
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WATERMARK ANYTHING WITH LOCALIZED MESSAGES

Anonymous authors
Paper under double-blind review

ABSTRACT

Image watermarking methods are not tailored to handle small watermarked areas.
This restricts applications in real-world scenarios where parts of the image may
come from different sources or have been edited. We introduce a deep-learning
model for localized image watermarking, dubbed the Watermark Anything Model
(WAM). The WAM embedder imperceptibly modifies the input image, while the
extractor segments the received image into watermarked and non-watermarked
areas and recovers one or several hidden messages from the areas found to be
watermarked. The models are jointly trained at low resolution and without percep-
tual constraints, then post-trained for imperceptibility and multiple watermarks.
Experiments show that WAM is competitive with state-of-the art methods in terms
of imperceptibility and robustness, especially against inpainting and splicing, even
on high-resolution images. Moreover, it offers new capabilities: WAM can locate
watermarked areas in spliced images and extract distinct 32-bit messages with less
than 1 bit error from multiple small regions – no larger than 10% of the image
surface – even for small 256× 256 images.

1 INTRODUCTION

Invisible image watermarking embeds information into image pixels in a way that is imperceptible to
the human eye and yet robust. It was initially developed for intellectual property and copy protection,
such as by Hollywood studios for DVDs. However, the applications of watermarking are evolving,
particularly in light of the recent development of generative AI models (Kušen & Strembeck, 2018).
Regulatory acts such as the White House executive order (USA, 2023), the Californian bill, the EU
AI Act (Parliament & Council, 2024), and Chinese AI governance rules (of the People’s Republic of
China, 2023) require AI-generated content to be easily identifiable. They all cite watermarking as
either compulsory or a recommended measure to detect and label AI-generated images.

Image splicing is one of the most common manipulations, whether applied for benign or malicious
purposes (Christlein et al., 2012; Tralic et al., 2013). Splicing involves adding text or memes on
a large portion of the image or extracting parts of images and overlaying them on others (Douze
et al., 2021, Fig. 5). It can bypass the state-of-the-art watermarking techniques, which take one
global decision per image under scrutiny. Indeed, in traditional watermarking, the watermark signal
fades away and is no longer detected as the surface of the watermarked area decreases. Besides,
these techniques poorly answer the paradoxical question of deciding whether an image should be
considered watermarked if only a small part carries the watermark. A positive decision triggered by a
small area might be unfair to artists who use AI models for inpainting or outpainting. On the other
hand, not being robust enough to splicing opens the door to easy removal.

To address these issues, this paper redefines watermarking as a segmentation task, giving birth to the
Watermark Anything Models (WAM). Our motivation is to disentangle the strength of the watermark
signal from its pixel surface, in contrast to traditional watermarking. More precisely, the WAM
extractor detects if the watermark is present and extracts a binary string for every pixel rather than
predicting a message for the whole image. These outputs are post-processed according to the final
task. For global detection, the image is deemed watermarked if the proportion of watermarked
pixels exceeds a user-defined threshold. For global decoding, a majority vote recovers the hidden
message. A new application, out of the reach of traditional robust watermarking, is the localization
of watermarked areas and the extraction of multiple hidden messages. For that purpose, we choose
to apply the DBSCAN clustering algorithm over the pixel-level binary strings because it does not
require any prior on the number of watermarks (or centroids). This is detailed in Sec. 3.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Edited
(change background,
inpaint, crop, etc.)

E
m

bedding

0101..0010 1101..1001

Original Watermarked Predicted
detection mask

E
xtraction

Editing ✂

Messages

0101..0010

1101..1001
message 1

message 2

Figure 1: Overview. (a) The embedder creates an imperceptible image modification. (b) Traditional
transformations (cropping, JPEG compression, etc.) and/or advanced manipulations (mixing wa-
termarked and non-watermarked images, inpainting, etc.) may be applied to the image. (c) The
extraction creates a segmentation map of watermarked parts and retrieves one or several messages.

These new functionalities require a training with new objectives, that is split into two phases. The first
phase pre-trains the embedder and extractor models for low-resolution images. It essentially targets
the robustness criterion. The embedder encodes a nbits-bit message into a watermark signal that is
added to the original image. The augmenter randomly masks the watermark in parts of the image and
augments the result with common processing techniques (e.g., cropping, resizing, compression). The
extractor then outputs a (1 + nbits)-dimensional vector per pixel to predict the parts of the image that
are watermarked and decode the corresponding messages. Detection and decoding losses are used as
training objectives. The second training phase targets the following new objectives: (1) minimize the
watermark’s visibility in alignment with the human visual system, (2) allow for multiple messages
within the same image. This two-stage training is less prone to instability, compared to previous use
of adversarial networks and divergent objectives (Zhu et al., 2018). It also trains the extractor on
both watermarked and non-watermarked images, for the first time in the literature. This increases the
performance and the robustness of the detection.

We first compare WAM with state-of-the-art methods for regular tasks of watermark detection and
decoding on low and high-resolution images. Our results show that WAM achieves competitive
performance in terms of imperceptibility and robustness. To further highlight the advantages of
WAM, we then evaluate its performance on tasks that are not considered in the literature. Namely, we
evaluate the localization accuracy between the predicted watermarked areas and the original mask
and assess the ability to detect and decode multiple watermarks in a single image. For instance, when
hiding five 32-bit messages, each in a 10% area of the image, detection of watermarked areas achieves
more than 85% mIoU, even after images are horizontally flipped and the contrast adjusted, and bit
accuracy (for a total of 160 bits) achieves more than 95% under the same augmentation (Sec. 5.5).

In summary, our contributions are:

• the definition of watermarking as a segmentation task;
• a two-stage training able to strike a good trade-off between invisibility and robustness even

for multiple watermarks and high-resolution images;
• WAM, an embedder/extractor model competitive with state-of-the-art methods;
• the highlight of new capabilities, localization of watermarks and extraction of multiple

messages as depicted in Fig. 1, together with specially designed evaluations.

2 RELATED WORK

Semantic segmentation aims to predict a category label for every pixel in an image. FCN (Long
et al., 2015) employs a convolutional network predicting pixel-wise classification logits. More recent
works (Zheng et al., 2021; Strudel et al., 2021) aggregate hierarchical context and are based on a ViT
encoder (Dosovitskiy, 2020), followed by a decoder that generates the pixel-level predictions – similar
to our extractor’s architecture. On the other hand, instance segmentation identifies individual objects
within an image (He et al., 2017; Carion et al., 2020). Recent literature, such as MaskFormer (Cheng
et al., 2021) and Mask2former (Cheng et al., 2022), unifies semantic and instance segmentation.
Segment Anything (Kirillov et al., 2023) and follow-ups (Zhang et al., 2023; Zhao et al., 2023a; Ke
et al., 2024; Ma et al., 2024; Ravi et al., 2024) go one step further. They now allow users to segment
any object in images or videos using prompts, which are points, bounding boxes, or natural language.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Robust watermarking was first designed for copyright protection (Cox et al., 2007). Traditional
methods operate either in the spatial domain (Van Schyndel et al., 1994; Nikolaidis & Pitas, 1998)
or in the frequency domain modifying components through an invertible transform (e.g., Fourier,
Wavelet) (Cox et al., 1997; Urvoy et al., 2014). These methods were progressively replaced by
deep-learning ones which remove the expert need to crafting the transforms such that the embedding
is imperceptible and robust. The first approach (Vukotić et al., 2018; 2020; Fernandez et al., 2022;
Kishore et al., 2022; Chen et al., 2022) embeds the watermark into the representations of an off-the-
shelf pre-trained model. Our method is inspired by the second approach, which jointly trains deep
learning-based architectures to embed and extract watermarks while being robust to augmentations
seen during training, such as HiDDeN (Zhu et al., 2018) and followers (Zhang et al., 2019b; Luo
et al., 2020; Tancik et al., 2020; Ma et al., 2022; Bui et al., 2023b;a; Pan et al., 2024).

The two tasks of watermarking, detection and decoding, are rarely performed together. Detection
of the watermark, a.k.a., zero-bit watermarking, distinguishes watermarked content from original
images. Decoding of a hidden message, a.k.a., multi-bit watermarking, implicitly assumes that the
content under scrutiny is watermarked. One possibility for combining the two tasks is to reserve ndet
bits of the message as a detection segment – that should match a fixed pattern – with the remaining
bits carrying the actual payload. Assuming that the message decoded from a non-watermarked image
is random, the False Positive Rate equals 2−ndet . However, a recent study (Fernandez et al., 2023a,
App. B.5) shows that the decoded bits are neither equiprobable nor independent. In other words, it is
difficult to decode a hidden message while being confident in detecting a watermark.

Very few papers in the literature deal with watermarking objects in picture (Bas et al., 2001; Barni
et al., 2005). This trend was abandoned together with the object-oriented MPEG-4 video codec.

Active tamper localization relies on semi-fragile watermarking. Areas where the watermark is
not recovered are deemed tampered. This idea appears early in the literature (Kundur & Hatzinakos,
1999; Lin et al., 2000), although deep-learning methods offer significant improvements (Asnani et al.,
2022). There is a trade-off between the granularity of the localization of the tampered areas and the
semi-fragility of the watermark. The biggest difficulty is to design a watermark robust to benign
transformations (e.g., image compression) but fragile to malicious editing.

Our method combines detection and decoding together with a precise segmentation of the water-
marked areas. This natively answers applications ranging from copyright protection, detection of
AI-generated objects in images and tampering localization. EditGuard (Zhang et al., 2024) sequen-
tially embeds a fragile watermark for localization and a robust watermark for copyright protection.
Although the approach shares similarities with ours, it is not robust to geometric augmentations such
as cropping or perspective changes. In contrast, our approach is conceptually simpler since a single
embedding is used for detection and decoding. It offers better robustness, and enables the extraction
of multiple watermarks. The approach most similar to ours is AudioSeal (San Roman et al., 2024),
which introduces localized watermarking in the audio domain, but does not handle multiple messages.

An extended related work with more details on the methods mentioned above is presented in App. B.

3 DETECTION, LOCALIZATION, AND MESSAGE EXTRACTION

Before introducing our method and its training, this section presents several applications, i.e., how to
use WAM’s extractor outputs for watermark localization, zero-bit detection, and decoding of multiple
messages within the same image.

The key feature is the extractor extθ∗ (θ∗ refers to the weights of the model after training) which
outputs a tensor y = extθ∗(x) of dimensions (1 + nbits, h, w) for an input image x ∈ R3×h×w.
This tensor consists of a watermark detection mask ydet ∈ [0, 1]1×h×w and a decoding mask ydec ∈
[0, 1]nbits×h×w. We denote by ydet

i ∈ [0, 1] the predicted detection score for pixel i, and by ydec
i =

[ydec
i,1 . . . y

dec
i,nbits

] ∈ [0, 1]nbits its decoded message.

Localization (or pixel-level detection) spots watermarked pixels of the image. A pixel is deemed
watermarked if its detection score ydet

i exceeds a threshold τ . Typically, we set τ empirically, by
measuring the False Positive Rate (FPR) on all the pixels of a held-out training set (the FPR is the
probability of a non-watermarked pixel being flagged as such).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Detection (or image-level detection) decides if an image is globally watermarked. From the
pixel-level detection score, an image soft detection score can naturally be computed as:

sdet :=
1

h× w

h×w∑
i=1

1{ydet
i > τ} ∈ [0, 1]. (1)

The image is flagged if sdet is higher than a threshold that is the proportion of watermarked pixels
that the user considers enough to deem a content as watermarked.

