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Abstract
Most graph neural networks (GNNs) are prone to the phenomenon of over-
squashing in which node features become insensitive to information from distant
nodes in the graph. Recent works have shown that the topology of the graph has
the greatest impact on over-squashing, suggesting graph rewiring approaches
as a suitable solution. In this work, we explore whether over-squashing can be
mitigated through the embedding space of the GNN. In particular, we consider
the generalization of Hyperbolic GNNs (HGNNs) to Riemannian manifolds of
variable curvature in which the geometry of the embedding space is faithful to the
graph’s topology. We derive bounds on the sensitivity of the node features in these
Riemannian GNNs as the number of layers increases, which yield promising
theoretical and empirical results for alleviating over-squashing in graphs with
negative curvature.

1 Introduction
Graph Neural Networks (GNNs) have emerged as a powerful tool for modeling relational systems
and learning on graph-structured data [1–4]. Most GNN architectures rely on the message-passing
paradigm in which information is propagated along the edges of the graph, resulting in a class of Mes-
sage Passing Neural Networks (MPNNs). However, due to an exponentially growing computational
tree, the compression of a quickly increasing amount of information into a fixed-size vector leads
to informational over-squashing [5]. This phenomenon poses a significant challenge on long-range
tasks with a large problem radius since it obstructs the diffusion of information from distant nodes.

The over-squashing problem has been analyzed through various lenses such as graph curvature [6],
information theory [7], and effective resistance [8], each suggesting a corresponding approach to
mitigate the issue by rewiring the graph. Along with several other works, this line of reasoning has
resulted in a “zoo” of proposed graph rewiring techniques for over-squashing [9–12]. Recent work
has unified the spatial and spectral techniques under a common framework and justified their efficacy
by demonstrating that graph topology plays the biggest role in alleviating over-squashing as opposed
to MPNN properties such as width or depth [13] .

One potential drawback of many spatial graph rewiring techniques is the distortion of structural
information that may be relevant to the learning task. Instead of altering the graph topology, we thus
consider augmentations to the MPNN architecture that would make it topology-aware. Specifically,
we explore the effects of changing the embedding space of the GNN. The hypothesis behind our
approach is that by embedding the negatively curved sections of the graph in hyperbolic space,
there would be less information lost at each layer due to the increased representational capacity.
However, hyperbolic space is a poor inductive bias for graphs with significant positive curvature,
where spherical space would be more suitable. Therefore, we consider a GNN that embeds graphs in
Riemannian manifolds of variable curvature.

We study the over-squashing phenomenon in one such model by generalizing the Hyperbolic GNN
(HGNN) architecture [14] to Riemannian GNNs (RGNNs). Assuming that there exists a Riemannian
manifold where the geometry matches that of the input graph, RGNNs are in principle able to embed
the graph in this manifold. While the RGNN architecture is not immediately computationally tractable
in its most general form, it provides a means to derive a best-case theoretical result on over-squashing.
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We derive a bound on the Jacobian of the node features in a RGNN and show that it relies on the
global curvature properties of the embedding space. Based on this bound, we heuristically and
empirically demonstrate that our model addresses cases where the graph’s curvature is predominantly
negative everywhere (e.g. tree-like graphs). We also identify pathological cases where our model may
fail on manifolds with both positive and negative curvature. Finally, we propose concrete next steps
to complete our theoretical analysis that would justify step (2) in the argument above and motivate
the development of tractable methods that approximate general Riemannian GNNs.

2 Riemannian GNNs
For a primer on the Riemannian geometry notions used throughout the following sections, we refer
the reader to Appendix A. We define GNNs that embed node representations in a Riemannian
space that is faithful to the input graph’s topology. Crucially, we assume that we are given an
“optimal” Riemannian manifold (M, g) and that the GNN has access to the distance, exponential map,
and logarithmic map functions as differentiable operations. While finding an optimal Riemannian
manifold of variable curvature is challenging in practice, there exist methods for its approximation
[15–19]. For the purposes of our analysis, we assume this approximation of (M, g) is exact.

