1,u2,u3), ρ
Output: y(PB), W(PB)

1: for l = 1, ..., numIter do
2: y(PB) ← prox(1/ρ)P (Wx+ u1)

3: W(PB) ← proj
W(K)

PB

(WQ+ u2)

4: W̌← prox(1/ρ)LogDet(W + u3)

5: (ui)
3
i=1 ← (ui)

3
i=1 + (Wx,WQ,W)− (y(PB),W(PB),W̌)

6: W←
(
(y(PB) − u1)xH + (W(PB) − u2)QH + (W̌ − u3)

)
(xxH +QQH + I)−1

7: end for

Applying ADMM [22] to Eq. (12) yields Alg. 1, where we
used a light notation for operation in the 6th line abH that
computes

∑T
t=1 a[f, t](b[f, t])

H for each frequency. The vari-
able W̌ ∈ CK×K×F is for variable splitting, u1 ∈ CK×T×F ,
u2,u3 ∈ CK×K×F are dual variables, and ρ > 0 is a step
size.

C. Proximity Operator of Log-Det Function Under Projection
Back Constraint When K = 2

Here, we propose a simpler algorithm for the special case
Q = I and K = 2 (i.e., separating two source signals without
using whitening). By simultaneously considering the log-det
function and the PB constraint in the proximity operator as

proxλLogDet+PB(W̃)

= arg min
W∈W(K)

PB

(
− log(|det(W)|) + (1/2λ)∥W − W̃∥2F

)
, (16)

its closed-form solution for K = 2 can be used for an efficient
update of the demixing matrix. We derived the closed-form
solution to Eq. (16) based on the following observation.

Proposition 2. Let W ∈ W(K)
PB , then it follows that

det(W) = det

w22 · · · w2K
...

. . .
...

wK2 · · · wKK

 . (17)

Proof. Using Eq. (10) and the elementary row transformations
(adding all the rows to the 1st row), we obtain

det(W) =det


∑K

k=1 wk1︸ ︷︷ ︸
1

∑K
k=1 wk2︸ ︷︷ ︸

0

· · ·
∑K

k=1 wkK︸ ︷︷ ︸
0

w21 w22 · · · w2K
...

...
. . .

...
wK1 wK2 · · · wKK ,

.

The Laplace expansion along the 1st row yields Eq. (17).

Using this property, we derived a closed-form solution to
the proximity operator in Eq. (16) when K = 2.

Proposition 3. Let W̃ ∈ C2×2, then

proxλLogDet+PB(W̃)

=

 1+(w̃11−w̃21)
2 −prox(−λ/2) log(|·|)

(
w̃22−w̃12

2

)
1−(w̃11−w̃21)

2 prox(−λ/2) log(|·|)
(
w̃22−w̃12

2

)
 (18)



Algorithm 2 ADMM-BSS using the proximity operator in Eq. (18)

Input: x, (y(PB),W(PB)), (u1,u2), ρ
Output: y(PB), W(PB)

1: for l = 1, ..., numIter do
2: y(PB) ← prox(1/ρ)P (Wx+ u1)

3: W(PB) ← prox(1/ρ)LogDet+PB(W + u2)

4: (ui)
2
i=1 ← (ui)

2
i=1 + (Wx,W)− (y(PB),W(PB))

5: W←
(
(y(PB) − u1)xH + (W(PB) − u2)

)
(xxH + I)−1

6: end for

holds, where the proximity operator in the matrix is given by

prox−λ log(|·|)(v) = arg min
x∈C

(
− log(|x|) + (1/2λ)|x− v|2

)
= (v/|v|)

(
|v|+

√
|v|2 + 4λ

)
/2. (19)

Proof. Let W ∈ W(2)
PB, then w21 = 1−w11 and w12 = −w22

from Eq. (10), and det(W) = w22 from Prop. 2. Therefore,
the objective function in Eq. (16) is reduced to