Decoding of a single message within an image is done by the following weighted average of the
pixel-level soft predictions of the hidden message:

m̂k =

 1 if
[

1∑
i 1{ydet

i >τ}

(∑h×w
i=1 1{ydet

i > τ} · ydec
i,k

)]
> 0.5 ,

0 otherwise .
(2)

Decoding of multiple watermarks within one image uses a hard detection approach instead of the
previous soft weighting. We isolate pixels detected as watermarked, i.e., pixels i with ydet

i > τ , and we
compute the local decoded message m̃i such that for any k ∈ {1, . . . , nbits}, m̃i,k = 1{ydec

i,k > 0.5}.
The DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm (Ester et al.,
1996; Schubert et al., 2017) clusters the set of locally decoded messages. It outputs some centroids
and an assignment for every pixel detected as watermarked. DBSCAN selects these centroids among
the initial set, thus ensuring that the final decoded messages are binary words.

DBSCAN offers the advantage of not requiring a pre-defined number of clusters. Instead, we need to
specify two parameters: (1) minsamples, the minimum number of points for a cluster to be considered
valid, and (2) ε, the maximum distance between two samples for one to be considered as in the
neighborhood of the other. For further details on the DBSCAN algorithm, see App. C.1.

Handling multiple messages in a single image makes WAM robust against attacks that involve
splicing several watermarked images together, which can compromise the decoding of traditional
watermarking schemes in real-world scenarios. It also enables active object detection (Asnani
et al., 2024), where the objective is to track watermarked objects. Additionally, it allows for the
identification of the use of multiple watermarked AI tools.

4 WATERMARK ANYTHING MODELS

4.1 THE MODEL

WAM considers two joint models: a watermark embedder embθ and a watermark extractor extθ,
where θ gathers the parameters of these functions. The embedder defines the watermark procedure
for hiding a message into an image, while the extractor detects watermarking and decodes messages.
This section discusses our choices for the different pieces that constitute WAM. App. D.1 gives the
technical details of the network architectures.

The watermark embedder (embθ) consists of an encoder, a binary message lookup table, and a
decoder. The encoder represents an image in a latent space. The lookup table is used to translate
the message into a tensor which is concatenated to the image representation. From that, the decoder
outputs a watermark signal, which is added to the original image with adequate scaling.

The autoencoder that we consider is based on the architecture of the variational autoencoder of
LDM (Rombach et al., 2022). Its encoder, encθ, compresses a h× w input image x into a latent z ∈
Rdz×h′×w′

(with downsampling factor f = h/h′ = w/w′). The binary message lookup table Tθ is of
shape (nbits, 2, dmsg). Each bit of the message m is mapped to the embedding Tθ(k,mk, ·) ∈ Rdmsg ,
depending on its position k ∈ {1, . . . , nbits} and its value mk ∈ {0, 1}. The nbits embeddings are
averaged, resulting in a vector of size dmsg which is repeated to form a tensor of shape (dmsg, h

′, w′).
The concatenation to the image representation yields an activation of shape (dz + dmsg)× h′ × w′.
The decoder, decθ, maps back this activation to the watermark signal δθ(x,m) of the same shape as
the original image. The range of this signal is [−1, 1] because the last layer of decθ is a hyperbolic

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

tangent activation. It is finally added to the original image to produce the watermarked output
xm = embθ(x) = x+α · δθ(x,m). Parameter α ∈ R+ is called the watermark strength as it controls
the distortion applied to the original image.

The watermark extractor (extθ) takes on the dual role of detecting watermarked pixels and
decoding their embedded messages. We use an architecture similar to SETR (Zheng et al., 2021) and
Segment Anything (Kirillov et al., 2023). It comprises a ViT encoder paired with a pixel decoder that
upsamples the embeddings to the original image size. The watermark extractor outputs a vector of
size 1 + nbits for every pixel, as described in Sec. 3.

High-resolution. WAM operates at a fixed resolution of h× w. To extend it to higher resolutions,
an anisotropic scaling resizes the image to h × w and embθ computes the watermark signal δ
from this resized image. A bilinear interpolation scales δ back to the size of the original image.
The extraction also operates at h × w, by resizing all images before feeding them to the network.
Therefore the extraction process remains consistent with the pre-training conditions. We only use
these interpolations at embedding time. WAM is thus only trained on low resolution images (Sec. 4.2)
but can be used for high-resolution images too, which represents an important training compute gain.
A similar approach also appears in the recent literature (Bui et al., 2023a).

4.2 PRE-TRAINING MODELS FOR LOCALIZED MESSAGE EMBEDDING AND EXTRACTION

The objective of this first training phase is to obtain a robust and localizable watermark hiding a
nbits-bit message inside parts of an image, without caring much about imperceptibility. This stage
does not incorporate any perceptual loss: our goal is to achieve perfect localization and decoding
even after severe augmentations. Figure 2 illustrates the detailed process.

Augmentations are two-step processes. They first splice images x and xm based on a binary mask
and then apply usual image transformations to improve robustness.

The first step randomly samples a mask among full masks, rectangles, irregular shapes, or object
segmentation maps (possibly provided by the training dataset). These masks are inverted with
probability 0.5. It yields a mask rmask ∈ [0, 1]h×w. Figure 2 shows examples of masks, with more
samples displayed in Figure 6 of App. D.2. The first step then computes the spliced image as
xmasked = rmask ⊙ xm + (1− rmask)⊙ x, where ⊙ denotes component-wise multiplication.

The second step of the augmentation applies a processing typical from real-world image editing
including geometric transformations (identity, resize, crop, rotate, horizontal flip, perspective) and
valuemetric adjustments (JPEG, Gaussian blur, median filter, brightness, contrast, saturation, hue).
The geometric transformation alters the positions of watermarked pixels, so it is also applied to
the mask to keep track of the watermarked areas. This adjusted mask is the ground truth for the
localization and it is denoted ydet,⋆ in the sequel. These augmentations are relatively strong to reflect

Embedder
embθ

0101..0010

Original

Extractor
extθ

Augment

Random nbits binary message
Select watermarked
pixels with GT mask

ℓdecoding

h, w

nbits ,h, w

ℓdetection

3, h,w
Editing (crop,
JPEG, etc.)

or
x

m

δ
y det

y dec

rmask→ y det,＊

h, w
xm

Random
mask

Figure 2: The first training phase of WAM, as described in Sec. 4.2, jointly trains the watermark
embedder to predict an additive watermark and the watermark extractor to detect watermarked pixels
and decode the hidden message. In between, the augmenter 1) splices the watermarked and the
original images based on a random mask and 2) applies classical image transformations.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the transformations found on media sharing websites, as opposed to professional photo publications.
Additional details and discussions on augmentations are postponed to App. D.4.

When a given image goes through the embedder-augmentation-extractor sequence, the final output
depends on the models’ parameters θ (omitted so far for clarity):

y(θ) = [ydet(θ), ydec(θ)] = extθ

(
transformation

(
masking (embθ(x,m), x)

))
. (3)

Objectives. The training minimizes the objective function ℓ(θ) which is a linear combination of the
detection and decoding losses: ℓ(θ) = λdet · ℓdet(θ) + λdec · ℓdec(θ).

The detection loss is the average of the pixel-wise cross-entropy between ydet(θ) ∈ [0, 1]h×w and
the ground truth ydet,⋆ ∈ {0, 1}h×w (pixel watermarked or not). Similarly, the decoding loss is the
average of the pixel-wise and bit-wise binary cross-entropy between ydec

i,k(θ) and mk only over the
watermarked pixels, where m is a random message originally embedded in that image. For a given
image and message, ℓdet and ℓdec are:

ℓdet(θ) =
−1

h× w

h×w∑
i=1

[
ydet,⋆
i log(ydet

i (θ)) + (1− ydet,⋆
i) log(1− ydet

i (θ))
]
, (4)

ℓdec(θ) =
−1

nbits ×
∑h×w

i=1 ydet,⋆
i

h×w∑
i=1

ydet,⋆
i

nbits∑
k=1

[
mk log(y

dec
i,k(θ)) + (1−mk) log(1− ydec

i,k(θ))
]
. (5)

4.3 POST-TRAINING FOR IMPERCEPTIBILITY AND MULTIPLE WATERMARKS

The model trained in the first phase (Sec. 4.2) produces a too visible watermark. Moreover, it cannot
deal within multiple watermarks in an image. The second training phase addresses these issues.

Perceptual heatmap. The Just-Noticeable-Difference (JND) map is a hand-crafted model of the
minimum artifact perceivable by a human at every pixel. For instance, artifacts on flat, uniform areas
are more visible than on textured ones. The JND map was introduced by Chou & Li (1995) and later
used by Wu et al. (2017). App. C.2 gives more details on its computation.

Given an image x, we have JND(x) ∈ R3×h×w. We modulate the intensity of the watermark per pixel
at embedding time: the final watermarked image is computed as xm = x+αJND ·JND(x)⊙δθ(x,m).
In practice, we found that applying this JND on the model trained in the first phase slightly degrades
the detection and decoding performance. The fine-tuning cancels this degradation. Applying JND
only in the second training phase makes training easier than previous methods relying on “perceptual”
or “contradictory” losses (like StegaStamp (Tancik et al., 2020) or HiDDeN (Zhu et al., 2018)).

Multiple watermarks. Since the first training phase (Sec. 4.2) uses a single message, it tends to
decode a constant message across pixels even on image regions with different messages. The second
training phase introduces several masks to address this limitation. The masks are generated as before
with distinct random messages in each of the masked areas. The number of disjoint masks goes from
1 to 3 with probabilities 0.6, 0.2, and 0.2 respectively (see App. D.2).

Original Distortion Watermarked image
(PSNR ≈ 24 dB)

(a) Without JND

Original Distortion with
JND attenuation

Watermarked image
(PSNR ≈ 36 dB)

(b) With JND

Figure 3: Impact of the JND map on imperceptibility. (Left) After the first training phase, the
watermark is highly perceptible. (Right) When applying the JND attenuation, it is hidden in areas
where the eye is not sensitive to changes, which makes it less visible. Fine-tuning with the JND
recovers the initial robustness. The difference is displayed as 10× abs(xm − x).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Evaluation of the watermark imperceptibility. We report the PSNR, SSIM, and LPIPS be-
tween watermarked and original images of COCO (low/mid-resolution) and DIV2k (high-resolution).

HiDDeN

DCTDWT
SSL

FNNS

TrustM
ark

WAM
(ours)

C
O

C
O PSNR (↑) 38.2 37.0 37.8 37.7 40.3 38.3

SSIM (↑) 0.98 0.98 0.98 0.98 0.99 0.99
LPIPS (↓) 0.05 0.02 0.07 0.06 0.01 0.04

D
IV

2K

PSNR (↑) 38.4 38.7 38.2 39.0 39.1 38.8
SSIM (↑) 0.98 0.99 0.98 0.99 0.99 0.99

LPIPS (↓) 0.07 0.03 0.11 0.04 0.01 0.03

The detection loss ℓdet takes the union of all masks as ground truth ydet,⋆
i . The decoding loss ℓdec

is computed separately for each message and the losses are summed up. The scenario of multiple
watermarks within a single image arises when watermarked images are combined. Unlike other
methods producing a global message, WAM can now distinguish and decode each message separately.

5 EXPERIMENTS & RESULTS

5.1 IMPLEMENTATION DETAILS

We provide here further implementation details using the notations introduced in Sec. 4.1, and the
rest of the architectures are described in App. D.1. All experiments are run with nbits = 32. There is
a total of 1.1M parameters for the embedder and 96M for the extractor (equivalent to a ViT-base). In
our experiments, we found it necessary to increase the size of the extractor compared to the embedder.
This is probably because the extractor has more tasks to handle, such as segmenting and extracting
multiple messages, while the embedder only needs to embed one message into an image. Also, it
is important for the embedding process to be quick since it happens on the user-side, so we keep it
voluntarily small to be fast and usable at scale. We train our model on the MS-COCO training set
with blurred faces (Lin et al., 2014), that contains 118,000 images, many of them with segmentation
masks. We train at resolution h × w = 256 × 256, and with f = 8 (so h′ × w′ = 32 × 32). The
first training phase (Sec. 4.2) is optimized with AdamW (Kingma, 2014; Loshchilov, 2017) with a
linear warmup of the learning rate in 5 epochs from 1× 10−6 to 1× 10−4 and a cosine annealing to
1× 10−6. We set λdec = 10, λdet = 1, α = 0.3. We train with a batch size of 16 per GPU for 300
epochs using 8 V100 GPUs which takes roughly 2 days. The second training phase (Sec. 4.3) further
trains the model with the JND attenuation for 200 epochs, hiding up to 3 messages per image using
either randomly sampled rectangles or segmentation masks. During this phase, αJND = 2. App. D.2
provides details on the generation of masks used during both training phases. For the extraction of
multiple messages, we use the Scikit-learn DBSCAN implementation (Pedregosa et al., 2011).