To generalize the Euclidean GNNs to Riemannian manifolds, Liu, Nickel, and Kiela [14] build upon
Hyperbolic Neural Networks (HNNs) [20]. Since there is no well-defined notion of vector space
structure in Riemannian space, the main idea is to leverage the exponential and logarithmic maps to
perform node feature transformation and neighborhood aggregation functions as Euclidean operations
in the tangent space TpM of some chosen point p ∈ M. In particular, the node update rule is given
by
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2 is the normalized adjacency matrix with self-loops, N (i) is the set
of in-neighbors of node i, W(ℓ) is the matrix of trainable parameters at layer ℓ, and σ is a chosen
activation function. Note that in the case of the Euclidean manifold, operating in the tangent space of
the origin by setting p = o recovers a vanilla GNN. Since hyperbolic manifolds fall under the class
of manifolds that have a pole o (i.e., expo : ToM → M is a diffeomorphism [21]), Liu, Nickel, and
Kiela [14] choose p = o across all nodes and layers for HGNNs. However, general Riemannian
manifolds do not have a pole, so we let p = p(i, ℓ) ∈ M for an arbitrary function p that depends
on the current node and/or the layer ℓ. We leave the selection of an optimal function p as future
work. We also ensure that the exponential and logarithmic maps are differentiable by restricting∥∥∥∑j∈N (i) ÃijW
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2

to fall within the injectivity radius of p.

3 Sensitivity Analysis
Following the methodology in [13], we assess the over-squashing effect in RGNNs by deriving a
bound on the norm of the Jacobian of node features after ℓ layers. Since this involves bounding the
differentials of the exponential and logarithmic maps, we first derive the following lemma.
Lemma 1. Consider a RGNN as in equation (1) with Riemannian manifold (M, g) with bounded
sectional curvature k ≤ κp(u,v) ≤ K for all p ∈ M and u,v ∈ TpM. Let Df denote the
differential of a map f . Then for expp and logp in (1) and i ∈ V we have
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(ℓ) logp

(
x
(ℓ)
z

)∥∥∥
2

denotes the maximum radius around p for

the exponential map and ri,log = sup
z,ℓ

∥x(ℓ)
z ∥g is the maximum radius for the logarithmic map.
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The proof for the above lemma relies on a well-known sectional curvature comparison result in
differential geometry and can be found in Appendix C. We use this lemma to derive a bound on the
sensitivity of node features.
Theorem 1. Under the same assumptions as in Lemma 1, if cσ is the Lipschitz constant of the
nonlinearity σ and w ≥

∥∥W(l)
∥∥
2

is an upper bound on the spectral norm of all weight matrices,
then for i, j ∈ V ∥∥∥∥∥∂x(ℓ)

i

∂x
(0)
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2
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ij

where βi(k,K) is a bound on the sensitivity of the exponential and logarithmic maps as defined in
Lemma 1.

The proof uses induction over the number of layers ℓ and is provided in Appendix D. Note that this
bound has the same form as in [13] for classical GNNs, and in fact is equivalent for Euclidean space
(i.e., k = K = 0). To show that the RGNN is able to compensate for the information bottlenecks
arising from taking powers of the adjacency matrix, it remains to demonstrate that the growth
(decay) of βi(k,K)ℓ is able to mitigate the decay (growth) of (Ãℓ)ij as ℓ increases. In Appendix B,
we demonstrate that this property holds for the pathological example of negative curvature mentioned
in [6]. While a formal analysis of the variable curvature case is left as future work, we provide a
heuristic argument based on the magnitude of k and K.

Heuristic Argument. Assume that |ri,exp| and |ri,log| do not grow very small or large as ℓ increases.

If k < 0 and |k| << |K|, βi(k,K) is dominated by the term
sinh(

√
−kri,exp)√

−kri,exp
which increases as k

grows more negative. Therefore, βi(k,K)ℓ grows large as ℓ increases and thus helps to alleviate
over-squashing. On the other hand, if K > 0 and |K| >> |k|, βi(k,K) is dominated by the term
sin(

√
kri,log)√

kri,log
which decreases (albeit non-monotonically) as k grows more positive. Then βi(k,K)ℓ

grows small as ℓ increases and instead hinders the flow of information from j to i. This behavior is
not problematic since graphs with positive curvature (corresponding to cycles) would have already
exchanged overlapping information in the earlier layers. However, an issue may arise in the case
when k < 0 < K and |k| << |K| for which βi(k,K)ℓ grows small despite the existence of very
negatively curved sections of the graph.