− log(|w22|︸ ︷︷ ︸
| det(W)|

) + (1/2λ)
(
| − w22︸ ︷︷ ︸

w12

− w̃12|2 + |w22 − w̃22|2

+ |w11 − w̃11|2 + |1− w11︸ ︷︷ ︸
w21

− w̃21|2
)

= − log(|w22|) + (1/λ) |w22 − (w̃22 − w̃12)/2|2︸ ︷︷ ︸
Minimized at w⋆

22 = prox(−λ/2) log(|·|)((w̃22 − w̃12)/2)

+ (1/λ) |w11 − (1 + (w̃11 − w̃21))/2|2︸ ︷︷ ︸
Minimized at w⋆

11 = (1 + (w̃11 − w̃21))/2

+ C,

where C is a constant unrelated to the optimization variable.
Using these minimizers (w⋆

11, w
⋆
22) and the above equalities

w21 = 1−w11 and w12 = −w22, Eq. (18) is obtained, where
prox−λ log(·) can be found in, e.g., [27].

Using this proximity operator, we obtain a simpler ADMM
algorithm as in Alg. 2, where the log-det function and the PB
constraint are handled simultaneously in the 3rd line.

IV. EXPERIMENT

To evaluate the operators and the algorithms we derived, we
compared four ADMM-based BSS algorithms:
(a) Standard: ADMM algorithm for solving Eq. (4). It is

obtained by replacing prox(1/ρ)LogDet+PB in Alg. 2 with
prox(1/ρ)LogDet.

(b) Heuristic: ADMM algorithm for solving Eq. (4), but the
conventional PB is applied heuristically in each iteration.
We calculated D[f ] using Eqs. (7)–(9) and then applied it
to all the variables.

(c) (Ours) Metric: Alg. 1 for solving Eq. (12).
(d) (Ours) Joint: Alg. 2 for solving Eq. (12). Whitening

cannot be used in this case because it assumes Q = I.
We tested each algorithm with / without whitening in the pre-
processing and with / without PB in the post-processing.

A total of 24 mixtures with two sources (i.e., K = 2) were
generated using the SiSEC dev1 dataset [28]. The window
size for STFT was 2048, and the hop size was 1024. For
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Fig. 2. Separation performance of each algorithm (top) and its transi-
tion (bottom) with/without whitening (WH) and projection back (PB)
as pre/post-processing, where “N” indicates “without processing”.
Proposed methods (c) and (d) are emphasized with bold letters. The
horizontal line represents the median value of the typical conventional
method (a4), i.e., the standard algorithm with whitening and PB.

the source model, we used LGM in Eq. (5) with σk[f, t] =
|h1,k[f ] sk[f, t]|2. Each algorithm was iterated 10 000 times
with ρ = 100. The demixing matrix was initialized with W =
I, and we initialized y(PB) = Wx, W(PB) = WQ, W̌ = W.
The dual variables u1,u2,u3 were initialized with zeros. The
separation performance was evaluated by the improvement in
signal-to-distortion ratio (SDRi) [29].

The experimental results are shown in Fig. 2. The standard
method (a) achieved the best separation performance when
both whitening and PB were applied (a4), i.e., when the three-
stage procedure was used. The heuristic algorithm (b) obtained
consistent results irrespective of the application of PB in the
post-processing stage. However, they were unstable and the
performance was not as good as that in the standard method
(a4). For the proposed method, both Metric (c) and Joint (d)
achieved a separation performance comparable to the standard
method (a4) without requiring PB in the post-processing stage,
which confirms that our algorithms can directly obtain the
final output of BSS. Moreover, whitening is not required for
the proposed algorithms, possibly because the PB constraint
restricts the search space of the demixing matrix.

V. CONCLUSION

This paper proposed a noble formulation of determined BSS
that incorporates the pre- and post-processing stages into the
optimization problem, along with two types of optimization
algorithms based on ADMM. Using the metric PB and the
proximity operator of the log-det function under PB constraint,
they directly obtained the separated signal after PB. Future
work includes exploring advanced prior knowledge to further
leveraging the advantages of directly handling the final output.
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