5.2 QUALITY

Table 1 evaluates quantitatively the difference between the watermarked and original images with
PSNR, SSIM and LPIPS (Zhang et al., 2018) metrics. We adapt the methods so that they are
comparable in terms of imperceptibility. We show qualitative examples for COCO and DIV2k images
in App. F. The perceptual quality is good: the JND map successfully modulates the watermark signal
in areas where the eye is not sensitive. Nevertheless, repetitive and regular patterns can be observed
in some images when the bright or textured areas are big enough (furs of animals for instance).

5.3 DETECTION AND DECODING

We benchmark WAM’s performance against several watermarking methods: DCTDWT (Al-Haj,
2007), HiDDeN (Zhu et al., 2018), TrustMark (Bui et al., 2023a), SSL (Fernandez et al., 2022),
FNNS (Kishore et al., 2022). We also compare WAM to generation-time watermarking methods (Fer-
nandez et al., 2023a; Wen et al., 2023) in App. E.1. Although this list is not exhaustive, it covers the
main types of state-of-the-art methods. For HiDDeN, we use a model which hides 48 bits. FNNS,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Detection and decoding after image editing (detailed in Sec. D.4). We show the bit accuracy
(Bit acc.) between the encoded and decoded messages, the proportion of images correctly deemed
watermarked (TPR), and the proportion of non-watermarked images falsely detected as watermarked
(FPR), in %. Since HiDDeN, DCTDWT, SSL and FNNS do not naturally provide a detection result,
we hide 48 bits and reserve 16 bits for detection, and flag an image as watermarked if it has strictly
less than two bits incorrectly decoded (these baselines are detailed in Sec. 5.3).

(a) On the first 10k validation images of COCO (low to mid resolution)

Augmentations

None Geometric Valuemetric Inpainting Splicing
Method FPR TPR Bit acc. TPR Bit acc. TPR Bit acc. TPR Bit acc. TPR Bit acc.

HiDDeN 0.08 76.9 95.5 31.2 80.1 48.4 87.2 44.7 88.7 0.9 68.0
DWTDCT 0.02 77.1 91.4 0.0 50.5 13.6 58.1 47.8 81.7 0.8 59.9

SSL 0.00 99.9 100.0 14.3 76.5 70.5 92.1 67.7 91.1 0.4 58.9
FNNS 0.10 99.6 99.9 62.4 86.6 82.1 93.9 89.4 97.3 38.7 88.5

TrustMark 2.88 99.8 99.9 36.3 71.4 90.1 98.2 39.4 83.2 83.2 57.1
WAM (ours) 0.04 100.0 100.0 99.3 91.8 100.0 99.9 97.9 99.2 100.0 95.3

(b) On the 100 validation images of DIV2k (high resolution)

Augmentations

None Geometric Valuemetric Inpainting Splicing
Method FP TPR Bit acc. TPR Bit acc. TPR Bit acc. TPR Bit acc. TPR Bit acc.

HiDDeN 0 72.0 95.8 33.5 81.3 53.3 88.1 53.3 88.1 1.5 70.2
DWTDCT 0 75.0 88.9 0.0 50.6 18.4 58.9 73.0 86.7 31.5 71.6

SSL 0 100.0 100.0 32.5 83.6 75.8 92.8 95.0 96.1 0.5 59.8
FNNS 0 97.0 99.9 63.5 87.2 79.8 93.9 94.0 99.2 48.5 89.5

TrustMark 5 100.0 100.0 33.1 70.5 87.4 97.9 0.0 72.1 1.5 57.3
WAM (ours) 0 100.0 99.9 96.1 89.0 100.0 99.9 100.0 99.8 99.5 94.2

SSL, and DCTDWT can hide messages or arbitrary length, we choose to hide 48 bits as well. We use
the first 16 bits for detection and 32 bits for message decoding. For detection, an image is flagged as
watermarked if at most 1 bit is wrongly decoded. This corresponds to a theoretical False Positive Rate
(FPR) of 2.6× 10−4, i.e., 2.6 out of 10,000 images are falsely flagged as watermarked on average.
TrustMark (Bui et al., 2023a) directly outputs a boolean (watermarked or not). We use the version that
hides 40 bits, but only use the first 32 bits. For all evaluations, we apply the watermark embedding and
extraction at the original image resolution as described in the high-resolution paragraph of Sec. 4.1.
Finally, for WAM, an image is flagged if sdet (Eq. 1) is higher than 0.07. This value empirically
delivers an approximately similar FPR on the COCO validation set.

We evaluate the robustness against various transformations: geometric (flip, crop, perspective, and
rotation), valuemetric (adjustments in brightness, hue, contrast or saturation, median or Gaussian
filtering, and JPEG compression), splicing: scenarios where only 10% of the image is watermarked
superimposed onto the original or an other background. We also evaluate the robustness against
inpainting, using the LaMa (Suvorov et al., 2022) model to inpaint areas of the watermarked image
specified by random or segmentation masks. For COCO, we use the union of all segmentation masks
for each image which in average corresponds to 30% of the image, and for DIV2k we use a randomly
generated mask (because there are no segmentation masks) that covers around 35% of the image. We
give details on the compared baselines in App. D.3 and on the transformations in App. D.4.

Table 2a presents the detection and decoding results for low/mid-resolution images, averaged over
the first 10k images of the COCO validation set – the detailed results for every augmentation used to
form the different groups are in App. E.3. Table 2b does the same for high-resolution images from
the DIV2k (Timofte et al., 2018) validation set. For both distributions, WAM is competitive and even
shows improved robustness on classical geometric/valuemetric transformations. Most importantly,
WAM performs better on splicing or inpainting where other methods fail to achieve more than 90%
TPR and Bit acc. This is true even if WAM was not explicitly trained on high resolution images or to
be robust against inpainting. We also show examples of WAM’s detection masks after inpainting in
Fig. 10 of App. E, where some modified parts of images are not detected as watermarked anymore.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.4 LOCALIZATION

WAM and EditGuard (Zhang et al., 2024) are the only methods that provide watermark localization.
We therefore consider images at fixed resolution 512 × 512 (unlike in Sec. 5.3) to align with the
setup of EditGuard. We nevertheless observe similar results at different resolutions for WAM. We
focus on the COCO validation set and splice centered watermarked rectangles of various sizes within
the images to ensure a well-controlled experiment. We then either apply no transformation or crop
the upper left part of the image (25%), which is then resized to the original size. By doing so, the
proportion of watermarked pixels is still the same as in the spliced image before cropping, which
allows us to evaluate the robustness of the localization. Figure 7 of App. D.5 illustrates this protocol.

Figure 4 reports the mean Intersection over Union (mIoU) to evaluate the localization, as commonly
done in the segmentation literature. Figure 4 evaluates the bit accuracy – through localization –
following Eq. 2. We observe that WAM accurately predicts both classes, even after cropping and
resizing, except when the watermarked area covers 95% of the image, in which case the extractor
tends to classify all pixels as watermarked. In terms of bit accuracy, WAM recovers in average 31 out
of 32 bits even when only 10% of the 256 × 256 image is watermarked, and around 25 bits when
only 10% of a 25% crop is watermarked (which corresponds to 2.5% of the overall number of pixels).
For both evaluations, WAM outperforms EditGuard which, in particular, is not robust to cropping.

5.5 MULTIPLE WATERMARKS

We compare the detection and decoding of multiple watermarks before and after the second training
phase of WAM (Sec. 4.3). We embed up to five distinct messages into five separate 10% areas of every
image (first resized to 256 to ease the experiments). This is done by feeding the image several times
to WAM’s embedder, then pasting the different watermarked areas onto the original image. These

0 20 40 60 80 100
Watermarked Area (in %)

0.0

0.2

0.4

0.6

0.8

1.0

De
te

ct
io

n
m

Io
U

WAM (identity)
WAM (25% upper left crop)
EditGuard (identity)
EditGuard (25% upper left crop)

0 20 40 60 80 100
Watermarked Area (in %)

0.5

0.6

0.7

0.8

0.9

1.0

Bi
t A

cc
ur

ac
y

Figure 4: Evaluation of the localization on the validation set of COCO, with or without cropping
before extraction, following the setup described in Sec. 5.4. (Left) Localization accuracy using
intersection over union between the predicted watermarked areas and the ground-truth mask. (Right)
Bit accuracy between the ground truth message and the decoded message, computed from Eq. (2).

DBSCAN Clusters0

1

2

3

4

5

1.00 1.03 1.01 1.09 1.05

1 WM 2 WM 3 WM 4 WM 5 WM

Bit Accuracy

0.6

0.8

1.0 0.95

0.78

0.67
0.62 0.62

mIoU

0.6

0.8

1.0 1.00 1.00 1.00 0.99 0.99

(a) After first training phase (PSNR ≈ 25 dB)

DBSCAN Clusters0

1

2

3

4

5

1.00

2.00

2.99

3.99

4.95
1 WM 2 WM 3 WM 4 WM 5 WM

Bit Accuracy

0.6

0.8

1.0
0.94 0.97 0.98 0.98 0.98

mIoU

0.6

0.8

1.0 0.98 0.98 0.98 0.98 0.98

(b) After second training phase (PSNR ≈ 38 dB)

Figure 5: Results on multiple watermarks extracted from a single image. We use non overlapping
10 % rectangular masks to watermark up to 5 parts of images from COCO, with different messages,
and report the average number of clusters detected by DBSCAN, bit accuracy across found messages,
as well as the mIoU of watermark detection on all objects. (Left) After the first training phase, the bit
accuracy strongly decreases as the number of watermarks grows. (Right) After fine-tuning, it stays
roughly constant no matter the number of watermarked parts. The mIoU stays stable in both cases.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

areas are squares disposed in a checkerboard pattern, which ensures that the watermarked areas do not
overlap and have the same size (see Fig. 8 of App. D.6). This is an arbitrary choice made to remove
confounding factors during evaluation, although the training does not require the watermarked areas
to be squared nor to have the same size. Following the methodology detailed in Sec. 3, we apply the
DBSCAN algorithm to the vector outputs m̃i of the extractor corresponding to all pixels i identified as
watermarked (ydet

i > τ). It identifies clusters corresponding to different watermarked regions without
requiring the number of hidden messages to be known in advance. We use τ = 0.5 to threshold the
watermarked pixels, and we choose a rather strict setup with ε = 1 and minsamples = 1000 pixels
(around 2% of the image) in our evaluations, resulting from an hyperparameter search detailed in
Fig. 9 of App. E.2. This means that a cluster will be considered only if it has at least 2% of the
image’s pixels, and that the maximum distance between two predicted messages to be neighbors is 1.

Figure 5 presents the results. We compute the bit accuracies by comparing the centroid of each
detected cluster (decoded message) with the ground truth message that has the largest overlapping
area: the bit accuracy is thus computed only across the clusters that are discovered by DBSCAN.
Without the second phase of training, the messages get mixed up, and WAM predicts the same
(wrong) message for all watermarked pixels. After the training, WAM is able to accurately extract up
to five different 32-bit messages from the areas covering 10% of the image each. Therefore, although
the second phase of training embeds between 1 and 3 watermarks per image, WAM generalizes to
more watermarks. It also shows that WAM’s effective capacity is greater than 32 bits (since it can
hide multiple messages) if we do not consider heavy crops as a transformation we want the method
to be robust against, similarly as (Bui et al., 2023b; Tancik et al., 2020; Wen et al., 2023).