This argument highlights a limitation of the result in Theorem 1 in that the bound only depends on
global sectional curvature bounds k and K. Therefore, βi(k,K) does not target the sensitivity of
specific node pairs induced by (Ãℓ)ij . Note that if we let p = p(i, ℓ,x

(ℓ)
i ) ∈ M be a function of

the current node feature, the neighboring feature aggregation would intuitively depend on the local
curvature at x(ℓ)

i ∈ M. However, this would significantly increase the complexity of the Riemannian
GNN model and hence the Jacobian sensitivity derivation.

4 Empirical Results
Given that the special case of Hyperbolic GNNs is well-defined and computationally tractable, we
compare the empirical sensitivity of node features in Hyperbolic Graph Convolutional Networks
(HGCNs) [22] to Euclidean GCNs. We use the link prediction benchmark datasets (as well as the
model hyperparameters) provided in [22]: citation networks (Cora [23] and PubMed [24]), disease
propogation trees (Disease), and flight networks (Airport). The Gromov δ-hyperbolicity value of
each dataset is reported in Figure 1, where lower δ is more hyperbolic. Since over-squashing is more
severe for deeper GNNs, we evaluate GCNs and HGCNs (specifically the Poincaré model) of depth
6. We then consider 100 randomly sampled pairs of nodes that are distance 6 apart and take the

average of the norm of their Jacobians, 1
100

∑
(i,j)

∥∥∥∥∂x
(6)
i

∂x
(0)
j

∥∥∥∥
2

. As shown in Figure 1, for three of the

four datasets, both the average and maximum sensitivity in the sample are greater in HGCNs than in
GCNs at each epoch. For PubMed, while the average sensitivities are roughly equal, the maximum
is still always greater for HGCNs, which is consistent with our upper bound in Theorem 1. The
results hold even for Cora, which has a higher hyperbolicity value. This suggests that hyperbolic
embeddings may be sufficient for alleviating over-squashing even in non-hyperbolic graphs, as the
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Figure 1: Sensitivity of node representations at layer 6 with respect to the input node features. The
solid line denotes the average norm of the Jacobians for a random sample of 100 node pairs that are
6 hops apart. The shaded regions indicate the intervals between the minimum and maximum norm
values (where the minimums tend to be very close to the average). We also include the hyperbolicity
values δ of each dataset provided in [22].

distortion of positively curved regions could be compensated for by the increased sensitivity between
node pairs in those regions.

We limit our empirical analysis to the special case of hyperbolic manifolds since the implementation
of Riemannian GNNs as defined in (1) is not immediately feasible. First of all, it is not obvious how
the reference point p should be defined at any given node. Moreover, our analysis assumes that we
are given an optimal manifold in which the GNN should embed the graph. As described in Appendix
A.4, it is not trivial to obtain the exact manifold for heterogeneous embedding spaces. However, there
exist several methods for approximating these manifolds [15–19], many of which have desirable
properties such as well-defined origin points for p. We leave an empirical study of over-squashing in
RGNNs built on these approximations as future work.

5 Discussion
We derive a bound on the Jacobian of node features in a Riemannian GNN. The bound contains
a global curvature-dependent term βi(k,K) that grows exponentially with the number of layers ℓ
when the embedding space has a minimum sectional curvature which is very negative and decays
exponentially when the space has very positive maximum curvature. Since information bottlenecks
have been linked to negative curvature on graphs, the exponential growth when k < 0 is a promising
result for mitigating over-squashing.

Despite the heuristic argument provided in section 3 and promising empirical results for Hyperbolic
GNNs in section 4, we do not formally prove that βi(k,K) compensates for the exponential decay
of (Ãℓ)ij as ℓ increases without hindering overall model performance. One potential approach
to deriving the relationship between the two terms could involve connecting the βi(k,K) term to
edge-based Ricci curvature and utilizing the results in [6]. Using the intuition that the Ricci curvature
can be considered as an “average” over sectional curvatures, it may be possible to define a notion of
sectional curvature on a graph (e.g. the one proposed by Gu et al. [16]) such that the Balanced Forman
curvature in [6] is an average of curvatures assigned to triangles of nodes. This connection may allow
one to quantify how (Ãℓ)ij is affected by both local and global sectional curvature. Additionally, due
to the Riemannian GNN’s dependence on global curvature properties, the model may end up in a
pathological scenario when the decay in sensitivity from maximum positive curvature outweighs the
growth from the minimum negative curvature. This may call for the introduction of local curvature
information into the architecture such that the neighbor aggregation at node i explicitly depends on
the curvature near i. It may also be possible to localize the sensitivity bounds by constraining the
manifold to have locally bounded sectional curvature everywhere.

