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ABSTRACT

As the size of language models increases, they deliver substantial performance
improvements across a variety of applications. However, this growth also leads
to greater computational demands, making deployment on resource-constrained
devices—such as personal computers and mobile or wearable devices—more
challenging, and significantly raising inference costs on cloud servers. To address
these challenges, we introduce a method to streamline language models. We
observe that language models pretrained on general datasets often include redundant
components that are unnecessary for particular tasks. Our approach identifies and
removes these redundant parts, retaining only the essential components for the
intended applications. Specifically, we represent the weight matrices of language
models as a linear combination of base components, eliminate the irrelevant bases,
and introduce new bases that enhance performance for target tasks. Evaluations
show that our method reduces model size much more significantly—by up to 1.7
times—while maintaining similar accuracy, compared to state-of-the-art techniques,
across a range of applications.

1 INTRODUCTION

Large language models (LLMs) have significantly enhanced the performance of various applications
in natural language processing, computer vision, and beyond. However, their large model sizes pose a
bottleneck for many practical uses. The substantial computing resources required for LLM inference
make it challenging to deploy them on devices with limited capabilities, such as personal computers
and mobile/wearable devices. Moreover, even on hardware platforms with ample computing power,
deploying LLMs consumes a significant amount of energy, raising concerns about sustainability.
Therefore, it is essential to reduce the size of LLMs after pretraining to ease their computational
demands and lower energy consumption.

Our approach exploits the relationship between pretrained models and specific target applications.
Large language models (LLMs) are typically pretrained on vast datasets encompassing a wide range
of tasks, many of which share common characteristics. This shared pretraining fosters synergies
that enhance the performance of LLMs. However, the diversity among these tasks also introduces
redundancy into the models. As demonstrated by our interpretation results in Section 3 shows, LLMs
contain a significant number of redundant components that are unnecessary for a specific target
application. By removing these redundant parts and retaining only the relevant ones, we can reduce
the model’s size while preserving its performance on the target application. Since many scenarios
only require support for a specific type of application, this approach effectively lowers the computing
resource requirements and reduces inference costs.

However, how do we identify the beneficial and redundant components of LLMs for a specific
application? In this work, we address this problem through the lens of matrix factorization. Singular
Value Decomposition (SVD) (Golub & Van Loan, 1996) factorizes a weight matrix W into the
product of three matrices U, S, and V, i.e., W = USVT =

∑
i siuiv

T
i , where si are (positive)

singular values, and ui and vi are column vectors of U and V with unit norms. Our interpretation
results show that these column vectors ui and vi may carry specific meanings. For instance, in
the LLaMA 2-7B model (Touvron et al., 2023), when factorizing the weight matrix Wh

OWh
V of an

attention head that is likely useful for code generation tasks, de-embedding the resulting column
vectors ui and vi reveals tokens like _in, <0x0A>, _and, _to, and _for. These column vectors
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Figure 1: Basel: Identify and select the important bases for target applications during compression.

are evidently highly useful for code generation but may be less relevant for tasks such as mathematical
reasoning.

Inspired by this observation, we propose Basel, a low-rank decomposition approach to effectively
compress LLMs for target applications. Figure 1 illustrates the key idea of Basel. We view each
weight matrix in LLMs as a linear combination of bases uivi

T with singular values si as their
weights. These bases are valuable representations stored in the pretrained model, learned from large
pretraining datasets. For a target application, some bases are advantageous while many others are not.
To select the bases beneficial for the target application, we propose retraining the singular values (i.e.,
the weights of the bases) while keeping the bases fixed, using the training set of the target application.
After retraining, we prune the bases associated with small singular values, as they are less important
for the target application, and retain only those with large singular values, which are most critical for
the target application. This approach allows us to eliminate the redundant parts of the original LLMs
and retain only the components essential for the target application. To handle the data distribution
differences between the pretraining dataset and the target application, we also augment the model
with new bases learned from the training set of the target application during the pruning process. This
enables us to learn the new bases necessary for the target application that are absent in the pretrained
model.