This method remains effective after some image manipulations; extended quantitative results are
presented in Fig. 9 of App. E.2. For example, WAM achieves 85% mIoU even when the images have
been horizontally flipped and the contrast adjusted. Furthermore, the bit accuracy, averaged across
5 messages totaling 160 bits, exceeds 95% under the same conditions. However, WAM fails when
JPEG compression is also added on top of these two transformations. Illustrative examples of the
identified clusters in various scenarios can be found in Fig. 8 of App. D.6.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Conclusion. This work introduces the Watermark Anything Model, which approaches image
watermarking as a segmentation task. WAM is able to predict whether an image is watermarked or
not, as well as to localize its watermarked regions. It thus handles images with a small watermarked
part, or where parts of the image have been removed or edited. Additionally, it is able to detect and
extract multiple watermarks within the same image, for the first time in the literature. Our training
which introduces localization under heavy augmentations also offers state-of-the-art robustness on
classical settings considered by current watermark methods, where most of the image is watermarked.

The code and models used in this paper will be made available upon publication.

We identify two main limitations that we adress in the next paragraphs.

Low payload. In our experiments, WAM’s capacity is limited to 32 bits, and training on larger
messages is challenging. In contrast, other watermarking methods such as EditGuard or RoSteALS
can successfully embed more than 100 bits per image, but are not robust to crops or outpainting. This
is a trade-off between capacity and robustness. Note that in practice, other methods use decoding
to match with the original message and conclude if an image is watermarked. In contrast, WAM’s
detection process is separate from the decoding, so 32 bits may be enough for most applications.

Perceptual quality. In spite of the JND weighting, we notice that the watermark can still be visible
in some areas of the watermarked images, even at a relatively high PSNR (see examples in App. F).
This could be due to the JND map focusing only on the cover image and not on the watermark signal
itself. Improvements might be achieved by employing more sophisticated Human Visual System
(HVS) models or by regularizing the watermark to eliminate repetitive patterns during training.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

Section 5 provides the specifics of our training and evaluation setup. Further implementation details,
including network architectures, mask designs, transformation parameters for robustness evaluation,
and settings for baseline comparisons, are presented in App. D. The models and code for inference
and training used in this paper will be made available upon publication. The code is based on PyTorch,
the training dataset is publicly available, and the training requires half a week on 8 V100 GPUs,
which makes the models reproducible at reasonable cost.

REFERENCES

Mahdi Ahmadi, Alireza Norouzi, Nader Karimi, Shadrokh Samavi, and Ali Emami. Redmark:
Framework for residual diffusion watermarking based on deep networks. Expert Systems with
Applications, 2020.

Ali M. Al-Haj. Combined dwt-dct digital image watermarking. Journal of Computer Science, 3:
740–746, 2007. URL https://api.semanticscholar.org/CorpusID:1454866.

Vishal Asnani, Xi Yin, Tal Hassner, Sijia Liu, and Xiaoming Liu. Proactive image manipulation
detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 15386–15395, 2022.

Vishal Asnani, Abhinav Kumar, Suya You, and Xiaoming Liu. Probed: proactive object detection
wrapper. Advances in Neural Information Processing Systems, 36, 2024.

Shumeet Baluja. Hiding images in plain sight: Deep steganography. NeurIPS, 2017.

Mauro Barni, Franco Bartolini, Vito Cappellini, and Alessandro Piva. A dct-domain system for robust
image watermarking. Signal processing, 66(3):357–372, 1998.

Mauro Barni, Franco Bartolini, and Alessandro Piva. Improved wavelet-based watermarking through
pixel-wise masking. IEEE transactions on image processing, 10(5):783–791, 2001.

Mauro Barni, Franco Bartolini, and Nicola Checcacci. Watermarking of mpeg-4 video objects. IEEE
Transactions on Multimedia, 7(1):23–32, 2005.

Patrick Bas, Nikolaos V Boulgouris, Filippos D Koravos, Jean-Marc Chassery, Michael G Strintzis,
and Benoit MM Macq. Robust watermarking of video objects for mpeg-4 applications. In
Applications of Digital Image Processing XXIV, volume 4472, pp. 85–94. SPIE, 2001.

Patrick Bas, J-M Chassery, and Benoit Macq. Geometrically invariant watermarking using feature
points. IEEE transactions on image Processing, 11(9):1014–1028, 2002.

Patrick Bas, Nicolas Le Bihan, and J-M Chassery. Color image watermarking using quaternion fourier
transform. In 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing,
2003. Proceedings.(ICASSP’03)., volume 3, pp. III–521. IEEE, 2003.

Adrian G Bors and Ioannis Pitas. Image watermarking using dct domain constraints. In ICIP, 1996.

Tu Bui, Shruti Agarwal, and John Collomosse. Trustmark: Universal watermarking for arbitrary
resolution images. arXiv preprint arXiv:2311.18297, 2023a.

Tu Bui, Shruti Agarwal, Ning Yu, and John Collomosse. Rosteals: Robust steganography using
autoencoder latent space. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 933–942, 2023b.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European conference on computer
vision, pp. 213–229. Springer, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. ICCV, 2021.

11

https://api.semanticscholar.org/CorpusID:1454866

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xiangyu Chen, Varsha Kishore, and Kilian Q Weinberger. Learning iterative neural optimizers for
image steganography. In The Eleventh International Conference on Learning Representations,
2022.

Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-pixel classification is not all you need
for semantic segmentation. Advances in neural information processing systems, 34:17864–17875,
2021.

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1290–1299, 2022.

Chun-Hsien Chou and Yun-Chin Li. A perceptually tuned subband image coder based on the
measure of just-noticeable-distortion profile. IEEE Transactions on circuits and systems for video
technology, 5(6):467–476, 1995.

Vincent Christlein, Christian Riess, Johannes Jordan, Corinna Riess, and Elli Angelopoulou. An
evaluation of popular copy-move forgery detection approaches. IEEE Transactions on information
forensics and security, 7(6):1841–1854, 2012.

Hai Ci, Yiren Song, Pei Yang, Jinheng Xie, and Mike Zheng Shou. Wmadapter: Adding watermark
control to latent diffusion models. arXiv preprint arXiv:2406.08337, 2024a.

Hai Ci, Pei Yang, Yiren Song, and Mike Zheng Shou. Ringid: Rethinking tree-ring watermarking for
enhanced multi-key identification. arXiv preprint arXiv:2404.14055, 2024b.

Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker. Digital watermarking
and steganography. Morgan kaufmann, 2007.

Ingemar J Cox, Joe Kilian, F Thomson Leighton, and Talal Shamoon. Secure spread spectrum
watermarking for multimedia. IEEE transactions on image processing, 6(12):1673–1687, 1997.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Matthijs Douze, Giorgos Tolias, Ed Pizzi, Zoë Papakipos, Lowik Chanussot, Filip Radenovic, Tomas
Jenicek, Maxim Maximov, Laura Leal-Taixé, Ismail Elezi, et al. The 2021 image similarity dataset
and challenge. arXiv preprint arXiv:2106.09672, 2021.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873–12883, 2021.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In kdd, 1996.

Gautier Evennou, Vivien Chappelier, Ewa Kijak, and Teddy Furon. Swift: Semantic watermarking
for image forgery thwarting. arXiv preprint arXiv:2407.18995, 2024.

Jianwei Fei, Zhihua Xia, Benedetta Tondi, and Mauro Barni. Supervised gan watermarking for
intellectual property protection. In 2022 IEEE International Workshop on Information Forensics
and Security (WIFS), pp. 1–6. IEEE, 2022.

Jianwei Fei, Zhihua Xia, Benedetta Tondi, and Mauro Barni. Robust retraining-free gan fingerprinting
via personalized normalization. In 2023 IEEE International Workshop on Information Forensics
and Security (WIFS), pp. 1–6. IEEE, 2023.

Jianwei Fei, Zhihua Xia, Benedetta Tondi, and Mauro Barni. Wide flat minimum watermarking for
robust ownership verification of gans. IEEE Transactions on Information Forensics and Security,
2024.

Liu Ping Feng, Liang Bin Zheng, and Peng Cao. A dwt-dct based blind watermarking algorithm for
copyright protection. In ICCSIT. IEEE, 2010.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Weitao Feng, Wenbo Zhou, Jiyan He, Jie Zhang, Tianyi Wei, Guanlin Li, Tianwei Zhang, Weiming
Zhang, and Nenghai Yu. Aqualora: Toward white-box protection for customized stable diffusion
models via watermark lora. arXiv preprint arXiv:2405.11135, 2024.

Pierre Fernandez, Alexandre Sablayrolles, Teddy Furon, Hervé Jégou, and Matthijs Douze. Wa-
termarking images in self-supervised latent spaces. In ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3054–3058. IEEE, 2022.

Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, and Teddy Furon. The stable
signature: Rooting watermarks in latent diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 22466–22477, 2023a.

Pierre Fernandez, Matthijs Douze, Hervé Jégou, and Teddy Furon. Active image indexing. In
International Conference on Learning Representations (ICLR), 2023b.

Teddy Furon and Patrick Bas. Broken arrows. EURASIP Journal on Information Security, 2008:
1–13, 2008.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Seongmin Hong, Kyeonghyun Lee, Suh Yoon Jeon, Hyewon Bae, and Se Young Chun. On exact
inversion of dpm-solvers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7069–7078, 2024.

Jiangtao Huang, Ting Luo, Li Li, Gaobo Yang, Haiyong Xu, and Chin-Chen Chang. Arwgan:
Attention-guided robust image watermarking model based on gan. IEEE Transactions on Instru-
mentation and Measurement, 72:1–17, 2023.

Zhaoyang Jia, Han Fang, and Weiming Zhang. Mbrs: Enhancing robustness of dnn-based water-
marking by mini-batch of real and simulated jpeg compression. In Proceedings of the 29th ACM
international conference on multimedia, pp. 41–49, 2021.

Qiuping Jiang, Zhentao Liu, Shiqi Wang, Feng Shao, and Weisi Lin. Towards top-down just noticeable
difference estimation of natural images. IEEE Transactions on Image Processing, 2022.

Junpeng Jing, Xin Deng, Mai Xu, Jianyi Wang, and Zhenyu Guan. Hinet: Deep image hiding by
invertible network. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 4733–4742, 2021.

Lei Ke, Mingqiao Ye, Martin Danelljan, Yu-Wing Tai, Chi-Keung Tang, Fisher Yu, et al. Segment
anything in high quality. Advances in Neural Information Processing Systems, 36, 2024.

Changhoon Kim, Kyle Min, Maitreya Patel, Sheng Cheng, and Yezhou Yang. Wouaf: Weight
modulation for user attribution and fingerprinting in text-to-image diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8974–8983, 2024.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Varsha Kishore, Xiangyu Chen, Yan Wang, Boyi Li, and Kilian Q Weinberger. Fixed neural network
steganography: Train the images, not the network. In International Conference on Learning
Representations, 2022.

Lester E Krueger. Reconciling fechner and stevens: Toward a unified psychophysical law. Behavioral
and Brain Sciences, 12(2):251–267, 1989.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

D. Kundur and D. Hatzinakos. Digital watermarking for telltale tamper proofing and authentication.
Proceedings of the IEEE, 87(7):1167–1180, 1999. doi: 10.1109/5.771070.

Ema Kušen and Mark Strembeck. Politics, sentiments, and misinformation: An analysis of the twitter
discussion on the 2016 austrian presidential elections. Online Social Networks and Media, 5:
37–50, 2018.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

Liangqi Lei, Keke Gai, Jing Yu, and Liehuang Zhu. Diffusetrace: A transparent and flexible
watermarking scheme for latent diffusion model. arXiv preprint arXiv:2405.02696, 2024.