Finally, while the Riemannian GNN is useful for the theoretical over-squashing analysis, imple-
menting the proposed architecture comes with several challenges. It would be exciting to see the
development of models that can more closely approximate Riemannian GNNs while maintaining
tractability. For instance, it may be possible to apply the deep Riemannian manifold learning in [25]
such that the optimal manifold (M, g) is parameterized as a neural network itself. We hope that the
insights gained from our theoretical results will inspire future work in the development of practical
architectures that leverage these findings.
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First Learning on Graphs Conference. 2022. 1

[12] Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montufar. “FoSR: First-order spectral
rewiring for addressing oversquashing in GNNs”. In: The Eleventh International Conference
on Learning Representations. 2023. 1

[13] Francesco Di Giovanni et al. On Over-Squashing in Message Passing Neural Networks: The
Impact of Width, Depth, and Topology. arXiv:2302.02941 [cs, stat]. Feb. 2023. 1–3

[14] Qi Liu, Maximilian Nickel, and Douwe Kiela. “Hyperbolic Graph Neural Networks”. In:
Advances in Neural Information Processing Systems. Vol. 32. Curran Associates, Inc., 2019. 1,
2

[15] Bo Xiong et al. “Pseudo-Riemannian Graph Convolutional Networks”. In: Advances in Neural
Information Processing Systems. Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc., 2022,
pp. 3488–3501. 2, 4

[16] Albert Gu et al. “Learning Mixed-Curvature Representations in Product Spaces”. In: Interna-
tional Conference on Learning Representations. 2019. 2, 4, 7

[17] Francesco Di Giovanni, Giulia Luise, and Michael M. Bronstein. “Heterogeneous manifolds for
curvature-aware graph embedding”. In: ICLR 2022 Workshop on Geometrical and Topological
Representation Learning. 2022. 2, 4, 7

[18] Calin Cruceru, Gary Bécigneul, and Octavian-Eugen Ganea. “Computationally Tractable
Riemannian Manifolds for Graph Embeddings”. In: AAAI Conference on Artificial Intelligence.
2020. 2, 4, 7

[19] Federico Lopez et al. “Symmetric Spaces for Graph Embeddings: A Finsler-Riemannian
Approach”. en. In: Proceedings of the 38th International Conference on Machine Learning.
ISSN: 2640-3498. PMLR, July 2021, pp. 7090–7101. 2, 4, 7

[20] Octavian Ganea, Gary Becigneul, and Thomas Hofmann. “Hyperbolic Neural Networks”. In:
Advances in Neural Information Processing Systems. Vol. 31. Curran Associates, Inc., 2018. 2

[21] Mitsuhiro Itoh. “Some Geometrical Aspects of Riemannian Manifolds With a Pole”. In:
Tsukuba Journal of Mathematics 4.2 (1980), pp. 291–301. 2

[22] Ines Chami et al. “Hyperbolic Graph Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems. Vol. 32. Curran Associates, Inc., 2019. 3, 4

5



Over-Squashing in Riemannian Graph Neural Networks

[23] Prithviraj Sen et al. “Collective Classification in Network Data”. In: AI Magazine 29.3 (2008),
p. 93. 3

[24] Galileo Namata et al. “Query-driven Active Surveying for Collective Classification”. In:
Workshop on Mining and Learning with Graphs (MLG). 2012. 3

[25] Aaron Lou, Maximilian Nickel, and Brandon Amos. “Deep Riemannian Manifold Learning”.
en. In: Differential Geometry for Machine Learning Workshop at NeurIPS (2020). 4, 7

[26] Peter Petersen. Riemannian Geometry. Vol. 171. Graduate Texts in Mathematics. Cham:
Springer International Publishing, 2016. 6, 7