We evaluate Basel on two models—Llama 2-7B and Llama 2-13B (Touvron et al., 2023)—and
two tasks—mathematical reasoning and code generation. We evaluate the pass@1 accuracy of the
compressed models on GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) for the
mathematical reasoning task and HumanEval (Chen et al., 2021a) and MBPP (Austin et al., 2021) for
the code generation task. Compared to state-of-the-art baselines, our approach achieves substantially
better performance, improving accuracy by up to 16% when the compression ratio 1 exceeds 6
for mathematical reasoning and 4 for code generation. This also indicates that, in cases of deep
compression, our method reduces model size by up to 1.7 times while maintaining comparable
accuracy to baseline methods.

This paper makes the following critical contributions:

• We analyze the relationship between pretrained models and target applications, highlighting
the opportunity and underlying rationale for using low-rank decomposition to compress
large language models while maintaining performance on target applications.

• We propose Basel, a low-rank decomposition approach to compress pretrained large language
models for target applications. Basel identifies the beneficial and redundant components of
large language models by relearning the importance (i.e., singular values) of bases using the
training set of the target application, and then selects bases based on their importance.

• We evaluate Basel across multiple tasks and models, demonstrating its superior performance
in deep compression.

1The compression ratio is defined as the ratio of the original model size to the compressed model size.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Singular Value Decomposition (SVD) (Golub & Van Loan, 1996) has been applied to reduce the
size of machine learning models. Prior research (Xue et al., 2013; Jaderberg et al., 2014; Denton
et al., 2014; Zhang et al., 2015; Povey et al., 2018; Chen et al., 2018; Acharya et al., 2019; Noach &
Goldberg, 2020) has developed various SVD algorithms to compress different components of models,
such as DNNs, CNNs, and embedding layers for a range of applications including natural language
processing, speech, and vision. The primary distinction between our work and these prior studies is
that they do not relearn the importance of bases using the training data of target applications. Instead,
they typically prune bases according to the singular values from the original or finetuned models.
FWSVD (Hsu et al., 2022) evaluates the importance of individual weights rather than bases during
SVD. As highlighted in Sections 1 and 3, the bases hold significant physical meanings. Considering
importance at this level of granularity results in improved performance. As shown in Section 4, our
approach surpasses FWSVD in deep compression performance.

A recent study (Sharma et al., 2024) applied SVD to large language models. Its focus is on determining
the optimal rank for each layer, while our emphasis is on basis selection. The two methods are
orthogonal but complementary and can be combined. (Chen et al., 2021b) and (Yu & Wu, 2023)
suggest reconstructing bases based on feature mimicking. These approaches are orthogonal to
ours—they concentrate on basis reconstruction, whereas we focus on basis selection. Their methods
complement ours and can be integrated together to achieve enhanced compression results.

3 BASEL

In this section, we describe our proposed compression method, Basel.

For a linear layer y = Wx+ b, Singular Value Decomposition (SVD) factorizes its weight matrix
W ∈ Rn×m as the product of three matrices U, S, and V:

W = USVT (1)

where U = [u1, · · · ,ur], S = diag (s1, · · · , sr), and V = [v1, · · · ,vr].

The values {si ∈ R, i = 1, · · · , r} are positive singular values.2 The vectors
{ui ∈ Rn, i = 1, · · · , r} and {vi ∈ Rm, i = 1, · · · , r} are orthonormal, i.e., ∥ui∥ = 1, ∥vi∥ = 1,
ui ⊥ uj, and vi ⊥ vj if i ̸= j.

Therefore, we can factorize matrix W as the following series:

W =

r∑
i=1

siuiv
T
i (2)

Let matrix Wi = uiv
T
i , then

∥Wi∥ =

√
tr
(
Wi

TWi

)
=

√
tr (viui

Tuivi
T) =

√
tr(vivi

T) =
√

tr(vi
Tvi) = 1 (3)

⟨Wi,Wj⟩ = tr
(
Wi

TWj

)
= tr

(
viui

Tujvj
T
)
= 0, if i ̸= j (4)

Therefore,
{
uiv

T
i , i = 1, · · · , r

}
can be seen as a group of orthonormal bases in a subspace of Rn×m,

and {si, i = 1, · · · , r} are their weights, making the weight matrix W a linear combination of these
bases.