Zhen Li, Kim-Hui Yap, and Bai-Ying Lei. A new blind robust image watermarking scheme in svd-dct
composite domain. In ICIP, 2011.

Eugene T. Lin, Christine I. Podilchuk, and Edward J. Delp III. Detection of image alterations
using semifragile watermarks. In Ping Wah Wong and Edward J. Delp III (eds.), Security and
Watermarking of Multimedia Contents II, volume 3971, pp. 152 – 163. International Society for
Optics and Photonics, SPIE, 2000. doi: 10.1117/12.384969. URL https://doi.org/10.
1117/12.384969.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Sasha Luccioni, Bruna Trevelin, and Margaret Mitchell. The environmental impacts of ai –
primer. Hugging Face Blog, September 2024. URL https://huggingface.co/blog/
community.

Xiyang Luo, Ruohan Zhan, Huiwen Chang, Feng Yang, and Peyman Milanfar. Distortion agnostic
deep watermarking. In CVPR, 2020.

Jun Ma, Yuting He, Feifei Li, Lin Han, Chenyu You, and Bo Wang. Segment anything in medical
images. Nature Communications, 15(1):654, 2024.

Rui Ma, Mengxi Guo, Yi Hou, Fan Yang, Yuan Li, Huizhu Jia, and Xiaodong Xie. Towards blind
watermarking: Combining invertible and non-invertible mechanisms. In Proceedings of the 30th
ACM International Conference on Multimedia, pp. 1532–1542, 2022.

Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In
International Conference on Multimedia. ACM, 2010.

Zhicheng Ni, Yun-Qing Shi, Nirwan Ansari, and Wei Su. Reversible data hiding. IEEE Transactions
on circuits and systems for video technology, 2006.

Nikos Nikolaidis and Ioannis Pitas. Robust image watermarking in the spatial domain. Signal
processing, 1998.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard artifacts.
Distill, 1(10):e3, 2016.

State Council of the People’s Republic of China. New generation artificial intelligence development
plan, 2023. URL https://www.gov.cn/zhengce/content/202306/content_
6884925.htm.

14

https://doi.org/10.1117/12.384969
https://doi.org/10.1117/12.384969
https://huggingface.co/blog/community
https://huggingface.co/blog/community
https://www.gov.cn/zhengce/content/202306/content_6884925.htm
https://www.gov.cn/zhengce/content/202306/content_6884925.htm

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut,
Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
2023.

Junlin Ouyang, Gouenou Coatrieux, Beijing Chen, and Huazhong Shu. Color image watermarking
based on quaternion fourier transform and improved uniform log-polar mapping. Computers &
Electrical Engineering, 2015.

Minzhou Pan, Yi Zeng, Xue Lin, Ning Yu, Cho-Jui Hsieh, Peter Henderson, and Ruoxi Jia. Jigmark:
A black-box approach for enhancing image watermarks against diffusion model edits. arXiv
preprint arXiv:2406.03720, 2024.

European Parliament and Council. Regulation (eu) 2024/1689 of the european parliament and
of the council on artificial intelligence, 2024. URL https://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=CELEX:32024R1689.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Alessandro Piva, Mauro Barni, Franco Bartolini, and Vito Cappellini. Dct-based watermark recovering
without resorting to the uncorrupted original image. In Proceedings of international conference on
image processing, volume 1, pp. 520–523. IEEE, 1997.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.00714, 2024.

Ahmad Rezaei, Mohammad Akbari, Saeed Ranjbar Alvar, Arezou Fatemi, and Yong Zhang. Lawa:
Using latent space for in-generation image watermarking. arXiv preprint arXiv:2408.05868, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Robin San Roman, Pierre Fernandez, Hady Elsahar, Alexandre Défossez, Teddy Furon, and Tuan Tran.
Proactive detection of voice cloning with localized watermarking. In International Conference on
Machine Learning, 2024.

Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. Dbscan revisited,
revisited: why and how you should (still) use dbscan. ACM Transactions on Database Systems
(TODS), 42(3):1–21, 2017.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for
semantic segmentation. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 7262–7272, 2021.

Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha,
Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky. Resolution-
robust large mask inpainting with fourier convolutions. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pp. 2149–2159, 2022.

Matthew Tancik, Ben Mildenhall, and Ren Ng. Stegastamp: Invisible hyperlinks in physical pho-
tographs. In CVPR, 2020.

Radu Timofte, Shuhang Gu, Jiqing Wu, Luc Van Gool, Lei Zhang, Ming-Hsuan Yang, Muhammad
Haris, et al. Ntire 2018 challenge on single image super-resolution: Methods and results. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018.

15

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R1689
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R1689

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Dijana Tralic, Ivan Zupancic, Sonja Grgic, and Mislav Grgic. Comofod—new database for copy-move
forgery detection. In Proceedings ELMAR-2013, pp. 49–54. IEEE, 2013.

Matthieu Urvoy, Dalila Goudia, and Florent Autrusseau. Perceptual dft watermarking with improved
detection and robustness to geometrical distortions. IEEE Transactions on Information Forensics
and Security, 2014.

USA. Ensuring safe, secure, and trustworthy ai. https:
//www.whitehouse.gov/wp-content/uploads/2023/07/
Ensuring-Safe-Secure-and-Trustworthy-AI.pdf, July 2023. Accessed:
[july 2023].

Ron G Van Schyndel, Andrew Z Tirkel, and Charles F Osborne. A digital watermark. In Proceedings
of 1st international conference on image processing, volume 2, pp. 86–90. IEEE, 1994.

Vedran Vukotić, Vivien Chappelier, and Teddy Furon. Are deep neural networks good for blind image
watermarking? In WIFS, 2018.

Vedran Vukotić, Vivien Chappelier, and Teddy Furon. Are classification deep neural networks good
for blind image watermarking? Entropy, 2020.

Andrew B Watson. Dct quantization matrices visually optimized for individual images. In Human
vision, visual processing, and digital display IV, volume 1913, pp. 202–216. SPIE, 1993.

Bingyang Wen and Sergul Aydore. Romark: A robust watermarking system using adversarial training.
arXiv preprint arXiv:1910.01221, 2019.

Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-ring watermarks: Fin-
gerprints for diffusion images that are invisible and robust. arXiv preprint arXiv:2305.20030,
2023.

Eric Wengrowski and Kristin Dana. Light field messaging with deep photographic steganography.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1515–1524, 2019.

Hanzhou Wu, Gen Liu, Yuwei Yao, and Xinpeng Zhang. Watermarking neural networks with
watermarked images. IEEE Transactions on Circuits and Systems for Video Technology, 31(7):
2591–2601, 2020.

Jinjian Wu, Leida Li, Weisheng Dong, Guangming Shi, Weisi Lin, and C-C Jay Kuo. Enhanced just
noticeable difference model for images with pattern complexity. IEEE Transactions on Image
Processing, 2017.

Xiang-Gen Xia, Charles G Boncelet, and Gonzalo R Arce. Wavelet transform based watermark for
digital images. Optics Express, 1998.

XK Yang, WS Ling, ZK Lu, Ee Ping Ong, and SS Yao. Just noticeable distortion model and its
applications in video coding. Signal processing: Image communication, 20(7):662–680, 2005.

Chong Yu. Attention based data hiding with generative adversarial networks. In AAAI, 2020.

Ning Yu, Vladislav Skripniuk, Sahar Abdelnabi, and Mario Fritz. Artificial fingerprinting for
generative models: Rooting deepfake attribution in training data. In Proceedings of the IEEE/CVF
International conference on computer vision, pp. 14448–14457, 2021.

Ning Yu, Vladislav Skripniuk, Dingfan Chen, Larry Davis, and Mario Fritz. Responsible disclosure
of generative models using scalable fingerprinting. In International Conference on Learning
Representations (ICLR), 2022.

Aditi Zear, Amit Kumar Singh, and Pardeep Kumar. A proposed secure multiple watermarking
technique based on dwt, dct and svd for application in medicine. Multimedia tools and applications,
77:4863–4882, 2018.

16

https://www.whitehouse.gov/wp-content/uploads/2023/07/Ensuring-Safe-Secure-and-Trustworthy-AI.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/07/Ensuring-Safe-Secure-and-Trustworthy-AI.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/07/Ensuring-Safe-Secure-and-Trustworthy-AI.pdf

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Chaoning Zhang, Dongshen Han, Yu Qiao, Jung Uk Kim, Sung-Ho Bae, Seungkyu Lee, and
Choong Seon Hong. Faster segment anything: Towards lightweight sam for mobile applications.
arXiv preprint arXiv:2306.14289, 2023.

Honglei Zhang, Hu Wang, Yuanzhouhan Cao, Chunhua Shen, and Yidong Li. Robust watermarking
using inverse gradient attention. arXiv preprint arXiv:2011.10850, 2020.

Kevin Alex Zhang, Alfredo Cuesta-Infante, Lei Xu, and Kalyan Veeramachaneni. Steganogan: High
capacity image steganography with gans. arXiv preprint arXiv:1901.03892, 2019a.

Kevin Alex Zhang, Lei Xu, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Robust invisible
video watermarking with attention. arXiv preprint arXiv:1909.01285, 2019b.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Xiaohui Zhang, Weisi Lin, and Ping Xue. Just-noticeable difference estimation with pixels in images.
Journal of Visual Communication and Image Representation, 19(1):30–41, 2008.

Xuanyu Zhang, Runyi Li, Jiwen Yu, Youmin Xu, Weiqi Li, and Jian Zhang. Editguard: Versatile
image watermarking for tamper localization and copyright protection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11964–11974, 2024.

Xu Zhao, Wenchao Ding, Yongqi An, Yinglong Du, Tao Yu, Min Li, Ming Tang, and Jinqiao Wang.
Fast segment anything. arXiv preprint arXiv:2306.12156, 2023a.

Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Ngai-Man Cheung, and Min Lin. A recipe for
watermarking diffusion models. arXiv preprint arXiv:2303.10137, 2023b.

Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei
Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. Rethinking semantic segmentation from a
sequence-to-sequence perspective with transformers. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 6881–6890, 2021.

Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep networks.
In Proceedings of the European conference on computer vision (ECCV), pp. 657–672, 2018.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A ETHICAL STATEMENT

A.1 SOCIETAL IMPACT

Watermarking in general improves the traceability of content, be it AI-generated, or not. It can have
positive consequences, for example when it is used to trace the origin of fake news or to protect
intellectual property. This traceability can also have negative consequences, for example when it is
used to trace political opponents in authoritarian regimes or whistleblowers in secretive companies.
Besides, it is not clear how to disclose watermark detection results, which may foster a closed
ecosystem of detection tools. It may also exacerbate misinformation by placing undue emphasis on
content that is either not detected, generated by unknown models, or authentic but used out of context.
We however believe that the benefits of watermarking outweigh the risks, and that the development
of robust watermarking methods is a positive step for our society.

A.2 ENVIRONMENTAL IMPACT

The cost of the experiments and of model training is high, though order of magnitude less than other
computer vision fields (Oquab et al., 2023). One training with a schedule similar to the one reported
in the paper represents ≈ 30 GPU-days. We also roughly estimate that the total GPU-days used
for running all our experiments to 5000, or ≈ 120k GPU-hours. This amounts to total emissions
in the order of 20 tons of CO2eq. Estimations are conducted using the Machine Learning Impact
calculator presented by Lacoste et al. (2019). We do not consider in this approximation: memory
storage, CPU-hours, production cost of GPUs/ CPUs, etc.

We were careful to limit the environmental impact of our research by doing most of our experiments
on smaller models, on fewer epochs (100) and at lower resolutions (128× 128), before scaling up to
larger models, more epochs and higher resolutions. We also focus on small specialized model that
are efficient at inference time and more environmental-friendly (Luccioni et al., 2024). At the end of
the day, we believe that the environmental cost of this research is justified by the potential benefits of
WAM.