[27] Robin Forman. “Bochner’s Method for Cell Complexes and Combinatorial Ricci Curvature”.
In: Discrete and Computational Geometry 29.3 (Feb. 2003), pp. 323–374. 7

[28] Yann Ollivier. “Ricci curvature of metric spaces”. In: Comptes Rendus Mathematique 345.11
(Dec. 2007), pp. 643–646. 7

[29] Yann Ollivier. “Ricci curvature of Markov chains on metric spaces”. In: Journal of Functional
Analysis 256 (2007), pp. 810–864. 7

[30] Richard C. Wilson et al. “Spherical and Hyperbolic Embeddings of Data”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 36.11 (2014), pp. 2255–2269. 7

[31] Maximillian Nickel and Douwe Kiela. “Poincaré Embeddings for Learning Hierarchical
Representations”. In: Advances in Neural Information Processing Systems. Vol. 30. Curran
Associates, Inc., 2017. 7

[32] Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. “Neural Embeddings
of Graphs in Hyperbolic Space”. In: 13th international workshop on mining and learning from
graphs held in conjunction with KDD (2017). 7

[33] Weiyang Liu et al. “SphereFace: Deep Hypersphere Embedding for Face Recognition”. en. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI:
IEEE, July 2017, pp. 6738–6746. ISBN: 978-1-5386-0457-1. 7

[34] Frederic Sala et al. “Representation Tradeoffs for Hyperbolic Embeddings”. en. In: Proceedings
of the 35th International Conference on Machine Learning. ISSN: 2640-3498. PMLR, July
2018, pp. 4460–4469. 7

A Riemannian Geometry
We first introduce some preliminary notation and concepts in Riemannian geometry. We refer the
reader [26] for a more detailed discussion of these concepts.

A Riemannian manifold (M, g) is a smooth manifold equipped with a Riemannian metric gx :
TxM×TxM → R where TxM is the tangent space at the point x ∈ M. The Riemannian metric is
a local inner product that varies smoothly with x and allows us to define the geometric properties of a
space such as length, angle, and area. For instance, g induces a norm ∥v∥g =

√
gx(v,v) for any

v ∈ TxM.

A.1 Geodesics

The Riemannian metric also gives rise to a notion of distance. For a curve γ : [0, T ] → M, the length
of γ is given by L(γ) =

∫ T

0
∥γ′(t)∥gdt. Thus, for two points x,y ∈ M, the distance is defined as

dg(x,y) = inf L(γ) where γ is any curve such that γ(0) = x and γ(T ) = y. A geodesic is a curve
that minimizes this length.

A.2 Exponential and Logarithmic Map

For each point x ∈ M and velocity vector v ∈ TxM, there exists a unique geodesic γ : [0, 1] → M
where γ(0) = x and γ′(0) = v. The exponential map expx : TxM → M is defined as expx(v) =
γ(1). Its local inverse is called the logarithm map, logx(v). Note that the distance between two
points x,y ∈ M can be represented as dg(x,y) = ∥ logx(y)∥g .

Manifolds where the exponential map is defined on the whole tangent space TxM are called geodesi-
cally complete. However, geodesic completeness does not guarantee that the exponential map is a
global diffeomorphism (i.e. a differentiable bijective map with a differentiable inverse). The radius of
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the largest ball about the origin in TxM that can be mapped diffeomorphically via the exponential
map is called the injectivity radius of M at x.

A.3 Curvature

For each point x ∈ M and pair of linearly independent tangent vectors u,v ∈ TxM, the sectional
curvature κx(u,v) at x is defined as the Gaussian curvature of the two-dimensional surface obtained
by exponentiating a plane spanned by u and v at x. The Gaussian curvature of a surface is given
by the product of the principal curvatures. Riemannian manifolds of constant sectional curvature κ
are called space forms, the most common examples being spherical space (κ > 0), Euclidean space
(κ = 0), and hyperbolic space (κ < 0). Another form of curvature on a Riemannian manifold is
Ricci curvature, which is a symmetric bilinear form determining the geodesic dispersion at nearby
points. The Ricci curvature of a tangent vector v at p is the average of the sectional curvature over
all tangent planes containing v.