This group of bases can be viewed as a series of filters that manipulate the input signal x to produce
the output signal y:

y = Wx+ b =

r∑
i=1

siuivi
Tx+ b =

r∑
i=1

si ⟨x,vi⟩ui + b (5)

2We drop zero singular values and the corresponding columns of matrices U and V .
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In other words, for each basis (i.e., filter) uivi
T, the similarity between the input signal x and the

unit direction vector vi is measured by their inner product. This inner product is then multiplied by
the (positive) singular value si to determine the weight for the unit direction vector ui. The output
signal y is the weighted sum of ui. Figure 2 illustrates this interpretation of the role of bases from
the perspective of signal processing.

!"#"$

!%#%$

...
&

'"

'%
(

Figure 2: An interpretation of the role of bases from the perspective of signal processing.

Large language models pretrained on diverse datasets contain bases that capture a wide range of
meanings. We factorize the Wh

OWh
V matrix from the attention layers in both the vanilla Llama 2-7B

and the math-finetuned Llama 2-7B models, and decompose the u and v vectors associated with
bases having large singular values. Table 1 presents our observations. First, some bases exhibit highly
specific meanings, such as technology, programming, location, non-English characters, and math
symbols. Second, within the same layer, different bases can encode vastly different meanings. For
instance, in the math-finetuned model, layer 22, attention head 6, basis 1 corresponds to non-English
characters, while basis 3 corresponds to math symbols. Third, fine-tuning does not automatically
eliminate irrelevant bases. For example, the non-English character basis persists even after fine-tuning
the model on math datasets.

These findings suggest that many bases in the model are useful for specific tasks, but may be irrelevant
for others. When these irrelevant bases are used as filters in non-target applications, two scenarios
can occur: the filter may not be activated (due to a small inner product ⟨x,vi⟩), or worse, the filter is
activated, introducing harmful information into the output and degrading performance. This indicates
that pruning such bases could reduce model size with minimal performance loss, and in some cases,
even enhance performance for the target application.

Table 1: The meaning of bases in Vanilla and math-finetuned Llama 2-7B

Domain Basis Top ten most probable tokens
corresponding to the basis

Technology Vanilla model, Layer 16,
Head 25, Basis 2

_iOS, _Xcode, _ios, _Apple, _Mac,
_iPhone, _app, _xcode, _NS, _App

Programming Vanilla model, Layer 17,
Head 6, Basis 1

., _in, <0x0A>,..., _...,
_and, L’, _to, for, !

Location Vanilla model, Layer 17,
Head 25, Basis 1

_Massachusetts, _Illinois, _Chicago,
_Boston, _Dan, _Harvard,

_Connecticut, _IL, _Bulg, _Bulgar

Non-English Math finetuning model,
Layer 22, Head 6, Basis 1 學,會,區,國,經,進, :, unk char,無,設

Math Math finetuning model,
Layer 22, Head 6, Basis 3 _{, {, }{, _{r, ={, _{‘, _{", ]{, _‘{, _{};

In our approach, Basel, we determine the importance of the bases from the pretrained model by
retraining their singular values on the training set of the target application. The weight matrix W̃ in
Basel is represented as:

W̃ =

r∑
i=1

s̃iuivi
T +

r̃∑
j=1

ũjṽ
T
j (6)

In the first term, uivi
T represents the original bases in the pretrained model. To assess their

importance, we initialize their weights s̃i with their original singular values and then retrain these

4
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weights (while keeping the bases fixed) on the training set of the target application. The aim is that,
after retraining, the bases important for the target application will have larger singular values, whereas
those that are useless or detrimental will have zero or very small singular values. This allows us to
identify and prune the less useful bases. Relearning the importance of bases for the target application
distinguishes our approach from previous methods. Prior approaches either use the singular values in
the original model (Xue et al., 2013; Jaderberg et al., 2014; Denton et al., 2014; Zhang et al., 2015;
Povey et al., 2018; Chen et al., 2018; Acharya et al., 2019; Noach & Goldberg, 2020; Sharma et al.,
2024) or assess the importance of weight parameters, other than the importance of the bases, to prune
them (Hsu et al., 2022). They do not relearn the importance of the bases specifically for the target
application. From a signal processing perspective, this first term allows us to adjust the weight for
each filter, catering to the needs of the target application.