B EXTENDED RELATED WORK ON IMAGE WATERMARKING

B.1 TRADITIONAL WATERMARKING

We call traditional watermarking a technique embedding a digital watermark in a host content. As far
as images are concerned, the first methods are usually classified into two categories depending on the
space in which the watermark is embedded. In spatial domain, the watermark is encoded by directly
modifying pixels, such as flipping low-order bits of selected pixels (Van Schyndel et al., 1994). For
example, Nikolaidis & Pitas (1998) slightly modify the intensity of randomly selected image pixels
while taking into account properties of the human visual system, robustly to JPEG compression and
lowpass filtering. Bas et al. (2002) create content descriptors defined by salient points and embed the
watermark by adding a pattern on triangles formed by the tessellation of these points. Ni et al. (2006)
use the zero or the minimum points of the histogram of an image and slightly modifies the pixel
grayscale values to embed data into the image. The second category frequency domain watermarking
offers better robustness. It usually spreads a pseudorandom noise sequence across the entire frequency
spectrum of the host signal (Cox et al., 1997). The first step is a transformation that computes the
frequency coefficients. The watermark is then added to these coefficients, taking into account the
human visual system. The coefficients are mapped back onto the original pixel space through the
inverse transformation to generate the watermarked image. The transform domains include Discrete
Fourier Transform (DFT) (Urvoy et al., 2014), Quaternion Fourier Transform (QFT) (Bas et al., 2003;
Ouyang et al., 2015), Discrete Cosine Transform (DCT) (Bors & Pitas, 1996; Piva et al., 1997; Barni
et al., 1998; Li et al., 2011), Discrete Wavelet Transform (DWT) (Xia et al., 1998; Barni et al., 2001;
Furon & Bas, 2008), both DWT and DCT (Feng et al., 2010; Zear et al., 2018), etc.

Deep learning-based methods have recently emerged as alternatives for traditional watermarking.
The first attempts use neural networks as a fixed transform into a latent space (Vukotić et al., 2018;
2020; Kishore et al., 2022; Fernandez et al., 2022) Since there is no inverse transform, the embedding
is done iteratively by gradient descent over the pixels. The recent approaches are often built as

18

https://mlco2.github.io/impact#compute
https://mlco2.github.io/impact#compute

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

embedder/extractor networks. They are trained end-to-end to invisibly encode information while
being resilient to transformations applied during training. This makes it easier to build robust systems
and avoids algorithms hand-crafted for specific transformations. HiDDeN (Zhu et al., 2018) is a
famous representative of this approach and has been extended in several ways. Luo et al. (2020) add
adversarial training in the attack simulation to bring robustness to unknown transformations. Zhang
et al. (2019b; 2020); Yu (2020) use an attention filter further improving imperceptibility. Ahmadi
et al. (2020) adds a circular convolutional layer that helps spreading the watermark signal over the
image. Wen & Aydore (2019) use robust optimization with worst-case attack as if an adversary were
trying to remove the mark. Many other approaches focused on improving robustness, imperceptibility,
speed, etc. (Jia et al., 2021; Bui et al., 2023b;a; Huang et al., 2023; Evennou et al., 2024; Pan et al.,
2024).

Another line of works focuses on steganography (Baluja, 2017; Wengrowski & Dana, 2019; Zhang
et al., 2019a; Tancik et al., 2020; Jing et al., 2021; Ma et al., 2022) that pursues a different goal.
Steganography hides a message in the image without leaving any statistical traces, but the robustness
is null or limited.

B.2 WATERMARKING FOR GENERATIVE AI

The most trendy research direction in watermarking is arguably the detection of AI-generated images
for transparency and for filtering such results when building new models. The Post-generation or post-
hoc approach uses traditional watermarking: the content is first generated and then watermarked. On
the contrary, the generation-time methods natively generate watermarked images. Watermarking no
longer incurs additional runtime and is more robust and secure than post-hoc. We broadly categorize
generation-time watermarking into the two following categories.

In-model methods modify the weights of the generative model. This allows open-sourcing the model
without revealing the watermark. The earliest methods (Wu et al., 2020; Yu et al., 2021; Zhao
et al., 2023b) watermark the images of the training set with the hope that the model learns what
watermark is during its training. This is computationally expensive and not scalable. Alternatively,
some proposals (Fei et al., 2022; 2024) train Generative Adversarial Networks (GAN) with additional
watermarking losses such that generated images contain the watermark. Stable Signature (Fernandez
et al., 2023a) focuses on Latent Diffusion Models (LDM) and fine-tunes the latent decoder to embed
the watermark, while Feng et al. (2024) fine-tune the U-Net that predicts the latent diffusion noise
instead. To eliminate the need to fine-tune the model for every user, some papers use a hyper-network
predicting the modifications to be applied to the generative model, be it a GAN (Yu et al., 2022; Fei
et al., 2023) or diffusion-based (Kim et al., 2024).

Out-of-model methods alter the generation process. This is easier to implement since it does not
require training or fine-tuning the model. Ci et al. (2024a) and Rezaei et al. (2024) propose an adapter
to the decoder that takes the secret message as input. A different class of out-of-model methods,
specific to diffusion models, embed the watermark by adding patterns to the initial noise (seed).
For example, Tree-Ring (Wen et al., 2023) adds circular patterns to the initial noise and inverts the
diffusion process to extract the watermark. As follow-up works, Hong et al. (2024) improve the
inversion of the diffusion process, Ci et al. (2024b) extend the method to multi-bit watermarking, and
Lei et al. (2024) deploy the embedder/extractor framework over the noise.

C ALGORITHMS DETAILS

C.1 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) (Ester et al., 1996; Schubert
et al., 2017) is a clustering method that groups points in a dataset based on their density and proximity
to each other. In our case, points are locally decoded messages (one per pixel deemed as watermarked).
It works as follows:

1. Initialization: Set the parameters ε (maximum distance between two samples for one to be
considered as in the neighborhood of the other) and minsamples (minimum number of samples
in a cluster).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

2. Neighborhood search: For each point p in the dataset, find all points within a distance of ε
from p. This forms the neighborhood of p.

3. Cluster formation: If the neighborhood of p contains at least minsamples points, form a cluster
around p. Otherwise, mark p as noise.

4. Cluster expansion: For each point q in the cluster, find all points within a distance of ε from
q. Add these points to the cluster if they are not already part of it.

5. Repeat steps 3-4: Continue expanding the cluster until no more points can be added.

6. Assign labels: Assign a label to each point in the dataset indicating which cluster it belongs
to (if any).

It is important to note that ε is neither a hard boundary nor a maximum bound on the distances of
points within a cluster: points that are further apart than ε but still within the neighborhood of a core
point (a point with at least minsamples neighbors within ε distance) can also be part of the same cluster.

One of the significant advantages of DBSCAN is its ability to cluster points without knowing the
number of clusters beforehand, unlike some other clustering algorithms like K-Means. Additionally,
it identifies arbitrarily shaped clusters (watermarked area in our case), including those that may be
surrounded by a different cluster. This clustering is also robust to outliers. However, DBSCAN also
has some limitations. It is sensitive to hyper-parameters ε and minsamples, and to the choice of the
distance metric (bit difference in our case), which may affect the clustering results. DBSCAN may
also be computationally expensive for a large number of data points. This is less of an issue in our
case since it is lower than 256× 256.

We use the Scikit-learn (Pedregosa et al., 2011) implementation of DBSCAN in our experiments.

C.2 JUST-NOTICEABLE-DIFFERENCE

The maximum change that the human visual system (HVS) cannot perceive is referred to as the Just-
Noticeable-Difference (JND) (Krueger, 1989). It is used in image/video watermarking, compression,
quality assessment, etc. JND models in the pixel domain directly calculate the JND at each pixel
location (i.e., how much pixel difference is perceivable by the HVS).

This section describes in detail the JND map used in Sec. 4.3. It is based on the work of Chou
& Li (1995). We use this model for its simplicity, its efficiency, and its good qualitative results.
More complex HVS models could also be used if higher imperceptibility is needed (Watson, 1993;
Yang et al., 2005; Zhang et al., 2008; Jiang et al., 2022). The JND map takes into account two
characteristics of the HVS, namely the luminance adaptation (LA) and the contrast masking (CM)
phenomena. We follow the same notations as Wu et al. (2017); Fernandez et al. (2023b), and consider
images that are in the range [0, 255]3×256×256.

Luminance masking. Luminance masking refers to the phenomenon where the HVS is less
sensitive to distortions in bright regions of an image. We denote by Klum the luminance kernel, and
x the input image. The local background luminance of the image is:

B(x)(i, j) =
1

32

∑
k,l∈[−2,2]2

Klum(k, l) · x(i+ k, j + l), with Klum =


1 1 1 1 1
1 2 2 2 1
1 2 0 2 1
1 2 2 2 1
1 1 1 1 1

 . (6)

These luminance values are then post-processed as follows to account for the non-linear response of
the HVS:

LA(x)(i, j) =

17 ·
(
1−

√
B(x)(i,j)

127 + ϵ

)
+ 3, B(x)(i, j) ≤ 127

3
128 · (B(x)(i, j)− 127) + 3, B(x)(i, j) > 127,

(7)

where ϵ is a small positive value to ensure differentiability during back-propagation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Contrast masking. Contrast masking refers to the phenomenon where the HVS is less sensitive to
distortions in regions of high contrast. The gradient magnitude is:

C(x)(i, j) =

√√√√√∑
k,l

KX(k, l) · x(i+ k, j + l)

2

+

∑
k,l

KY (k, l) · x(i+ k, j + l)

2

, (8)

with KX =

[−1 0 1
−2 0 2
−1 0 1

]
,KY =

[−1 −2 −1
0 0 0
1 2 1

]
, (9)

where KX and KY are the horizontal and vertical gradient kernels, and x is the input image. To
account for the non-linear response of the HVS, the contrast masking values CM(x) at each pixel
location:

CM(x) =
16 · C(x)2.4

C(x)2 + 262
. (10)

Heatmap generation. The heatmap generation component of the JND model combines the lumi-
nance masking and contrast masking values to produce the JND heatmap:

H(x) = LA(x) + CM(x)− γ ·min(LA(x), CM(x)), (11)
where γ is a parameter that controls the trade-off between luminance masking and contrast masking.

For color images, we compute the heatmap from the image’s luminance. Then we repeat it over the 3
color channels but with a scaling that differs for each channel: HJND = [αRH,αGH,αBH], where
(αR, αG, αB) = (1, 1, 2), because the human eye is more sensitive to red and green than blue color
shifts. This produces slightly more distortion in the blue channel.

D IMPLEMENTATION DETAILS & PARAMETERS

D.1 ARCHITECTURES OF THE WATERMARK EMBEDDER/EXTRACTOR

We hereby detail the modeling choices and architectures of Sec. 4.1. Our models, in particular the
embedder, are kept voluntarily small to be fast and usable at scale. For instance the embedder and
extractor described bellow have respectively 1.1M and 96M (≈ ViT-Base) parameters. Further work
could explore how to build larger models with same throughput to improve the results.

In the following we consider an image x ∈ R3×H×W and a message m ∈ {0, 1}nbits The embedder
and extractor operate at resolution h× w = 256× 256 (see Sec. 4.1).

Embedder. Our goal is to embed a message in an image in a way that is imperceptible to the human
eye. This task is similar in many ways to image compression or image-to-image translation. The
most used architectures for this arguably come from the works of Rombach et al. (2022); Esser et al.
(2021), which strike a very good balance between image quality and efficiency.

The encoder and decoder are described in Tab. 3 (we refer to the VQGAN paper (Esser et al.,
2021) for more details). They mainly consist of residual blocks optionally followed by upsampling
or downsampling blocks. For the encoder, we use m = 4 residual blocks with output channels
d = 32, 32, 32, d′ = 64, downsampling factor of 2 for the 3 first blocks (leading to a division by
f = 8 of the edge size of the latent map), and dz = 4. The decoder mirrors the encoder, and we
choose dmsg = nbits = 32. The Up block interpolates the activation map to the new size, then applies
a 2D convolution with kernel size 3, stride 1 and padding 1. In particular, we choose not to use
deconvolution layers (ConvTranspose2D) because of the checkerboard patterns they introduce (Odena
et al., 2016). The Down block average-pools the activation map with 2× 2 kernels with stride 2.