Several works have also introduced discrete notions of sectional and Ricci curvature on graphs. Gu
et al. [16] introduced a discrete notion of sectional curvature for learning product manifolds of mixed
curvatures for graph embeddings. Forman [27] and Ollivier [28, 29] proposed edge-based curvature
that could recover certain properties of the Ricci curvature on manifolds. Topping et al. [6] used a
novel formulation of Ricci curvature to show that over-squashing in GNNs is related to the existence
of edges with high negative curvature.

A.4 Riemannian Manifolds for Graph Embeddings

There has been a surge in the development of algorithms that represent graphs as sets of node
embeddings in hyperbolic and spherical space due to their favorable geometric inductive biases [30–
34]. These space forms are well defined and offer closed-form expressions for geometric operations
such as the exponential and logarithmic map, making them suitable for optimization in these spaces.

However, space forms individually may not capture all of the geometric properties of a given graph.
On the other hand, heterogeneous manifolds of variable curvature lack computational tractability.
Several works have instead embedded graphs in manifolds of mixed curvature by taking Cartesian
products of homogenous model spaces [16], adding heterogeneous dimensions to homogenous spaces
[17], or limiting the embedding space to certain classes of manifolds [18, 19]. An exciting direction
for learnable Riemannian manifolds has been proposed by Lou, Nickel, and Amos [25], where the
metric is parametrized by a deep neural network.

B Example: Sensitivity for a Binary Tree in Hyperbolic Space
Suppose that nodes i and j are distance ℓ+ 1 apart and that the receptive field of node i is a binary
tree in a RGNN given a manifold with constant negative sectional curvature k < 0 (i.e. a Hyperbolic
GNN). Then (Ãℓ)ij = 2−13−ℓ and, by Theorem 1,

βi(k, k)
ℓ =

(
sinh

(√
−kri,exp

)
√
−kri,exp

)ℓ

Therefore, βi(k, k)
ℓ > (Ãℓ)ij when(

sinh
(√

−kri,exp
)

√
−kri,exp

)ℓ

>
1

3ℓ
>

1

2 · 3ℓ

sinh
(√

−kri,exp
)

√
−kri,exp

>
1

3
.

This example suggests that over-squashing is indeed less severe in HGNNs on graphs exhibiting
negative curvature.

C Proof of Lemma 1
We first note a comparison lemma from chapter 6.2 in [26] that yields bounds on the differential of
the exponential and logarithmic maps.
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Lemma 2. Assume that (M, g) satisfies k ≤ Kx(u,v) ≤ K for all x ∈ M and u,v ∈ TxM. Let
Df denote the differential of a map f . Then for the exponential and logarithmic map at x and for a
radius r around x we have

∥D expx∥2 ≤ max

{
1,

snk(r)

r

}
,

∥D logx∥2 ≤ min

{
1,

snK(r)

r

}
where snκ(·) is the generalized sine function given sectional curvature κ

snκ(r) :=


sin(

√
κr)√
κ

if κ > 0

r if κ = 0
sinh(

√
−κr)√

−κ
if κ < 0

.

We use the above lemma to derive a bound on the product of norms of the exponential and logarithmic
maps in equation (1) as stated in Lemma 1.

Proof. Let rj,exp = sup
ℓ

∥∥∥∑z∈N (j) ÃjzW
(ℓ) logp

(
x
(ℓ)
z

)∥∥∥
2

denote the maximum radius around x

for the exponential map and rj,log = sup
ℓ

∥x(ℓ)
z ∥g denote the maximum radius for the logarithmic

map given equation (1). Applying Lemma 2, there are three possible cases for the bounds k and K:

Case 1: k < K ≤ 0. We then have
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.

Since sinh(x)
x > 1 for all x ̸= 0, we obtain the bound

∥∥D expp
∥∥
2

∥∥D logp
∥∥
2
≤

sinh
(√

−krj,exp
)

√
−krj,exp

.

Case 2: k < 0 < K. We then have

∥∥D expp
∥∥
2

∥∥D logp
∥∥
2
≤

sinh
(√

−krj,exp
)

√
−krj,exp

· max
z∈N (j)

min

1,
sin
(√

Krj,log

)
√
Krj,log

 .

Since sin(x)
x < 1 for all x ̸= 0, we obtain the bound

∥∥D expp
∥∥
2

∥∥D logp
∥∥
2
≤

sinh
(√

−krj,exp
)

√
−krj,exp

· max
z∈N (j)

sin
(√

Krj,log

)
√
Krj,log

.