In the second term, ũj and ṽj are learnable vectors included for two primary purposes. First, due to
differences in data distribution between the pretrained dataset and the target application, some bases
necessary for the target application might be absent in the pretrained dataset. We use these vectors
to learn such bases. Second, during pruning, although each pruned basis may individually have
minimal impact on the target application, their cumulative performance loss can be significant. These
additional vectors help compensate for the performance loss caused by the pruned bases. The number
of learnable vectors r̃ is referred to as the additional dimension. From a signal processing perspective,
this second term allows us to include additional, new filters to enhance the model performance on the
target application.

Algorithm 1: Basel Algorithm
Input: Pretrained or Finetuning Model M
Output: Compressed Model M ′

Data: KeepRatio, PruningTimes, KeepingEpoch, PruningEpoch, PostFineTuningEpoch
1 IterationsPerPruning = round(NumIterationsPerEpoch * PruningEpoch / PruningTimes);
2 KeepRatioPerPruning = KeepRatio(1/PruningTimes);
3 Convert the weight matrix of each layer in M into the form of equation equation 6;
4 for i = 1 to KeepingEpoch do
5 Tune the learnable parameters in equation equation 6;
6 end
7 for i = 1 to PruningEpoch do
8 Tune the learnable parameters;
9 if IterationID is a multiple of IterationsPerPruning then

10 for each linear layer do
11 Prune bases with smaller singular values s̃i such that after pruning, the sum of the

singular values of the remaining bases is KeepRatioPerPruning of the sum before
pruning;

12 end
13 end
14 end
15 for each layer do
16 Compute the low rank matrix W̃ based on equation equation 6;
17 [U ′, S′, V ′] = SVD(W̃ );
18 Use two linear layers to substitute for the original layer;
19 The first layer’s weight matrix is S′V ′T;
20 The second layer’s weight matrix is U ′;
21 end
22 for i = 1 to PostFineTuningEpoch do
23 FineTune the new model M ′;
24 end

Algorithm 1 outlines our approach. Basel takes a pretrained or fine-tuned model as input and gradually
prunes bases in the original model. After each pruning step, it finetunes the learnable parameters s̃i,
ũj , and ṽj to offset the performance loss. Ultimately, a new weight matrix W̃ with a smaller rank
r′ is learned. We perform a standard SVD on it, representing it as the product of matrices U′, S′,

5
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and V′T. We then replace the original layer with two new layers: S′V′T becomes the weight matrix
of the first new layer, and U′ becomes the weight matrix of the second new layer. This reduces the
number of parameters from nm to (n+m)r′. The new model is subsequently further finetuned to
enhance its performance on the target application.

4 EXPERIMENTS

4.1 EVALUATION METHODOLOGY

The performance of low-rank compression algorithms is evaluated on two tasks: mathematical
reasoning and code generation. For each task, Llama 2-7B and Llama 2-13B models (Touvron et al.,
2023) are first finetuned on a training dataset and then compressed using a compression algorithm.
The compressed models are further finetuned before evaluation.

For the mathematical reasoning task, we utilize two evaluation datasets: GSM8K (Cobbe et al.,
2021) and Hendrycks’ MATH (Hendrycks et al., 2021). The GSM8K dataset comprises verbally
described mathematical questions, containing 1,319 samples used for evaluation. The Hendrycks’
MATH dataset covers more complex topics such as linear algebra and geometry, consisting of 5,000
question-answer pairs used for evaluation. Due to its complexity, the Hendrycks’ MATH dataset
necessitates more sophisticated computations and reasoning, resulting in lower accuracy compared to
GSM8K.