Our task does not need a bottleneck, since we are not interested in learning compressed representations.
Therefore the autoencoder predicts a signal δ ∈ [−1, 1]3×H×W – and not directly the final image –
which is added to the image with a residual layer. Another difference is that the message is embedded
in the latent space of the encoder, which means that the first layer of the decoder is bigger. As a
reminder, the binary message lookup table is Tθ ∈ Rnbits×2×dmsg . Each bit of the message m is mapped
to the embedding Tθ(k,mk, ·) ∈ Rdmsg , depending on its position k ∈ {1, . . . , nbits} and its value
mk ∈ {0, 1}, then repeated, which yields zmsg = repeat (1/nbits

∑nbits
k=1 Tθ(k,mk, ·)) ∈ Rdmsg×32×32.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 3: High-level architecture of the encoder and decoder of the watermark embedder embθ. The
design of the networks follows the architecture presented by Ho et al. (2020); Esser et al. (2021);
Rombach et al. (2022).

Encoder Decoder

x ∈ R3×H×W ,m ∈ {0, 1}nbits (z, zmsg) ∈ R(dz+dmsg)×32×32

Interpolation, Conv2D → Rd×256×256 Conv2D → Rd′×32×32

m× { Residual Block, Down Block} → Rd′×32×32 Residual Block → Rd′×32×32

Residual Block → Rd′×32×32 Non-Local Block → Rd′×32×32

Non-Local Block → Rd′×32×32 Residual Block → Rd′×32×32

Residual Block → Rd′×32×32 m× { Residual Block, Up Block} → Rd×256×256

GroupNorm, Swish, Conv2D → Rdz×32×32 GroupNorm, Swish, Conv2D → R3×256×256

Tθ(m), Repeat → Rdmsg×32×32 TanH, Interpolation → [−1, 1]3×H×W

Table 4: High-level architecture of the encoder and decoder of the watermark extractor extθ. The
design of the networks follows the architecture presented by Zheng et al. (2021); Kirillov et al. (2023).

Image encoder (ViT) Pixel decoder (CNN)

x ∈ R3×H×W z ∈ Rd′×16×16

Interpolation → R3×256×256 m′× { Residual Block, Up Block} → Rd′′×256×256

Patch Embed (Conv2D), Pos. Embed → Rd×16×16 Linear → R(1+nbits)×256×256

m× { Transformer Block } → Rd×16×16 Sigmoid (optional) → R(1+nbits)×256×256

LayerNorm, GELU, Conv2D → Rd′×16×16 Interpolation → R(1+nbits)×H×W

Extractor. Our goal is to detect and extract the message from an image, at the pixel level. This task
is similar to image segmentation. Our extractor is based on a vision transformer (ViT) (Dosovitskiy,
2020) followed by a pixel decoder, as commonly done in the literature (Kirillov et al., 2023; Zheng
et al., 2021; Oquab et al., 2023).

The architecture of the extractor is detailed in Tab. 4. The encoder is a ViT which consists of a series
of attention blocks to process the image’s patches into a high-dimensional feature space. We use the
ViT-Base architecture (86M parameters), with patch size 16 (Dosovitskiy, 2020), with d = d′ = 768.
The patch embeddings are then upscaled by the pixel decoder to predict the segmentation masks
and messages for every pixel. The latter uses m′ = 3 Up blocks which upsample (bilinearly) the
activation map by factors 4, 2, 2 respectively (total upscale factor is 16, which is the patch size used
in the ViT encoder). Each Up block is followed by a Conv2D with kernel size of 3 and stride of 1, a
LayerNorm, and a GELU activation. The number of channels output by the convolution is its number
of input channels divided by the upsampling factor of the Up block that precedes. We obtain a latent
map of shape (d′′ = d/16, 256, 256), which is mapped to (1 + nbits)-dimensional pixel features by a
linear layer. Finally, a Sigmoid layer scales the outputs to [0, 1] (this is in fact only done at inference,
since the training objective implicitly applies it in PyTorch).

D.2 MASK GENERATION

We follow the protocol of LaMa (Suvorov et al., 2022), and generate most of our masks used during
the two phases of training by adapting the authors’ code github.com/advimman/lama. Figure 6 shows
some qualitative examples. More specifically, a diverse set of random masks are used:

• Box-shaped masks are defined with a margin of 10 pixels and bounding box sizes width and
height randomly chosen, ranging from 30 to 100 pixels. They can be generated multiple
times (1 to 3 times) per image.

• Full-image masks cover the entire image.

• Segmentation-based masks are segments corresponding to object boundaries or specific
areas within an image. We use the masks of the COCO dataset, and either select the union
of all masks with probability 0.5, or the union of a random number of objects.

22

https://github.com/advimman/lama

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

• Irregular masks are random brush strokes, characterized by parameters such as maximum
and minimum angles (up to 4 degrees), lengths and widths (ranging from 20 to 50 pixels).
The brush strokes can be applied between 1 to 5 times per image.

During the first training phase (described in Sec. 4.2), we use irregular, box-shaped, full-image, and
segmentation-based masks, each with a probability of 0.25. Additionally, there is a 50% chance of
inverting any of the masks.

During the second training phase (described in Sec. 4.3), we use the same masks except that:

• for “box-shaped masks”, with probability 0.5, instead of outputting a single mask as in the
first phase, we output a random number from 1 to 3 of non overlapping rectangles;

• for “segmentation-based masks”, with probability 0.5, instead of outputting a single mask
as in the first phase, we output a random number from 1 to 3 of segmented objects.

When randomly selected during this post-training phase, both types of multiple masks cannot be
inverted and they are used to hide different watermarks within the same image.

D.3 WATERMARKING METHODS

We follow the evaluation setup used by Fernandez et al. (2023a). For HiDDeN (Zhu et al., 2018), we
use the model available in github.com/facebookresearch/stable signature and modulate the output with
the same JND mask. For DCTDWT, we use the implementation of github.com/ShieldMnt/invisible-
watermark (the one used in Stable Diffusion). For SSL Watermark (Fernandez et al., 2022) and
FNNS (Kishore et al., 2022) the watermark is embedded by optimizing the image, such that the
output of a pre-trained model is close to the given key. SSL Watermark uses a model pre-trained with
DINO (Caron et al., 2021), while FNNS uses the HiDDeN extractor used in all our experiments, and
not SteganoGan (Zhang et al., 2019a) as in the original paper. We optimize the distortion image for 10
iterations, and modulate it with the same JND mask. This avoids visible artifacts and gives a PSNR
comparable to our method (≈ 38dB). For TrustMark (Bui et al., 2023a), we use the “C variant” with
40 bits in the official implementation github.com/adobe/trustmark, as it achieves a similar PSNR.

D.4 TRANSFORMATIONS

Transformations seen at training time and evaluated in Sec. 5 simulate common image processing
steps. We categorize them into different groups: valuemetric, which change the pixel values;
geometric, which modify the image’s geometry; splicing, which add watermarked areas inside

(a) Random masks

(b) Segmentation masks

Figure 6: Examples of masks used during training. Only the white areas of the image end up
being watermarked. (a) Random masks (irregular, rectangles, inverted, full, null or inverted). (b)
Segmentation masks created from the union of COCO’s segmentation masks.

23

https://github.com/facebookresearch/stable_signature
https://github.com/ShieldMnt/invisible-watermark
https://github.com/ShieldMnt/invisible-watermark
https://github.com/adobe/trustmark

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 5: Illustration of transformations evaluated in Sec. 5.

Identity Contrast 0.5 Contrast 1.5 Brightness 0.5 Brightness 1.5

Hue 0.5 Saturation 1.5 Median filter 7 Gaussian blur 17 JPEG 40

Crop 0.33 Resize 0.5 Rotation 10 Perspective 0.5 Horizontal flipping

the image; and inpainting, which fill masked areas with plausible content. The geometric and
valuemetric transformations are displayed in Tab. 5 and detailed in the following table:

Transformation Type Parameter Training Evaluation

Brightness Valuemetric from torchvision Random between 0.5 and 2.0 1.5 and 2.0
Contrast Valuemetric from torchvision Random between 0.5 and 2.0 1.5 and 2.0
Hue Valuemetric from torchvision Random between -0.1 and 0.1 -0.1 and 0.1
Saturation Valuemetric from torchvision Random between 0.5 and 2.0 1.5 and 2.0
Gaussian blur Valuemetric kernel size k Random odd between 3 and 17 3 and 17
Median filter Valuemetric kernel size k Random odd between 3 and 7 3 and 7
JPEG Valuemetric quality Q Random between 40 and 80 50 and 80
Horizontal flip Geometric NA
Crop Geometric edge size ratio r Random between 0.33 and 1.0 0.33 and 0.5
Resize Geometric edge size ratio r Random between 0.5 and 1.5 0.5
Rotation Geometric angle α Random between -10 and 10 -10 and 10
Perspective Geometric distortion scale d Random between 0.1 and 0.5 0.1 and 0.5

For crop and resize, each new edge size is selected independently, which means that the aspect ratio
can change (because the extractor resizes the image). Moreover, an edge size ratio of 0.33 means
that the new area of the image is 0.332 ≈ 10% times the original area. For brightness, contrast,
saturation, and sharpness, the parameter is the default factor used in the PIL and Torchvision (Marcel
& Rodriguez, 2010) libraries. For splicing, we crop a random area of the image and paste it back at
the same location on the original image or on a different background image.

For evaluation (Sec. 5.3) we select some transformations from the list above and apply them with the
parameters given in the table. We chose these parameters high enough to have pronounced effects on
the robustness of the watermark. In practice, they are quite strong and would not not be encountered
often in real-world scenarios. Additionally we evaluate the robustness against inpainting which is
not seen at training time. We use LaMa (Suvorov et al., 2022) to modify masked areas in the image
conditioned on the rest of the image.

D.5 LOCALIZATION EXPERIMENTS

Figure 7 gives an example of how the evaluation for watermark localization is performed in Sec. 5.4,
for the “crop 0.25” augmentation. The mask used to place the watermark (second image) is the same
for each image with an area covering from 10% to 100% of the image. We perform a 25% crop of the
upper left corner. After that, we resize the image to its original size. Note that after this augmentation,
the watermarked area still recovers the same proportion of the crop (by design, as the watermarked
area was originally centered).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.6 MULTIPLE WATERMARKS

Figure 8 shows an example of how the evaluation for multiple watermarks is performed in Sec. 5.5.
After watermarking 5 areas of the image that are 10% each with different messages, the extractor
detects several watermarked areas and outputs one message for each.

22

Original Image Position of the
watermark (60%)

Augmented
Watermarked Image
(crop 25% then resize)

Watermarked
Image

Position of the
watermark (after crop
25% then resize)

WAM's detection

Figure 7: Experimental protocol for the evaluation of watermark localization as performed in Sec. 5.4.