Case 3: 0 ≤ k < K. We then have

∥∥D expp
∥∥
2

∥∥D logp
∥∥
2
≤ max

1,
sin
(√

krj,exp

)
√
krj,exp

 · max
z∈N (j)

min

1,
sin
(√

Krj,log

)
√
Krj,log


= max

z∈N (j)

sin
(√

Krj,log

)
√
Krj,log

.

Case 4: 0 = k = K. Then we have∥∥D expp
∥∥
2

∥∥D logp
∥∥
2
≤ max

{
1,

rj,exp
rj,exp

}
· max
z∈N (j)

min

{
1,

rj,log
rj,log

}
= 1.
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Combining all of the cases above, we obtain the bound

∥∥D expp
∥∥
2

∥∥D logp
∥∥ ≤



sinh(
√
−krj,exp)√

−krj,exp
k < K ≤ 0

sinh(
√
−krj,exp)√

−krj,exp
·maxz∈N (j)

sin(
√
Krj,log)√

Krj,log
k < 0 < K

maxz∈N (j)
sin(

√
Krj,log)√

Krj,log
0 ≤ k < K

1 k = K = 0

= βj(k,K).

D Proof of Theorem 1
Proof. We prove the bound by induction on the number of layers ℓ. For the base case of ℓ = 1, we
have ∥∥∥∥∥∂x(1)

i

∂x
(0)
j

∥∥∥∥∥
2

=

∥∥∥∥∥∥ ∂

∂x
(0)
j

σ
expp

 ∑
z∈N (i)

ÃizW
(0) logp

(
x(0)
z

)∥∥∥∥∥∥
2

≤ cσ
∥∥D expp

∥∥
2

∥∥∥W(0)
∥∥∥
2

∥∥D logp
∥∥
2

∑
z∈N (i)

Ãiz

∥∥∥∥∥∂x(0)
z

∂x
(0)
j

∥∥∥∥∥
2

≤ cσw
∥∥D expp

∥∥
2

∥∥D logp
∥∥
2
Ãij

∥∥∥∥∥∂x
(0)
j

∂x
(0)
j

∥∥∥∥∥
2

= cσwÃij

∥∥D expp
∥∥
2

∥∥D logp
∥∥
2
.

If we let βi(k,K) be the bound on
∥∥D expp

∥∥
2

∥∥D logp
∥∥ defined in Lemma 2, the norm of the

Jacobian in the base case (i.e. ℓ = 1) is bounded by∥∥∥∥∥∂x(1)
i

∂x
(0)
j

∥∥∥∥∥
2

≤ cσwβi(k,K)Ãij .

We now assume the bound to be satisfied for ℓ layers and use induction to show that it holds for ℓ+ 1.∥∥∥∥∥∂x(ℓ+1)
i

∂x
(0)
j

∥∥∥∥∥
2

=

∥∥∥∥∥∥ ∂

∂x
(0)
j

σ
expp

 ∑
z∈N (i)

ÃizW
(ℓ) logp

(
x(ℓ)
z

)∥∥∥∥∥∥
2

≤ cσw
∥∥D expp

∥∥
2

∥∥D logp
∥∥
2

∑
z∈N (i)

Ãiz

∥∥∥∥∥∂x(ℓ)
z

∂x
(0)
j

∥∥∥∥∥
2

≤ cσwβi(k,K)
∑

z∈N (i)

Ãiz

[
cℓσw

ℓβi(k,K)ℓ
(
Ãℓ
)
zj

]
= cℓ+1

σ wℓ+1βi(k,K)ℓ+1
∑

z∈N (i)

Ãiz

(
Ãℓ
)
zj

= cℓ+1
σ wℓ+1βi(k,K)ℓ+1

(
Ãℓ+1

)
ij
.

9


	1 Introduction
	2 Riemannian GNNs
	3 Sensitivity Analysis
	4 Empirical Results
	5 Discussion
	A Riemannian Geometry
	A.1 Geodesics
	A.2 Exponential and Logarithmic Map
	A.3 Curvature
	A.4 Riemannian Manifolds for Graph Embeddings

	B Example: Sensitivity for a Binary Tree in Hyperbolic Space
	C Proof of Lemma 1
	D Proof of Theorem 1