For the code generation task, we use two evaluation datasets: MBPP (Austin et al., 2021) and
HumanEval (Chen et al., 2021a). Both datasets evaluate the models’ ability to generate Python code.
MBPP comprises 500 code generation questions, while HumanEval includes 164 code generation
questions.

We compare our proposed Basel with state-of-the-art low-rank compression algorithms, specifically
SVD and FWSVD. SVD is widely used in previous model compression studies (Sharma et al., 2024;
Acharya et al., 2019; Noach & Goldberg, 2020; Xue et al., 2013; Jaderberg et al., 2014; Denton et al.,
2014; Zhang et al., 2015; Povey et al., 2018). FWSVD (Hsu et al., 2022) enhances SVD by evaluating
the importance of model weight parameters.

4.2 RESULTS ON MATHEMATICAL REASONING

Figures 3(a) and (b) depict the performance of various compression algorithms on the Llama 2-
7B model for the mathematical reasoning task. We evaluate the models’ accuracy (Pass@1) at
different compression ratios (original model size vs. compressed model size). For low compression
ratios (below 6), all methods achieve similar accuracy. However, our Basel method significantly
outperforms SVD and FWSVD at higher compression ratios. For instance, at a 7x compression ratio,
Basel achieves around 43% and 10% accuracy on GSM8K and MATH datasets, respectively, while
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Figure 3: Pass@1 accuracy and model size of Llama 2-7B compressed by various algorithms for the
mathematical reasoning task (the datapoint values are provided in Table 2 of the appendix).
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Figure 4: Pass@1 accuracy and model size of Llama 2-13B compressed by various algorithms for the
mathematical reasoning task (the datapoint values are provided in Table 3 of the appendix).
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Figure 5: Pass@1 accuracy and model size of Llama 2-7B compressed by various algorithms for the
code generation task (the datapoint values are provided in Table 4 of the appendix).

FWSVD drops below 2% accuracy on both datasets and SVD reaches only 27% and 5% accuracy on
GSM8K and MATH, respectively. We also find that Basel, at a compression ratio of 10, achieves
better accuracy on both GSM8K and MATH compared to FWSVD and SVD at a compression ratio of
6. This suggests that Basel reduces the model size by up to 1.7 times more than the baseline methods
while maintaining similar accuracy. This highlights the effectiveness of Basel for deep compression,
especially when aiming for aggressive model size reduction.

Similar trends emerge for the larger Llama 2-13B model in Figures 4(a) and (b). Once again, Basel
significantly outperforms SVD and FWSVD at compression ratios exceeding 6. At a 7x compression
ratio, Basel achieves 47% and 11% accuracy on GSM8K and MATH datasets, respectively, demon-
strating its advantage. This is in stark contrast to SVD’s performance (23% and 5% accuracy on
GSM8K and MATH) and FWSVD’s near-complete accuracy drop (around 2% on both datasets).
These results solidify Basel’s effectiveness for deep compression across different model sizes.

4.3 RESULTS ON CODE GENERATION

Similar results extend to code generation tasks (Figures 5 and 6). For both Llama 2-7B and Llama 2-
13B models, all methods perform comparably at lower compression ratios (below 4). However, Basel
exhibits clear superiority at higher compression ratios. On Llama 2-7B at a 6x compression ratio,
Basel achieves 12% and 8% accuracy on HumanEval and MBPP datasets, respectively, significantly
outperforming SVD (5% and 2%) and FWSVD (6% and 2%). Similar trends hold for Llama 2-13B.
These findings further solidify Basel’s effectiveness for deep compression across diverse tasks and
model sizes.
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Figure 6: Pass@1 accuracy and model size of Llama 2-13B compressed by various algorithms for the
code generation task (the datapoint values are provided in Table 5 of the appendix).