15

Original Image Position of the 5
watermarks (10% each)

Multi-Watermarked
Image

WAM's detection of
watermarked areas

WAM's message decoding
with DBSCAN

(a) After the first phase of the training, evaluation without augmentation

14

Original Image Position of the 5
watermarks (10% each)

Multi-Watermarked
Image

WAM's detection of
watermarked areas

WAM's message decoding
with DBSCAN

(b) After the second phase of the training, evaluation without augmentation

14

Original Image Position of the 5
watermarks (10% each)

Multi-Watermarked Image
after JPEG-80, Horizontal
Flip and Contrast 1.5

WAM's detection of
watermarked areas

WAM's message decoding
with DBSCAN

(c) Failure: after the second phase of the training, with JPEG-80, horizontal flip and contrast 1.5

Figure 8: Evaluation protocol for multiple watermark extraction as described in Sec. 5.5. The masks
used to place the different watermarks (second image) are the same for each image. We then evaluate
the bit accuracy across all discovered messages and their ground truth. Different colors represent
different detected clusters for each image, but the color scheme is not coherent between images.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 6: Detection results for WAM and generation-time watermarking methods, on 1k negative
(non-watermarked), and 1k positive (watermarked), possibly edited, images. AUC refers to the Area
Under the ROC curve, TPR@10−2 is the TPR at FPR= 10−2. Stable Signature (Fernandez et al.,
2023a) embeds a 48-bit message and uses the bit accuracy as score, while Tree-Ring (Wen et al.,
2023) and WAM output a detection score. WAM is competitive with watermarking methods for
generative models (although the latter offer noteworthy advantages).

AUC TPR@10−2 TPR@10−4

Stable Sig. Tree-Ring WAM Stable Sig. Tree-Ring WAM Stable Sig. Tree-Ring WAM

None 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Valuemetric 0.94 1.00 1.00 0.90 1.00 1.00 0.90 1.00 1.00
Geometric 1.00 0.91 1.00 0.97 0.56 1.00 0.87 0.43 1.00
Comb. 1.00 0.75 1.00 0.99 0.05 1.00 0.99 0.01 1.00
Splicing 0.97 0.72 1.00 0.90 0.00 1.00 0.81 0.00 0.00

E ADDITIONAL RESULTS

E.1 COMPARISON WITH WATERMARKING METHODS FOR GENERATIVE MODELS

So far, we only considered general watermarking methods that apply the watermark on existing
images. We now compare WAM to methods specific for LDM, which watermark at generation
time. We generate 1k images from text prompts with Stable Signature (Fernandez et al., 2023a),
Tree-Ring (Wen et al., 2023) and without watermarking. We also generate a set of watermarked
images with WAM from this last set. For each method, we retrieve a detection score for both the
watermarked set of images and the non-watermarked images, that we use to compute the Receiver
Operating Characteristic (ROC) curve and the Area Under the Curve (AUC) for each method. In the
case of Stable Signature, we embed a 48-bit binary message and the score is the bit accuracy with
this message, while Tree-Ring and WAM directly output a detection score.

The results are shown in Tab. 6. We observe that WAM overall obtains better performance. However,
the watermarking methods for generative models are still competitive and offer important advantages,
namely, the possibility to open-source the model for Stable Signature, and the possibility to watermark
with virtually no image degradation as well as very strong robustness against valuemetric transforma-
tions for Tree-Ring. Note that the results are not perfectly apple-to-apple since the efficiency of the
extractor is different between methods: Tree-Ring requires to inverse the diffusion noise which is
considerably heavier, while Stable Signature uses a very small extractor (≈ 100k parameters).

E.2 HYPER PARAMETER SEARCH FOR DBSCAN

In Section 5.5, the DBSCAN algorithm is used to decode multiple messages from each image,
with parameters set to ε = 1 and minsamples = 1000. Under the same experimental setting, Figure 9
displays the results of a hyperparameter search conducted under two scenarios: images that underwent
horizontal flipping and a contrast adjustment with a parameter of 1.5 on the left, and the same

1.0 2.0 3.0

50
0

15
00

30
00

M
in

 S
am

pl
es

4.95 4.86 4.07

4.77 4.78 4.03

4.44 4.56 3.88

Number of Clusters

1.0 2.0 3.0

0.95 0.95 0.95

0.96 0.96 0.95

0.96 0.96 0.95

Average Bit Accuracy

0

1

2

3

4

5

0.5

0.6

0.7

0.8

0.9

1.0

(a) After horizontal hlip and contrast adjustment of 1.5.
The overall mIoU is at 85%.

1.0 2.0 3.0

50
0

15
00

30
00

M
in

 S
am

pl
es

4.64 3.01 1.37

2.99 2.88 1.35

1.31 2.36 1.31

Number of Clusters

1.0 2.0 3.0

0.60 0.60 0.59

0.61 0.60 0.59

0.62 0.61 0.59

Average Bit Accuracy

0

1

2

3

4

5

0.5

0.6

0.7

0.8

0.9

1.0

(b) After horizontal hlip, contrast adjustment of 1.5and
JPEG-80. The overall mIoU is at 59%.

Figure 9: DBSCAN hyperparameter search in the same setting as in Sec. 5.5, under two different
types of augmentations. Qualitative examples are shown in Fig. 8.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 7: Full decoding results on the COCO validation set, used for the aggregated results presented
in Tab. 2a of Sec 5.3. “Combination” corresponds to JPEG-80, Brightness 1.5 and Crop 50% all on
the same image, and was not part of the evaluation of Sec. 5.3. TPR is for a threshold on the detection
score sdet such that FPR = 0.04%. The bit accuracy is computed as described in Eq. 2.

HiDDeN DCTDWT SSL FNNS TrustMark WAM

TPR / Bit acc. TPR / Bit acc. TPR / Bit acc. TPR / Bit acc. TPR / Bit acc. TPR / Bit acc.

None 76.0 95.5 77.1 91.4 99.9 100.0 99.6 99.9 99.8 99.9 100.0 100.0
Crop (20%) 66.5 93.3 0.1 50.2 3.3 68.8 98.5 99.6 2.1 50.3 99.7 88.8
Crop (50%) 71.0 94.6 0.0 50.4 7.0 73.4 99.2 99.8 1.9 60.9 99.6 95.9
Rot (10%) 7.1 80.8 0.0 50.7 11.2 78.1 76.0 94.9 3.0 56.4 97.7 77.0

Perspective (0.1) 65.7 93.6 0.0 51.8 15.6 80.0 98.0 99.6 77.8 96.7 100.0 99.8
Perspective (0.5) 32.3 89.1 0.1 50.0 0.8 61.3 51.6 91.3 2.6 50.8 100.0 96.0
Horizontal Flip 0.1 54.3 0.0 50.2 32.7 86.2 0.1 56.2 99.8 99.9 100.0 100.0
Brightness (1.5) 85.6 96.9 16.1 60.9 90.9 97.7 99.1 99.7 83.2 97.1 100.0 100.0
Brightness (2.0) 83.2 96.2 0.1 49.4 67.8 91.9 97.2 99.0 58.8 92.2 100.0 99.9
Contrast (1.5) 74.1 95.4 20.4 63.4 92.9 98.2 98.9 99.7 77.1 96.2 100.0 100.0
Contrast (2.0) 67.3 94.3 0.6 49.4 66.0 92.4 97.0 99.4 52.1 90.8 100.0 99.9

Hue (-0.1) 9.0 77.4 29.5 66.7 98.0 99.4 96.7 99.2 99.3 99.9 100.0 100.0
Hue (+0.1) 19.3 84.0 59.4 81.2 97.7 99.3 98.5 99.5 99.5 99.9 100.0 100.0

Saturation (1.5) 80.6 96.2 21.3 61.7 99.7 99.9 99.5 99.9 99.0 99.8 100.0 100.0
Saturation (2.0) 81.7 96.5 0.3 47.4 98.3 99.5 99.4 99.8 96.8 99.5 100.0 100.0
Median filter (3) 74.6 94.9 0.9 53.2 82.8 96.5 99.4 99.9 99.7 99.9 100.0 100.0
Median filter (7) 23.4 83.0 0.4 53.0 20.4 80.7 61.1 90.2 99.4 99.9 100.0 100.0
Gaussian Blur (3) 47.1 88.0 41.7 77.0 97.2 99.1 87.3 95.5 99.8 99.9 100.0 100.0

Gaussian Blur (17) 0.1 51.2 0.0 49.8 3.8 69.6 0.0 50.5 98.7 99.8 100.0 99.8
JPEG (50) 11.2 77.3 0.0 49.8 5.1 72.5 34.5 86.9 99.1 99.8 99.9 99.0
JPEG (80) 32.8 86.8 0.1 50.5 66.1 92.6 80.5 95.4 99.6 99.9 100.0 99.9

Proportion (10%) 0.8 65.9 1.1 56.9 0.6 61.8 36.3 88.2 2.0 58.6 99.9 94.2
Collage (10%) 0.9 70.1 0.5 62.8 0.1 55.9 41.1 88.7 1.3 55.7 100.0 96.5
Combination 44.7 88.7 0.0 49.9 1.2 62.8 87.7 96.1 1.7 58.8 99.2 87.2

transformations followed by JPEG compression at a quality level of 80 on the right. In the absence
of JPEG compression, WAM effectively recovers the correct number of messages with satisfactory
bit accuracies. However, when JPEG compression is applied on top, WAM encounters difficulties.
For both scenarios, smaller values of ε and minsamples yielded the most favorable outcomes. These
findings guided the selection of the aforementioned values for the primary evaluation in sec. 5.5.

E.3 DETAILED ROBUSTNESS RESULTS

Table 7 shows the detailed results for all the transformations. We observe that WAM handles many of
them, although the performance decreases as they get stronger (e.g., for the combination). Figure 10
shows several examples of segmentation masks predicted after LaMa inpainting applied to both
COCO and DIV2K datasets, consistent with the evaluation settings described in Sec. 5.3.

F QUALITATIVE EXAMPLES

We show examples of images from the COCO dataset in Fig. 11 and for DIV2k in Fig. 12. We
observe that the watermark is imperceptible to the human eye, primarily due to the JND map used to
mask the watermark in areas where the human visual system is less sensitive. With enough attention,
it is however possible to see it in some images, especially in very white or very dark areas (e.g., the
boat in the last row of Fig. 11) and in the fur of the animals (e.g., the wolf and the penguin of Fig. 12).
We hypothesize that it comes from the fact that the JND map only accounts for the cover image
where the watermark signal δ is added, and not for δ itself. However, repetitive and regular patterns
are perceptible, and, when the bright or textured areas are big enough, this becomes noticeable. We
believe that further work could improve the imperceptibility of the watermark, for instance by using
more complex HVS models (Watson, 1993) or by using a regularization on the watermark signal to
remove repetitive or structured patterns.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

13

Watermarked Image Mask for inpainting Watermarked image after
inpainting

WAM's detection of
watermarked areas

Bit acc. 32/32

Bit acc. 32/32

Bit acc. 32/32

Figure 10: Examples of WAM’s detection after inpainting with LaMa (Suvorov et al., 2022), with the
experimental set-up detailed in Sec. 5.3. The first two lines are with images from the validation set of
COCO (using the union of the segmentation masks), while the third line is with an image from the
DIV2k dataset, with a random mask.

Original Watermarked Difference Original Watermarked Difference

Figure 11: Qualitative results on the validation set of MS-COCO, at various resolutions and for a
32-bits message. The difference image is displayed as 10× abs(xm − x).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Original Watermarked Difference

Figure 12: Qualitative results on images from DIV2k, at higher resolution and for a 32-bits message.
The difference image is displayed as 10× abs(xm − x).

29

	Introduction
	Related Work
	Detection, Localization, and Message Extraction
	Watermark Anything Models
	The model
	Pre-training models for localized message embedding and extraction
	Post-training for imperceptibility and multiple watermarks

	Experiments & Results
	Implementation details
	Quality
	Detection and decoding
	Localization
	Multiple watermarks

	Conclusion, Limitations, and Future Work
	Ethical Statement
	Societal Impact
	Environmental impact

	Extended Related Work on Image Watermarking
	Traditional watermarking
	Watermarking for generative AI

	Algorithms details
	DBSCAN
	Just-Noticeable-Difference

	Implementation details & parameters
	Architectures of the watermark embedder/extractor
	Mask generation
	Watermarking methods
	Transformations
	Localization experiments
	Multiple Watermarks

	Additional Results
	Comparison with watermarking methods for generative models
	Hyper parameter search for DBSCAN
	Detailed robustness results

	Qualitative Examples