4.4 INFERENCE

Figure 7 presents the inference throughput and memory consumption of models compressed from
Llama-7B on a single A100 GPU, using GSM8K as the evaluation set. The results show that
low-rank compression methods, including SVD, FWSVD, and Basel, lead to reduced memory
consumption and improved throughput as the model size decreases. Throughput and memory usage
are primarily dependent on model size, with no significant differences between the methods at
equivalent sizes. However, since our proposed Basel method achieves a greater reduction in model
size while maintaining similar accuracy to SVD and FWSVD, it improves throughput by up to 16%
and reduces memory consumption by up to 27%.

4.5 ABLATION STUDY

To analyze the impact of key parameters of Basel, we conducted ablation studies on the additional
dimension (denoted by r̃ in equation equation 6) and pruning times. The additional dimension
compensates for information loss during pruning, especially for deep compression. Figure 8 compares
the performance of compressing Llama 2-7B for the mathematical reasoning task with and without an
additional dimension of 32. As expected, incorporating an additional dimension improves accuracy
at higher compression ratios (above 6). Similarly, pruning the model lightly but multiple times
allows it to gradually adapt to the reduction in parameters after each pruning. This is particularly
beneficial for achieving extreme compression ratios. Figure 9 demonstrates this effect by comparing
the performance of pruning Llama 2-7B 100 times vs. 2 times on the same task. Here, pruning 100
times leads to better accuracy at compression ratios exceeding 10.
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Figure 7: Throughput and memory consumption of compressed models.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

16151413121110987654321
Compression Ratio

30

40

50

60
Ac

cu
ra

cy
 (%

)

Addt'l Dim 32
Addt'l Dim 0

(a) GSM8k

16151413121110987654321
Compression Ratio

5

10

15

20

Ac
cu

ra
cy

 (%
)

Addt'l Dim 32
Addt'l Dim 0

(b) MATH

Figure 8: Ablation study: Effect of varying the additional dimension of Basel on compressing
Llama 2-7B for the mathematical reasoning task (the datapoint values are provided in Table 6 of the
appendix).
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Figure 9: Ablation study: Effect of varying the pruning times of Basel on compressing Llama 2-7B
for the mathematical reasoning task (the datapoint values are provided in Table 7 of the appendix).

5 CONCLUSION

The significant size of large language models leads to high inference costs and demands substantial
computing resources. To mitigate these issues, we focus on compressing large language models to
meet the specific requirements of target applications. Our approach involves examining these models
through the lens of matrix factorization. By viewing the weight matrix of large language models as
a linear combination of a group of bases, we have identified that pretrained models often contain
many redundant bases that are less useful for target applications. To address this, we propose Basel, a
compression algorithm that evaluates the importance of each base for target applications and prunes
those that are less significant. Experimental results demonstrate that Basel significantly outperforms
state-of-the-art low-rank compression algorithms in achieving deep compression. Basel greatly
reduces the inference cost of large language models, making them more accessible and practical for
a wider range of applications. This advancement has the potential to democratize the use of large
language models, facilitating their adoption and integration across diverse fields and industries.
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Table 2: Pass@1 accuracy and model size of Llama 2-7B compressed by various algorithms for the
mathematical reasoning task.

SVD
Model Size (B) 6.74 5.02 3.18 1.73 1.11 0.56

GSM8K Acc (%) 66.4 63.0 61.0 53.9 32.9 11.9
MATH Acc (%) 20.6 18.3 17.4 13.7 5.3 2.8

FWSVD
Model Size (B) 6.74 4.79 2.95 1.54 0.96 0.47

GSM8K Acc (%) 66.4 62.7 62.7 56.5 1.5 1.9
MATH Acc (%) 20.6 19.2 17.6 14.2 1.8 1.5

Basel
Model Size (B) 6.74 5.14 3.23 1.83 1.21 0.67 0.43

GSM8K Acc (%) 66.4 63.8 60.4 54.6 48.4 36.2 24.9
MATH Acc (%) 20.6 19.7 16.4 14.8 11.4 7.6 5.1

Table 3: Pass@1 accuracy and model size of Llama 2-13B compressed by various algorithms for the
mathematical reasoning task.

SVD
Model Size (B) 13.02 9.70 6.10 3.27 2.07 1.01

GSM8K Acc (%) 72.7 69.5 63.5 50.0 26.9 6.7
MATH Acc (%) 22.2 20.8 17.8 10.8 5.2 2.2

FWSVD
Model Size (B) 13.02 9.24 5.67 2.93 1.79 0.83

GSM8K Acc (%) 72.7 67.9 63.9 51.9 2.4 3.9
MATH Acc (%) 22.2 20.3 18.7 12.4 1.2 1.9

Basel
Model Size (B) 13.02 9.75 6.13 3.32 2.14 1.12 0.68

GSM8K Acc (%) 72.7 66.0 64.4 55.0 49.6 39.5 9.2
MATH Acc (%) 22.2 20.9 18.5 15.5 12.0 8.1 2.6

Table 4: Pass@1 accuracy and model size of Llama 2-7B compressed by various algorithms for the
code generation task.

SVD
Model Size (B) 6.74 5.02 3.18 1.73 1.11 0.56

HumanEval Acc (%) 23.8 20.7 20.1 9.1 4.9 3.7
MBPP Acc (%) 27.4 21.8 18.6 9.6 2.0 0.4

FWSVD
Model Size (B) 6.74 4.84 3.01 1.58 0.99 0.49

HumanEval Acc (%) 23.8 22.0 20.1 11.6 4.9 0
MBPP Acc (%) 27.4 24.4 17.4 10.4 0 0.6

Basel
Model Size (B) 6.74 5.14 3.28 1.83 1.21 0.67 0.43

HumanEval Acc (%) 23.8 21.3 20.7 14.6 12.8 6.7 4.9
MBPP Acc (%) 27.4 26.6 18.2 12.2 8.6 5.4 2.2
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Table 5: Pass@1 accuracy and model size of Llama 2-13B compressed by various algorithms for the
code generation task.

SVD
Model Size (B) 13.02 9.70 6.10 3.27 2.07 1.01

HumanEval Acc (%) 27.4 18.9 18.3 3.0 3.7 0.6
MBPP Acc (%) 30.0 25.4 18.2 10.6 1.4 0.6

FWSVD
Model Size (B) 13.02 9.31 5.73 2.97 1.83 0.85

HumanEval Acc (%) 27.4 26.2 20.1 8.5 3.7 0
MBPP Acc (%) 30.0 27.2 21.6 12.2 0.8 0

Basel
Model Size (B) 13.02 9.75 6.13 3.32 2.14 1.12 0.68

HumanEval Acc (%) 27.4 22.0 20.1 15.2 7.9 4.9 1.8
MBPP Acc (%) 30.0 25.0 19.6 13.0 10.8 5.6 2.2

Table 6: Ablation study: Effect of varying the additional dimension of Basel on compressing Llama
2-7B for the mathematical reasoning task.

Addt’l Dim 32
Model Size (B) 6.74 5.14 3.23 1.83 1.21 0.67 0.43

GSM8K Acc (%) 66.4 63.8 60.4 54.6 48.4 36.2 24.9
MATH Acc (%) 20.6 19.7 16.4 14.8 11.4 7.6 5.1

Addt’l Dim 0
Model Size (B) 6.74 5.06 3.20 1.75 1.13 0.59

GSM8K Acc (%) 66.4 63.5 60.4 51.9 40.9 24.6
MATH Acc (%) 20.6 19.4 17.6 13.9 8.9 4.5

Table 7: Ablation study: Effect of varying the pruning times of Basel on compressing Llama 2-7B for
the mathematical reasoning task.

100 times
Model Size (B) 6.74 5.14 3.23 1.83 1.21 0.67 0.43

GSM8K Acc (%) 66.4 63.8 60.4 54.6 48.4 36.2 24.9
MATH Acc (%) 20.6 19.7 16.4 14.8 11.4 7.6 5.1

2 times
Model Size (B) 6.74 5.11 3.27 1.82 1.20 0.65

GSM8K Acc (%) 66.4 62.9 59.1 54.4 47.2 32.1
MATH Acc (%) 20.6 18.6 18.1 14.5 11.0 6.2
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